Programación por restricciones clase 14

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Programación por restricciones clase 14"

Transcripción

1 Programación por restricciones clase 14 Camilo Rueda Universidad Javeriana-Cali Programación por restriccionesclase 14-- p.1/19

2 Modelamiento en CCP Dos tipos de restricciones: Solubles Solucionables eficientemente con técnicas de optimización. Chequeables Menos adaptadas para solución eficiente, pero es fácil chequear si una solución las cumple. Las restricciones son chequeables después de tener valores para sus variables: se debe ramificar sobre variables de búsqueda Valores de las variables deben enumerarse En general, variables enteras o discretas. A veces continuas. Ramificar se hace particionando el dominio. Programación por restriccionesclase 14-- p.2/19

3 Solucionables vs chequeables Cómo relacionar variables de restricciones solucionables con variables de restricciones chequeables? No es en general bueno optimizar sobre solucionables sin mirar chequeables Interacción mediante condicionales if P then S Si el predicado P (restricciones chequeables) se cumple, imponer la restricción solucionable S La ramificación puede hacer que el antecedente P se vuelva válido. Reducción de dominios opera sobre restricciones chequeables Técnicas de optimización operan sobre solucionables. Programación por restriccionesclase 14-- p.3/19

4 Marco general El marco general de modelamiento es: Minimizar f(x) + r(y) (función objetivo) Sujeto a: p i (y), i I 1 (restricciones chequeables) g i (y), i I 2 (restricciones solucionables) q i (y) h i (x), i I 3 (restricciones condicionales) d i (x, y), i I 4 (restricciones mixtas) x X (variables solucionables) y j D j, para todo j (variables de búsqueda) Programación por restriccionesclase 14-- p.4/19

5 restricciones Restricciones chequeables p i (y), q i (y) pueden ser fórmulas proposicionales, inecuaciones 0/1, lógica de variables discretas,etc. Restricciones f(x), g i (x), h i (x) son engenral inecuaciones lineales o no lineales sobre variables continuas x j Las restricciones mixtas d i (x, y) son restricciones acumulativas, de elemento, etc. Programación por restriccionesclase 14-- p.5/19

6 Resumen del modelo Restricciones chequeables, solucionables o condicionales, u otras definidas en términos de estas. Restricciones chequeables contienen solamente variables de búsqueda, discretas o continuas restricciones solubles contienen solamente variables solucionables, generalmente continuas. El antecedente de las condicionales son restricciones chequeables El consecuente son restricciones solucionables La función objetivo es separable: Los valores de x y de y son independientes El problema de minimizar f(x sobre restricciones solubles debe ser fácil. En general f(x) es función lineal. Programación por restriccionesclase 14-- p.6/19

7 Restricciones globales La formulación de un modelo es más compacta si incluye restricciones globales Aplicables a muchos problemas Tienen propagadores específicos eficientes Ayudan a construír un lenguaje de modelado para ciertos dominios. Algunas restricciones globales: element sum all-different cummulative Programación por restriccionesclase 14-- p.7/19

8 Restricción element m_element(y, (c 1, c 2,..., c k ), z) y es una variable discreta c i son expresiones z debe tomar el valor de la y-esima expresión La restricción m element es útil para definir restricciones que involucran variables del problema en los subíndices. es equivalente a (y = i) (z = c i ), i 1..k Una variante: x_element(y, (x j1,..., x jk ), z). La variable z toma el valor de la y-ésima variable x Programación por restriccionesclase 14-- p.8/19

9 Uso de element Para restricciones que involucran términos de la forma c s(y), donde s(y) es una función de la variable de búsqueda y Se implementa con m_element(y, (c s(1),..., c s(k) ), z) Y se reemplaza toda ocurrencia de c s(y) por z. Ejemplo: La restricción c y,y+1 10, donde y {1, 2, 3, 4}. c y,y+1 se reemplaza por z y la restricción m_element(y, (c 1,2, c 2,3, c 3,4, c 4,5 ), z), se agrega al modelo Igual para x_element. Se debe evitar agregar no-linealidades. Ejemplo: j c y j x j 10 se remplaza por: j z j 10 x_element(y j, (c 1 x j,..., c k x j ), z j ), para todo j Programación por restriccionesclase 14-- p.9/19

10 Restricción sum m_sum(y, (S 1,..., S k ), (c 1,..., c m ), z) S i es un conjunto de índices en {1,..., m} Los c j son constantes. y es variable entera Equivale a la restricción: (y = i) ( z = j S i c j ) para i = 1,..., k La versión x_sum(y, (S 1,..., S k ), (f 1 (x),..., f m (x)), z) equivale a (y = i) ( z = j S i f j (x) ) Programación por restriccionesclase 14-- p.10/19

11 Ejemplo de sum sum(y, ({1, 2, 3}, {1, 2, 4}, {1, 3, 4}), (10, 20, 50, 40), z) con y = 2 equivale a: z = sum(y, ({1, 2, 3}, {1, 2, 4}, {1, 3, 4}), (x 1, x 2, x 3, x 4 ), z) con y = 3 equivale a: z = x 1 + x 3 + x 4 Programación por restriccionesclase 14-- p.11/19

12 Restricción all_different all_different(x 1,..., x 4 ). asegura que todas las variables tengan valores diferentes Ejemplo, problema del agente viajero: Programación por restriccionesclase 14-- p.12/19

13 Restricción all_different all_different(x 1,..., x 4 ). asegura que todas las variables tengan valores diferentes Ejemplo, problema del agente viajero: c yk,y k+1 = costo de ir del nodo y k al nodo y k+1 y k = nodo recorrido en la etapa k. Formulación: Programación por restriccionesclase 14-- p.12/19

14 Restricción all_different all_different(x 1,..., x 4 ). asegura que todas las variables tengan valores diferentes Ejemplo, problema del agente viajero: c yk,y k+1 = costo de ir del nodo y k al nodo y k+1 y k = nodo recorrido en la etapa k. Formulación: minimizar k c y k,y k+1 Sujeto a: all_different(y 1,..., y n ) Otra formulación: Programación por restriccionesclase 14-- p.12/19

15 Restricción all_different all_different(x 1,..., x 4 ). asegura que todas las variables tengan valores diferentes Ejemplo, problema del agente viajero: c yk,y k+1 = costo de ir del nodo y k al nodo y k+1 y k = nodo recorrido en la etapa k. Formulación: minimizar k c y k,y k+1 Sujeto a: all_different(y 1,..., y n ) Otra formulación: minimizar k c k,y k Sujeto a: all_different(y 1,..., y n ) Programación por restriccionesclase 14-- p.12/19

