Estructura cristalina: Índices de Miller. Y en términos de grado de compacidad? Volumen de átomos= Volumen de la celda= ( ) 3

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Estructura cristalina: Índices de Miller. Y en términos de grado de compacidad? Volumen de átomos= Volumen de la celda= ( ) 3"

Transcripción

1 1 Cuántos átomos hay en una celda unidad? Vértices 1/8 Caras 1/2 Número total de átomos en la celda unidad: 8 en los vértices: 8 x 1/8 = 1 6 en las caras: 6 x 1/2 = 3 Total: 4 átomos Y en términos de grado de compacidad? Volumen de átomos= 4 4 πr 3 Volumen de la celda= ( ) r Fracción de empaquetamiento

2 2 Pero ya decíamos que no todas las estructuras cristalinas presentan empaquetamiento compacto; en algunos casos los requerimientos del tipo de enlace en el material en cuestión son incompatibles con este tipo de empaquetamiento por lo que se obtienen estructuras más abiertas, menos compactas. En la figura siguiente se muestran los factores de empaquetamiento de las estructuras cristalinas cúbicas más frecuentes, incluyendo la centrada en caras de la que ya hemos hablado. 1 átomo por celda 2 átomos por celda 4 átomos por celda

3 3 Antes de pasar a ver algunas de las estructuras cristalinas reales más frecuentes, tenemos que estudiar la nomenclatura habitual para nombrar tanto a las posiciones de los puntos de red dentro de la celda, como los diferentes planos y direcciones característicos de una red cristalina (planos atómicos y direcciones cristalográficas). Red 2D Vectores de la red OD

4 4 La secuencia para determinar los índices de una dirección o un plano en tres dimensiones sería la siguiente: DIRECCIONES CRISTALOGRÁFICAS 1.- Se traza un vector paralelo a la dirección que se quiere indexar, que pase por el origen de coordenadas del sistema.

5 5 2.- Se determina la longitud de la proyección de ese vector sobre cada uno de los ejes en función de las dimensiones de la celda unidad 3.- Estos tres números se multiplican o dividen por un factor común para reducirlos al menor entero posible. Una vez calculados los índices, la recta se representa por estos tres enteros encerrados entre corchetes y sin comas entre ellos [uvw]. u, v y w corresponden a las proyecciones reducidas a lo largo de los ejes x, y, z respectivamente. Por supuesto los índices pueden ser negativo, cuando éste el caso se indica colocando una línea sobre el índice. [112] [0 2 1] [ 111] [210]

6 6 Veamos ahora como se describen los planos cristalográficos. Como hacíamos para las direcciones cristalográficas podemos establecer un secuencia para ver cuáles son los índices de Miller de un plano determinado. 1.- De todos los planos paralelos a aquél del que se quieren determinar los índices, se elige el que esté más próximo al origen sin cruzarlo. El plano en cuestión, o bien corta o bien es paralelo (corta en el infinito) a cada uno de los ejes cristalográficos. 2.- Se determinan los puntos de corte con los ejes en función de los vectores de la red. Se multiplican o dividen por un factor común los recíprocos de los cortes con los ejes que se han determinado. Estos serán los tres números enteros a los que denominamos índices de Miller y que, como en el caso de las direcciones cristalográficas, representamos entre paréntesis y sin separar por comas.

7 7 (221) (212) (11 1 ) ( 1 11) Finalmente la posición de un átomo en la celda se determina por las componentes de su vector de posición respecto al origen expresadas en términos de los módulos de los vectores de la celda. ½ c ½ a ½ b

8 8 En la mayor parte de las estructuras cristalinas se pueden encontrar direcciones no paralelas, y por tanto con diferentes índices, que sin embargo son equivalentes. Esta equivalencia se refiere al hecho de que las distancias interatómicas a lo largo de esas direcciones son idénticas. Esto ocurre por ejemplo en cristales cúbicos con las siguientes direcciones: [100], [010], [001], [ 1 00], [0 1 0] y [00 1 ]. En el caso del sistema cúbico son equivalentes todas las direcciones que tienen índices con idénticos valores absolutos, sin importar el orden pero no ocurre lo mismo en todos los sistemas cristalinos. Por ejemplo en el sistema tetragonal las direcciones [100] y [010] son equivalentes, mientras que las direcciones [100] y [001] no lo son. A efectos de simplificar la nomenclatura, resulta conveniente agrupar todas las direcciones equivalentes en una familia que se representa por los índices de una de las direcciones encerradas en paréntesis angulares, <100> para el ejemplo anterior. De la misma forma, podemos encontrar planos cristalográficos equivalentes con índices de Miller distintos. En este caso la equivalencia se refiere al la disposición de los átomos dentro del plano. Recurriendo de nuevo al sistema cúbico vemos que los planos (111), ( 1 11), (1 1 1), (11 1 ), ( 1 11), (111), (11 1) y (1 1 1 ) son equivalentes, y se dice de ellos que pertenecen a la misma familia, lo que se denota como {111}. Como ocurría para las direcciones cristalográficas, sólo en el caso del sistema cúbico se puede afirmar que todos los planos con los mismos índices en valor absoluto y un orden cualquiera son equivalentes.

9 9 Los cristales hexagonales tienen una peculiaridad que hace que sea conveniente recurrir a un sistema de indexación ligeramente distinto, conocido como de Miller-Bravais. En este sistema en lugar de los tres índices (hkl), se utilizan cuatro índices (hkil). Veamos por qué se usan y cómo se determinan estos índices. Las tres caras mostradas en la celda unidad hexagonal son planos pertenecientes a la misma familia, sin embargo con el sistema de ejes elegidos esta equivalencia no es en absoluto obvia a la vista de los índices de Miller.

