Métodos Estadísticos de la Ingeniería Tema 1: Distribución de Frecuencias Grupo B

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Métodos Estadísticos de la Ingeniería Tema 1: Distribución de Frecuencias Grupo B"

Transcripción

1 Métodos Estadísticos de la Ingeniería Tema 1: Distribución de Frecuencias Grupo B Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Enero 2010 Contenidos Introducción a la Estadística Población, Muestra y Carácter Frecuencia Absoluta Frecuencia Relativa Frecuencias Absolutas y Relativas con R Frecuencias Absolutas y Relativas con R Frecuencias Acumuladas (Cumulative) Frecuencias Acumuladas con R

2 Contenidos Introducción a la Estadística. Introduction to Statistics. Población, Muestra y Carácter. Population, Sample and Character. Frecuencias Absolutas y Relativas. Absolute and Relative Frequencies. La Distribución de Frecuencias son el objeto de la Estadística Descriptiva Licesio J. Rodríguez-Aragón Tema 1, M.E.I. 2 / 10 Introducción a la Estadística Fenómenos Determinísticos (Deterministic): Aquellos que llevados a cabo en las mismas condiciones, conducen siempre al mismo resultado. Fenómenos Aleatorios (Random): Sujetos al azar. Llevados a cabo en las mismas condiciones dan resultados diferentes. Estadística, Descriptiva (Descriptive): Establece normas para obtener datos, ordenarlos en tablas, representarlos gráficamente y reducirlos. Inferencial (Inferential): Deduce o infiere a partir de los datos, leyes o propiedades para establecer un modelo teórico de probabilidad que sigue la población de la que proceden los datos. Licesio J. Rodríguez-Aragón Tema 1, M.E.I. 3 / 10 2

3 Población, Muestra y Carácter Población (Population): Conjunto de Individuos, objetos o entes en general, sobre los que van a recaer observaciones de un número finito de características. Unidad Estadística: Cada uno de los elementos que componen la población estadística. Muestra (Sample): Conjunto finito de unidades estadísticas, pudiendo estar repetidas o no. En muchos eperimentos científicos la población estadística es el conjunto imaginario de infinitas repeticiones del eperimento. Carácter (Character, Class): Propiedad o cualidad inherente en las unidades estadísticas. Algunos medibles, cuantificables, otros no, cualidades. Cuantitativos o Medibles (Quantitative): altura, peso, longitud, densidad, etc. Cualitativos o Cualidades (Cualitative): Válido/Defectuoso, G/M/P, Soltero/Casado/Viudo, etc. Modalidades: Diferentes valores o situaciones que puede tomar un carácter. Variable Estadística (Statistical Variable): El valor que adopta un carácter de entre sus distintas modalidades posibles. Cuantitativas. Discretas (Discrete) (Cantidad finita o numerable): Pasos de vuelta completos en 1 m de barra roscada. Continuas (Continuous): Gramos de barniz por recipiente, en una planta de envasado. Cualitativas. Nominal (No admite orden): Control de calidad, Válido, Desechar, Reparar. Ordinal (Admite orden): Clasificación en categorías, productos alimenticios (huevos). Licesio J. Rodríguez-Aragón Tema 1, M.E.I. 4 / 10 3

4 Frecuencia Absoluta Consideremos una muestra de tamaño n, etraída de una población estadística de la que observamos un carácter C que puede tomar las modalidades C 1,C 2,...,C m. Se llama Frecuencia Absoluta de la modalidad C i al número de veces n i que aparece repetida esa modalidad en el conjunto de observaciones realizadas. Es decir, número de unidades estadísticas de la muestra que presentan la modalidad C i. Debido a que las modalidades constituyen una partición del espacio muestral, n 1 + n n m = m n i = n i=1 0 n i n, para todo i = 1,2,...,m Absolute Frequency: The number of data points which fall within a given class in a frequency distribution. Ejemplo: Fábrica de barras roscadas de 5 m. Población: Unidad Estadística: Muestra: 120,121,120,119,121, 120, 120,119,120,121, 120,120,122,120, 121, 120,119,122, 120, 119 Carácter: Modalidad: Variable Estadística: Licesio J. Rodríguez-Aragón Tema 1, M.E.I. 5 / 10 4

5 Frecuencia Relativa La Frecuencia Relativa de la modalidad C i se define como el cociente entre la Frecuencia Absoluta y el tamaño de la muestra, f i = n i /n para todo i = 1,...,m Es inmediato, por definición de Frecuencia Absoluta, f 1 + f f m = m f i = 1 i=1 0 f i 1, para todo i = 1,...,m. Suele ser frecuente hablar en términos de porcentajes, multiplicando las frecuencias relativas por 100. Relative Frequency: The ratio of the absolute frequency to the total number of data points in a frequency distribution. Ejemplo: Carácter C i n i f i C 1 = 119 C 2 = 120 C 3 = 121 C 4 = 122 Total ni = 20 fi = 1 Licesio J. Rodríguez-Aragón Tema 1, M.E.I. 6 / 10 Frecuencias Absolutas y Relativas con R > <- c(120, 121, 120, 119, 121, 120, 120, 119, 120, 121, 120, + 120, 122, 120, 121, 120, 119, 122, 120, 119) > table() > table()/length() Licesio J. Rodríguez-Aragón Tema 1, M.E.I. 7 / 10 5

