FRACCIONES EQUIVALENTES 3.1.1

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "FRACCIONES EQUIVALENTES 3.1.1"

Transcripción

1 FRACCIONES EQUIVALENTES 3.. Fracciones que nombran el mismo valor se llaman fracciones equivalentes, como 2 3 = 6 9. Un método para encontrar fracciones equivalentes es usar la identidad multiplicativa (Propiedad de identidad de la multiplicación), es decir, multiplicar la fracción por una forma del número como 2 2, 5 5, etc. En este curso, llamamos estas fracciones el Uno Gigante. Multiplicar por no cambia el valor del número. Para más información vea el recuadro de Apuntes de matemáticas en la Lección 3.. del teto Core Connections en español, Curso. Ejemplo Halle tres fracciones equivalentes a = = = 4 8 Ejemplo 2 Use el Uno Gigante para encontrar una fracción equivalente a 7 2 usando fracciones en que los denominadores son 96: 7 2 =? 96 Cuál Uno Gigante va a usar? Como 96 2 = 8, el Uno Gigante es 8 8 : = Problemas Use el Uno Gigante para encontrar la fracción equivalente especifica. Su respuesta debe incluir el Uno Gigante que use o el numerador equivalente Respuestas. 5 5, , , , , , 8

2 EQUIVALENTES DE FRACCIÓN-DECIMAL-PORCENTAJE Fracciones, decimales porcentajes son diferentes maneras de representar a la misma porción o número. fracción palabras o imágenes decimal Representaciones de una porción porcentaje Para más información vea el recuadro de Apuntes de matemáticas en las Lecciones del teto Core Connections en español, Curso. Para más ejemplos práctica vea los materiales del Punto de comprobación 5 en Core Connections en español, Curso. Ejemplos De decimal a porcentaje: Multiplique el decimal por 00. (0.8)(00) = 8% De fracción a porcentaje: Escriba la proporción para encontrar la fracción equivalente usando 00 como el denominador. El numerador es el porcentaje. 4 5 = 00 así que 4 5 = = 80% De decimal a fracción: Use los dígitos en decimal como el numerador. Use el valor del lugar como denominador. Simplifique cuando sea necesario. De porcentaje a decimal: Divida el porcentaje por % 00 = 0.43 De porcentaje a fracción: Use el 00 como denominador. Use el porcentaje como el numerador. Simplifique según sea necesario. 22% = = 50 56% = = 4 25 De fracción a decimal: Divida el numerador por el denominador. 3 8 = 3 8 = = 5 8 = a. 0.2 = 2 0 = 5 b. 0.7 = = 3 = = 0.27

3 Problemas Convierta las fracciones, decimales o porcentajes como sea indicado.. Cambie 4 a un decimal. 2. Cambie 50% a una fracción a sus términos más bajos. 3. Cambie 0.75 a una fracción a sus términos más bajos. 4. Cambie 75% a un decimal. 5. Cambie 0.38 a un porcentaje. 6. Cambie 5 7. Cambie 0.3 a una fracción. 8. Cambie 8 a un porcentaje. a un decimal. 9. Cambie 3 a un decimal. 0. Cambie 0.08 a un porcentaje.. Cambie 87% a un decimal. 2. Cambie 3 5 a un porcentaje. 3. Cambie 0.4 a una fracción a sus términos más bajos. 4. Cambie 65% a una fracción en sus términos más bajos. 5. Cambie 9 7. Cambie 8 5 a un decimal. 6. Cambie 25% a una fracción en sus términos más bajos. a un decimal. 8. Cambie 3.25 a un porcentaje. 9. Cambie 6 a un decimal. Cambie el decimal a un porcentaje. 20. Cambie 7 a un decimal. 2. Cambie 43% a una fracción. Cambie la fracción a un decimal. 23. Cambie 8 7 a un decimal. Cambie el decimal a un porcentaje. 22. Cambie a un porcentaje. Cambie el porcentaje a una fracción. 24. Cambie 0.2 a una fracción. 25. Cambie 0.75 a una fracción.

4 Respuestas % 6. 20% % % o % ; 6.25% ; %; ; 87.5% =

5 OPERACIONES CON FRACCIONES AM de 3..2 SUMAS Y RESTAS DE FRACCIONES Antes de que las fracciones se puedan sumar o restar, las fracciones deben tener el mismo denominador, es decir, un denominador común. Le presentaremos dos métodos para sumar restar fracciones. MÉTODO DE MODELO DE ÁREA Paso : Copie el problema. 3 2 Paso 2: Dibuje divida los rectángulos en partes iguales para cada fracción. Un rectángulo es marcado verticalmente en partes iguales basado en el primer denominador (abajo). El otro es marcado horizontalmente usando el segundo denominador. El número de rectángulos sombreados está basado en el numerador (arriba). Etiquete cada rectángulo con la fracción que representa. 3 2 Paso 3: Sobrepongamos las líneas de un rectángulo sobre el otro rectángulo como si uno fuera puesto sobre el otro. Paso 4: Paso 5: Renombre las fracciones en setas, porque los nuevos rectángulos se dividen en seis partes iguales. Cambie los numeradores para igualar el número en setos en cada figura. Dibuja un rectangulo vacío con setos, luego cambie todos los setos sombreados al mismo número de setos en el rectángulo nuevo como el total que se sombrearon en los dos rectángulos en el paso anterior

6 Ejemplo se puede modelar como: así que De este modo, = 9 0. Ejemplo seria: Problemas Use el método de modelo de área para sumar las siguientes fracciones Respuestas = 5 2

7 RAZONES 3..6 Una razón es una comparación de dos cantidades por la división. Se puede escribir de varias maneras: 65 millas hora, 65 millas: hora o 65 millas a hora Para más información vea el recuadro de Apuntes de matemáticas de la Lección del teto Core Connections en español, Curso. Ejemplo Una bolsa contiene las siguientes canicas: 7 claras, 8 rojas 5 azules. Las siguientes razones pueden establecerse: a. Razón de azul con el número total de canicas 5 20 = 4. b. Razón de rojo a claro 8 7. c. Razón de rojo a azul 8 5. d. Razón de azul a rojo 5 8. Problemas. La bebida del jugo favorito de Moll se hace mezclando 3 tazas de jugo de manzana, 5 tazas de jugo de arándano 2 tazas de gaseosa de jengibre. Determine las siguientes razones: a. Razón de jugo de arándano al jugo de manzana. b. Razón de gaseosa de jengibre al jugo de manzana. c. Razón de gaseosa de jengibre a bebida de jugo terminada (la mezcla). 2. Un autobús de 40 pasajeros está llevando a 20 niñas, 6 niños 2 maestros en un viaje de campo a la capital del estado. Determine las siguientes razones: a. Razón entre niñas niños. b. Razón entre niños niñas. c. Razón de los maestros a estudiantes. d. Razón de los maestros a los pasajeros. 3. Es importante para Moll (del problema uno) mantener las mismas razones cuando mezcla cantidades más grandes o más pequeñas de la bebida. De lo contrario, la bebida no sabe bien. Si ella necesita un total de 30 tazas de bebida de jugo, cuántas tazas de cada líquido se debe usar? 4. Si Moll (del problema uno) necesita 25 tazas de bebida de jugo, cuántas tazas de cada líquido se debe usar? Recuerde que las razones deben seguir iguales.