16 Propagación de element Para la primera forma de la restricción, m_element(y, (c 1, c 2,..., c k ), z), basta arco-consistencia: D z = D z {c j j D y } D y = D y {c j j D z } Ejemplo, sea D z = {20, 30, 60, 80, 90} y D y = {1, 3, 4} D z = {20, 30, 60, 80, 90} {20, 40, 60} = {20, 60} D y = {1, 3, 4} {1, 2, 4} = {1, 4} Programación por restriccionesclase 14-- p.13/19

17 Propagación de element(2) Para la segunda forma de la restricción, x_element(y, (x j1,..., x jk ), z), arco-consistencia puede no implicar hiper-arco consistencia. D y, D z son finitos, pero D x1,..., D xk pueden ser finitos o continuos D z = D z j D y D xj D y = D y {j D z D xj } D x j = D z D xj si D y = {j} sino Programación por restriccionesclase 14-- p.14/19

18 Ejemplo de x_element Considere x_element(y, (x 1, x 2, x 3, x 4 ), z), con dominios: D z = {20, 30, 60, 80, 90} D y = {1, 3, 4} D x1 = {10, 50} D x2 = {10, 20} D x3 = {40, 50, 80, 90} D x4 = {40, 50, 70} Entonces: D z = {20, 30, 60, 80, 90} {10, 40, 50, 70, 80, 90} = {80, 90} D y = {1, 3, 4} {3} = {3} D x 1 = D x1 D x 2 = D x2 D x 3 = D z = {80, 90} D x 4 = D x4 Programación por restriccionesclase 14-- p.15/19

19 Propagación de sum La restricción m_sum(y, (S 1,..., S k ), (c 1,..., c m ), z) propaga así: Dominio de z D z = D z { j Si c j i D y } Dominio de y D y = D y { i j S i c j D z } Ejemplo: m_sum({1, 2, 3}, {1, 2, 4}, {1, 3, 4}), (10, 20, 50, 40), z), con dominios: D z = {30, 50, 80, 100}, D y = {1, 2, 3} D z = {30, 50, 80, 100} {70, 80, 100} = {80, 100} D y = {1, 2, 3} {2, 3} = {2, 3} Programación por restriccionesclase 14-- p.16/19

20 Propagación de all_different all_different(x 1,..., x n ). La idea es representar la restricción en un grafo: Cada variable x i es un vértice cada valor v j de los dominios es un vértice Hay un arco (x i, v j ) si v j está en el dominio de x i Definiciones: Una correspondencia ( matching ) es un subgrafo en el que cada nodo es incidente a exactamente un arco. Una correspondencia cubre los vértices y 1,..., y n cuando cada uno de ellos es incidente a un arco de la correspondencia Obviamente, una correspondencia que cubre todos las variables de all_different(x 1,..., x n ) es solución a la restricción. Programación por restriccionesclase 14-- p.17/19

21 Propagación de all_different(2) Propiedades: Una correspondencia es de máxima cardinalidad (cmc)si tiene el mayor número de arcos. Una correspondencia que cubre a y 1,..., y n existe sí y sólo si cualquier correspondencia de máxima cardinalidad cubre a y 1,..., y n Un algoritmo de Hopcroft-Karp encuentra una correspondencia de máxima cardinalidad en O(n 1/2 m, donde m es el número de arcos Con esto se determina si la restricción es satisfactible. Paso siguiente, encontrar arcos que NO pueden ser parte de una cmc. Teorema (Berge): Un arco pertenece a algunas, pero no a todas las cmc ssi: pertenece a un ciclo alternante o pertenece a un camino alternante par, uno de cuyos extremos es un vértice incidente a ningún arco en la correspondencia. Programación por restriccionesclase 14-- p.18/19

22 Propagación de all_different(3) Procedimiento: Encuentre una cmc Para cada vértice que no está cubierto por la cmc, marq ue todos los arcos que sean parte de un camino alternante que comience en ese vértice. Por el teorema de Berge, estos arcos pertenecen al menos a uno (pero no a toda) cmc Por la misma razón, marque todo arco que pertenezca a un ciclo alternante Ahora, por el teorema de Berge, dado cualquier arco no marcado, si es parte de la cmc, debe pertenecer a toda cmc Entonces: eliminar arcos no marcados que no sean parte de la cmc. Programación por restriccionesclase 14-- p.19/19

Programación por restricciones clase 10

Programación por restricciones clase 10 Programación por restricciones clase 10 Camilo Rueda Universidad Javeriana-Cali Programación por restriccionesclase 10-- p.1/23 Consistencia local Nodo consistencia Arco consistencia hiper-arco consistencia

Más detalles

Programación por restricciones clase 8

Programación por restricciones clase 8 Programación por restricciones clase 8 Camilo Rueda Universidad Javeriana-Cali Programación por restriccionesclase 8-- p.1/19 Resolvedores completos (cont) Ecuaciones lineales sobre reales Alfabeto Cada

Más detalles

Matemáticas Discretas L. Enrique Sucar INAOE. Teoría de Grafos. Problema de los puentes de Königsberg [Euler]

Matemáticas Discretas L. Enrique Sucar INAOE. Teoría de Grafos. Problema de los puentes de Königsberg [Euler] Matemáticas Discretas L. Enrique Sucar INAOE Teoría de Grafos Problema de los puentes de Königsberg [Euler] Teoría de Grafos Definición y terminología Tipos de grafos Trayectorias y circuitos Isomorfismo

Más detalles

Formulando con modelos lineales enteros

Formulando con modelos lineales enteros Universidad de Chile 19 de marzo de 2012 Contenidos 1 Forma de un problema Lineal Entero 2 Modelando con variables binarias 3 Tipos de Problemas Forma General de un MILP Problema de optimización lineal

Más detalles

Algebra Matricial y Teoría de Grafos

Algebra Matricial y Teoría de Grafos Algebra Matricial y Teoría de Grafos Unidad 3: Nociones de teoría de grafos Luis M. Torres Escuela Politécnica del Litoral Quito, Enero 2008 Maestría en Control de Operaciones y Gestión Logística p.1 Contenido

Más detalles

Tema 2. Fundamentos Teóricos de la. programación dinámica Teorema de Optimalidad de Mitten