6 Frecuencias Absolutas y Relativas con R > addmargins(table()) Sum > addmargins(table()/length()) Sum Licesio J. Rodríguez-Aragón Tema 1, M.E.I. 8 / 10 Frecuencias Acumuladas (Cumulative) Frecuencia Absoluta Acumulada: Tiene sentido para variables cuantitativas y cualitativas ordinales. i N i = n 1 + n n i = Verificándose N m = n. Frecuencia Relativa Acumulada: Tiene sentido para variables cuantitativas y cualitativas ordinales. F i = n 1 + n n i i = f 1 + f f i = f k n Verificándose F m = 1. k=1 n k k=1 Ejemplo: Carácter C i n i N i f i F i C 1 = 119 C 2 = 120 C 3 = 121 C 4 = 122 = n 1 Total ni = 12 fi = 1 Ejercicio: Calcular la tabla de Frecuencias: Absolutas, Relativas y sus respectivas Acumuladas, usando algún tipo de herramienta informática: Ecel, Matlab, R, etc. Licesio J. Rodríguez-Aragón Tema 1, M.E.I. 9 / 10 6

7 Frecuencias Acumuladas con R > cumsum(table()) > cumsum(table()/length()) Licesio J. Rodríguez-Aragón Tema 1, M.E.I. 10 / 10 7

Tema 1: Estadística Descriptiva Unidimensional Unidad 1: Frecuencias y Gráficos

Tema 1: Estadística Descriptiva Unidimensional Unidad 1: Frecuencias y Gráficos Estadística Tema 1: Estadística Descriptiva Unidimensional Unidad 1: Frecuencias y Gráficos Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Septiembre 2010 Contenidos...............................................................

Más detalles

Tema 2. Variables y medidas

Tema 2. Variables y medidas Curso de Estadística Aplicada a las Ciencias Sociales Tema 2. Variables y medidas Fuentes: Manual (2.1.) y Agresti (cap. 2) Tema 2. Variables y medidas Introducción 1. Variables, valores y escalas 2. Definición

Más detalles

ESTADISTICA GENERAL INTRODUCCIÓN CONCEPTOS BASICOS ORGANIZACIÓN DE DE DATOS

ESTADISTICA GENERAL INTRODUCCIÓN CONCEPTOS BASICOS ORGANIZACIÓN DE DE DATOS ESTADISTICA GENERAL INTRODUCCIÓN CONCEPTOS BASICOS ORGANIZACIÓN DE DE DATOS Profesor del del curso: curso: Ing. Ing. Celso Celso Gonzales INTRODUCCION OBJETIVOS Comprender qué es y porqué se estudia la

Más detalles

Socioestadística I Análisis estadístico en Sociología

Socioestadística I Análisis estadístico en Sociología Análisis estadístico en Sociología 1. INTRODUCCIÓN. Definición e historia. 1.1. Que es la Sociestadística?. La estadística es la ciencias de las regularidades que se observan en conjuntos de fenómenos

Más detalles

4.3 Variables de la Estadística descriptiva

4.3 Variables de la Estadística descriptiva 4.3 4.3.1 Conceptos básicos en Estadística El origen de Estadística puede remontarse a los recuentos de datos. El hombre hace acopio de datos para tener información sobre características de ciertos colectivos

Más detalles

1.1. Introducción y conceptos básicos

1.1. Introducción y conceptos básicos Tema 1 Variables estadísticas Contenido 1.1. Introducción y conceptos básicos.................. 1 1.2. Tipos de variables estadísticas................... 2 1.3. Distribuciones de frecuencias....................

Más detalles

5. DISTRIBUCIONES DE PROBABILIDADES

5. DISTRIBUCIONES DE PROBABILIDADES 5. DISTRIBUCIONES DE PROBABILIDADES Dr. http://academic.uprm.edu/eacunaf UNIVERSIDAD DE PUERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ DISTRIBUCIONES DE PROBABILIDADES Se introducirá el concepto de variable

Más detalles

Introducción. Estadística 1. 1. Introducción

Introducción. Estadística 1. 1. Introducción 1 1. Introducción Introducción En este tema trataremos de los conceptos básicos de la estadística, también aprenderemos a realizar las representaciones gráficas y a analizarlas. La estadística estudia

Más detalles

Muestreo estadístico. Relación 2 Curso 2007-2008

Muestreo estadístico. Relación 2 Curso 2007-2008 Muestreo estadístico. Relación 2 Curso 2007-2008 1. Para tomar la decisión de mantener un determinado libro como texto oficial de una asignatura, se pretende tomar una muestra aleatoria simple entre los

Más detalles

Un problema sobre repetidas apuestas al azar

Un problema sobre repetidas apuestas al azar Un problema sobre repetidas apuestas al azar Eleonora Catsigeras 1 10 de marzo de 2003. Resumen En estas notas se da el enunciado y una demostración de un conocido resultado sobre la probabilidad de éxito

Más detalles

Tema 3: Variables aleatorias y vectores aleatorios bidimensionales

Tema 3: Variables aleatorias y vectores aleatorios bidimensionales Estadística 38 Tema 3: Variables aleatorias y vectores aleatorios bidimensionales El concepto de variable aleatoria surge de la necesidad de hacer más manejables matemáticamente los resultados de los experimentos

Más detalles

Tema 2. Variables y medidas

Tema 2. Variables y medidas Curso de Estadística Aplicada a las Ciencias Sociales Tema 2. Variables y medidas Fuentes: Manual (2.1.) y Agresti (cap. 2) Tema 2. Variables y medidas Introducción 1. Variables, valores y escalas 2. Definición

Más detalles

Capítulo 10. Análisis descriptivo: Los procedimientos Frecuencias y Descriptivos

Capítulo 10. Análisis descriptivo: Los procedimientos Frecuencias y Descriptivos Capítulo 10 Análisis descriptivo: Los procedimientos Frecuencias y Descriptivos Al analizar datos, lo primero que conviene hacer con una variable es, generalmente, formarse una idea lo más exacta posible