8 Respuestas. a. 5 3 b. 2 3 c. 2 0 = tazas jugo de manzana, 5 tazas jugo de arándano, 6 tazas gaseosa de jengibre 2. a = 5 4 b = 4 5 c d tazas jugo de manzana, 2 2 tazas jugo de arándano, 5 tazas gaseosa de jengibre

9 OPERACIONES CON ENTEROS SUMA DE ENTEROS Los estudiantes repasan las sumas de enteros usando dos modelos concretos: el movimiento de un número a través de una recta númerica azulejos de enteros negativos positivos. Para sumar dos números enteros usando una recta númerica, empiece con el primer número después mueva el número apropiado de espacios hacia la derecha o izquierda dependiendo si el segundo número es positivo o negativo. Su ubicación final es la suma de los dos números enteros. Para sumar dos números usando azulejos, un número positivo es representado por el número apropiado de azulejos positivos () el número negativo está representado por el número apropiado de azulejos negativos ( ). Para sumar los dos empieza con la representación de azulejos del primer entero en un diagrama luego ponga la representación de azulejos del segundo número en el diagrama. Cualquier número igual de azulejos () azulejos ( ) iguala a cero pueden ser quitado del diagrama. Los azulejos que quedan representa la suma. Para más información vea el recuadros de Apuntes de matemáticas de la Lección del teto Core Connections en español, Curso. Ejemplo 4 6 Ejemplo 2 2 ( 4) Ejemplo = 2 5 ( 6) Ejemplo 4 2 ( 4) = Empiece con los azulejos representando el primer número. Añada al diagrama los azulejos representando el segundo número. 3 7 = 4 Circule los pares de azulejos de suma cero. es la respuesta. 5 ( 6) =

10 SUMA DE ENTEROS EN GENERAL Cuando suma enteros usando el modelo de azulejos, los pares de azulejos de suma cero son formados solamente si los dos números tienen diferentes signos. Después que encierre en un círculo los pares de azulejos de suma cero, cuente los azulejos que no están circulados para encontrar la suma. Si los signos son iguales, no se forman pares de azulejos de suma cero encuentra la suma de azulejos. Los enteros se pueden sumar sin hacer un modelo siguiendo las siguientes reglas. Si los signos son iguales, suma los números deje el mismo signo. Si los signos son diferentes, ignore los signos (es decir, use el valor absoluto de cada número). Reste el número más cerca al cero del número más lejos del cero. El signo de la respuesta es el mismo que el número que está más lejos del cero, es decir, el número con más valor absoluto. Ejemplo Para 4 2, 4 está más lejos del cero en la recta númerica que el 2, así que reste: 4 2 = 2. La respuesta es 2, a que 4, es decir, el número más lejos del cero, es negativo en el problema original. Problemas Use cualquier modelo o las reglas anteriores para encontrar estas sumas.. 4 ( 2) 2. 6 ( ) 3. 7 ( 7) ( 8) 8. 0 ( 2) 9. ( 6) ( 0) ( 3) ( 6) ( 65) ( 4) ( 3) ( 2) ( 8) ( 3) ( 2) ( 3) ( 70) ( 7) ( 8) 4 ( 3) ( 3) ( 8) ( 3) 8 ( 6) ( 70) ( 3) ( 5) 20

11 Respuestas

12 VALOR ABSOLUTO El valor absoluto de un número es la distancia del número al cero. Ya que el valor absoluto representa la distancia, sin tener en cuenta la dirección, el valor absoluto siempre será no negativo El símbolo del valor absoluto es. En la recta númerica arriba, ambos 5 5 están a 5 unidades del cero. La distancia esta mostrada como 5 = 5 se lee, el valor absoluto de cinco negativo es igual a cinco. Similarmente 5 = 5 significa, el valor absoluto de cinco es igual a cinco. = 5 significa que podría ser cualquier 5 o 5 porque los dos puntos están a cinco unidades del cero. El problema = 5 no tiene solución porque el valor absoluto del numero debe ser positivo. No confunda este hecho cuando un signo negativo aparezca afuera del signo del valor absoluto. Para más información vea el recuadro de Apuntes de matemáticas de la Lección del teto Core Connections en español, Curso. Ejemplos a. 6 = 6 b. 7 = 7 c. = 9 = 9 o 9 d. = 3 no ha solución e. = 3 = 3 o 3 f. 3 8 = 5 = 5 La parte (d) no tiene solución, a que cualquier valor absoluto es positivo. En la parte (e), el problema pide el el opuesto de, que es negativo. Problemas Determine si el valor absoluto o el valor de = 4 4. = 6 5. = = = 3 9. = = Haga una tabla usando los valores de de 4 al 4 para dibujar una gráfica para cada ecuación. 6. = 7. = 2 8. = 2 9. = =

13 Respuestas , , , , no ha 9. 3, solución. 7,

14 GRAFICAR EN CUATRO CUADRANTES La grafica que se empezó en los últimos grados ahora será etendida para incluir valores negativos los estudiantes graficarán ecuaciones algebraicas con dos variables. Para más información, vea el problema 3-22 del teto Core Connections en español, Curso. GRAFICANDO PUNTOS Los puntos en una gráfica coordinado son identificados por dos números en un par ordenado escrito como (, ). El primer número es la coordenada el segundo es la coordenada. Así juntos, las dos coordenadas nombran un punto eacto en la gráfica. Los ejemplos a continuación enseñan como poner un punto en un gráfico de coordenadas. Ejemplo Grafique el punto A(2, 3). Vaa 2 unidades a la derecha del origen (0, 0), después vaa 3 unidades abajo. Marque el punto. Ejemplo 2 Grafique el punto C( 4, 0) en una red de coordenadas. Vaa 4 unidades a la izquierda del origen, pero no vaa arriba o abajo. Marque el punto. C A(2, 3)

15 Problemas. Nombre el par ordenado para cada punto mostrado en el gráfico a continuación. 2. Use los pares ordenados para localizar cada punto en la red de coordenadas. Coloque un punto nómbrelo con su letra. Z U S K(0, 4) L( 5, 0) M( 2, 3) N( 2, 3) W O(2, 3) P( 4, 6) V Q(4, 5) R( 5, 4) T T(, 6) Respuestas. S(2, 2) T(, 6) U(0, 6) V(, 4) W( 6, 0) Z( 5, 3) 2. N L M R P T K O Q

PROBLEMAS DE DIAMANTE 2.1.1

PROBLEMAS DE DIAMANTE 2.1.1 PROBLEMAS DE DIAMANTE 2.1.1 En cada Problema de diamante, el producto de los dos números a los lados (izquierda y derecha) es el número arriba y la suma es el número de abajo. producto ab Los Problemas

Más detalles

CAPÍTULO 3: PORCIONES Y NÚMEROS ENTEROS

CAPÍTULO 3: PORCIONES Y NÚMEROS ENTEROS CAPÍTULO 3: PORCIONES Y NÚMEROS ENTEROS Fecha: Caja de herramientas 2014 CPM Educational Program. All rights reserved. 22 Capítulo 3: Porciones y números enteros Fecha: 23 2014 CPM Educational Program.