10 10 Introduzcamos un cuarto eje, que denotamos u, tal como se muestra en la figura Este cuarto eje es en realidad una combinación lineal de los ejes x e y puesto que los tres están en el mismo plano. El índice asociado a este nuevo eje se puede expresar en términos de los índices de Miller h y k de manera que i=- (h+k). Si ahora reasignamos índices a los planos señalados......hemos resuelto el problema de notación, puesto que ahora los tres planos cristalográficos si se expresan mediante índices fácilmente asociables a la misma familia. (0001) (10 11)

11 11 El sistema de Miller-Bravais también se utiliza para asignar índices a las direccines cristalográficas en el sistema hexagonal. Reasignamos índices a los ejes x, y, z

Siete sistemas y catorce retículos

Siete sistemas y catorce retículos ESTRUCTURA CRISTALINA - PERFECCION Siete sistemas y catorce retículos Celda unitaria c a b Constantes reticulares o parámetros reticulares Longitud de los bordes Ángulos entre los ejes cristalográficos

Más detalles

Caso de varios vectores primitivos de un mismo arreglo. Base o Motivo: Átomo o conjunto de átomos que se asocian con un punto de la malla Malla o Lattice: Es un arreglo infinito de puntos en el espacio,

Más detalles

CRISTALOGRAFIA. Es un sólido compuesto de átomos, iones o moléculas ordenados de una cierta forma y que se repite en tres dimensiones.

CRISTALOGRAFIA. Es un sólido compuesto de átomos, iones o moléculas ordenados de una cierta forma y que se repite en tres dimensiones. CRISTALOGRAFIA CRISTAL SÓLIDO MONOCRISTALINO SÓLIDO POLICRISTALINO Es un sólido compuesto de átomos, iones o moléculas ordenados de una cierta forma y que se repite en tres dimensiones. Región donde el

Más detalles

ESTRUCTURAS DE LOS SÓLIDOS CRISTALINOS

ESTRUCTURAS DE LOS SÓLIDOS CRISTALINOS ESTRUCTURAS DE LOS SÓLIDOS CRISTALINOS REDES ESPACIALES Y CELDAS UNIDAD La importancia en la ingeniería de la estructura física de los materiales sólidos depende principalmente de la disposición de los

Más detalles

Contenido. 5. Estructura cristalina. Omar De la Peña-Seaman IFUAP Física del Estado Sólido Maestría (Física) 1/51 51

Contenido. 5. Estructura cristalina. Omar De la Peña-Seaman IFUAP Física del Estado Sólido Maestría (Física) 1/51 51 Contenido 5. Estructura cristalina 1 / Omar De la Peña-Seaman IFUAP Física del Estado Sólido Maestría (Física) 1/51 51 Contenido: Tema 05 5. Estructura cristalina 5.1 Arreglo periódico de átomos: bases,

Más detalles

GEOMETRÍA DE LOS CRISTALES I

GEOMETRÍA DE LOS CRISTALES I CAPÍTULO 4 GEOMETRÍA DE LOS CRISTALES I 4.1 REDES Conjuntos de puntos imaginarios que tienen una relación fija en el espacio constituyendo un armazón sobre el cual el cristal se construye. En la Figura

Más detalles

Estructura de los Sólidos

Estructura de los Sólidos Estructura de los Sólidos Estructura Cristalina OBJETIVOS a) Definir sólidos cristalinos y amorfos b) Definir estructura cristalina c) Describir las diferentes estructuras cristalinas d) Utilizar índices

Más detalles

Espacios vectoriales. Vectores del espacio.

Espacios vectoriales. Vectores del espacio. Espacios vectoriales. Vectores del espacio. Consideremos un paralelepípedo de bases ABCD y EFGH, siendo A(1,1,1), B(2,1,1), C(2,4,1) y E(1,2,7). Halla: a) el área de una de las bases; b) el volumen del

Más detalles

Empaquetamiento compacto

Empaquetamiento compacto Empaquetamiento compacto Energía y empaquetamiento No denso, empaquetamiento aleatorio Energy Distancia del enlace energía de enlace Denso, empaquetamiento ordenado Energy distancia del enlace r Energía

Más detalles

Estructura Atómica y Cristalina. Departamento de Tecnología IES San José

Estructura Atómica y Cristalina. Departamento de Tecnología IES San José 1. INTRODUCCIÓN. Las propiedades y comportamiento de los materiales dependen, principalmente de su constitución y de su estructura. Por ello estudiaremos la disposición geométrica de los átomos y las interacciones

Más detalles

4. El ClNa cristaliza en el sistema cúbico con parámetro [a]=5.631å. Calcular su densidad sabiendo que su masa molecular es 58.45 uma.

4. El ClNa cristaliza en el sistema cúbico con parámetro [a]=5.631å. Calcular su densidad sabiendo que su masa molecular es 58.45 uma. Síntesis y Caracterización Estructural de los Materiales: Bases Cristalográficas. 1. Dibuje en las celdas fundamentales cúbicas adjuntas (a = 3 Å): a. Las filas reticulares de índices de Weiss [02-1],

Más detalles

Generalidades del Estado Sólido

Generalidades del Estado Sólido Universidad de Antioquia Instituto de Física Primer Taller de Estado Sólido, CNF-422 Este taller tiene como objetivo que el estudiante haga un recorrido por los diferentes conceptos para preparar el primer

Más detalles

Capítulo 2 La estructura de los sólidos cristalinos

Capítulo 2 La estructura de los sólidos cristalinos Capítulo 2 La estructura de los sólidos cristalinos TEMA 2: La estructura de los sólidos cristalinos 1. Los enlaces interatómicos 2. La estructura cristalina 3. Estructuras de empaquetamiento compacto

Más detalles

EL CRISTAL PERIODICIDAD

EL CRISTAL PERIODICIDAD EL CRISTAL PERIODICIDAD El cristal desde un punto de vista microscópico Un medio cristalino está formado por un conjunto de átomos dispuestos en un orden bien definido generado por la repetición periódica