Tema 2. Fundamentos Teóricos de la. programación dinámica Teorema de Optimalidad de Mitten Tema 2 Fundamentos Teóricos de la Programación Dinámica 2.1. Teorema de Optimalidad de Mitten El objetivo básico en la programación dinámica consiste en descomponer un problema de optimización en k variables

Más detalles

Sesión 4: Teoría de Grafos

Sesión 4: Teoría de Grafos Modelos Gráficos Probabilistas L. Enrique Sucar INAOE Sesión 4: Teoría de Grafos Problema de los puentes de Königsberg [Euler] Teoría de Grafos Definición y terminología Tipos de grafos Trayectorias y

Más detalles

A5 Introducción a la optimización en redes

A5 Introducción a la optimización en redes 48 Materials David Pujolar Morales A5 Introducción a la optimización en redes Definición 1. Grafo finito. Sea un V un conjunto no vacío con un número finito de elementos y E una familia finita de pares

Más detalles

Capítulo 4: Grafos Clase 4: Árboles

Capítulo 4: Grafos Clase 4: Árboles Capítulo 4: Grafos Clase 4: Árboles Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 4: Grafos 1 / 12 Árboles Los árboles son una clase particular de grafos que

Más detalles

Hamilton, Euler y Dijkstra

Hamilton, Euler y Dijkstra UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE COMPUTACION Matemáticas Discretas III (Cód. 6108) Práctica # 2 Hamilton, Euler y Dijkstra 1. Sea G = un multigrafo no dirigido donde

Más detalles

Capítulo 3: Grafos Clase 1: Grafos: Modelos, tipos, representación e isomorfismo

Capítulo 3: Grafos Clase 1: Grafos: Modelos, tipos, representación e isomorfismo Capítulo 3: Grafos Clase 1: Grafos: Modelos, tipos, representación e isomorfismo Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 4: Grafos 1 / 35 Por qué estudiamos

Más detalles

Tema: Los Grafos y su importancia para la optimización de redes.

Tema: Los Grafos y su importancia para la optimización de redes. Tema: Los Grafos y su importancia para la optimización de redes. Qué son los Grafos? Un grafo es una dupla G= {X,U}, donde X es un conjunto finito y no vacio de elementos llamados vértices y U es el conjunto

Más detalles

Capítulo 4: Grafos Clase 2: Caminos, Circuitos Eulerianos y Hamiltonianos

Capítulo 4: Grafos Clase 2: Caminos, Circuitos Eulerianos y Hamiltonianos Capítulo 4: Grafos Clase 2: Caminos, Circuitos Eulerianos y Hamiltonianos Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 4: Grafos 1 / 29 Navegación de grafos

Más detalles

Compiladores: Sesión 6. Optimización

Compiladores: Sesión 6. Optimización Compiladores: Sesión 6. Optimización Prof. Gloria Inés Alvarez V. Departamento de Ciencias e Ingeniería de la Computación Pontificia Universidad Javeriana Cali 7 de febrero de 2008 Optimización Se proponen

Más detalles

Programación Entera. Nelson Devia C. IN Modelamiento y Optimización Departamento de Ingeniería Industrial Universidad de Chile

Programación Entera. Nelson Devia C. IN Modelamiento y Optimización Departamento de Ingeniería Industrial Universidad de Chile IN3701 - Modelamiento y Optimización Departamento de Ingeniería Industrial Universidad de Chile 2011 Basado en Bertsimas, D., Tsitsiklis, J. (1997) Introduction to Linear Optimization Capítulos 10 y 11

Más detalles

Algoritmos pseudo-polinomiales

Algoritmos pseudo-polinomiales Análisis de Algoritmos Algoritmos pseudo-polinomiales Dra. Elisa Schaeffer elisa.schaeffer@gmail.com PISIS / FIME / UANL Algoritmos pseudo-polinomiales p. 1 HAMILTON PATH es NP-completo La reducción es

Más detalles

Formulación del problema de la ruta más corta en programación lineal

Formulación del problema de la ruta más corta en programación lineal Formulación del problema de la ruta más corta en programación lineal En esta sección se describen dos formulaciones de programación lineal para el problema de la ruta más corta. Las formulaciones son generales,

Más detalles

Programación Lineal. Modelo de Redes. Alcance de las aplicaciones. Curso: Investigación de Operaciones Ing. Javier Villatoro

Programación Lineal. Modelo de Redes. Alcance de las aplicaciones. Curso: Investigación de Operaciones Ing. Javier Villatoro Programación Lineal Modelo de Redes Alcance de las aplicaciones Curso: Investigación de Operaciones Ing. Javier Villatoro ALCANCE DE LAS APLICACONES DE REDES ALCANCE DE LAS APLICACIONES Muchas situaciones

Más detalles

INDICE INTRODUCCION1 DESARROLLO2 GRAFOS (CONCEPTO).2 ARISTAS...2 VERTICES2 CAMINOS.3 CLASIFICACION DE GRAFOS...3 GRAFOS EULERIANOS.

INDICE INTRODUCCION1 DESARROLLO2 GRAFOS (CONCEPTO).2 ARISTAS...2 VERTICES2 CAMINOS.3 CLASIFICACION DE GRAFOS...3 GRAFOS EULERIANOS. INDICE INTRODUCCION1 DESARROLLO2 GRAFOS (CONCEPTO).2 ARISTAS...2 VERTICES2 CAMINOS.3 CLASIFICACION DE GRAFOS...3 GRAFOS EULERIANOS.7 GRAFOS CONEXOS7 ÁRBOLES..7 BOSQUES DE ÁRBOLES...8 RECORRIDO DE UN GRAFO..8

Más detalles

CAPÍTULO II METODOLOGÍA DE SOLUCIÓN. Este capítulo es de suma importancia ya que en él se explica la metodología de solución

CAPÍTULO II METODOLOGÍA DE SOLUCIÓN. Este capítulo es de suma importancia ya que en él se explica la metodología de solución CAPÍTULO II METODOLOGÍA DE SOLUCIÓN Este capítulo es de suma importancia ya que en él se explica la metodología de solución utilizada en este trabajo para resolver de manera exacta el Problema de Localización

Más detalles

CAPÍTULO 4 PROGRAMACIÓN LINEAL ENTERA

CAPÍTULO 4 PROGRAMACIÓN LINEAL ENTERA CAPÍTULO 4 PROGRAMACIÓN LINEAL ENTERA Programación Lineal Entera Es una técnica que permite modelar y resolver problemas cuya característica principal es que el conjunto de soluciones factibles es discreto.