Más detalles

Tema 9: Estadística Descriptiva. Distribuciones estadísticas. Representaciones

Tema 9: Estadística Descriptiva. Distribuciones estadísticas. Representaciones Tema 9: Estadística Descriptiva Distribuciones estadísticas Representaciones gráficas 1 Conceptos fundamentales La Estadística es el conjunto de métodos necesarios para recoger, clasificar, representar

Más detalles

Diseños de Investigación 40 conceptos que debes conocer

Diseños de Investigación 40 conceptos que debes conocer Diseños de Investigación 40 conceptos que debes conocer 1. El método científico: Se puede realizar desde dos enfoques distintos, hipotético deductivo y analítico inductivo. Con frecuencia los dos ocurren

Más detalles

Métodos Estadísticos de la Ingeniería Tema 5: Cálculo de Probabilidades Grupo B

Métodos Estadísticos de la Ingeniería Tema 5: Cálculo de Probabilidades Grupo B Métodos Estadísticos de la Ingeniería Tema 5: Cálculo de Probabilidades Grupo B Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Febrero 2010 Contenidos...............................................................

Más detalles

Tema 1: Introducción a la Estadística

Tema 1: Introducción a la Estadística Tema 1: Introducción a la Estadística Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 1: Introducción a la Estadística Curso 2009-2010

Más detalles

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2 PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2 1. Se eligen tres autos al azar y cada uno es clasificado N si tiene motor naftero o D si tiene motor diesel (por ejemplo, un resultado posible sería NND). a)

Más detalles

Estadística con Excel Informática 4º ESO ESTADÍSTICA CON EXCEL

Estadística con Excel Informática 4º ESO ESTADÍSTICA CON EXCEL 1. Introducción ESTADÍSTICA CO EXCEL La estadística es la rama de las matemáticas que se dedica al análisis e interpretación de series de datos, generando unos resultados que se utilizan básicamente en

Más detalles

TEMA 3: TRATAMIENTO DE DATOS EN MS. EXCEL (I)

TEMA 3: TRATAMIENTO DE DATOS EN MS. EXCEL (I) VARIABLES Variable: característica de cada sujeto (cada caso) de una base de datos. Se denomina variable precisamente porque varía de sujeto a sujeto. Cada sujeto tiene un valor para cada variable. El

Más detalles

Curso: Estadísticas.

Curso: Estadísticas. Curso: Estadísticas. 1 1 La estadística es una herramienta indispensable para todas las disciplinas del conocimiento universal. La estadística es una colección de información numérica, que se refiere a

Más detalles

I1.1 Estudios observacionales IISESIÓN DISEÑO O DE ESTUDIOS EN INVESTIGACIÓN N MÉDICA DESCRIPTIVA CURSO DE. 1.2 Estudios experimentales

I1.1 Estudios observacionales IISESIÓN DISEÑO O DE ESTUDIOS EN INVESTIGACIÓN N MÉDICA DESCRIPTIVA CURSO DE. 1.2 Estudios experimentales 1 2 3 4 5 6 ESQUEMA DEL CURSO ESTADÍSTICA BÁSICA DISEÑO DE EXPERIMENTOS CURSO DE ESTADÍSTICA STICA BÁSICAB ESTADÍSTICA DESCRIPTIVA TIPOS DE VARIABLES MEDIDAS DE POSICIÓN CENTRAL Y DE DISPERSIÓN TABLAS

Más detalles

PRESENTACIÓN GRÁFICA DE LOS DATOS

PRESENTACIÓN GRÁFICA DE LOS DATOS PRESENTACIÓN GRÁFICA DE LOS DATOS Una imagen dice más que mil palabras, esta frase explica la importancia de presentar los datos en forma gráfica. Existe una gran variedad de gráficos y la selección apropiada

Más detalles

Estadística. Conceptos de Estadística. Un individuo o unidad estadística es cada uno de los elementos que componen la población.

Estadística. Conceptos de Estadística. Un individuo o unidad estadística es cada uno de los elementos que componen la población. Estadística La Estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un estudio estadístico consta

Más detalles

CUESTIONES DE AUTOEVALUACIÓN (TEMA 1)

CUESTIONES DE AUTOEVALUACIÓN (TEMA 1) CUESTIONES DE AUTOEVALUACIÓN (TEMA 1) Cuestiones de Verdadero/Falso 1. Un estadístico es una característica de una población. 2. Un parámetro es una característica de una población. 3. Las variables discretas

Más detalles

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2 7 PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2 1. Se eligen tres autos al azar y cada uno es clasificado N si tiene motor naftero o D si tiene motor diesel (por ejemplo, un resultado posible sería N N D).

Más detalles

PROF. ADJ. LIC. DANIELLA M. REPETTO PEREIRA PROF. ASIST. LIC. EMA FARÍAS LIC. ANA VIGNA PROF. AYUD. LIC. DANIEL ALESSANDRINI MATIAS BENITEZ

PROF. ADJ. LIC. DANIELLA M. REPETTO PEREIRA PROF. ASIST. LIC. EMA FARÍAS LIC. ANA VIGNA PROF. AYUD. LIC. DANIEL ALESSANDRINI MATIAS BENITEZ PROF. ADJ. LIC. DANIELLA M. REPETTO PEREIRA PROF. ASIST. LIC. EMA FARÍAS LIC. ANA VIGNA PROF. AYUD. LIC. DANIEL ALESSANDRINI MATIAS BENITEZ ESTADÍSTICA Es algo más que la recolección y publicación (tal

Más detalles

La metodologia Cuantitativa. Encuestas y muestras

La metodologia Cuantitativa. Encuestas y muestras La metodologia Cuantitativa. Encuestas y muestras Técnicas «cuantitativas» y «cualitativas» «Las técnicas cuantitativas»: Recogen la información mediante cuestiones cerradas que se planteal sujeto de forma

Más detalles

INSTITUTO FRANCISCO POSSENTI A.C. Per crucem ad lucem. Preparatoria (1085)