Más detalles

2.2 Simetría en los sólidos cristalinos

2.2 Simetría en los sólidos cristalinos 2.2 Simetría en los sólidos cristalinos Observación: Distribución de las caras en los cristales Sentido de proporción y equilibrio geométrico Simetría externa de los cristales permite: - Placer estético

Más detalles

2. ESTRUCTURA DE LOS SÓLIDOS CRISTALINOS

2. ESTRUCTURA DE LOS SÓLIDOS CRISTALINOS . ESTRUCTURA DE LOS SÓLIDOS CRISTALINOS MATERIALES 1/14 ÍNDICE 1. CONCEPTOS GENERALES. CELDILLA CRISTALINA. SISTEMAS CRISTALINOS. REDES DE BRAVAIS 4. DENSIDAD Y FACTOR DE EMPAQUETAMIENTO 5. ESTRUCTURAS

Más detalles

GRUPOS PUNTUALES. 4.- Si un plano de simetría contiene un eje de orden n, existen n planos que contienen el eje. formando entre ellos ángulos de

GRUPOS PUNTUALES. 4.- Si un plano de simetría contiene un eje de orden n, existen n planos que contienen el eje. formando entre ellos ángulos de GRUPOS PUNTUALES Existen algunas relaciones entre elementos de simetría que pueden ser útiles a la hora de deducir cuales son los conjuntos de estos que forman grupo. 1.- Todos los elementos de simetría

Más detalles

TEMA 5. VECTORES. Dados dos puntos del plano y.

TEMA 5. VECTORES. Dados dos puntos del plano y. TEMA 5. VECTORES. Dados dos puntos del plano y. Se define el vector de origen A y extremo B como el segmento orientado caracterizado por su módulo (su longitud), dirección (la de la recta que lo contiene)

Más detalles

Proyecto Guao. Vector unitario

Proyecto Guao. Vector unitario Vector unitario Proyecto Guao Marco Teórico Un vector unitario es un vector que tiene una magnitud de una unidad y puede tener cualquier dirección. Vectores unitarios de los ejes perpendiculares se pueden

Más detalles

Expresión matricial de las operaciones de simetría

Expresión matricial de las operaciones de simetría Epresión matricial de las operaciones de simetría Cada una de las operaciones de simetría se puede describir como una transformación de ejes de coordenadas, de tal manera que las coordenadas de la imagen

Más detalles

Química del Estado Sólido

Química del Estado Sólido Química del Estado Sólido Por qué un curso de química de sólidos?? 2x2x2 celdas de una perovskita distorsionada Celda unitaria del YBa2Cu3O7 Existe un aspecto económico que es muy importante y mueve muchas

Más detalles

Preguntas definitivas Capítulo 1 ESTRUCTURA Y GEOMETRÍA CRISTALINA

Preguntas definitivas Capítulo 1 ESTRUCTURA Y GEOMETRÍA CRISTALINA Ciencia de Materiales. Estructura y Geometría Cristalina. 1.1 Preguntas definitivas Capítulo 1 ESTRUCTURA Y GEOMETRÍA CRISTALINA Ciencia de Materiales. Estructura y Geometría Cristalina. 1.2 PREGUNTA 1.1

Más detalles

Tema 7: Geometría Analítica. Rectas.

Tema 7: Geometría Analítica. Rectas. Tema 7: Geometría Analítica. Rectas. En este tema nos centraremos en estudiar la geometría en el plano, así como los elementos que en este aparecen como son los puntos, segmentos, vectores y rectas. Estudiaremos

Más detalles

el blog de mate de aida 4º ESO: apuntes de vectores pág. 1

el blog de mate de aida 4º ESO: apuntes de vectores pág. 1 el blog de mate de aida 4º ESO: apuntes de vectores pág. VECTORES.- LOS EJES CARTESIANOS Y EL ORIGEN El eje horizontal se llama eje de abscisas y el eje vertical se llama eje de ordenadas. El punto de

Más detalles

REPASO MATEMÁTICO 1. Operaciones matemáticas. 2. Magnitudes físicas. 3. Factores de conversión. 4. Gráficas. 5. Vectores.

REPASO MATEMÁTICO 1. Operaciones matemáticas. 2. Magnitudes físicas. 3. Factores de conversión. 4. Gráficas. 5. Vectores. REPASO MATEMÁTICO 1. Operaciones matemáticas. 2. Magnitudes físicas. 3. Factores de conversión. 4. Gráficas. 5. Vectores. Física 1º bachillerato Repaso matemático 1 1. OPERACIONES MATEMÁTICAS 1.1 Operaciones

Más detalles

PARABOLA Y ELIPSE. 1. La ecuación general una parábola es: x y 40 = 0. Poner la ecuación en la forma: (x h) 2 = 4p (y k).

PARABOLA Y ELIPSE. 1. La ecuación general una parábola es: x y 40 = 0. Poner la ecuación en la forma: (x h) 2 = 4p (y k). PARABOLA Y ELIPSE 1. La ecuación general una parábola es: x + 0y 40 = 0. Poner la ecuación en la forma: (x h) = 4p (y k). x = 0 (y ) (x ) = 0y x = 0 (y ) x = 0 (y + ) (x 40) = 0y. Hallar la ecuación de

Más detalles

Módulo 3. Introducción a la cristalografía

Módulo 3. Introducción a la cristalografía Módulo 3. Introducción a la cristalografía Poliedros cristalográficos recortables Un método muy recomendable para estudiar la forma y simetría de los cristales consiste en construir poliedros recortables.