Más detalles

El problema de ruteo de vehículos

El problema de ruteo de vehículos El problema de ruteo de vehículos Irma Delia García Calvillo Universidad Autónoma de Coahuila FC-UNAM, Agosto 2010 I. García () El problema de ruteo de vehículos FC-UNAM, Agosto 2010 1 / 33 Introducción

Más detalles

Caminos y Flujos optimales. 2da y 3er clase 2007

Caminos y Flujos optimales. 2da y 3er clase 2007 Caminos y Flujos optimales 2da y 3er clase 2007 ESQUELETOS OPTIMALES (mínimo) Esqueleto de G =(X,U) es un subgrafo que es un árbol y que contiene todos los vértices de G. Esqueleto Mínimo de G = (X, U,

Más detalles

Árboles. Un grafo no dirigido es un árbol si y sólo si existe una ruta unica simple entre cualquiera dos de sus vértices.

Árboles. Un grafo no dirigido es un árbol si y sólo si existe una ruta unica simple entre cualquiera dos de sus vértices. ÁRBOLES Árboles Un grafo conectado que no contiene circuitos simples. Utilizados desde 1857, por el matemático Ingles Arthur Cayley para contar ciertos tipos de componentes químicos. Un árbol es un grafo

Más detalles

Tema: Algoritmos para la ruta más corta en un Grafo.

Tema: Algoritmos para la ruta más corta en un Grafo. Programación IV. Guía No. 10 1 Facultad: Ingeniería Escuela: Computación Asignatura: Programación IV Tema: Algoritmos para la ruta más corta en un Grafo. Objetivos Específicos Definir el concepto de camino

Más detalles

Introducción a ASP (Answer Set Programming - programación con conjuntos respuestos)

Introducción a ASP (Answer Set Programming - programación con conjuntos respuestos) Introducción a ASP (Answer Set Programming - programación con conjuntos respuestos) Inteligencia Artificial David Pearce 13 de enero de 2009 ASP y programación declarativa ASP es una forma de programación

Más detalles

Es un conjunto de objetos llamados vértices o nodos unidos por enlaces llamados aristas o arcos, que permiten representar relaciones binarias entre

Es un conjunto de objetos llamados vértices o nodos unidos por enlaces llamados aristas o arcos, que permiten representar relaciones binarias entre Es un conjunto de objetos llamados vértices o nodos unidos por enlaces llamados aristas o arcos, que permiten representar relaciones binarias entre elementos de un conjunto. Típicamente, un grafo se representa

Más detalles

Solución de Problemas con CCP restricción sobre conjuntos finitos

Solución de Problemas con CCP restricción sobre conjuntos finitos Solución de Problemas con CCP restricción sobre conjuntos finitos slides basados en el curso constraint Programming de Christian Schulte 2 Profesor: Camilo Rueda 1 1 Universidad Javeriana-Cali, 2 KTH Royal

Más detalles

PROGRAMACIÓN LINEAL. Su empleo es frecuente en aplicaciones de la industria, la economía, la estrategia militar, etc.

PROGRAMACIÓN LINEAL. Su empleo es frecuente en aplicaciones de la industria, la economía, la estrategia militar, etc. PROGRAMACIÓN LINEAL La programación lineal da respuesta a situaciones en las que se exige maximizar o minimizar funciones que se encuentran sujetas a determinadas limitaciones, que llamaremos restricciones.

Más detalles

Optimización de Problemas de Producción

Optimización de Problemas de Producción Optimización de Problemas de Producción Pedro Piñeyro - Luis Stábile Colaboran: Héctor Cancela - Antonio Mauttone - Carlos Testuri Depto. Investigación Operativa. Instituto de Computación. Facultad de

Más detalles

Definiciones y ejemplos.

Definiciones y ejemplos. V. Grafos Definiciones y ejemplos. Módulo 5 DEF. Sea V un conjunto finito no vacío, y sea El par (V, E) es llamada entonces grafo dirigido en V, donde V es el conjunto de vértices o nodos y E es su conjunto

Más detalles

UNIVERSIDAD NACIONAL DE INGENIERÍA UNI-RUACS. Investigación de Operaciones

UNIVERSIDAD NACIONAL DE INGENIERÍA UNI-RUACS. Investigación de Operaciones UNIVERSIDAD NACIONAL DE INGENIERÍA UNI-RUACS Facultad de Ingeniería Industrial Investigación de Operaciones Tema: Teoría de los Grafos Elaborado por: Ing. Carlos Alberto Moreno. Docente: Ing. Pastrana

Más detalles

Nicolás Rivera. 23 de Junio de 2011

Nicolás Rivera. 23 de Junio de 2011 Teoría de Matroides. Nicolás Rivera 23 de Junio de 2011 Pontificia Universidad Católica de Chile Índice 1 Introducción: Definiciones y Propiedades básicas Índice 1 Introducción: Definiciones y Propiedades

Más detalles

Algoritmos y Estructuras de Datos III

Algoritmos y Estructuras de Datos III Árboles Algoritmos y Estructuras de Datos III Árboles Definición: Un árbol es un grafo conexo sin circuitos simples. Árboles Teorema: Dado un grafo G = (V, X ) son equivalentes: 1. G es un árbol. 2. G

Más detalles

Recordatorio Basico de Álgebra para Lógica

Recordatorio Basico de Álgebra para Lógica Recordatorio Basico de Álgebra para Lógica Guido Sciavicco 1 Conjuntos Definición 1 Un conjunto es una colleccion, finita o infinita, de elementos. Ejemplo 2 La colleccion de los elementos a, b, c, denotada

Más detalles

1. INECUACIONES LINEALES CON DOS INCÓGNITAS.

1. INECUACIONES LINEALES CON DOS INCÓGNITAS. TEMA 2: PROGRAMACIÓN LINEAL 1. INECUACIONES LINEALES CON DOS INCÓGNITAS. Se llama inecuación lineal con dos incógnitas a una inecuación de la forma: a x +b y c ( puede ser >,

Más detalles

Tema: Algoritmos para la ruta más corta en un Grafo.

