Nicolás Rivera. 23 de Junio de 2011

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Nicolás Rivera. 23 de Junio de 2011"

Transcripción

1 Teoría de Matroides. Nicolás Rivera 23 de Junio de 2011 Pontificia Universidad Católica de Chile

2 Índice 1 Introducción: Definiciones y Propiedades básicas

3 Índice 1 Introducción: Definiciones y Propiedades básicas 2 Algoritmo Greedy.

4 Índice 1 Introducción: Definiciones y Propiedades básicas 2 Algoritmo Greedy. 3 Un poco más allá

5 Introducción: Definiciones y Propiedades básicas Definición Un sistema (E, F) es un sistema de independencia si M1 F; M2 Si X Y F then X F.

6 Introducción: Definiciones y Propiedades básicas Definición Un sistema (E, F) es un sistema de independencia si M1 F; M2 Si X Y F then X F. Los elementos de F se llaman independientes, los de 2 E \ F dependientes.

7 Introducción: Definiciones y Propiedades básicas Definición Un sistema (E, F) es un sistema de independencia si M1 F; M2 Si X Y F then X F. Los elementos de F se llaman independientes, los de 2 E \ F dependientes. Los conjuntos dependientes minimales se llaman circuitos, los elementos independientes maximales se llaman bases.

8 Introducción: Definiciones y Propiedades básicas Definición Un sistema (E, F) es un sistema de independencia si M1 F; M2 Si X Y F then X F. Los elementos de F se llaman independientes, los de 2 E \ F dependientes. Los conjuntos dependientes minimales se llaman circuitos, los elementos independientes maximales se llaman bases. Para X E, los conjuntos independientes maximales de X se llaman bases de X.

9 Introducción: Definiciones y Propiedades básicas Definición Sea (E, F) un sistema de independencia. Sea X E, definimos el rango (rank) de X por r(x ) = {máx Y : Y X, Y F}

10 Introducción: Definiciones y Propiedades básicas Definición Sea (E, F) un sistema de independencia. Sea X E, definimos el rango (rank) de X por r(x ) = {máx Y : Y X, Y F} Definimos la clausura (closure) de X por σ(x ) = {y E : r(x {y}) = r(x )},

11 Introducción: Definiciones y Propiedades básicas Definición Sea (E, F) un sistema de independencia. Sea X E, definimos el rango (rank) de X por r(x ) = {máx Y : Y X, Y F} Definimos la clausura (closure) de X por σ(x ) = {y E : r(x {y}) = r(x )}, Notemos que si X es independiente maximal entonces σ(x ) = E, es decir, genera el espacio entero.

12 Introducción: Definiciones y Propiedades básicas Definición (Maximization Problem for Independence System) Instancia: un sistema de independencia (E, F) y c : E R +. Objetivo: Encontrar X F tal que c(x ) = e X c(e) es maximo. Definición (Minimization Problem for Independence System) Instancia: un sistema de independencia (E, F) y c : E R +. Objetivo: Encontrar una base B tal que c(b) es mínimo.

13 Introducción: Definiciones y Propiedades básicas Ejemplos. 1 TSP:

14 Introducción: Definiciones y Propiedades básicas Ejemplos. 1 TSP: Sea un grafo G,

15 Introducción: Definiciones y Propiedades básicas Ejemplos. 1 TSP: Sea un grafo G, c : E(G) R +,

16 Introducción: Definiciones y Propiedades básicas Ejemplos. 1 TSP: Sea un grafo G, c : E(G) R +, E = E(G),

17 Introducción: Definiciones y Propiedades básicas Ejemplos. 1 TSP: Sea un grafo G, c : E(G) R +, E = E(G), F = {F E : F es subconjunto de un ciclo hamiltoniano}.