Más detalles

S. Diédrico - 1 SISTEMAS DE PROYECCIÓN

S. Diédrico - 1 SISTEMAS DE PROYECCIÓN S. Diédrico - 1 SISTEMA DIÉDRICO El sistema diédrico es un sistema de proyecciones cilíndricas y ortogonales, es decir, que las rectas proyectantes son paralelas entre sí y perpendiculares a los planos

Más detalles

2.- (Puntuación máxima 2 puntos). Para cada valor del parámetro real a, se consideran los tres planos siguientes:

2.- (Puntuación máxima 2 puntos). Para cada valor del parámetro real a, se consideran los tres planos siguientes: 1.- (Puntuación máxima 3 puntos). Se consideran las rectas: a) (1 punto) Calcular la distancia entre r y s. b) (1 punto) Hallar unas ecuaciones cartesianas de la recta perpendicular común a r y s y que

Más detalles

Desigualdades lineales en una variable. Prof. Anneliesse Sánchez Adaptada por Prof. Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo

Desigualdades lineales en una variable. Prof. Anneliesse Sánchez Adaptada por Prof. Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo Desigualdades lineales en una variable Prof. Anneliesse Sánchez Adaptada por Prof. Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo Desigualdades o Inecuaciones Una inecuación o desigualdad,

Más detalles

GEOMETRÍA. (x 1) 2 +(y 2) 2 =1. Razónalo. x y + z = 2. :3x 3z +1= 0 es doble de la distancia al plano π 2. : x + y 1= 0. Razónalo.

GEOMETRÍA. (x 1) 2 +(y 2) 2 =1. Razónalo. x y + z = 2. :3x 3z +1= 0 es doble de la distancia al plano π 2. : x + y 1= 0. Razónalo. GEOMETRÍA 1. (Junio, 1994) Sin resolver el sistema, determina si la recta x +3y +1= 0 es exterior, secante o tangente a la circunferencia (x 1) +(y ) =1. Razónalo.. (Junio, 1994) Dadas las ecuaciones de

Más detalles

ÁLGEBRA Y GEOMETRÍA ANALÍTICA PRIMER CUATRIMESTRE 2014 EL PLANO

ÁLGEBRA Y GEOMETRÍA ANALÍTICA PRIMER CUATRIMESTRE 2014 EL PLANO ÁLGEBRA Y GEOMETRÍA ANALÍTICA PRIMER CUATRIMESTRE 04 GUIA DE ESTUDIO: EL PLANO Esta guía tiene la intención de ayudarte en el aprendizaje de los contenidos desarrollados en el material de estudio El plano

Más detalles

Programa de Acceso Inclusivo, Equidad y Permanencia. PAIEP, Universidad de Santiago

Programa de Acceso Inclusivo, Equidad y Permanencia. PAIEP, Universidad de Santiago Guía de vectores. Vectores En matemática, un vector es una herramienta geométrica utilizada para representar una magnitud física definida en un sistema de referencia que se caracteriza por tener módulo

Más detalles

VECTORES Y SUS ELEMENTOS

VECTORES Y SUS ELEMENTOS VECTORES Y SUS ELEMENTOS Los conjuntos de números naturales, enteros y racionales estudiados, te han permitido expresar distintas situaciones y resolver muchos problemas. En este sentido, algunas cantidades

Más detalles

LABORATORIO DE ESTADO SÓLIDO Y SEMICONDUCTORES 1.1. PRÁCTICA N o 1 REDES DE BRAVAIS Y ESTRUCTURAS CRISTALINAS

LABORATORIO DE ESTADO SÓLIDO Y SEMICONDUCTORES 1.1. PRÁCTICA N o 1 REDES DE BRAVAIS Y ESTRUCTURAS CRISTALINAS LABORATORIO DE ESTADO SÓLIDO Y SEMICONDUCTORES 1.1 PRÁCTICA N o 1 REDES DE BRAVAIS Y ESTRUCTURAS CRISTALINAS 1. INTRODUCCIÓN 1.1 Red de Bravais y celda primitiva unidad Uno de los conceptos fundamentales

Más detalles

EJERCICIOS DE SELECTIVIDAD DE GEOMETRIA

EJERCICIOS DE SELECTIVIDAD DE GEOMETRIA EJERCICIOS DE SELECTIVIDAD DE GEOMETRIA 2003 (4) Ejercicio 1. Considera los vectores u = (1,1,1), v = (2,2,a) y w = (2,0,0), (a) [1'25 puntos] Halla los valores de a para que los vectores u, v y w sean

Más detalles

LA RECTA. Una recta r es el conjunto de los puntos del plano, alineados con un punto P y con una dirección dada.

LA RECTA. Una recta r es el conjunto de los puntos del plano, alineados con un punto P y con una dirección dada. LA RECTA Una recta r es el conjunto de los puntos del plano, alineados con un punto P y con una dirección dada. En geometría euclidiana, la recta o la línea recta, se extiende en una misma dirección, existe

Más detalles

Síntesis y Caracterización Estructural de los Materiales Ángel Carmelo Prieto Colorado

Síntesis y Caracterización Estructural de los Materiales Ángel Carmelo Prieto Colorado Síntesis y Caracterización Estructural de los Materiales Ángel Carmelo Prieto Colorado Física de la Materia Condensada, Cristalografía y Mineralogía. Facultad de Ciencias. Universidad de Valladolid. Estructura

Más detalles

. Universidad Tecnológica Nacional - Facultad Regional Rosario. Álgebra y Geometría Analítica EL PLANO

. Universidad Tecnológica Nacional - Facultad Regional Rosario. Álgebra y Geometría Analítica EL PLANO . Universidad Tecnológica Nacional - Facultad Regional Rosario Álgebra y Geometría Analítica EL PLANO Autores: Lic. Martha Fascella Ing. Ricardo F. Sagristá 0 Contenido EL PLANO... 3.- Definición del plano

Más detalles

CASOS DE LA FUNCIÓN AFÍN

CASOS DE LA FUNCIÓN AFÍN CASOS DE LA FUNCIÓN AFÍN Considera que el precio de un artículo es de Bs 80. Conocido el precio unitario (precio por unidad) es posible calcular fácilmente el precio de varios artículos con solo multiplicar

Más detalles

MATEMÁTICASII Curso académico BLOQUE GEOMETRÍA. TEMA 1: VECTORES

MATEMÁTICASII Curso académico BLOQUE GEOMETRÍA. TEMA 1: VECTORES MATEMÁTICASII Curso académico 2015-2016 BLOQUE GEOMETRÍA. TEMA 1: VECTORES 1.1 VECTORES DEL ESPACIO. VECTORES LIBRES DEL ESPACIO Sean y dos puntos del espacio. Llamaremos vector (fijo) a un segmento orientado

Más detalles

TEMA 2: La Estructura de los sólidos cristalinos

TEMA 2: La Estructura de los sólidos cristalinos TEMA 2: La Estructura de los sólidos cristalinos 1. La plata solidifica en una estructura cúbica centrada en las caras (fcc). La masa atómica de la plata es 107.8682 y la longitud de la celda unidad, esto

Más detalles

TEMA 5. RECTAS Y PLANOS. INCIDENCIA.