Tema: Algoritmos para la ruta más corta en un Grafo. Programación IV. Guía 10 1 Facultad: Ingeniería Escuela: Computación Asignatura: Programación IV Tema: Algoritmos para la ruta más corta en un Grafo. Objetivos Específicos Definir el concepto de camino

Más detalles

TEMA 5 El tipo grafo. Tipo grafo

TEMA 5 El tipo grafo. Tipo grafo TEMA 5 El tipo grafo PROGRAMACIÓN Y ESTRUCTURAS DE DATOS Tipo grafo 1. Concepto de grafo y terminología 2. Especificación algebraica. Representación de grafos.1. Recorrido en profundidad o DFS.2. Recorrido

Más detalles

Problemas de Optimización: una Introducción

Problemas de Optimización: una Introducción Problemas de Optimización: una Introducción Computación Evolutiva Ing. Fabio A. González, PhD Departamento de Ing de Sistemas e Industrial Universidad Nacional de Colombia Resolución de Problemas G. Polya,

Más detalles

Escuela de algoritmos de aproximación

Escuela de algoritmos de aproximación Escuela de algoritmos de aproximación Módulo 2: Introducción a los algoritmos de aproximación Francisco Javier Zaragoza Martínez Universidad Autónoma Metropolitana Unidad Azcapotzalco ITAM, 14 de septiembre

Más detalles

Relaciones. Estructuras Discretas. Relaciones. Relaciones en un Conjunto. Propiedades de Relaciones en A Reflexividad

Relaciones. Estructuras Discretas. Relaciones. Relaciones en un Conjunto. Propiedades de Relaciones en A Reflexividad Estructuras Discretas Relaciones Definición: relación Relaciones Claudio Lobos, Jocelyn Simmonds clobos,jsimmond@inf.utfsm.cl Universidad Técnica Federico Santa María Estructuras Discretas INF 152 Sean

Más detalles

PLE: Optimización Combinatoria

PLE: Optimización Combinatoria PLE: Optimización Combinatoria CCIR / Matemáticas euresti@itesm.mx CCIR / Matemáticas () PLE: Optimización Combinatoria euresti@itesm.mx 1 / 14 Introducción Para valorar el poder expresivo de los modelos

Más detalles

Demostraciones por resolución

Demostraciones por resolución Demostraciones por resolución A lo largo del curso, hemos prometido insistentemente que hay métodos para mecanizar demostraciones En particular, queremos un método, dado una base de conocimiento Σ y una

Más detalles

Problemas: formulación, ejemplos, representación de soluciones y estructuras de entorno

Problemas: formulación, ejemplos, representación de soluciones y estructuras de entorno Problemas: formulación, ejemplos, representación de soluciones y estructuras de entorno Christopher Expósito Izquierdo, J. Marcos Moreno Vega cexposit@ull,es, jmmoreno@ull.es Departamento de Ingeniería

Más detalles

Guía de Problemas para el Control 2

Guía de Problemas para el Control 2 Guía de Problemas para el Control 2 Geometría Problema 1 Demuestre que la intersección de conjuntos convexos es un conjunto convexo. Utilizando esto demuestre que todo poliedro es un conjunto convexo.

Más detalles

Capítulo 6. Relaciones. Continuar

Capítulo 6. Relaciones. Continuar Capítulo 6. Relaciones Continuar Introducción Una relación es una correspondencia entre dos elementos de dos conjuntos con ciertas propiedades. En computación las relaciones se utilizan en base de datos,

Más detalles

Curso: Métodos de Monte Carlo Unidad 3, Sesión 7: Problemas de conteo

Curso: Métodos de Monte Carlo Unidad 3, Sesión 7: Problemas de conteo Curso: Métodos de Monte Carlo Unidad 3, Sesión 7: Problemas de conteo Departamento de Investigación Operativa Instituto de Computación, Facultad de Ingeniería Universidad de la República, Montevideo, Uruguay

Más detalles

300CIG007 Computabilidad y Lenguajes Formales: Autómatas Finitos

300CIG007 Computabilidad y Lenguajes Formales: Autómatas Finitos 300CIG007 Computabilidad y Lenguajes Formales: Autómatas Finitos Pontificia Universidad Javeriana Cali Ingeniería de Sistemas y Computación Prof. Gloria Inés Alvarez V. Qué es un computador? Todos lo sabemos!!!

Más detalles

Fundamentos de Investigación de Operaciones Modelos de Grafos

Fundamentos de Investigación de Operaciones Modelos de Grafos Fundamentos de Investigación de Operaciones de junio de 00 Muchos problemas de optimización puedes ser analizados y resueltos a través de representaciones gráficas. Tal es el caso de los problemas de planificación

Más detalles

MARITZA HERRERA FLOREZ YUDY MARCELA BOLAÑOS RIVERA

MARITZA HERRERA FLOREZ YUDY MARCELA BOLAÑOS RIVERA ALGORITMOS DE APROXIMACIÓN PARA PROBLEMAS NP DUROS MARITZA HERRERA FLOREZ YUDY MARCELA BOLAÑOS RIVERA UNIVERSIDAD DEL CAUCA FACULTAD DE CIENCIAS NATURALES, EXACTAS Y DE LA EDUCACIÓN DEPARTAMENTO DE MATEMÁTICAS

Más detalles

Se puede dibujar la siguiente figura, empezando y terminando en el mismo punto, sin levantar e lápiz del papel?

Se puede dibujar la siguiente figura, empezando y terminando en el mismo punto, sin levantar e lápiz del papel? Se puede dibujar la siguiente figura, empezando y terminando en el mismo punto, sin levantar e lápiz del papel? Y esta otra? Los puentes de Königsberg Königsberg es famosa por ser la ciudad natal de Immanuel

Más detalles

Algoritmos y Estructuras de Datos III

Algoritmos y Estructuras de Datos III Árboles Algoritmos y Estructuras de Datos III Árboles Definición: Un árbol es un grafo conexo sin circuitos simples. Árboles Teorema: Dado un grafo G = (V, X ) son equivalentes: 1. G es un árbol. 2. G

Más detalles

Segundo parcial. Martes, 23 de abril de 2003

Segundo parcial. Martes, 23 de abril de 2003 5.053 Segundo parcial Martes, 3 de abril de 003 Se permite traer una hoja de papel con anotaciones por una cara. Responda a todas las preguntas en los cuadernillos de examen.. Controle el tiempo. Si un

Más detalles

La Geometría de la Programación Lineal

La Geometría de la Programación Lineal La Geometría de la Programación Lineal Basado en Bertsimas Tsitsiklis Introduction to Linear Optimization Chap. IN7 Modelamiento y Optimización Nelson Devia C. Introducción Se dice que un conjunto S en