Más detalles

PROBABILIDAD SIMPLE 1.1.2,

PROBABILIDAD SIMPLE 1.1.2, PROBABILIDAD SIMPLE..2,.2..2.3 Resultado: Cualquier resultado posible o real de la acción considerada, como sacar un en un cubo numverado estándar o salir cruz al arrojar una moneda. Evento: Un resultado

Más detalles

COMPARAR CANTIDADES (EN UN TABLERO DE EXPRESIONES) y 6.1.2

COMPARAR CANTIDADES (EN UN TABLERO DE EXPRESIONES) y 6.1.2 COMPARAR CANTIDADES (EN UN TABLERO DE EXPRESIONES) 6.1.1 y 6.1.2 Combinando dos Tableros de epressions a un Tablero de comparación de epresiones crea un modelo concreto para simplificar (y después resolver)

Más detalles

MULTIPLICAR FRACCIONES CON UN MODELO DE ÁREA 5.1.1, 5.1.4, 5.2.2

MULTIPLICAR FRACCIONES CON UN MODELO DE ÁREA 5.1.1, 5.1.4, 5.2.2 MULTIPLICAR FRACCIONES CON UN MODELO DE ÁREA 5.1.1, 5.1.4, 5.. La multiplicación de fracciones es revisada usando un área de modelo rectangular. Las líneas que dividen el rectángulo para representar una

Más detalles

5to. ESTANDARES MATEMATICOS COMUNES FUNDAMENTALS

5to. ESTANDARES MATEMATICOS COMUNES FUNDAMENTALS Primeras Nueve Semanas Entienda el sistema de valor posicional 5.NBT.2 Explique patrones del numero cero del producto cuando se multiplica un numero por una potencia de 10 y explique patrones en el lugar

Más detalles

Por ejemplo, la necesidad de representar el dinero adeudado, temperatura bajo cero, profundidades con respecto al nivel del mar, etc.

Por ejemplo, la necesidad de representar el dinero adeudado, temperatura bajo cero, profundidades con respecto al nivel del mar, etc. NÚMEROS ENTEROS 1. LOS NÚMEROS ENTEROS. Con los números naturales no era posible realizar diferencias donde el minuendo era menor que el sustraendo, pero en la vida nos encontramos con operaciones de este

Más detalles

Números Racionales. Repaso para la prueba. Profesora: Jennipher Ferreira Curso: 7 B

Números Racionales. Repaso para la prueba. Profesora: Jennipher Ferreira Curso: 7 B Números Racionales Repaso para la prueba Profesora: Jennipher Ferreira Curso: 7 B Tipos de Fracciones Fracciones propias: Son aquellas en las que el denominador es mayor al numerador, y su valor es menor

Más detalles

PROBABILIDAD SIMPLE 1.1.2,

PROBABILIDAD SIMPLE 1.1.2, PROBABILIDAD SIMPLE..2,.2..2.3 Resultado: Cualquier resultado posible o real de la acción considerada, como sacar un 5 en un cubo numverado estándar o salir cruz al arrojar una moneda. Evento: Un resultado

Más detalles

Operaciones de números racionales

Operaciones de números racionales Operaciones de números racionales Yuitza T. Humarán Martínez Adapatado por Caroline Rodriguez Departamento de Matemáticas Universidad de Puerto Rico en Arecibo El conjunto de los números racionales consiste

Más detalles

CAPÍTULO 4: VARIABLES Y RAZONES

CAPÍTULO 4: VARIABLES Y RAZONES Capítulo 4: Variables y razones CAPÍTULO 4: VARIABLES Y RAZONES Fecha: 33 2014 CPM Educational Program. All rights reserved. Core Connections en español, Curso 2 Fecha: Caja de herramientas 2014 CPM Educational

Más detalles

Materia: Matemática de séptimo Tema: El Concepto de Fracciones

Materia: Matemática de séptimo Tema: El Concepto de Fracciones Materia: Matemática de séptimo Tema: El Concepto de Fracciones Una mañana, en el barco de buceo, Cameron comenzó a hablar con otro niño llamado Chet. Chet y su familia eran de Colorado y Chet era apenas

Más detalles

Introducción...5. Unidad 1 Razones y porcentajes...7. Unidad 2 Operaciones Unidad 3 Factores y múltiplos...51

Introducción...5. Unidad 1 Razones y porcentajes...7. Unidad 2 Operaciones Unidad 3 Factores y múltiplos...51 Índice Introducción... Unidad 1 Razones y porcentajes...7 6.RP.1 6.RP..a 6.RP., 6.RP..b 6.RP..d 6.RP..c Lección 1 Razones...8 Lección Razones equivalentes...1 Lección Tasas...16 Lección 4 Conversiones

Más detalles

RESUMEN DE CONCEPTOS

RESUMEN DE CONCEPTOS RESUMEN DE CONCEPTOS 1º ESO MATEMÁTICAS NÚMEROS NATURALES (1) Múltiplo de un número: Un número es múltiplo de otro si el segundo está contenido en el primero un número exacto de veces. Ejemplo: 16 es múltiplo

Más detalles

Primaria Sexto Grado Matemáticas (con QuickTables)

Primaria Sexto Grado Matemáticas (con QuickTables) Primaria Sexto Grado Matemáticas (con QuickTables) Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios

Más detalles

Materia: Matermática de Séptimo Tema: Multiplicación de Números Racionales

Materia: Matermática de Séptimo Tema: Multiplicación de Números Racionales Materia: Matermática de Séptimo Tema: Multiplicación de Números Racionales Supongamos que usted tiene un número, por ejemplo el número y debe multiplicarlo por un número aleatorio. Qué pasaría si dicho

Más detalles

UNIDAD 6: FRACCIONES ÍNDICE. 6.1 Conocimiento de fracciones: Términos de las fracciones Representación. 6.1.

UNIDAD 6: FRACCIONES ÍNDICE. 6.1 Conocimiento de fracciones: Términos de las fracciones Representación. 6.1. UNIDAD 6: FRACCIONES ÍNDICE 6. Conocimiento de fracciones: 6.. Términos de las fracciones. 6.. Representación 6.. Interpretación 6. Lectura y escritura de fracciones. 6. Comparación de fracciones. 6..