TEMA 5. RECTAS Y PLANOS. INCIDENCIA. TEMA 5. RECTAS Y PLANOS. INCIDENCIA. SISTEMA DE REFERENCIA EN EL ESPACIO. Un sistema de referencia en el espacio está formado por un punto y tres vectores linealmente independientes. A partir de ahora

Más detalles

. Halla los valores de α en cada uno de los siguientes casos: a) (1 punto) u r, v

. Halla los valores de α en cada uno de los siguientes casos: a) (1 punto) u r, v EJERCICIOS BLOQUE III: GEOMETRÍA (04-M;Jun-A-4) Considera la recta r que pasa por los puntos A (,0, ) y (,,0 ) a) ( punto) Halla la ecuación de la recta s paralela a r que pasa por C (,,) b) (5 puntos)

Más detalles

EJERCICIOS BLOQUE III: GEOMETRÍA

EJERCICIOS BLOQUE III: GEOMETRÍA EJERCICIOS BLOQUE III: GEOMETRÍA (05-M4;Jun-B-4) Sea el plano π x + y z + 8 a) (5 puntos) Calcula el punto, P simétrico del punto (,,5 ) b) ( punto) Calcula la recta r, simétrica de la recta plano π P

Más detalles

VECTORES. BIDIMENSIONAL

VECTORES. BIDIMENSIONAL VETORES. IDIMENSIONL 1. Dado los vectores,,, D, E, F y G que se muestran en la figura, determinar el modulo del vector resultante si = 5N y F = 4N. Rpta. R = 17,35N. 2. En el primer cuadrante de un sistema

Más detalles

1.2. Celdas Unitarias Parámetros Reticulares

1.2. Celdas Unitarias Parámetros Reticulares Capítulo 2 Organización Atómica 1.2. Celdas Unitarias Parámetros Reticulares 1.2.1. Celdas Unitarias La estructura atómica influye en la forma en que los átomos se unen entre sí; esto además nos ayuda

Más detalles

UNIDAD 3 : ELEMENTOS GEOMÉTRICOS

UNIDAD 3 : ELEMENTOS GEOMÉTRICOS UNIDAD 3 : ELEMENTOS GEOMÉTRICOS 3.A.1 Características de un lugar geométrico 3.A ELEMENTOS DE GEOMETRÍA PLANA Se denomina lugar geométrico a todo conjunto de puntos que cumplen una misma propiedad o que

Más detalles

SISTEMA GENERAL DE COORDENADAS RECTANGULARES

SISTEMA GENERAL DE COORDENADAS RECTANGULARES átedra: Topografía II Pág. SISTEM GENERL DE OORDENDS RETNGULRES LOLIZIÓN DE PUNTOS EN EL PLNO Localizar puntos de la superficie terrestre en el plano, significa dar la referencia de ellos respecto a un

Más detalles

CALCULO DIFERENCIAL Escuela Colombiana de Ingeniería. Geometría Analítica = Unión de Álgebra con la Geometría.

CALCULO DIFERENCIAL Escuela Colombiana de Ingeniería. Geometría Analítica = Unión de Álgebra con la Geometría. PRELIMINARES. COORDENADAS EN UN PLANO Cuando se trabaja un sistema de coordenadas Geometría Analítica = Unión de Álgebra con la Geometría. La geometría Analítica se origina al asignar coordenadas numéricas

Más detalles

Tema 2.- Estructura de la Materia

Tema 2.- Estructura de la Materia BLOQUE II.- ESTRUCTURA Estructura de la Materia * James F. Shackerlford Introducción a la Ciencia de Materiales para Ingenieros. Cuarta edición. Ed. Prentice Hall (1998) * Pat L. Mangonon Ciencia de Materiales:

Más detalles

PROFR.: JULIO C. JIMÉNEZ RAMÍREZ GRUPOS: TODOS LOS ALUMNOS IRREGULARES EPOEM No.16 TRUNO: VESPETINO

PROFR.: JULIO C. JIMÉNEZ RAMÍREZ GRUPOS: TODOS LOS ALUMNOS IRREGULARES EPOEM No.16 TRUNO: VESPETINO Ecuación vectorial de la recta Ecuaciones paramétricas de la recta Ecuación continua de la recta Pendiente Ecuación punto-pendiente de la recta Ecuación general de la recta Ecuación explícita de la recta

Más detalles

Momento angular de una partícula. Momento angular de un sólido rígido

Momento angular de una partícula. Momento angular de un sólido rígido Momento angular de una partícula Se define momento angular de una partícula respecto de del punto O, como el producto vectorial del vector posición r por el vector momento lineal mv L=r mv Momento angular

Más detalles

MODIFICACIÓN DE LAS PROPIEDADES DE LOS METALES CONTENIDOS

MODIFICACIÓN DE LAS PROPIEDADES DE LOS METALES CONTENIDOS MODIFICACIÓN DE LAS PROPIEDADES DE LOS METALES CONTENIDOS Generalidades Estructura interna de los metales. Defectos en la estructura cristalina Soluciones sólidas Mecanismos de endurecimiento de los metales

Más detalles

EL ESPACIO AFÍN EUCLIDEO

EL ESPACIO AFÍN EUCLIDEO EL ESPACIO AFÍN EUCLIDEO DEFINICIÓN: Dado el Espacio Afín donde es el espacio ordinario, es el espacio de los vectores libres y f es la aplicación que a cada par de puntos (A,B) asocia el vector libre.