INSTITUTO FRANCISCO POSSENTI A.C. Per crucem ad lucem. Preparatoria (1085) INSTITUTO FRANCISCO POSSENTI A.C. Per crucem ad lucem Preparatoria (1085) GUÍA DE ESTADÍSTICA Y PROBABILIDAD CLAVE: 1712 1. Escribe delante de cada enunciado, cuáles representan datos discretos, y cuales

Más detalles

FACULTAD DE ENFERMERIA MAESTRÌA EN ENFERMERIA PROGRAMA DEL CURSO ESTADÌSTICA AVANZADA CODIGO MC1114 REQUISITOS EG2113 CREDITO: 4

FACULTAD DE ENFERMERIA MAESTRÌA EN ENFERMERIA PROGRAMA DEL CURSO ESTADÌSTICA AVANZADA CODIGO MC1114 REQUISITOS EG2113 CREDITO: 4 FACULTAD DE ENFERMERIA MAESTRÌA EN ENFERMERIA PROGRAMA DEL CURSO ESTADÌSTICA AVANZADA CODIGO MC1114 REQUISITOS EG2113 CREDITO: 4 REQUISITO LICENCIATURA EN ENFERMERÌA PROFESOR 1. Justificación. Se requiere

Más detalles

(Tomado de: http://www.liccom.edu.uy/bedelia/cursos/metodos/material/estadistica/var_cuanti.html)

(Tomado de: http://www.liccom.edu.uy/bedelia/cursos/metodos/material/estadistica/var_cuanti.html) VARIABLES CUANTITATIVAS (Tomado de: http://www.liccom.edu.uy/bedelia/cursos/metodos/material/estadistica/var_cuanti.html) Variables ordinales y de razón. Métodos de agrupamiento: Variables cuantitativas:

Más detalles

Capítulo 7: Distribuciones muestrales

Capítulo 7: Distribuciones muestrales Capítulo 7: Distribuciones muestrales Recordemos: Parámetro es una medida de resumen numérica que se calcularía usando todas las unidades de la población. Es un número fijo. Generalmente no lo conocemos.

Más detalles

todas especialidades Soluciones de las hojas de problemas

todas especialidades Soluciones de las hojas de problemas Universidad Politécnica de Cartagena Dpto. Matemática Aplicada y Estadística Ingeniería Técnica Industrial Métodos estadísticos de la ingeniería Métodos estadísticos de la ingeniería Ingeniería Técnica

Más detalles

Criterios para decidir qué gráfico usar en cada trabajo estadístico

Criterios para decidir qué gráfico usar en cada trabajo estadístico Criterios para decidir qué gráfico usar en cada trabajo estadístico No todos los tipos de gráficos son adecuados para un conjunto concreto de datos. Algunos de ellos sólo valen para un fin, y otros se

Más detalles

ESTIMACIÓN. puntual y por intervalo

ESTIMACIÓN. puntual y por intervalo ESTIMACIÓN puntual y por intervalo ( ) Podemos conocer el comportamiento del ser humano? Podemos usar la información contenida en la muestra para tratar de adivinar algún aspecto de la población bajo estudio

Más detalles

2. Probabilidad. Estadística. Curso 2009-2010. Ingeniería Informática. Estadística (Aurora Torrente) 2. Probabilidad Curso 2009-2010 1 / 24

2. Probabilidad. Estadística. Curso 2009-2010. Ingeniería Informática. Estadística (Aurora Torrente) 2. Probabilidad Curso 2009-2010 1 / 24 2. Probabilidad Estadística Ingeniería Informática Curso 2009-2010 Estadística (Aurora Torrente) 2. Probabilidad Curso 2009-2010 1 / 24 Contenidos 1 Experimentos aleatorios 2 Algebra de sucesos 3 Espacios

Más detalles

Población, muestra y variable estadística

Población, muestra y variable estadística Población, muestra y variable estadística La estadística es la parte de las Matemáticas que estudia cómo recopilar y resumir gran cantidad de información para extraer conclusiones. La población de un estudio

Más detalles

Definición 2.1.1. Se llama suceso aleatorio a cualquier subconjunto del espacio muestral.

Definición 2.1.1. Se llama suceso aleatorio a cualquier subconjunto del espacio muestral. Capítulo 2 Probabilidades 2. Definición y propiedades Al realizar un experimento aleatorio nuestro interés es obtener información sobre las leyes que rigen el fenómeno sometido a estudio. El punto de partida

Más detalles

Métodos no paramétricos para el análisis de la varianza

Métodos no paramétricos para el análisis de la varianza Capítulo 4 Métodos no paramétricos para el análisis de la varianza MÉTODOS PARAMÉTRICOS Y NO-PARAMÉTRICOS Los procedimientos inferenciales que presentan estimaciones con respecto a losparámetrosdelapoblacióndeinteréssellamanmétodos

Más detalles

1. LA ESTADÍSTICA DESCRIPTIVA

1. LA ESTADÍSTICA DESCRIPTIVA 1. LA ESTADÍSTICA DESCRIPTIVA Objetivo Aprender cómo resumir las características más importantes de una muestra de datos. Bibliografia recomendada Peña y Romo (1997), Capítulos 1 5. Newbold (1997) Capítulos

Más detalles

Sesión 2 Introducción 2

Sesión 2 Introducción 2 Sesión 2 Introducción 2 Objetivo El alumno identificará las diferentes escalas de medición, así como la definición y conceptos básicos de la probabilidad. Contenido de la sesión Figura 2-1 Contenido de

Más detalles

MAGNITUDES Y SU MEDIDA

MAGNITUDES Y SU MEDIDA MAGNITUDES Y SU MEDIDA 1. Introducción Vivimos en un universo sometido a continuos cambios, cambios que tienen lugar de acuerdo con unas normas a las que en términos genricos llamamos Leyes de la Naturaleza.