Más detalles

Capítulo 5. Los números reales y sus representaciones Pearson Education, Inc. Diapositiva 5-1-1

Capítulo 5. Los números reales y sus representaciones Pearson Education, Inc. Diapositiva 5-1-1 Capítulo 5 Los números reales y sus representaciones 2012 Pearson Education, Inc. Diapositiva 5-1-1 Capítulo 5: Los números reales y sus representaciones 5.1 Números reales, orden y valor absoluto 5.2

Más detalles

INTERVALOS Y SEMIRRECTAS.

INTERVALOS Y SEMIRRECTAS. el blog de mate de aida CSI: Inecuaciones pág 1 INTERVALOS Y SEMIRRECTAS La ordenación de números permite definir algunos conjuntos de números que tienen una representación geométrica en la recta real

Más detalles

Colegio Decroly Americano Matemática 7th Core, Contenidos I Período

Colegio Decroly Americano Matemática 7th Core, Contenidos I Período Matemática 7th Core, 2015-2016 Contenidos I Período 1. Sentido Numérico a. Identificar y escribir patrones. b. Escribir números en forma de exponentes. c. Escribir cantidades en notación científica. d.

Más detalles

Conoce y representa fracciones de manera gráfica usando figuras geométricas regulares.

Conoce y representa fracciones de manera gráfica usando figuras geométricas regulares. PARTES DE UN ENTERO 02 1 Conoce y representa fracciones de manera gráfica usando figuras geométricas regulares. En presentación de contenidos repasa las partes de una fracción y representa las figuras

Más detalles

Preparación para Álgebra 1 de Escuela Superior

Preparación para Álgebra 1 de Escuela Superior Preparación para Álgebra 1 de Escuela Superior Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales

Más detalles

CONJUNTOS NUMÉRICOS. La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria.

CONJUNTOS NUMÉRICOS. La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria. CONJUNTOS NUMÉRICOS La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria. Por ejemplo, usamos números para contar una determinada cantidad

Más detalles

USO DE LA FÓRMULA CUADRÁTICA y 9.1.3

USO DE LA FÓRMULA CUADRÁTICA y 9.1.3 Capítulo 9 USO DE LA FÓRMULA CUADRÁTICA 9.1.2 y 9.1.3 Cuando una ecuación cuadrática no es factorizable, necesitas otro método para hallar x. La Fórmula cuadrática puede usarse para calcular las raíces

Más detalles

Matemáticas Nivel 4 (con QuickTables)

Matemáticas Nivel 4 (con QuickTables) Matemáticas Nivel 4 (con QuickTables) Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales

Más detalles

RESUMEN DE CONCEPTOS TEÓRICOS MATEMÁTICAS 1º ESO. CURSO

RESUMEN DE CONCEPTOS TEÓRICOS MATEMÁTICAS 1º ESO. CURSO RESUMEN DE CONCEPTOS TEÓRICOS MATEMÁTICAS 1º ESO. CURSO 2015-2016 UNIDAD 1: NÚMEROS NATURALES (1) Múltiplo de un número: Un número es múltiplo de otro si el segundo está contenido en el primero un número

Más detalles

Apuntes de los NÚMEROS REALES

Apuntes de los NÚMEROS REALES Apuntes de los NÚMEROS REALES Apuntes y notas tomadas de la dirección URL: http://dgenp.unam.mx/direccgral/secacad/cmatematicas/pdf/m4unidad03.pdf pág. 1 tres posibilidades ESQUEMA DE LOS NÚMEROS REALES

Más detalles

Introducción...5. Unidad 1 Comprensión de la multiplicación y la división...7. Unidad 2 Uso de la aritmética...31

Introducción...5. Unidad 1 Comprensión de la multiplicación y la división...7. Unidad 2 Uso de la aritmética...31 Índice Introducción...5 Unidad 1...7 3.OA.1 Lección 1 Significado de la multiplicación...8 3.OA.2 3.OA.7 3.OA.4, 3.OA.6 3.OA.5 Lección 2 Significado de la división...12 Lección 3 Operaciones de multiplicación

Más detalles

FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma.

FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma. FICHAS REPASO º ESO OPERACIONES CON NÚMEROS ENTEROS El valor absoluto de un número entero es el número natural que resulta al prescindir del signo. Por ejemplo, el valor absoluto de es y el valor absoluto

Más detalles

En una recta numérica el punto que representa el cero recibe el nombre de origen.

En una recta numérica el punto que representa el cero recibe el nombre de origen. 1. Conjuntos numéricos Los conjuntos numéricos con los que has trabajado tanto en Enseñanza Básica como en Enseñanza Media, se van ampliando a medida que se necesita resolver ciertas problemáticas de la

Más detalles

PENDIENTE MEDIDA DE LA INCLINACIÓN

PENDIENTE MEDIDA DE LA INCLINACIÓN Capítulo 2 PENDIENTE MEDIDA DE LA INCLINACIÓN 2.1.2 2.1.4 Los alumnos utilizaron la ecuación = m + b para graficar rectas describir patrones en los cursos anteriores. La Lección 2.1.1 es un repaso. Cuando

Más detalles

MEDIDAS DE TENDENCIA CENTRAL y Ejemplo 2

MEDIDAS DE TENDENCIA CENTRAL y Ejemplo 2 MEDIDAS DE TENDENCIA CENTRAL 8.1.1 y 8.1. Medidas de tendencia central son los números que sitúan o se aproximan al centro de un conjunto de datos, es decir, un valor típico que describe el conjunto de

Más detalles

Los Conjuntos de Números

Los Conjuntos de Números Héctor W. Pagán Profesor de Matemática Mate 40 Debemos recordar.. Los conjuntos de números 2. Opuesto. Valor absoluto 4. Operaciones de números con signo Los Conjuntos de Números Conjuntos importantes

Más detalles

Alfredo González. Beatriz Rodríguez Pautt. Carlos Alfaro

Alfredo González. Beatriz Rodríguez Pautt. Carlos Alfaro Alfredo González Beatriz Rodríguez Pautt Carlos Alfaro FERNANDO DAVID ANILLO 1 1. Números reales... 03 2. Transformación de un decimal a fracción 05 3. Propiedades de los números reales. 6 4. Propiedades

Más detalles

RESOLUCIÓN DE DESIGUALDADES CON UNA VARIABLE y 9.1.2

RESOLUCIÓN DE DESIGUALDADES CON UNA VARIABLE y 9.1.2 RESOLUCIÓN DE DESIGUALDADES CON UNA VARIABLE 9.1.1 9.1.2 Para resolver una desigualdad con una variable, debes convertirla primero en una ecuación (un enunciado matemático con un signo = ) resolverla.

Más detalles

REESCRIBIR ECUACIONES CON MÚLTIPLES VARIABLES Ejemplo 2. Ejemplo 4

REESCRIBIR ECUACIONES CON MÚLTIPLES VARIABLES Ejemplo 2. Ejemplo 4 REESCRIBIR ECUACIONES CON MÚLTIPLES VARIABLES 6.1.1 Para reescribir una ecuación con más de una variable debes usar el mismo proceso que para resolver una ecuación de una variable. El resultado final suele

Más detalles

LOS NÚMEROS ENTEROS. Para restar un número entero, se quita el paréntesis y se pone al número el signo contrario al que tenía.