Más detalles

EJERCICIOS DE GEOMETRÍA

EJERCICIOS DE GEOMETRÍA 1) Sean las rectas EJERCICIOS DE GEOMETRÍA x 2y 6z 1 r : x y 0 x y 1 s: z 2 a a) Determinar la posición relativa de r y s según los valores de a. b) Calcular la distancia entre las rectas r y s cuando

Más detalles

TEMA 1. Números Reales. Teoría. Matemáticas

TEMA 1. Números Reales. Teoría. Matemáticas 1 1.- Los números reales Cuáles son los números reales? Los números reales son todos los números racionales y todos los números irracionales. El conjunto de los números reales se designa con el símbolo

Más detalles

GEOMETRÍA EN EL ESPACIO.

GEOMETRÍA EN EL ESPACIO. GEOMETRÍA EN EL ESPACIO. Un sistema de coordenadas tridimensional se construye trazando un eje Z, perpendicular en el origen de coordenadas a los ejes X e Y. Cada punto viene determinado por tres coordenadas

Más detalles

Desigualdades o inecuaciones lineales en una variable. Prof. Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo

Desigualdades o inecuaciones lineales en una variable. Prof. Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo Desigualdades o inecuaciones lineales en una variable Prof. Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo Desigualdades Usamos los símbolos de una desigualdad son: ,, para representar

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 7 MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción A Reserva, Ejercicio 4,

Más detalles

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 2 ÁLGEBRA VECTORIAL

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 2 ÁLGEBRA VECTORIAL Vectores y escalares. REPÚBLICA BOLIVARIANA DE VENEZUELA APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 2 ÁLGEBRA VECTORIAL Las magnitudes escalares son aquellas magnitudes físicas que

Más detalles

Unidad 5: Geometría Analítica

Unidad 5: Geometría Analítica Unidad 5 Geometría Analítica 5. Ecuaciones de una recta Los planos y las rectas son objetos geométricos que se pueden representar mediante ecuaciones. Encontraremos la ecuación vectorial de una recta r

Más detalles

TEMA 8. GEOMETRÍA ANALÍTICA.

TEMA 8. GEOMETRÍA ANALÍTICA. TEMA 8. GEOMETRÍA ANALÍTICA. 8..- El plano. Definimos el plano euclideo como el conjunto de puntos ( x, y) R. Así, cada punto del plano posee dos coordenadas. Para representar puntos del plano utilizaremos

Más detalles

ESTÁTICA 3 3 VECTORES

ESTÁTICA 3 3 VECTORES ESTÁTICA Sesión 3 3 VECTORES 3.1. Componentes en dos dimensiones 3.1.1. Operación con vectores por sus componentes 3.1.2. Vectores de posición por sus componentes 3.2. Componentes en tres dimensiones 3.2.1.

Más detalles

Complejidad computacional (Análisis de Algoritmos)

Complejidad computacional (Análisis de Algoritmos) Definición. Complejidad computacional (Análisis de Algoritmos) Es la rama de las ciencias de la computación que estudia, de manera teórica, la optimización de los recursos requeridos durante la ejecución

Más detalles

El número áureo,, utilizado por artistas de todas las épocas (Fidias, Leonardo da Vinci, Alberto Durero, Dalí,..) en las proporciones de sus obras.

El número áureo,, utilizado por artistas de todas las épocas (Fidias, Leonardo da Vinci, Alberto Durero, Dalí,..) en las proporciones de sus obras. 1.- LOS NÚMEROS REALES Los números irracionales Un número es irracional si posee infinitas cifras decimales no periódicas, por tanto no se pueden expresar en forma de fracción. El número irracional más

Más detalles

x - 2y = 2 x 2 + y 2 = 25 Ejemplo para introducir la idea de ecuación y el significado que tiene la resolución de un sistema de ecuaciones.

x - 2y = 2 x 2 + y 2 = 25 Ejemplo para introducir la idea de ecuación y el significado que tiene la resolución de un sistema de ecuaciones. Ejemplo para introducir la idea de ecuación y el significado que tiene la resolución de un sistema de ecuaciones. Ejemplo 1 La ecuación x-2y=2 es una ecuación con dos incógnitas. Tiene infinitas soluciones.

Más detalles

ALGEBRA Y GEOMETRIA ANALITICA

ALGEBRA Y GEOMETRIA ANALITICA Diplomatura en Ciencia y Tecnología ALGEBRA Y GEOMETRIA ANALITICA SEGUNDO CUATRIMESTRE DE 2009 Profesora Mariana Suarez PRACTICA N 7: SISTEMA COORDENADO TRIDIMENSIONAL. VECTORES. PRACTICA 7: Sistema coordenado

Más detalles

IES EL PILES SELECTIVIDAD OVIEDO DPTO. MATEMÁTICAS Geometría

IES EL PILES SELECTIVIDAD OVIEDO DPTO. MATEMÁTICAS Geometría P.A.U. de. (Oviedo). (junio 994) Dados los puntos A (,0, ), B (,, ), C (,6, a), se pide: i) hallar para qué valores del parámetro a están alineados, ii) hallar si existen valores de a para los cuales A,

Más detalles

Espacios Vectoriales

Espacios Vectoriales Leandro Marín Octubre 2010 Índice Definición y Ejemplos Paramétricas vs. Impĺıcitas Bases y Coordenadas Para definir un espacio vectorial tenemos que empezar determinando un cuerpo sobre el que esté definido

Más detalles

Una forma fácil de recordar esta suma (regla de Sarrus): Primero vamos a estudiar algunas propiedades de los determinantes.