18 Introducción: Definiciones y Propiedades básicas Ejemplos. 1 TSP: Sea un grafo G, c : E(G) R +, E = E(G), F = {F E : F es subconjunto de un ciclo hamiltoniano}. (Minimizar)

19 Introducción: Definiciones y Propiedades básicas Ejemplos. 1 TSP: Sea un grafo G, c : E(G) R +, E = E(G), F = {F E : F es subconjunto de un ciclo hamiltoniano}. (Minimizar) 2 Maximum Weight Stable Set Problem: Sea G un grafo, c : V (G) R + E = V (G), F = {F E : F es conjunto estable de G}. (Maximizar)

20 Introducción: Definiciones y Propiedades básicas Ejemplos. 1 TSP: Sea un grafo G, c : E(G) R +, E = E(G), F = {F E : F es subconjunto de un ciclo hamiltoniano}. (Minimizar) 2 Maximum Weight Stable Set Problem: Sea G un grafo, c : V (G) R + E = V (G), F = {F E : F es conjunto estable de G}. (Maximizar) 3 Maximum/Minimum Weight Matching Problem: Sea G un grafo, c : E(G) R, E = E(G), F = {F E : F es un emparejamiento}. (Maximizar/Minimizar).

21 Introducción: Definiciones y Propiedades básicas Ejemplos. 1 TSP: Sea un grafo G, c : E(G) R +, E = E(G), F = {F E : F es subconjunto de un ciclo hamiltoniano}. (Minimizar) 2 Maximum Weight Stable Set Problem: Sea G un grafo, c : V (G) R + E = V (G), F = {F E : F es conjunto estable de G}. (Maximizar) 3 Maximum/Minimum Weight Matching Problem: Sea G un grafo, c : E(G) R, E = E(G), F = {F E : F es un emparejamiento}. (Maximizar/Minimizar). 4 Minimum Spanning Tree: Sea un grafo G, c : E(G) R +, E = E(G), F = {conjunto de bosques de G}. (Minimizar)

22 Introducción: Definiciones y Propiedades básicas Definición Un sistema de independencia es un matroide si M3 Si X, Y F y X > Y, entonces existe x X \ Y con Y {x} F.

23 Introducción: Definiciones y Propiedades básicas Ejemplo Matroides. 1 E es el conjunto de vectores de un espacio vectorial y F familia de conjuntos de vectores linealmente independientes. (Vectorial Matroid)

24 Introducción: Definiciones y Propiedades básicas Ejemplo Matroides. 1 E es el conjunto de vectores de un espacio vectorial y F familia de conjuntos de vectores linealmente independientes. (Vectorial Matroid) 2 E es el conjunto de aristas de un grafo G, F el conjunto de bosques de G. (Cycle Matroid-Graphical Matroid)

25 Introducción: Definiciones y Propiedades básicas Ejemplo Matroides. 1 E es el conjunto de vectores de un espacio vectorial y F familia de conjuntos de vectores linealmente independientes. (Vectorial Matroid) 2 E es el conjunto de aristas de un grafo G, F el conjunto de bosques de G. (Cycle Matroid-Graphical Matroid) 3 E es un conjunto de finito, k un entero positivo, F = {F E : F k}. (Uniform Matroid)

26 Introducción: Definiciones y Propiedades básicas Ejemplo Matroides. 1 E es el conjunto de vectores de un espacio vectorial y F familia de conjuntos de vectores linealmente independientes. (Vectorial Matroid) 2 E es el conjunto de aristas de un grafo G, F el conjunto de bosques de G. (Cycle Matroid-Graphical Matroid) 3 E es un conjunto de finito, k un entero positivo, F = {F E : F k}. (Uniform Matroid) 4 E conjunto de vértices de un grafo G, F el conjunto de todos los vértices de G tal que existe un emparejamiento que cubre todos sus vértices. (Matching Matroid)

27 Introducción: Definiciones y Propiedades básicas Teorema Sea (E, F) un sistema de independencia, entonces las siguientes proposiciones son equivalentes.

28 Introducción: Definiciones y Propiedades básicas Teorema Sea (E, F) un sistema de independencia, entonces las siguientes proposiciones son equivalentes. M3 Si X, Y F y X > Y, entonces existe x X \ Y con Y {x} F. M3 Si X, Y F y X = Y + 1, entonces existe x X \ Y con Y {x} F. M3 Para cada X E, todas las bases de X tienen la misma cardinalidad.