LOS NÚMEROS ENTEROS. Para restar un número entero, se quita el paréntesis y se pone al número el signo contrario al que tenía. Melilla Los números Enteros y operaciones elementales LOS NÚMEROS ENTEROS 1º LOS NÚMEROS ENTEROS. El conjunto de los números enteros Z está formado por los números naturales (enteros positivos) el cero

Más detalles

COLEGIO DE LA IGLESIA EVANGELICA EL DIOS DE ISRAEL GUION DE CLASE. Profesor Responsable: Santos Jonathan Tzun Meléndez.

COLEGIO DE LA IGLESIA EVANGELICA EL DIOS DE ISRAEL GUION DE CLASE. Profesor Responsable: Santos Jonathan Tzun Meléndez. COLEGIO DE LA IGLESIA EVANGELICA EL DIOS DE ISRAEL GUION DE CLASE Profesor Responsable: Santos Jonathan Tzun Meléndez. Grado: 7º Grado A y B Asignatura: Matemática Tiempo: Periodo: UNIDAD 2. OPEREMOS CON

Más detalles

GUÍA NÚMERO 2 NÚMEROS RACIONALES Los números racionales son todos aquellos números de la forma b

GUÍA NÚMERO 2 NÚMEROS RACIONALES Los números racionales son todos aquellos números de la forma b Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras Departamento de Matemática RESUMEN PSU MATEMATICA GUÍA NÚMERO NÚMEROS RACIONALES Los números racionales son todos aquellos

Más detalles

primarios = 3; 5 4 = 1; 2(3) = 6; 3. Observa todos los valores usados en

primarios = 3; 5 4 = 1; 2(3) = 6; 3. Observa todos los valores usados en Unidad 1. Conjuntos de números II. Operaciones y expresiones 1. Operaciones con números racionales. Las operaciones con números racionales las estamos realizando desde los grados 12 primarios. 1 + 2 =

Más detalles

Actividad introductoria: Repartición de dos pasteles en una familia

Actividad introductoria: Repartición de dos pasteles en una familia Grado 6 Matemáticas De los símbolos a la búsqueda del concepto: El conjunto de los números naturales TEMA: USO DE LA FRACCIÓN EN DIFERENTES CONTEXTOS Nombre: Grado: Actividad introductoria: Repartición

Más detalles

MATEMÁTICAS 5. º CURSO UNIDAD 1: SISTEMAS DE NUMERACIÓN

MATEMÁTICAS 5. º CURSO UNIDAD 1: SISTEMAS DE NUMERACIÓN MATEMÁTICAS 5. º CURSO UNIDAD 1: SISTEMAS DE NUMERACIÓN OBJETIVOS Conocer los cuatro primeros órdenes de unidades y las equivalencias entre ellos. Leer, escribir y descomponer números de hasta cuatro cifras.

Más detalles

Número que expresa parte de un todo. Toda fracción se representa como el cociente de dos números enteros en la forma con q 0

Número que expresa parte de un todo. Toda fracción se representa como el cociente de dos números enteros en la forma con q 0 Fracciones Fracciones Número que expresa parte de un todo. Toda fracción se representa p como el cociente de dos números enteros en la forma con q 0 numerador denominador p q Propiedad fundamental de las

Más detalles

TEMAS. 1 Valor de posición. 2 Sumar y restar números decimales hasta las centésimas. 3 Multiplicar números enteros de varios dígitos con facilidad

TEMAS. 1 Valor de posición. 2 Sumar y restar números decimales hasta las centésimas. 3 Multiplicar números enteros de varios dígitos con facilidad CLAVE Estándares relacionados principales Estándares relacionados de apoyo Estándares relacionados adicionales El contenido está organizado enfocándose en los estándares relacionados de Common Core. Hay

Más detalles

NOMENCLATURA DE CUADRILÁTEROS Y ÁNGULOS

NOMENCLATURA DE CUADRILÁTEROS Y ÁNGULOS NOMENCLATURA DE CUADRILÁTEROS Y ÁNGULOS 8.3.1 8.3.4 Un cuadrilátero es cualquier polígono de cuatro lados. Hay seis casos especiales de cuadriláteros con la que los estudiantes deben estar familiarizados.

Más detalles

TEMA 1. Números Reales. Teoría. Matemáticas

TEMA 1. Números Reales. Teoría. Matemáticas 1 1.- Los números reales Cuáles son los números reales? Los números reales son todos los números racionales y todos los números irracionales. El conjunto de los números reales se designa con el símbolo

Más detalles

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 =

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 1. NÚMEROS NATURALES POTENCIAS DE UN NÚMERO NATURAL Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 El factor que se repite es la base, y el número de veces que se repite

Más detalles

Lección 1: Números reales

Lección 1: Números reales GUÍA DE MATEMÁTICAS III Lección 1: Números reales Los números irracionales En los grados anteriores estudiamos distintas clases de números: Vimos en primer lugar: los naturales, que son aquellos que sirven

Más detalles

CLASIFICACION DE LOS NUMEROS

CLASIFICACION DE LOS NUMEROS CLASIFICACION DE LOS NUMEROS NÚMEROS NATURALES En el desarrollo de las culturas fue evolucionando esta forma primitiva de representar objetos o cosas reales a través de símbolos naciendo así el primer

Más detalles

Bases Matemáticas para la Educación Primaria. Guía de Estudio. Tema 3: Números racionales. Parte I: Fracciones y razones Números racionales

Bases Matemáticas para la Educación Primaria. Guía de Estudio. Tema 3: Números racionales. Parte I: Fracciones y razones Números racionales Bases Matemáticas para la Educación Primaria Guía de Estudio Tema 3: Números racionales Parte I: Fracciones y razones Números racionales 1 Situación introductoria ANÁLISIS DE CONOCIMIENTOS PUESTOS EN JUEGO

Más detalles

Ecuaciones de primer grado

Ecuaciones de primer grado Matemáticas Unidad 16 Ecuaciones de primer grado Objetivos Resolver problemas que impliquen el planteamiento y la resolución de ecuaciones de primer grado de la forma x + a = b; ax = b; ax + b = c, utilizando

Más detalles

Destrezas algebraicas: de lo concreto a lo abstracto MARIA DE L. PLAZA BOSCANA

Destrezas algebraicas: de lo concreto a lo abstracto MARIA DE L. PLAZA BOSCANA Destrezas algebraicas: de lo concreto a lo abstracto MARIA DE L. PLAZA BOSCANA INTRODUCCION Hoy trabajaremos con los Algeblocks, un manipulativo que te ayudará a descubrir las reglas de enteros y a entender

Más detalles

C Capítulo 1. Capítulo 3. Capítulo 2. Adición y sustracción: resultados hasta 18. Suma y resta de números con 2, 3 y 4 dígitos

C Capítulo 1. Capítulo 3. Capítulo 2. Adición y sustracción: resultados hasta 18. Suma y resta de números con 2, 3 y 4 dígitos C Capítulo 1 Adición y sustracción: resultados hasta 18 Adición: resultados hasta 18... 1 escoge una estrategia...2 Adición de tres o cuatro números... 3 Oraciones matemáticas - conjunto solución... 4

Más detalles

Lección 10: División de Polinomios. Dra. Noemí L. Ruiz Limardo 2009

Lección 10: División de Polinomios. Dra. Noemí L. Ruiz Limardo 2009 Lección 10: División de Polinomios Dra. Noemí L. Ruiz Limardo 009 Objetivos de la lección Al finalizar esta lección los estudiantes: Dividirán polinomios de dos o más términos por polinomios de uno y dos

Más detalles

Conjunto de Números Racionales.