Una forma fácil de recordar esta suma (regla de Sarrus): Primero vamos a estudiar algunas propiedades de los determinantes. Una forma fácil de recordar esta suma (regla de Sarrus): Ejemplos: Tarea: realizar al menos tres ejercicios de cálculo de determinantes de matrices de 2x2 y otros tres de 3x3. PARA DETERMINANTES DE MATRICES

Más detalles

CRISTALES, RED Y MOTIVO. Figuras y ejercicios. (Figuras del texto de C. Kittel, Introducción a la Física del Estado Sólido)

CRISTALES, RED Y MOTIVO. Figuras y ejercicios. (Figuras del texto de C. Kittel, Introducción a la Física del Estado Sólido) CRISTALES, RED Y MOTIVO. Figuras y ejercicios. (Figuras del texto de C. Kittel, Introducción a la Física del Estado Sólido) 1. Introducción a Cristales Fig. 1 Estas ilustraciones corresponden a un Tratado

Más detalles

SECCIÓN 7.3 INTRODUCCION A VECTORES. Capítulo 7

SECCIÓN 7.3 INTRODUCCION A VECTORES. Capítulo 7 SECCIÓN 7.3 INTRODUCCION A VECTORES Capítulo 7 Introducción Cantidades tales como área, volumen, longitud, temperatura y tiempo se componen únicamente de una magnitud y se pueden describir completamente

Más detalles

WEBS RECOMENDADAS. s1.htm

WEBS RECOMENDADAS.  s1.htm WEBS RECOMENDADAS NÚMEROS RACIONALES E IRRACIONALES http://descartes.cnice.mec.es/3_eso/numeros_reales_aproximaciones/numero s1. Presenta los números racionales http://descartes.cnice.mec.es/3_eso/numeros_reales_aproximaciones/numero

Más detalles

Algebra lineal y conjuntos convexos

Algebra lineal y conjuntos convexos Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar

Más detalles

Números Racionales. Repaso para la prueba. Profesora: Jennipher Ferreira Curso: 7 B

Números Racionales. Repaso para la prueba. Profesora: Jennipher Ferreira Curso: 7 B Números Racionales Repaso para la prueba Profesora: Jennipher Ferreira Curso: 7 B Tipos de Fracciones Fracciones propias: Son aquellas en las que el denominador es mayor al numerador, y su valor es menor

Más detalles

MATEMÁTICAS GRADO DÉCIMO

MATEMÁTICAS GRADO DÉCIMO MATEMÁTICAS GRADO DÉCIMO SEGUNDA PARTE TEMA 1: VELOCIDAD ANGULAR Definición Velocidad Angular CONCEPTO: DEFINICIONES BÁSICAS: La velocidad angular es una medida de la velocidad de rotación. Se define como

Más detalles

II Parte. Comportamiento Mecánico de Materiales Plasticidad : Dislocaciones y Fenómenos de Deslizamiento. ID42A: Ciencia de los Materiales II

II Parte. Comportamiento Mecánico de Materiales Plasticidad : Dislocaciones y Fenómenos de Deslizamiento. ID42A: Ciencia de los Materiales II ID42A: Ciencia de los Materiales II II Parte Comportamiento Mecánico de Materiales Plasticidad : Dislocaciones y Fenómenos de Deslizamiento Profesor: Donovan E. Díaz Droguett Miércoles 17 de octubre de

Más detalles

SISTEMAS DE ECUACIONES. Nacho Jiménez

SISTEMAS DE ECUACIONES. Nacho Jiménez SISTEMAS DE ECUACIONES Nacho Jiménez 1. Ecuaciones con dos incógnitas. Soluciones. 1.1 Representación gráfica. Sistemas de ecuaciones. Sistemas equivalentes..1 Sistemas compatibles determinados. Sistemas

Más detalles

Diagrama de correlación de enlaces moleculares Antienlace : rojo 1s similar a 2s

Diagrama de correlación de enlaces moleculares Antienlace : rojo 1s similar a 2s Redes Cristalinas Ciencia de Materiales Ing. en Mecatrónica Otoño 2009 Lilia Meza Montes-IFUAP Diagrama de correlación de enlaces moleculares Antienlace : rojo 1s similar a 2s Sólidos cristalinos y amorfos

Más detalles

33. SISTEMA PLANOS ACOTADOS

33. SISTEMA PLANOS ACOTADOS 33. SISTEMA PLANOS ACOTADOS 33.1. Elementos del sistema. En el sistema de planos acotados o sistema acotado solo interviene un solo elemento el plano de proyección π. Como en los otros sistemas de representación

Más detalles

CONJUNTOS TEORIA BASICA DE CONJUNTOS

CONJUNTOS TEORIA BASICA DE CONJUNTOS Repasamos CONJUNTOS TEORIA BASICA DE CONJUNTOS Cualquier colección de objetos o individuos se denomina conjunto. El termino conjunto no tiene una definición matemática, sino que es un concepto primitivo.

Más detalles

Desigualdades lineales en una variable. Prof. Anneliesse Sánchez Adaptada por Prof. Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo

Desigualdades lineales en una variable. Prof. Anneliesse Sánchez Adaptada por Prof. Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo Desigualdades lineales en una variable Prof. Anneliesse Sánchez Adaptada por Prof. Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo Desigualdades o Inecuaciones Una desigualdad, es una oración

Más detalles

a) La ecuación del plano que pasa por el punto ( 1, 1, 0 ). (3 puntos) b) La ecuación del plano que es paralelo a la recta r.

a) La ecuación del plano que pasa por el punto ( 1, 1, 0 ). (3 puntos) b) La ecuación del plano que es paralelo a la recta r. PROBLEMAS DE SELECTIVIDAD. BLOQUE GEOMETRÍA 1. En el espacio se dan las rectas Obtener a) El valor de para el que las rectas r y s están contenidas en un plano. (4 puntos) b) La ecuación del plano que

Más detalles

Geometría analítica del plano

Geometría analítica del plano 8 Geometría analítica del plano Objetivos En esta quincena aprenderás a: Reconocer los elementos de un vector identificando cuando dos vectores son equipolentes. Hacer operaciones con vectores libres tanto

Más detalles

PUNTOS Y VECTORES EN EL PLANO

PUNTOS Y VECTORES EN EL PLANO PUNTOS Y VECTORES EN EL PLANO PUNTOS EN EL PLANO Tomando como referencia los ejes cartesianos del plano, un punto se representa mediante un par ordenado (a, b) de números reales, es decir, mediante un

Más detalles

Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación.

Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación. NÚMEROS REALES Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación. Un conjunto es una colección bien definida

Más detalles

Es una ecuación polinómica de grado uno con una o varias incógnitas. Por ejemplo, son ecuaciones lineales: 2x 3y 4z

Es una ecuación polinómica de grado uno con una o varias incógnitas. Por ejemplo, son ecuaciones lineales: 2x 3y 4z 1. Ecuación lineal Es una ecuación polinómica de grado uno con una o varias incógnitas. Por ejemplo, son ecuaciones lineales: x y 4z 8 x 6y z 5 7y z 1. Sin embargo, no son, ecuaciones lineales: x y z 1,

Más detalles

2.2 Rectas en el plano

2.2 Rectas en el plano 2.2 Al igual que ocurre con el punto, en geometría intrínseca, el concepto de recta no tiene definición, sino que constituye otro de sus conceptos iniciales, indefinibles. Desde luego se trata de un conjunto

Más detalles

Problemas métricos. Ángulo entre rectas y planos

Problemas métricos. Ángulo entre rectas y planos Problemas métricos Ángulo entre rectas y planos Ángulo entre dos rectas El ángulo que forman dos rectas es el ángulo agudo que determinan entre sí sus vectores directores. Dos rectas son perpendiculares

Más detalles

CLASIFICACIÓN AFÍN DE CÓNICAS

CLASIFICACIÓN AFÍN DE CÓNICAS Álgebra lineal y Geometría I Gloria Serrano Sotelo Departamento de MATEMÁTICAS CLASIFICACIÓN AFÍN DE CÓNICAS Sea E un R-espacio vectorial de dimensión. Sean E = e 1, e un plano vectorial de E y e 0 un

Más detalles

TEMA 1. Números Reales. Teoría. Matemáticas

TEMA 1. Números Reales. Teoría. Matemáticas 1 1.- Los números reales Cuáles son los números reales? Los números reales son todos los números racionales y todos los números irracionales. El conjunto de los números reales se designa con el símbolo

Más detalles

Introducción. El uso de los símbolos en matemáticas.

Introducción. El uso de los símbolos en matemáticas. Introducción El uso de los símbolos en matemáticas. En el estudio de las matemáticas lo primero que necesitamos es conocer su lenguaje y, en particular, sus símbolos. Algunos símbolos, que reciben el nombre

Más detalles

4. Simetría y formas simples de cristales minerales

4. Simetría y formas simples de cristales minerales 4. Simetría y formas simples de cristales minerales La simetría rige al mundo de los cristales. Esto es una regularidad más general de las sustancias cristalinas. La simetría determina: 1) Las leyes de

Más detalles

LABORATORIO DE ESTADO SÓLIDO Y SEMICONDUCTORES 1.1. PRÁCTICA N o 1 REDES DE BRAVAIS Y ESTRUCTURAS CRISTALINAS

LABORATORIO DE ESTADO SÓLIDO Y SEMICONDUCTORES 1.1. PRÁCTICA N o 1 REDES DE BRAVAIS Y ESTRUCTURAS CRISTALINAS LABORATORIO DE ESTADO SÓLIDO Y SEMICONDUCTORES 1.1 PRÁCTICA N o 1 REDES DE BRAVAIS Y ESTRUCTURAS CRISTALINAS 1. INTRODUCCIÓN 1.1 Red de Bravais y celda primitiva unidad Uno de los conceptos fundamentales

Más detalles

TEMA 8 ESTRUCTURA CRISTALINA

TEMA 8 ESTRUCTURA CRISTALINA Tema 8. Estructura cristalina 1 TEMA 8 ESTRUCTURA CRISTALINA Los sólidos pueden clasificarse: 1.- Por su ordenación: 1a. Sólidos amorfos: tienen una estructura desordenada. Sus átomos o moléculas se colocan

Más detalles

GEOMETRÍA DE LOS CRISTALES II

GEOMETRÍA DE LOS CRISTALES II CAPÍTULO 5 5.1 PROYECCIÓN ESFÉRICA GEOMETRÍA DE LOS CRISTALES II Si de un punto cualquiera del espacio se trazan normales a todas las caras de un cristal, se obtiene un haz de rectas convergentes en dicho

Más detalles

CONDUCTIVIDAD ELÉCTRICA I E

CONDUCTIVIDAD ELÉCTRICA I E CONDUCTVDAD LÉCTRCA La conductividad eléctrica de una substancia se define como la relación entre la intensidad de corriente eléctrica producida y el campo eléctrico que la produce: = el campo eléctrico

Más detalles

Planos y Rectas. 19 de Marzo de 2012

Planos y Rectas. 19 de Marzo de 2012 el Geometría en el Planos y Rectas Universidad Autónoma Metropolitana Unidad Iztapalapa 19 de Marzo de 2012 el Anteriormente vimos que es posible encontrar un número infinito de vectores, no paralelos

Más detalles

Hoja de Problemas 5. Física Atómica.

Hoja de Problemas 5. Física Atómica. Hoja de Problemas 5. Física Atómica. Fundamentos de Física III. Grado en Física. Curso 25/26. Grupo 56. UAM. 3-3-26 Problema En 896 el astrónomo americano Edward Charles Pickering observó unas misteriosas

Más detalles