29 Introducción: Definiciones y Propiedades básicas Definición Sea (E, F) un sistema de independencia, para X E definimos el rango inferior (lower rank) por ρ(x ) = mín{ Y : Y X, Y F x X \ Y (Y {x} / F)}. ρ(x ) es el tamaño de las bases más chicas que hay en X. El cuociente de rango de (E, F) está definido por ρ(f ) q(e, F) = mín F E r(f ).

30 Introducción: Definiciones y Propiedades básicas Teorema Sea (E, F) un sistema de independencia, entonces q(e, F) 1 y q(e, F) = 1 si y sólo si (E, F) es un matroide.

31 Algoritmo Greedy. Algoritmo greedy. Sea (E, F) un sistema de independencia y c : E R + una función no negativa. Sea E = {e 1,..., e n } tal que c(e 1 ) c(e 2 )... c(e n ), Sea F =, Desde i = 1 hasta n si F {e i } F entonces F F {e i }.

32 Algoritmo Greedy. Teorema Sea (E, F) un sistema de independencia. Para c : E R + denotamos por G(E, F, c) el costo de la solución encontrada por el algoritmo greedy para maximizar y por OPT (E, F, c) el costo máximo, entonces q(e, F) G(E, F, c) OPT (E, F, c) 1.

33 Algoritmo Greedy. Demostración:

34 Algoritmo Greedy. Demostración: Supongamos que E = {e 1,..., e n } con e 1 e 2... e n y llamemos E j := {e 1,..., e j }, j {1,..., n}. Sea G n la solución encontrada por el algoritmo greedy y O n a una solución óptima (no necesariamente es única). Para j {1,..., n 1} definimos G j := G n E j y O j := O n E j. Finalmente definimos d n := c(e n ) y d j := c(e j ) c(e j+1 ) para j {0, 1,..., n 1}

35 Algoritmo Greedy. Notemos que d j 0 para todo j {1,..., n}. Además como O n F, entonces O j F y luego O j r(e j ) ya que O j E j. Por otro lado se tiene que G j ρ(e j ) que G j es base de E j, ya que si existe e E j \ G j tal que G j {e} F entonces en el momento en que el algoritmo greedy decide si agregar o no e a la solución lo hubiese agregado, lo que es una contradición. De las dos desigualdades anterior se sigue que q(e, F) G j O j (j = 1,..., n).

36 Algoritmo Greedy. Así: c(g n ) = = n ( G j G j 1 )c(e j ) j=1 n G j d j j=1 q(e, F) = q(e, F) n O j d j j=1 n ( O j O j 1 )c(e j ) j=1 = q(e, F)c(O n ) Demostrando lo pedido.

37 Algoritmo Greedy. Teorema Un sistema de independecia (E, F) es un matroide si y sólo si el algoritmo greedy encuentra una solución óptima para el problema de maximización para todo c : E R +

38 Algoritmo Greedy. Teorema Sea (E, F) un sistema de independencia. Si para todo A F y e E se tiene que A {e} contiene a lo más p circuitos, entonces q(e, F) 1 p.

39 Algoritmo Greedy. Teorema Sea (E, F) un sistema de independencia. Si para todo A F y e E se tiene que A {e} contiene a lo más p circuitos, entonces q(e, F) 1 p. Ejemplo: Para los emparejamientos se tiene que p = 2.

40 Algoritmo Greedy. Dados dos sistemas de independencia (E, F 1 ) y (E, F 2 ) su intersección es (E, F 1 F 2 ).

41 Algoritmo Greedy. Dados dos sistemas de independencia (E, F 1 ) y (E, F 2 ) su intersección es (E, F 1 F 2 ). Teorema Todo sistema de independencia es la intersección de un número finito de matroides.

42 Algoritmo Greedy. Dados dos sistemas de independencia (E, F 1 ) y (E, F 2 ) su intersección es (E, F 1 F 2 ). Teorema Todo sistema de independencia es la intersección de un número finito de matroides. Teorema Si (E, F) es la intersección de p matroide, entonces q(e, F) 1 p.

43 Un poco más allá Sea M = (E, F) un matroide y sea B su conjunto de bases.

44 Un poco más allá Sea M = (E, F) un matroide y sea B su conjunto de bases. Definimos M = (E, F ) como el sistema de independencia cuyas bases son los complementos de las bases de B. Una base de M se dice una co-base de M, un circuito de M se dice un co-circuito de M, etc.