Más detalles

Ejemplo: Ing. Raúl Canelos. Solución CONFIABILIDAD SEP 1

Ejemplo: Ing. Raúl Canelos. Solución CONFIABILIDAD SEP 1 Ejemplo: Basándose en ciertos estudios una compañía a clasificado de acuerdo con la posibilidad de encontrar petróleo en tres tipos de formaciones. La compañía quiere perforar un pozo en determinado lugar

Más detalles

SEÑALES Y SISTEMAS - AÑO 2015 Práctica 1: Señales Determinísticas e Introducción a las Señales Aleatorias

SEÑALES Y SISTEMAS - AÑO 2015 Práctica 1: Señales Determinísticas e Introducción a las Señales Aleatorias SEÑALES Y SISTEMAS - AÑO 2015 Práctica 1: Señales Determinísticas e Introducción a las Señales Aleatorias 1. Impulsos continuos y discretos a) Enuncie la propiedad de extracción de la delta de Dirac. b)

Más detalles

R PRÁCTICA II. Probabilidad-Variables Aleatorias. Probabilidad

R PRÁCTICA II. Probabilidad-Variables Aleatorias. Probabilidad R PRÁCTICA II Probabilidad-Variables Aleatorias Sección II.1 Probabilidad 15. En el fichero sintomas.dat se encuentran 9 columnas con los resultados de una estadística médica. Cada columna corresponde

Más detalles

1. IDENTIFICACION DE LA ASIGNATURA

1. IDENTIFICACION DE LA ASIGNATURA UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE ADMINISTRACION Y ECONOMIA DEPARTAMENTO DE CONTABILIDAD Y AUDITORIA PROGRAMA DE ESTUDIO ESTADISTICAS APLICADA I 1. IDENTIFICACION DE LA ASIGNATURA 2. OBJETIVOS

Más detalles

Introducción. Estadística aplic. A la Mercadotecnia. I.- Introducción y generalidades. Aplicaciones en los negocios y en la economía.

Introducción. Estadística aplic. A la Mercadotecnia. I.- Introducción y generalidades. Aplicaciones en los negocios y en la economía. Estadística aplic. A la Mercadotecnia Introducción Con frecuencia leemos o escuchamos el siguiente tipo información: de I.- Introducción y generalidades M. en C. Jesús Ocaña Zúñiga a)la asociación de agentes

Más detalles

Simulación, Método de Montecarlo

Simulación, Método de Montecarlo Simulación, Método de Montecarlo Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Marzo 2011 Introducción 2 Introducción............................................................

Más detalles

Indicadores de la Variable.- Son aquellas cualidades o propiedades del objeto que pueden ser directamente observadas y cuantificadas en la práctica.

Indicadores de la Variable.- Son aquellas cualidades o propiedades del objeto que pueden ser directamente observadas y cuantificadas en la práctica. Las variables de un estudio. La variable es determinada característica o propiedad del objeto de estudio, a la cual se observa y/o cuantifica en la investigación y que puede variar de un elemento a otro

Más detalles

Distribuciones Multivariantes. Distribuciones Multivariantes. Distribuciones Multivariantes. Objetivos del tema:

Distribuciones Multivariantes. Distribuciones Multivariantes. Distribuciones Multivariantes. Objetivos del tema: Distribuciones Multivariantes Distribuciones Multivariantes Distribución conjunta de un vector aleatorio Objetivos del tema: Distribuciones marginales y condicionadas Al final del tema el alumno será capaz

Más detalles

Escuela Nacional Adolfo Pérez Esquivel UNCPBA 3º año ESTADÍSTICA

Escuela Nacional Adolfo Pérez Esquivel UNCPBA 3º año ESTADÍSTICA Objetivos: Conocer y trabajar conceptos básicos de la estadística descriptiva. Analizar situaciones representadas en los gráficos. Adquirir habilidades para conseguir una tabla de frecuencias, un diagrama

Más detalles

MEDIDAS DE RESULTADOS DE LOS ENSAYOS CLÍNICOS

MEDIDAS DE RESULTADOS DE LOS ENSAYOS CLÍNICOS MEDIDAS DE RESULTADOS DE LOS ENSAYOS CLÍNICOS María Dolores Vega Coca Especialista en Farmacia Hospitalaria Agencia de Evaluación de Tecnologías Sanitarias de Andalucía (AETSA) Jornada previa de apoyo

Más detalles

TEMA 2. LA MEDICIÓN EN PSICOLOGÍA

TEMA 2. LA MEDICIÓN EN PSICOLOGÍA TEMA 2. LA MEDICIÓN EN PSICOLOGÍA 1. La Psicometría Concepto Niveles de contenido 2. La medición Funciones generales Funciones específicas Condiciones de la medición 3. Variables: Definición y clasificación

Más detalles

Porqué varían los resultados analíticos?

Porqué varían los resultados analíticos? ESTADÍSTICA BÁSICA I 1. La estadística y sus objetivos. Aplicación de la Estadística en Química Analítica 3. Variabilidad analítica. Distribución normal 4. Otros conceptos básicos. Intervalos de confianza

Más detalles

Variables aleatorias continuas

Variables aleatorias continuas Variables aleatorias continuas Hemos definido que una variable aleatoria X es discreta si I X es un conjunto finito o infinito numerable. En la práctica las variables aleatorias discretas sirven como modelos

Más detalles

Grado en Ingeniería. Estadística. Tema 3

Grado en Ingeniería. Estadística. Tema 3 Grado en Ingeniería Asignatura: Estadística Tema 3. Control Estadístico de Procesos (SPC) Control Estadístico de Procesos (SPC) Introducción Variabilidad de un proceso de fabricación Causas asignables

Más detalles

12 Las distribuciones binomial y normal

12 Las distribuciones binomial y normal Las distribuciones binomial y normal ACTIVIDADES INICIALES.I. Calcula la media, la varianza y la desviación típica de la variable X, cuya distribución de frecuencias viene dada por la siguiente tabla:

Más detalles

Garantía de calidad. Suma total de actividades organizadas con el objetode garantizar que los medicamentos poseen la calidad requerida para su uso.