Conjunto de Números Racionales. Conjunto de Números Racionales. El conjunto de los números racionales está formado por: el conjunto de los números enteros (-2, -1, 0, 1, 2, ) y los números fraccionarios y se representan con una Q. Números

Más detalles

Unidades de Matemáticas Estándares Comunes Tercer Grado

Unidades de Matemáticas Estándares Comunes Tercer Grado Los estándares para práctica de matemáticas son diseñados para ser integrados en todas las lecciones. Unidades de Matemáticas Estándares Comunes Tercer Grado 1. Resuelve problemas y persevera en resolverlos.

Más detalles

6to GRADO. Operaciones con decimales HOJAS DE TRABAJO

6to GRADO. Operaciones con decimales HOJAS DE TRABAJO 6to GRADO Operaciones con decimales HOJAS DE TRABAJO Multiplicar y dividir por potencias de diez Mueve el punto decimal dependiendo de la cantidad de ceros el punto decimal se mueve a la derecha el punto

Más detalles

FIN EDUCATIVO FIN INSTRUCTIVO

FIN EDUCATIVO FIN INSTRUCTIVO FIN EDUCATIVO Todos somos números en las Matemáticas de la vida, con valores: absolutos, relativos, positivos y negativos. Los primeros representan a nuestras cualidades y virtudes ; los segundos a los

Más detalles

Resolver desigualdades lineales - Preguntas del Capítulo. 2. Explique los pasos para graficar una desigualdad en una recta numérica.

Resolver desigualdades lineales - Preguntas del Capítulo. 2. Explique los pasos para graficar una desigualdad en una recta numérica. Resolver desigualdades lineales - Preguntas del Capítulo 1. Cómo se convierte una afirmación a una desigualdad? 2. Eplique los pasos para graficar una desigualdad en una recta numérica. 3. Cómo es la solución

Más detalles

Fracciones + + EJERCICIOS resueltos. Operaciones combinadas + = Para resolver operaciones combinadas debemos tener en cuenta estas indicaciones:

Fracciones + + EJERCICIOS resueltos. Operaciones combinadas + = Para resolver operaciones combinadas debemos tener en cuenta estas indicaciones: Operaciones combinadas Para resolver operaciones combinadas debemos tener en cuenta estas indicaciones: La misión de los paréntesis es la de unir o "empaquetar" aquello a lo que afectan. Los signos de

Más detalles

Curso º ESO. UNIDADES 6 Y 7: EXPRESIONES ALGEBRAICAS Y ECUACIONES Departamento de Matemáticas IES Fray Bartolomé de las Casas de Morón

Curso º ESO. UNIDADES 6 Y 7: EXPRESIONES ALGEBRAICAS Y ECUACIONES Departamento de Matemáticas IES Fray Bartolomé de las Casas de Morón 2º ESO UNIDADES 6 Y 7: EXPRESIONES ALGEBRAICAS Y ECUACIONES Departamento de Matemáticas IES Fray Bartolomé de las Casas de Morón OBJETIVOS CONTENIDOS PROCEDIMIENTOS Lenguaje algebraico. Normas y Traducción

Más detalles

Tema 05: Números Decimales, Fracciones y Porcentajes Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco.

Tema 05: Números Decimales, Fracciones y Porcentajes Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco. 2009 Tema 05: Números Decimales, Fracciones y Porcentajes Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco. Manuel González de León. mgdl 0/0/2009 INDICE: 0. UNIDADES DECIMALES: 02. DESCOMPOSICIÓN

Más detalles

Ámbito Científico-Tecnológico Módulo IV Bloque 2 Unidad 1 Tan real como la vida misma

Ámbito Científico-Tecnológico Módulo IV Bloque 2 Unidad 1 Tan real como la vida misma Ámbito Científico-Tecnológico Módulo IV Bloque 2 Unidad 1 Tan real como la vida misma Estamos acostumbrados a trabajar con números naturales o enteros en la vida cotidiana pero en algunas ocasiones tendrás

Más detalles

MATEMÁTICAS 4. º CURSO UNIDAD 7: DIVISIÓN

MATEMÁTICAS 4. º CURSO UNIDAD 7: DIVISIÓN MATEMÁTICAS 4. º CURSO UNIDAD 7: DIVISIÓN OBJETIVOS Calcular divisiones cuyo divisor es un número dígito. Reconocer si una división es exacta o entera. Conocer y aplicar la relación entre los términos

Más detalles

UNA ECUACIÓN es una igualdad de dos expresiones algebraicas.

UNA ECUACIÓN es una igualdad de dos expresiones algebraicas. UNA EXPRESIÓN ALGEBRAICA es una combinación de números, variables (o símbolos) y operaciones como la suma, resta, multiplicación, división, potenciación y radicación. Ejemplos. UNA ECUACIÓN es una igualdad

Más detalles

INSTITUCION EDUCATIVA LA PRESENTACION

INSTITUCION EDUCATIVA LA PRESENTACION INSTITUCION EDUCATIVA LA PRESENTACION Nombre de la alumna: Área: MATEMATICAS Asignatura: Matemáticas Docente: Luis López Zuleta Tipo de Guía: Conceptual PERIODO GRADO FECHA DURACION DOS 7º 25 de abril

Más detalles

PENDIENTE MEDIDA DE LA INCLINACIÓN 2.1.2 2.1.4

PENDIENTE MEDIDA DE LA INCLINACIÓN 2.1.2 2.1.4 PENDIENTE MEDIDA DE LA INCLINACIÓN 2.1.2 2.1.4 Los alumnos utilizaron la ecuación = m + b para graficar rectas describir patrones en los cursos anteriores. La Lección 2.1.1 es un repaso. Cuando la ecuación

Más detalles

MATEMÁTICAS 1º DE ESO

MATEMÁTICAS 1º DE ESO MATEMÁTICAS 1º DE ESO LOMCE TEMA IV : LAS FRACCIONES. OPERACIONES Los siginificados de una fracción. Fracciones propias e impropias. Equivalencias de fracciones. Amplificación y simplificación. Fracción