Más detalles

Lógica Matemática. Operadores Lógicos. Universidad del Azuay - Marcos Orellana Cordero

Lógica Matemática. Operadores Lógicos. Universidad del Azuay - Marcos Orellana Cordero Lógica Matemática Operadores Lógicos Introducción La lógica proposicional inicia con las proposiciones y los conectores lógicos. A partir de la combinación de dos proposiciones por medio de un conector

Más detalles

Estructura de Datos Página 1 de 13 ESTRUCTURA DE DATOS

Estructura de Datos Página 1 de 13 ESTRUCTURA DE DATOS Estructura de Datos Página 1 de 13 ESTRUCTURA DE DATOS Contenido TEMA 4. Grafos 4.1. Grafos 4.1.1. Definición 4.1.2.Conceptos 4.2. Modelado de problemas típicos 4.3. Representación de un grafo a través

Más detalles

Se puede dibujar la siguiente figura, empezando y terminando en el mismo punto, sin levantar e lápiz del papel?

Se puede dibujar la siguiente figura, empezando y terminando en el mismo punto, sin levantar e lápiz del papel? Se puede dibujar la siguiente figura, empezando y terminando en el mismo punto, sin levantar e lápiz del papel? Y esta otra? Los puentes de Königsberg Königsberg es famosa por ser la ciudad natal de Immanuel

Más detalles

Análisis de Algoritmos Problemas de grafos

Análisis de Algoritmos Problemas de grafos Análisis de Algoritmos Problemas de grafos Dra. Elisa Schaeffer elisa.schaeffer@gmail.com PISIS / FIME / UANL Problemas de grafos p. 1 INDEPENDENT SET es NP-completo Necesitamos un gadget : el triángulo.

Más detalles

Tema 4: Programación lineal

Tema 4: Programación lineal Tema 4: Programación lineal 1. Introducción La programación lineal es una técnica matemática relativamente reciente (siglo XX) que consiste en una serie de métodos y procedimientos que permiten resolver

Más detalles

Centro Asociado Palma de Mallorca. Tutor: Antonio Rivero Cuesta

Centro Asociado Palma de Mallorca. Tutor: Antonio Rivero Cuesta Centro Asociado Palma de Mallorca Lógica y Estructuras Discretas Tutor: Antonio Rivero Cuesta Tema 5 Teoría de Grafos Conceptos Básicos Un grafo consta de: Grafo Un conjunto de nodos, Un conjunto de aristas

Más detalles

Caminos y Flujos optimales. Introducción a la Investigación de Operaciones 2007

Caminos y Flujos optimales. Introducción a la Investigación de Operaciones 2007 Caminos y Flujos optimales Introducción a la Investigación de Operaciones 2007 Contenido Definiciones básicas. Conexidad. Clausura transitiva. Esqueletos y caminos optimales. Redes. Flujos. Algoritmo de

Más detalles

Solución de Problemas con CCP restricción de canal

Solución de Problemas con CCP restricción de canal Solución de Problemas con CCP restricción de canal slides basados en el curso constraint Programming de Christian Schulte 2 Profesor: Camilo Rueda 1 1 Universidad Javeriana-Cali, 2 KTH Royal Institute

Más detalles

Verificación de programas. Algoritmos y Estructuras de Datos I. Semánticas formales: Primer cuatrimestre de 2016

Verificación de programas. Algoritmos y Estructuras de Datos I. Semánticas formales: Primer cuatrimestre de 2016 Verificación de programas Algoritmos y Estructuras de Datos I Primer cuatrimestre de 2016 Departamento de Computación - FCEyN - UBA Programación imperativa - clase 14 Verificación automática de programas

Más detalles

Definición 1.1 Sea G = (V, A) un grafo no dirigido. G se denomina árbol si es conexo y no contiene ciclos.

Definición 1.1 Sea G = (V, A) un grafo no dirigido. G se denomina árbol si es conexo y no contiene ciclos. Matemática Discreta y Lógica 2 1. Árboles Árboles Definición 1.1 Sea G = (V, A) un grafo no dirigido. G se denomina árbol si es conexo y no contiene ciclos. Como un lazo es un ciclo de longitud 1, un árbol

Más detalles

Ciencias de la Computación I

Ciencias de la Computación I Ciencias de la Computación I Autómatas Finitos No Determinísticos Minimización de Autómatas Finitos Determinísticos Agosto 2007 Autómatas Finitos Determinísticos Para cada estado y para cada símolo se

Más detalles

TÍTULO: MATEMÁTICA DISCRETA Y LÓGICA Disponibilidad

TÍTULO: MATEMÁTICA DISCRETA Y LÓGICA Disponibilidad TÍTULO: MATEMÁTICA DISCRETA Y LÓGICA Disponibilidad Calculo proposicional 1 Argumentos y proposiciones lógicas 1 Algunos argumentos lógicos importantes 2 Proposiciones 4 Conexiones lógicas 5 Negación (tabla)

Más detalles

Minimización de Aútomatas Finitos

Minimización de Aútomatas Finitos Minimización de Aútomatas Finitos Supongamos que para un AFD M = (Q, Σ, δ, q 0, F ) definimos la siguiente relación R M : xr M y ssi δ(q 0, x) = δ(q 0, y) Claramente, podemos notar que esta relación es

Más detalles

Desarrollo Formal de Software Construir Modelos

Desarrollo Formal de Software Construir Modelos Desarrollo Formal de Software Construir Modelos Profesor: Camilo Rueda 1 1 Universidad Javeriana-Cali PUJ 2012 ( ) PUJ 2012 1 / 16 Obligaciones de prueba La especificación consta de: El contexto, o parte

Más detalles

Tema 2: Grafos y Árboles. Algoritmos y Estructuras de Datos 3

Tema 2: Grafos y Árboles. Algoritmos y Estructuras de Datos 3 Tema 2: Grafos y Árboles Algoritmos y Estructuras de Datos 3 1 ÍNDICE 2.1 Definiciones básicas: grafos y árboles 2.2 Representaciones de árboles y grafos 2.3 Algoritmos de recorrido de árboles binarios

Más detalles

Coloreo de vértices Definiciones: Coloreo de Grafos. Cotas para χ Proposición: Si H es un subgrafo de G entonces χ(h) χ(g).