Garantía de calidad. Suma total de actividades organizadas con el objetode garantizar que los medicamentos poseen la calidad requerida para su uso. Garantía de calidad Calidad:conjunto de atributos o cualidades que constituyen la manera de ser de una cosa. Atributos básicos para definir la calidad de un producto farmacéutico: Identidad Pureza Potencia

Más detalles

TEMA I: INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL

TEMA I: INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL TEMA I: INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL 1. Electrónica Digital Antes de empezar en el tema en cuestión, vamos a dar una posible definición de la disciplina que vamos a tratar, así como su ámbito

Más detalles

ANÁLISIS DESCRIPTIVO CON SPSS

ANÁLISIS DESCRIPTIVO CON SPSS ESCUELA SUPERIOR DE INFORMÁTICA Prácticas de Estadística ANÁLISIS DESCRIPTIVO CON SPSS 1.- INTRODUCCIÓN Existen dos procedimientos básicos que permiten describir las propiedades de las distribuciones:

Más detalles

PRÁCTICA 4: Descripción de datos

PRÁCTICA 4: Descripción de datos PRÁCTICA 4: Descripción de datos 1. Caracterice las siguientes variables y clasi quelas como cualitativas o cuantitativas. Si son cualitativas en ordinales y nominales y si son cuantitativas en discretas

Más detalles

Representaciones Gráficas

Representaciones Gráficas Representaciones Gráficas Gráficos para variables cualitativas Los gráficos más usuales para representar variables de tipo nominal son los siguientes: Diagramas de barras: Se representa en el eje de ordenadas

Más detalles

Tema 10. Estimación Puntual.

Tema 10. Estimación Puntual. Tema 10. Estimación Puntual. Presentación y Objetivos. 1. Comprender el concepto de estimador y su distribución. 2. Conocer y saber aplicar el método de los momentos y el de máxima verosimilitud para obtener

Más detalles

MUESTREO TIPOS DE MUESTREO

MUESTREO TIPOS DE MUESTREO MUESTREO En ocasiones en que no es posible o conveniente realizar un censo (analizar a todos los elementos de una población), se selecciona una muestra, entendiendo por tal una parte representativa de

Más detalles

Datos estadísticos. 1.3. PRESENTACIÓN DE DATOS INDIVIDUALES Y DATOS AGRUPADOS EN TABLAS Y GRÁFICOS

Datos estadísticos. 1.3. PRESENTACIÓN DE DATOS INDIVIDUALES Y DATOS AGRUPADOS EN TABLAS Y GRÁFICOS .. PRESENTACIÓN DE DATOS INDIVIDUALES Y DATOS AGRUPADOS EN TABLAS Y GRÁFICOS Ser: Describir el método de construcción del diagrama de tallo, tabla de frecuencias, histograma y polígono. Hacer: Construir

Más detalles

60! hrs.! hrs.! hrs.!!!

60! hrs.! hrs.! hrs.!!! Carta Descriptiva 1 UMA 1001-95 " Estadística Descriptiva #$%&'$()*+'$(,%) Ciencias Sociales y Administración Principiante Obligatoria 60 hrs. hrs. hrs. Matemáticas Básicas Estadística Inferencial #+&+'$-$%&.+)/%(0$.-1.$'(23,4%50(

Más detalles

UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDADES GUÍA N o 1: Estadística y Probabilidades Profesor: Hugo S. Salinas. Primer Semestre 2011 1. Señalar

Más detalles

Control Estadístico de Procesos

Control Estadístico de Procesos Control Estadístico de Procesos Gráficos de Control Los gráficos de control o cartas de control son una importante herramienta utilizada en control de calidad de procesos. Básicamente, una Carta de Control

Más detalles

DISTRIBUCIÓN NORMAL CON EXCEL Y WINSTATS

DISTRIBUCIÓN NORMAL CON EXCEL Y WINSTATS DISTRIBUCIÓN NORMAL CON EXCEL Y WINSTATS 1) Reseña histórica Abrahan De Moivre (1733) fue el primero en obtener la ecuación matemática de la curva normal. Kart Friedrich Gauss y Márquez De Laplece (principios

Más detalles

DISTRIBUCIÓN DE LA MEDIA MUESTRAL. b) Las medias muestrales de tamaño n se distribuyen según la normal

DISTRIBUCIÓN DE LA MEDIA MUESTRAL. b) Las medias muestrales de tamaño n se distribuyen según la normal 1 DISTRIBUCIÓN DE LA MEDIA MUESTRAL La mayoría de estos problemas han sido propuestos en exámenes de selectividad de los distintos distritos universitarios españoles. 1. Considérese una población en la

Más detalles

Informe sobre el Cálculo de Errores de Muestreo. Encuesta de la Sociedad de la Información (ESI- Empresas)

Informe sobre el Cálculo de Errores de Muestreo. Encuesta de la Sociedad de la Información (ESI- Empresas) Informe sobre el Cálculo de Errores de Muestreo Encuesta de la Sociedad de la Información (ESI- Empresas) EUSKAL ESTATISTIKA ERAKUNDA INDICE 1. Introducción...3 2. Método de expansión de Taylor...3 3.