45 Un poco más allá Algunas propiedades

46 Un poco más allá Algunas propiedades 1 M es matroide

47 Un poco más allá Algunas propiedades 1 M es matroide 2 M = M.

48 Un poco más allá Algunas propiedades 1 M es matroide 2 M = M. 3 r (X ) = X (r(e) r( X )) 4 Los cocircuitos son los conjuntos minimales que intersectan toda base. Las Bases son los conjuntos minimales que intersectan todo circuito.

49 Un poco más allá Un ejemplo importante: Bond Matroid que se define como el dual del Graphical Matroid.

50 Un poco más allá Un ejemplo importante: Bond Matroid que se define como el dual del Graphical Matroid. Es posible caracterizar el Bond Matroid por:

51 Un poco más allá Un ejemplo importante: Bond Matroid que se define como el dual del Graphical Matroid. Es posible caracterizar el Bond Matroid por: Teorema 1 Sea M un Graphical Matroid, entonces sus circuitos son los ciclos del grafo. 2 Las circuitos de M son los cortes por aristas minimales.

52 Un poco más allá Una aplicación: Teorema Un grafo G es planar ssi M es un graphical matroid, donde M es el Cycle Matroid de G.

MATROIDES Y EL ALGORITMO VORAZ

MATROIDES Y EL ALGORITMO VORAZ MATROIDES Y EL ALGORITMO VORAZ Natalia Castro - 19 de octubre de 2016 Algoritmos de Aproximación IMERL - Facultad de Ingeniería - UdelaR Edmonds loco-problem Edmonds se enfoca en algoritmos better than

Más detalles

Algoritmos de Aproximación

Algoritmos de Aproximación Algoritmos de Aproximación Clase 3 Problema de Steiner y TSP Pablo Romero Lunes 8 de agosto de 2016, Montevideo, Uruguay. Contenidos 1 Cubrimiento de Vértices 2 Agenda 1 Cubrimiento de Vértices 2 Definición

Más detalles

1. Recuerdo del algoritmo de KRUSKAL

1. Recuerdo del algoritmo de KRUSKAL MA3705. Algoritmos Combinatoriales. 014. Profesor: José Soto Escriba(s): Manuel Cáceres, Camilo Gómez y Sebastián Muñoz. Fecha: 11 de Agosto 014. Cátedra 5 1. Recuerdo del algoritmo de KRUSKAL La clase

Más detalles

Algunos problemas en la teoría de Matroides

Algunos problemas en la teoría de Matroides R0 G& M E& Empedrado R1 D& C R1 Instituto de Matemáticas UNAM, sede Oaxaca Seminario de Combinatoria, Departamento de Matemáticas, Facultad de Ciencias, UNAM, 16 de mayo de 2013 R0 G& M E& Empedrado R1

Más detalles

Introducción a la Teoría de Grafos

Introducción a la Teoría de Grafos Introducción a la Teoría de Grafos Flavia Bonomo fbonomo@dc.uba.ar do. Cuatrimestre 009 Programa Introducción a la teoría de grafos Problemas de camino mínimo Problemas de flujo máximo Programación lineal

Más detalles

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Espacios vectoriales

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Espacios vectoriales Resumen teoría Prof. Alcón ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Espacios vectoriales Sea (K, +,.) un cuerpo con característica 0. Podemos pensar K = Q, R o C. Si V es un conjunto cualquiera en el que

Más detalles

Práctica N o 8 Desigualdades Válidas - Algoritmos de Planos de Corte - Algoritmos Branch & Cut

Práctica N o 8 Desigualdades Válidas - Algoritmos de Planos de Corte - Algoritmos Branch & Cut Práctica N o 8 Desigualdades Válidas - Algoritmos de Planos de Corte - Algoritmos Branch & Cut 8.1 Para cada uno de los siguientes conjuntos, encontrar una desigualdad válida que agregada a la formulación