Coloreo de vértices Definiciones: Coloreo de Grafos. Cotas para χ Proposición: Si H es un subgrafo de G entonces χ(h) χ(g). Coloreo de vértices Definiciones: Coloreo de Grafos Algoritmos y Estructuras de Datos III Un coloreo (válido) de los vértices de un grafo G = (V, X ) es una asignación f : V C, tal que f (v) f (u) (u,

Más detalles

Los grafos son estructuras de datos Representan relaciones entre objetos. Son aplicables en. Relaciones arbitrarias, es decir No jerárquicas.

Los grafos son estructuras de datos Representan relaciones entre objetos. Son aplicables en. Relaciones arbitrarias, es decir No jerárquicas. ESTRUCTURA DE DATOS Los grafos son estructuras de datos Representan relaciones entre objetos Relaciones arbitrarias, es decir No jerárquicas Son aplicables en Química Modem Geografía Ing. Eléctrica e Industrial,

Más detalles

1. Recuerdo del algoritmo de KRUSKAL

1. Recuerdo del algoritmo de KRUSKAL MA3705. Algoritmos Combinatoriales. 014. Profesor: José Soto Escriba(s): Manuel Cáceres, Camilo Gómez y Sebastián Muñoz. Fecha: 11 de Agosto 014. Cátedra 5 1. Recuerdo del algoritmo de KRUSKAL La clase

Más detalles

Tema 4: Programación lineal

Tema 4: Programación lineal Tema 4: Programación lineal 1. Introducción La programación lineal es una técnica matemática relativamente reciente (siglo XX) que consiste en una serie de métodos y procedimientos que permiten resolver

Más detalles

Sea NxN = {(0,0), (0,1), (1,0), (0,2), (1,1), (2,0),... } el conjunto de pares de naturales,

Sea NxN = {(0,0), (0,1), (1,0), (0,2), (1,1), (2,0),... } el conjunto de pares de naturales, Ejercicio 1.- Sea NxN = {(0,0), (0,1), (1,0), (0,2), (1,1), (2,0),... } el conjunto de pares de naturales, y la función J : N 2 N definida por : J(m,n) = 1/2(m+n)(m+n+1) + m a) Es J inyectiva? Sobreyectiva?

Más detalles

Capítulo 4: Grafos Clase 3: Grafos planares y Colorabilidad de Grafos

Capítulo 4: Grafos Clase 3: Grafos planares y Colorabilidad de Grafos Capítulo 4: Grafos Clase 3: Grafos planares y Colorabilidad de Grafos Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 4: Grafos 1 / 18 Problema de las utilidades

Más detalles

En la fig. 1 se representa el grafo, G=(V,A) donde: V = {1, 2, 3, 4, 5, 6} A = { {1,2}, {1,3}, {1,5}, {3}, {3,4}, {4,5}, {5,6} }

En la fig. 1 se representa el grafo, G=(V,A) donde: V = {1, 2, 3, 4, 5, 6} A = { {1,2}, {1,3}, {1,5}, {3}, {3,4}, {4,5}, {5,6} } Unidad 1 Parte 1 - Teoría de Grafos Introducción En este capítulo veremos la noción matemática de grafo y propiedades de los mismos. En capítulos subsiguientes veremos las estructuras de datos utilizadas

Más detalles

Capítulo 1. Teoría de la probabilidad Teoría de conjuntos

Capítulo 1. Teoría de la probabilidad Teoría de conjuntos Capítulo 1 Teoría de la probabilidad 1.1. Teoría de conjuntos Definición 1.1.1 El conjunto S de todos los posibles resultados de un experimento aleatorio es llamado el espacio muestral. Un espacio muestral

Más detalles

Algoritmos heurísticos y aproximados. Clase 6/10/09

Algoritmos heurísticos y aproximados. Clase 6/10/09 Algoritmos heurísticos y aproximados Clase 6/10/09 Algoritmos aproximados y heurísticos para problemas NP-Hard Cómo resolver problemas NP-HARD? No pretendemos encontrar la mejor solución sino una buena

Más detalles

Objetivos formativos de Matemática Discreta. Tema 1: Conjuntos, aplicaciones y relaciones

Objetivos formativos de Matemática Discreta. Tema 1: Conjuntos, aplicaciones y relaciones Objetivos formativos de Matemática Discreta Para cada uno de los temas el alumno debe ser capaz de hacer lo que se indica en cada bloque. Además de los objetivos que se señalan en cada tema, se considera

Más detalles

Compiladores: Sesión 15. Análisis semántico, traducción dirigida por sintaxis

Compiladores: Sesión 15. Análisis semántico, traducción dirigida por sintaxis Compiladores: Sesión 15. Análisis semántico, traducción dirigida por sintaxis Prof. Gloria Inés Alvarez V. Departamento de Ciencias e Ingeniería de la Computación Pontificia Universidad Javeriana Cali

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 3 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA. Tema 3 Programación Entera

OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA. Tema 3 Programación Entera OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA Tema 3 Programación Entera ORGANIZACIÓN DEL TEMA Sesiones: Introducción y formulación Variables binarias Métodos de solución OPTIMIZACIÓN DE MODELOS DISCRETOS

Más detalles

Ruta más Corta con una sóla Fuente de Inicio (Single-Source Shortest Paths) DR. JESÚS A. GONZÁLEZ BERNAL CIENCIAS COMPUTACIONALES INAOE

Ruta más Corta con una sóla Fuente de Inicio (Single-Source Shortest Paths) DR. JESÚS A. GONZÁLEZ BERNAL CIENCIAS COMPUTACIONALES INAOE Ruta más Corta con una sóla Fuente de Inicio (Single-Source Shortest Paths) 1 DR. JESÚS A. GONZÁLEZ BERNAL CIENCIAS COMPUTACIONALES INAOE Problema de Encontrar la Ruta más Corta 2 Se requiere llegar de

Más detalles

PROGRAMACION CUADRATICA

PROGRAMACION CUADRATICA PROGRAMACION CUADRATICA Programación convexa La programación convexa abarca una amplia clase de problemas, entre ellos como casos especiales, están todos los tipos anteriores cuando /(x) es cóncava. Las

Más detalles

Investigación Operativa I. Programación Lineal. Informática de Gestión

Investigación Operativa I. Programación Lineal.  Informática de Gestión Investigación Operativa I Programación Lineal http://invop.alumnos.exa.unicen.edu.ar/ - 2013 Exposición Introducción: Programación Lineal Sistema de inecuaciones lineales Problemas de optimización de una