Más detalles

Técnicas de análisis para el uso de resultados de encuestas y estudios aplicados al VIH/sida. Por: Prof. Elena del C. Coba

Técnicas de análisis para el uso de resultados de encuestas y estudios aplicados al VIH/sida. Por: Prof. Elena del C. Coba Técnicas de análisis para el uso de resultados de encuestas y estudios aplicados al VIH/sida Por: Prof. Elena del C. Coba Encuestas y estudios aplicados al VIH/sida Definir la fuente de los datos: Datos

Más detalles

Teoría de Probabilidad

Teoría de Probabilidad Matemáticas Discretas L. Enrique Sucar INAOE Teoría de Probabilidad Considero que la probabilidad representa el estado de la mente con respecto a una afirmación, evento u otra cosa para las que no existe

Más detalles

Fundamentos de Estadística Pablo Cazau

Fundamentos de Estadística Pablo Cazau Fundamentos de Estadística Pablo Cazau Prefacio Capítulo 1: Introducción a la estadística 1.1 Definición y utilidad de la estadística 1.2 Clasificaciones de la estadística 1.3 Población y muestra 1.4 Estructura

Más detalles

3. ANÁLISIS ESTADÍSTICOS DE LAS PRECIPITACIONES EN EL MAR CASPIO

3. ANÁLISIS ESTADÍSTICOS DE LAS PRECIPITACIONES EN EL MAR CASPIO Análisis estadístico 31 3. ANÁLII ETADÍTICO DE LA PRECIPITACIONE EN EL MAR CAPIO 3.1. ANÁLII Y MÉTODO ETADÍTICO UTILIZADO 3.1.1. Introducción Una vez analizado el balance de masas que afecta al mar Caspio

Más detalles

Statgraphics Centurión

Statgraphics Centurión Facultad de Ciencias Económicas y Empresariales. Universidad de Valladolid 1 Statgraphics Centurión I.- Nociones básicas El paquete Statgraphics Centurión es un programa para el análisis estadístico que

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 003 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Junio, Ejercicio 3, Opción A Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3,

Más detalles

Ayudantía 4 Probabilidades ILI-280 Estadística Computacional. Profesor: Rodrigo Salas Ayudantes: Juan Pablo Cares Pino Fernando Herrera Barría

Ayudantía 4 Probabilidades ILI-280 Estadística Computacional. Profesor: Rodrigo Salas Ayudantes: Juan Pablo Cares Pino Fernando Herrera Barría Ayudantía 4 Probabilidades ILI-280 Estadística Computacional Profesor: Rodrigo Salas Ayudantes: Juan Pablo Cares Pino Fernando Herrera Barría Valparaíso, 25 de septiembre de 2009 1. Se compran 3 billetes

Más detalles

Curso de Estadística Básica

Curso de Estadística Básica Curso de SESION 1 INTRODUCCIÓN A LA ESTADÍSTICA M. en C. Objetivo Crear una imagen inicial del campo de la estadística así como introducir y comprender los términos básicos aplicados en su estudio. Agenda

Más detalles

ANÁLISIS DE DATOS NO NUMERICOS

ANÁLISIS DE DATOS NO NUMERICOS ANÁLISIS DE DATOS NO NUMERICOS ESCALAS DE MEDIDA CATEGORICAS Jorge Galbiati Riesco Los datos categóricos son datos que provienen de resultados de experimentos en que sus resultados se miden en escalas

Más detalles

Gerenciamiento Técnico de Proyectos

Gerenciamiento Técnico de Proyectos Gerenciamiento Técnico de Proyectos Elementos de Estadística Distribución de Frecuencias Qué es Estadística? Estadística es la ciencia de recolectar, organizar, presentar, analizar e interpretar datos

Más detalles

Ingeniería Técnica Industrial, todas especialidades. Ingeniería Técnica Telecomunicaciones, Telemática Problemas de examenes

Ingeniería Técnica Industrial, todas especialidades. Ingeniería Técnica Telecomunicaciones, Telemática Problemas de examenes Universidad Politécnica de Cartagena Dpto. Matemática Aplicada y Estadística Métodos estadísticos de la ingeniería, Estadística Problemas de examenes: Métodos estadísticos de la ingeniería Ingeniería Técnica

Más detalles

Introducción a la estadística y SPSS

Introducción a la estadística y SPSS Introducción a la estadística y SPSS Marcelo Rodríguez Ingeniero Estadístico - Magister en Estadística Universidad Católica del Maule Facultad de Ciencias Básicas Pedagogía en Matemática Estadística I

Más detalles

ESTADÍSTICA Y DISEÑO EXPERIMENTAL

ESTADÍSTICA Y DISEÑO EXPERIMENTAL SILABO I. DATOS GENERALES 1.1 Nombre de la asignatura : ESTADÍSTICA Y DISEÑO EXPERIMENTAL 1.2 Carácter : Obligatorio 1.3 Carrera Profesional : Administración de Empresas 1.4 Código : AD0502 1.5 Semestre

Más detalles

Curso de Estadística no-paramétrica

Curso de Estadística no-paramétrica Curso de Estadística no-paramétrica Sesión 1: Introducción Inferencia no Paramétrica David Conesa Grup d Estadística espacial i Temporal Departament d Estadística en Epidemiologia i Medi Ambient i Investigació

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.E. CURSO 2013-2014 CONVOCATORIA: MATERIA: MATEMATICAS APLICADAS A LAS CC. SS. - Cada alumno debe elegir sólo una de las pruebas (A o B). - Cada una de las preguntas

Más detalles

Tema 2 Estadística Descriptiva

Tema 2 Estadística Descriptiva Estadística Descriptiva 1 Tipo de Variables 2 Tipo de variables La base de datos anterior contiene la información de 2700 individuos con 8 variables. Los datos provienen de una encuesta nacional realizada