Más detalles

Los números enteros Z = {,-3, -2, -1, 0, 1, 2, 3, }

Los números enteros Z = {,-3, -2, -1, 0, 1, 2, 3, } Los números enteros La unión de los números naturales y los enteros negativos forma el conjunto de los números enteros, que se designa con la palabra Z. Está constituido por infinitos elementos y se representan

Más detalles

TEMA 2: NÚMEROS ENTEROS 1º ESO. MATEMÁTICAS

TEMA 2: NÚMEROS ENTEROS 1º ESO. MATEMÁTICAS TEMA 2: NÚMEROS ENTEROS 1º ESO. MATEMÁTICAS Por qué aparecen los números enteros? Por qué aparecen los números enteros? La cueva de Voronia, es la cueva conocida más profunda de la Tierra, localizada

Más detalles

TEMA 1. Números Reales. Teoría. Matemáticas

TEMA 1. Números Reales. Teoría. Matemáticas 1 1.- Los números reales Cuáles son los números reales? Los números reales son todos los números racionales y todos los números irracionales. El conjunto de los números reales se designa con el símbolo

Más detalles

Materia: Matemática de Tercer Año Tema: Pendiente

Materia: Matemática de Tercer Año Tema: Pendiente Materia: Matemática de Tercer Año Tema: Pendiente Suponga que tiene un avión de juguete sobre el despegue, que se eleva 5 pies por cada 6 metros que recorre a lo largo de la horizontal. Cuál sería la pendiente

Más detalles

TEMA 1 CONJUNTOS NUMÉRICOS

TEMA 1 CONJUNTOS NUMÉRICOS TEMA 1 CONJUNTOS NUMÉRICOS. Objetivos / Criterios de evaluación O.1.1 Realizar correctamente operaciones con fracciones: Suma, resta, producto, cociente, potencia y radicación. O.1.2 Resolver operaciones

Más detalles

Ecuaciones Lineales en Dos Variables

Ecuaciones Lineales en Dos Variables Ecuaciones Lineales en Dos Variables Una ecuación lineal en dos variables tiene la forma general a + b + c = 0; donde a, b, c representan números reales las tres no pueden ser iguales a cero a la misma

Más detalles

Preparación para Álgebra universitaria con trigonometría

Preparación para Álgebra universitaria con trigonometría Preparación para Álgebra universitaria con trigonometría Este curso cubre los siguientes temas. Usted puede personalizar la gama y la secuencia de este curso para satisfacer sus necesidades curriculares.

Más detalles

ESCRITURA Y GRAFICACIÓN DE ECUACIONES LINEALES EN UNA SUPERFICIE PLANA

ESCRITURA Y GRAFICACIÓN DE ECUACIONES LINEALES EN UNA SUPERFICIE PLANA ESCRITURA Y GRAFICACIÓN DE ECUACIONES LINEALES EN UNA SUPERFICIE PLANA La pendiente es un número que indica lo inclinado (o plano) de una recta, al igual que su dirección (hacia arriba o hacia abajo) de

Más detalles

CURSO UNICO DE INGRESO 2010

CURSO UNICO DE INGRESO 2010 INSTITUTO SUPERIOR ZARELA MOYANO DE TOLEDO PROF. ING. ELSA MEDINA CURSO UNICO DE INGRESO 2010 MATEMATICAS INTRODUCCION El presente material supone un REPASO sobre los temas fundamentales y necesarios para

Más detalles

Guía del estudiante. Clase 16 Tema: Números racionales - orden en los racionales y representación decimal. Lectura. Colombia Biodiversa Amenazada

Guía del estudiante. Clase 16 Tema: Números racionales - orden en los racionales y representación decimal. Lectura. Colombia Biodiversa Amenazada MATEMÁTICAS Grado Séptimo Bimestre III Semana Número de clases 16-19 Clase 16 Tema: Números racionales - orden en los racionales representación decimal Lectura Colombia Biodiversa Amenazada Colombia ocupa

Más detalles

La Lección de Hoy es Sobre Solucionar Desigualdades. El cual la expectativa para el aprendizaje del estudiante SEI.2.A1.1

La Lección de Hoy es Sobre Solucionar Desigualdades. El cual la expectativa para el aprendizaje del estudiante SEI.2.A1.1 SEI.2 A1 1 Courtney Cochran-Solving Inequalities. La Lección de Hoy es Sobre Solucionar Desigualdades. El cual la expectativa para el aprendizaje del estudiante SEI.2.A1.1 Vamos a aprender a resolver desigualdades.

Más detalles

Desigualdades con Valor absoluto

Desigualdades con Valor absoluto Resolver una desigualdad significa encontrar los valores para los cuales la incógnita cumple la condición. Para ver ejemplos de las diferentes desigualdades que hay, haga Click sobre el nombre: Desigualdades

Más detalles

Alianza para el Aprendizaje de las Ciencias y las Matemáticas. Actividad de Matemáticas Nivel 4-6 Guía de Maestro. Las Fracciones están en todos lados

Alianza para el Aprendizaje de las Ciencias y las Matemáticas. Actividad de Matemáticas Nivel 4-6 Guía de Maestro. Las Fracciones están en todos lados Alianza para el Aprendizaje de las Ciencias y las Matemáticas (AlACiMa) Actividad de Matemáticas Nivel 4-6 Guía de Maestro Las Fracciones están en todos lados Metas El estudiante explorará mediante manipulativos

Más detalles

Expresiones algebraicas

Expresiones algebraicas Epresiones algebraicas Matemáticas I 1 Epresiones algebraicas Epresiones algebraicas. Monomios y polinomios. Monomios y polinomios. Una epresión algebraica es una combinación de letras, números y signos

Más detalles

para la casa Actividad

para la casa Actividad Durante las próximas semanas, en la clase de matemáticas aprenderemos sobre el valor de posición, las propiedades de los números y las expresiones numéricas. Llevaré a la casa tareas con actividades para

Más detalles

Enteros (páginas 294 298)

Enteros (páginas 294 298) A NOMRE FECHA PERÍODO Enteros (páginas 294 298) Un entero es cualquier número del siguiente conjunto de números enteros y sus opuestos: { 3, 2, 1, 0, 1, 2, 3, }. Los enteros mayores que cero son enteros

Más detalles

DESCRIPCIÓN Y CLASIFICACIÓN DE POLÍGONOS

DESCRIPCIÓN Y CLASIFICACIÓN DE POLÍGONOS DESCRIPCIÓN Y CLASIFICACIÓN DE POLÍGONOS 1.1.1 1.1.2 Las figuras geométricas, como los polígonos, aparecen en muchos lugares. En estas lecciones, los alumnos estudiarán más atentamente los polígonos y

Más detalles

Introducción al Álgebra

Introducción al Álgebra Capítulo 3 Introducción al Álgebra L a palabra álgebra deriva del nombre del libro Al-jebr Al-muqābāla escrito en el año 825 D.C. por el matemático y astrónomo musulman Mohamad ibn Mūsa Al-Khwārizmī. El

Más detalles

a, donde a NÚMEROS REALES Dividir y tomar partes de una unidad. FRACIÓN LA FORMA a Como OPERADOR RAZÓN PORCENTAJE COCIENTE

a, donde a NÚMEROS REALES Dividir y tomar partes de una unidad. FRACIÓN LA FORMA a Como OPERADOR RAZÓN PORCENTAJE COCIENTE NÚMEROS REALES Dividir y tomar partes de una unidad. FRACIÓN LA FORMA a Como OPERADOR RAZÓN PORCENTAJE COCIENTE Que se pueden escribir de la forma b a, donde a y b son enteros y b 0. Operaciones: suma,

Más detalles

FRACCIONES Y DECIMALES PRACTICA #1 NOMBRE: 1. Qué fracción de la figura está sombreada? 2. En el dibujo, cual par de fracciones son equivalentes?