Más detalles

Relaciones Binarias. Matemática Discreta. Agustín G. Bonifacio UNSL. Relaciones Binarias

Relaciones Binarias. Matemática Discreta. Agustín G. Bonifacio UNSL. Relaciones Binarias UNSL Relaciones Binarias Relaciones Binarias (Sección 3.1 del libro) Definición Una relación (binaria) R de un conjunto X a un conjunto Y es un subconjunto del producto cartesiano X Y. Si (x,y) R, escribimos

Más detalles

Definiciones: conjuntos, grafos, y árboles. Agustín J. González ELO 320: Estructura de Datos y Algoritmos. 2002

Definiciones: conjuntos, grafos, y árboles. Agustín J. González ELO 320: Estructura de Datos y Algoritmos. 2002 Definiciones: conjuntos, grafos, y árboles Agustín J. González ELO 320: Estructura de Datos y Algoritmos. 2002 1 Conjuntos (sets) y Grafos (graphs) Un Conjunto es una colección de objetos distintos. No

Más detalles

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO I LOGICA Y CONJUNTOS.

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO I LOGICA Y CONJUNTOS. ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO I LOGICA Y CONJUNTOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas Universidad de Concepción 1 La lógica es

Más detalles

IN Guía de Problemas Resueltos de Geometría de Programación Lineal v1.0

IN Guía de Problemas Resueltos de Geometría de Programación Lineal v1.0 IN3701 - Guía de Problemas Resueltos de Geometría de Programación Lineal v1.0 Acá va una pequeña guía con problemas resueltos de Geometría en Programación Lineal con problemas básicamente extraídos del

Más detalles

Eliminación de cuantificadores

Eliminación de cuantificadores Eliminación de cuantificadores Teorema Si una teoría admite eliminación de cuantificadores, y existe un algoritmo que construye ϕ sc a partir de ϕ, entonces es decidible. Cómo se demuestra este teorema?

Más detalles

CLASIFICACIÓN DE PROBLEMAS

CLASIFICACIÓN DE PROBLEMAS UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO Facultad de Ciencias Exactas y Tecnologías Licenciatura en Sistemas de Información 2009 CLASIFICACIÓN DE PROBLEMAS 1 CLASES DE PROBLEMAS Uno de los resultados

Más detalles

Grafos. Amalia Duch Brown Octubre de 2007

Grafos. Amalia Duch Brown Octubre de 2007 Grafos Amalia Duch Brown Octubre de 2007 Índice 1. Definiciones Básicas Intuitivamente un grafo es un conjunto de vértices unidos por un conjunto de líneas o flechas dependiendo de si el grafo es dirigido

Más detalles

Computabilidad y Lenguajes Formales: Autómatas Finitos

Computabilidad y Lenguajes Formales: Autómatas Finitos 300CIG007 Computabilidad y Lenguajes Formales: Autómatas Finitos Pontificia Universidad Javeriana Cali Ingeniería de Sistemas y Computación Prof. Gloria Inés Alvarez V. No Determinismo Hasta ahora cada

Más detalles

Indice. 1. Tipos de grafos. 2. Conceptos Básicos 3. Representación de grafos 4. Subgrafos. Grafos complementarios

Indice. 1. Tipos de grafos. 2. Conceptos Básicos 3. Representación de grafos 4. Subgrafos. Grafos complementarios Teoría de Grafos 1 1. Tipos de grafos Indice 2. Conceptos Básicos 3. Representación de grafos 4. Subgrafos. Grafos complementarios 5. Caminos y conectividad 6. Grafos Bipartitos 2 Tipos de Grafos Un grafo

Más detalles

FORMALIZACIÓN Y EJECUCIÓN DEPARTAMENTO DE ELECTRÓNICA Y COMPUTADORES. Mercedes Granda Departamento de Electrónica y Computadores

FORMALIZACIÓN Y EJECUCIÓN DEPARTAMENTO DE ELECTRÓNICA Y COMPUTADORES. Mercedes Granda Departamento de Electrónica y Computadores REDES DE PETRI: DEFINICIÓN, FORMALIZACIÓN Y EJECUCIÓN PROGRAMACIÓN CONCURRENTE MASTER EN COMPUTACIÓN DEPARTAMENTO DE ELECTRÓNICA Y COMPUTADORES UNIVERSIDAD DE CANTABRIA CURSO 22/3 REDES DE PETRI Las redes

Más detalles

Práctica 1. Introducción a la optimización mediante herramienta MS Excel Solver (I)

Práctica 1. Introducción a la optimización mediante herramienta MS Excel Solver (I) Ingeniería de Telecomunicación Planificación Avanzada de Redes de Comunicaciones Curso 2006-2007 Pablo Pavón Mariño Práctica 1. Introducción a la optimización mediante herramienta MS Excel Solver (I) Objetivos

Más detalles

TAD CONJUNTOS Y MULTICONJUNTOS

TAD CONJUNTOS Y MULTICONJUNTOS TAD CONJUNTOS Y MULTICONJUNTOS INTRODUCCIÓN Qué es un conjunto? Un conjunto en matemática es una colección de objetos. Los objetos no mantienen ninguna relación aparente entre ellos y tampoco están obligados

Más detalles

Flujos de redes (Network Flows NF)

Flujos de redes (Network Flows NF) Fluos de redes (Network Flows NF). Terminología. Árbol generador mínimo. Camino mínimo 4. Fluo máximo 5. Fluo de coste mínimo TEORÍA DE GRAFOS. OPTIMIZACIÓN EN REDES Terminología Red o grafo (G) Nodos

Más detalles

Compiladores: Generación de Código. Pontificia Universidad Javeriana Cali Ingeniería de Sistemas y Computación Prof. María Constanza Pabón

Compiladores: Generación de Código. Pontificia Universidad Javeriana Cali Ingeniería de Sistemas y Computación Prof. María Constanza Pabón Compiladores: Generación de Código Pontificia Universidad Javeriana Cali Ingeniería de Sistemas y Computación Prof. María Constanza Pabón Generación de Código Representación Intermedia Tabla de Símbolos

Más detalles

Tema 7: Programación lineal En este tema veremos solamente unas nociones básicas de programación lineal.

Tema 7: Programación lineal En este tema veremos solamente unas nociones básicas de programación lineal. Tema 7: Programación lineal En este tema veremos solamente unas nociones básicas de programación lineal. 1. Concepto de problema de programación lineal Un problema de programación lineal consiste en un

Más detalles