Más detalles

Introducción: Modelos, Escalas y Métricas. Valentin Laime. Calidad de Software

Introducción: Modelos, Escalas y Métricas. Valentin Laime. Calidad de Software Calidad de Software: Introducción: Modelos, Escalas y Métricas Valentin Laime Calidad de Software 10/28/2014 1 Modelos Un modelo es una abstracción de la realidad, que permite abstraer detalles y visualizar

Más detalles

UNIVERSIDAD DEL SALVADOR PROGRAMA. UNIDAD ACADÉMICA: Campus San Roque González de Santa Cruz. CARRERA: Veterinaria. DIVISIÓN / COMISIÓN: Primer Año

UNIVERSIDAD DEL SALVADOR PROGRAMA. UNIDAD ACADÉMICA: Campus San Roque González de Santa Cruz. CARRERA: Veterinaria. DIVISIÓN / COMISIÓN: Primer Año UNIVERSIDAD DEL SALVADOR PROGRAMA UNIDAD ACADÉMICA: Campus San Roque González de Santa Cruz. CARRERA: Veterinaria DIVISIÓN / COMISIÓN: Primer Año TURNO: Único OBLIGACIÓN ACADÉMICA: ESTADÍSTICA Y DISEÑO

Más detalles

Estadística y Probabilidad

Estadística y Probabilidad 12 Estadística y Probabilidad Objetivos En esta quincena aprenderás a: Recoger datos para un estudio estadístico. Organizar los datos en tablas de frecuencia absoluta y relativa. Construir e interpretar

Más detalles

Modelos de distribuciones discretas

Modelos de distribuciones discretas Tema 4 Modelos de distribuciones discretas En este capítulo estudiaremos las distribuciones discretas más importantes. importancia es doble, por las aplicaciones y por su relevancia conceptual. De nuevo,

Más detalles

Estadística aplicada y modelización. 10 de septiembre de 2005

Estadística aplicada y modelización. 10 de septiembre de 2005 Estadística aplicada y modelización. 10 de septiembre de 005 SOLUCIÓN MODELO A 1. Una persona se está preparando para obtener el carnet de conducir, repitiendo un test de 0 preguntas. En la siguiente tabla

Más detalles

Máster en Economía y Organización de empresas

Máster en Economía y Organización de empresas Máster en Economía y Organización de empresas Módulo III: Competencias para la preparación de trabajo fin de Máster Dr. Eulogio Cordón Pozo Índice de contenidos!! Introducción: metodología de la investigación!

Más detalles

FACULTAD DE CIENCIAS DE LA SALUD ESCUELA PROFESIONAL DE PSICOLOGIA SÍLABO/PLAN DE APRENDIZAJE ESTADISTICA

FACULTAD DE CIENCIAS DE LA SALUD ESCUELA PROFESIONAL DE PSICOLOGIA SÍLABO/PLAN DE APRENDIZAJE ESTADISTICA FACULTAD DE CIENCIAS DE LA SALUD ESCUELA PROFESIONAL DE PSICOLOGIA SÍLABO/PLAN DE APRENDIZAJE ESTADISTICA A. SILABO 1. Información General 1.1 Denominación de la asignatura Estadística 1.2 Código de la

Más detalles

Estadística para la administración y los negocios

Estadística para la administración y los negocios Estadística para la administración y los negocios Autor Carlos Véliz Capuñay Doctor en Ciencias y Magíster en Matemáticas Pontificia Universidad Católica del Perú Doctor en Ingeniería Industrial Universidad

Más detalles

Lean SEIS SIGMA Área Temática: Logística

Lean SEIS SIGMA Área Temática: Logística Proyecto fin de Master Hito 3 Ejercicio Nº 1 Lean SEIS SIGMA Área Temática: Logística www.formatoedu.com 1 Enunciado Lean Seis Sigma es una metodología eficaz para reducir sistemáticamente todas las deficiencias

Más detalles

Sistema Incremental Generador de Oraciones y de Descodificación Lingüística. José Luciano Maldonado. luzmalvy@telcel.net.ve maldonaj@faces.ula.

Sistema Incremental Generador de Oraciones y de Descodificación Lingüística. José Luciano Maldonado. luzmalvy@telcel.net.ve maldonaj@faces.ula. Sistema Incremental Generador de Oraciones y de Descodificación Lingüística. José Luciano Maldonado. luzmalvy@telcel.net.ve maldonaj@faces.ula.ve Resumen: se describe la implementación experimental de

Más detalles

ESTADÍSTICA ALUMNA :... CICLO : III SEMESTRE : 2012-II. PROFESORA : Lic. Gladys Enríquez Mantilla glaenriq@gmail.com

ESTADÍSTICA ALUMNA :... CICLO : III SEMESTRE : 2012-II. PROFESORA : Lic. Gladys Enríquez Mantilla glaenriq@gmail.com ESTADÍSTICA ALUMNA :... CICLO : III SEMESTRE : 2012-II PROFESORA : Lic. Gladys Enríquez Mantilla glaenriq@gmail.com Definición: CONCEPTOS BÁSICOS DE ESTADÍSTICA es la disciplina que provee de métodos y

Más detalles

5. DISTRIBUCIONES DE PROBABILIDAD CONTINUAS Y MUESTRALES

5. DISTRIBUCIONES DE PROBABILIDAD CONTINUAS Y MUESTRALES 5. DISTRIBUCIONES DE PROBABILIDAD CONTINUAS Y MUESTRALES 5.. Distribuciones de Probabilidad de una variable aleatoria continua Toda distribución de probabilidad es generada por una variable aleatoria x,

Más detalles

Tema 5: Estimación puntual y por intervalos

Tema 5: Estimación puntual y por intervalos Tema 5: Estimación puntual y por intervalos Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 5: Estimación puntual y por intervalos Curso

Más detalles