FRACCIONES Y DECIMALES PRACTICA #1 NOMBRE: 1. Qué fracción de la figura está sombreada? 2. En el dibujo, cual par de fracciones son equivalentes? FRACCIONES Y DECIMALES PRACTICA #1 NOMBRE: 1. Qué fracción de la figura está sombreada? 2. En el dibujo, cual par de fracciones son equivalentes? A y D A y B C y D A y C Page 1 3. Denise tiene 5 comederos

Más detalles

NÚMEROS RACIONALES Y REPRESENTACIÓN DECIMAL. Mate 3041 Profa. Milena R. Salcedo Villanueva

NÚMEROS RACIONALES Y REPRESENTACIÓN DECIMAL. Mate 3041 Profa. Milena R. Salcedo Villanueva NÚMEROS RACIONALES Y REPRESENTACIÓN DECIMAL Mate 3041 Profa. Milena R. Salcedo Villanueva 1 FRACCIONES Una fracción tiene dos términos: numerador y denominador Denominador indica las veces que se divide

Más detalles

*Número natural, el que sirve para designar la cantidad de. *El cero, a veces, se excluye del conjunto de los números

*Número natural, el que sirve para designar la cantidad de. *El cero, a veces, se excluye del conjunto de los números *Número natural, el que sirve para designar la cantidad de elementos que tiene un cierto conjunto, y se llama cardinal de dicho conjunto. *Los números naturales son infinitos. El conjunto de todos ellos

Más detalles

guía para LOS PADRES APOYANDO A SU HIJO EN CUARTO GRADO MATEMÁTICAS

guía para LOS PADRES APOYANDO A SU HIJO EN CUARTO GRADO MATEMÁTICAS guía para LOS PADRES APOYANDO A SU HIJO EN CUARTO GRADO MATEMÁTICAS 4 Las escuelas de los Estados Unidos de América están trabajando para brindar una enseñanza de mayor calidad nunca antes vista. La manera

Más detalles

CÍRCULOS CIRCUNFERENCIA Y ÁREA 9.1.1 y 9.1.2. Ejemplo 2

CÍRCULOS CIRCUNFERENCIA Y ÁREA 9.1.1 y 9.1.2. Ejemplo 2 CÍRCULOS CIRCUNFERENCIA Y ÁREA 9.1.1 y 9.1.2 ÁREA DE UN CÍRCULO En clase, los estudiantes han hecho exploraciones con círculos y objetos circulares para descubrir la relación entre la circunferencia, diámetro

Más detalles

Unidad 2. Los números enteros.

Unidad 2. Los números enteros. Unidad 2. Los números enteros. Ubicación curricular en España: 6º Primaria, 1º ESO, 2º ESO. Objetos de aprendizaje: 2.1 Introducción a los números enteros. Expresar situaciones de la vida cotidiana en

Más detalles

Capítulo 5. Los números reales y sus representaciones Pearson Education, Inc. Diapositiva 5-5-1

Capítulo 5. Los números reales y sus representaciones Pearson Education, Inc. Diapositiva 5-5-1 Capítulo 5 Los números reales y sus representaciones 2012 Pearson Education, Inc. Diapositiva 5-5-1 Capítulo 5: Los números reales y sus representaciones 5.1 Números reales, orden y valor absoluto 5.2

Más detalles

COLEGIO ALEXANDER DUL

COLEGIO ALEXANDER DUL PRIMER BIMESTRE CICLO ESCOLAR 2016 2017 MATEMÁTICAS ESTRUCTURA DEL APRENDIZAJES ESPERADOS PROGRAMA REALIZACIÓN 1-8 TEMA 1 2. Tema: Problemas aditivos. Tema: Problemas multiplicativos. impliquen sumar o

Más detalles

GUÍAS DE ESTUDIO PROGRAMA DE ALFABETIZACIÓN, EDUCACIÓN BÁSICA Y MEDIA PARA JÓVENES Y ADULTOS

GUÍAS DE ESTUDIO PROGRAMA DE ALFABETIZACIÓN, EDUCACIÓN BÁSICA Y MEDIA PARA JÓVENES Y ADULTOS GUÍAS DE ESTUDIO Código PGA-0-R0 1 INSTITUCIÓN EDUCATIVA CASD PROGRAMA DE ALFABETIZACIÓN, EDUCACIÓN BÁSICA Y MEDIA PARA JÓVENES Y ADULTOS UNIDAD DE TRABAJO Nº PERIODO 1 ÁREA INTEGRADA: MATEMÁTICAS. ASIGNATURA:

Más detalles

El estudiante de Pitágoras

El estudiante de Pitágoras COLEGIO INTEGRADO SIMÓN BOLÍVAR GUÍA PARA EL ESTUDIANTE MBP354 FORMATO 1 ASIGNATURA: ARITMÉTICA DOCENTE: CLAUDIA RODRIGUEZ PERIODO: SEGUNDO VALORACIÓN TEMA:NUMEROS RACIONALES. I ESTUDIANTE: FECHA: GRADO:SEPTIMO

Más detalles

Representación Gráfica (recta numérica)

Representación Gráfica (recta numérica) NÚMEROS NATURALES ( N ) Representación Gráfica (recta numérica) 0 1 2 3 4 R Mediante un punto negro representamos el 1, el 3 y el 4 NÚMEROS ENTEROS ( Z ) - 2-1 0 1 2 R Mediante un punto negro representamos

Más detalles

Cuadernillo de actividades para el desarrollo de habilidades matemáticas. 1º secundaria.

Cuadernillo de actividades para el desarrollo de habilidades matemáticas. 1º secundaria. FFr raacccci iioonneess yy ddeecci iimaal lleess ddee llaa l reecct r taa nnuuméér ri iiccaa.. En esta lección aprenderás a ubicar números fraccionarios y decimales en la recta numérica y determinar el

Más detalles

Divisibilidad I. Nombre Curso Fecha

Divisibilidad I. Nombre Curso Fecha Matemáticas 2.º ESO Unidad 1 Ficha 1 Divisibilidad I Un número b es divisor de otro número a si al dividir a entre b la división es exacta. Se dice también que a es múltiplo de b. 1. Completa con la palabra

Más detalles