Más detalles

MARITZA HERRERA FLOREZ YUDY MARCELA BOLAÑOS RIVERA

MARITZA HERRERA FLOREZ YUDY MARCELA BOLAÑOS RIVERA ALGORITMOS DE APROXIMACIÓN PARA PROBLEMAS NP DUROS MARITZA HERRERA FLOREZ YUDY MARCELA BOLAÑOS RIVERA UNIVERSIDAD DEL CAUCA FACULTAD DE CIENCIAS NATURALES, EXACTAS Y DE LA EDUCACIÓN DEPARTAMENTO DE MATEMÁTICAS

Más detalles

Teoría de Grafos Introducción Grafos isomorfos

Teoría de Grafos Introducción Grafos isomorfos Capítulo 1 Teoría de Grafos 1.1. Introducción Definición. Denominaremos pseudomultigrafo a una terna (V,E, γ), donde V y E son conjuntos y γ : E {{u,v}: u,v V }. El conjunto V se denomina conjunto de vértices

Más detalles

NP Completitud I: SAT y 3-SAT. Febrero 2017

NP Completitud I: SAT y 3-SAT. Febrero 2017 s NP NP Completitud I: SAT y Facultad de Ingeniería. Universidad del Valle Febrero 2017 Contenido s NP 1 s NP 2 Contenido s NP 1 s NP 2 s NPC s NP Definición Un problema de decisión NP es considerado NP

Más detalles

Algebra lineal y conjuntos convexos 1

Algebra lineal y conjuntos convexos 1 Algebra lineal y conjuntos convexos Solución de sistemas. Espacios vectoriales. 3 Conjuntos convexos. 4 Soluciones básicas puntos extremos. Rango de una matriz A R m n. Reducir A a una matriz escalonada

Más detalles

Particiones convexas en productos de grafos

Particiones convexas en productos de grafos Particiones convexas en productos de grafos Felipe Contreras Salinas DIM, Universidad de Chile Junio, 2016 Convexidad Definición Un conjunto S de vértices de un grafo es convexo si ningún (u, v)-camino

Más detalles

Algebra Matricial y Teoría de Grafos

Algebra Matricial y Teoría de Grafos Algebra Matricial y Teoría de Grafos Unidad 3: Nociones de teoría de grafos Luis M. Torres Escuela Politécnica del Litoral Quito, Enero 2008 Maestría en Control de Operaciones y Gestión Logística p.1 Contenido

Más detalles

Métodos iterativos para Optimización Combinatorial

Métodos iterativos para Optimización Combinatorial Métodos iterativos para Optimización Combinatorial J.A. Soto, Universidad de Chile. Escuela de Primavera 21 23 Oct, 2013 1 of 77 Outline 1 Introducción 2 Preliminares: Programación Lineal 3 Problema de

Más detalles

Algoritmo de Fleury. por. Ramón Espinosa Armenta

Algoritmo de Fleury. por. Ramón Espinosa Armenta Algoritmo de Fleury por Ramón Espinosa Armenta El siguiente algoritmo, debido a Fleury (191), permite construir un circuito Euleriano en un multigrafo Euleriano. Algoritmo Fleury (G) Entrada. Un multigrafo

Más detalles

Tema 5 Dualidad y condiciones de Karush-Kuhn-Tucker

Tema 5 Dualidad y condiciones de Karush-Kuhn-Tucker Tema 5 Dualidad y condiciones de Karush-Kuhn-Tucker José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Contenidos del tema 5 Condiciones de Karush-Kuhn-Tucker (KKT). Problemas

Más detalles

Algoritmo de Kruskal

Algoritmo de Kruskal Algoritmo de Kruskal Curso de Teoría Algebraica de Grafos Facultad de Ingeniería Universidad de la República 4 de mayo de 202 Árboles Un árbol es un grafo conexo y acíclico (sin ciclos). Un bosque es un

Más detalles

Introducción a la Teoría de Grafos

Introducción a la Teoría de Grafos Introducción a la Teoría de Grafos Conceptos Simples, Problemas Difíciles Héctor Ramírez C. 1 1 Departamento de Ingeniería Matemática Universidad de Chile Curso MA3701: Optimización Héctor Ramírez C. (U.

Más detalles

GLOSARIO DE TÉRMINOS BÁSICOS

GLOSARIO DE TÉRMINOS BÁSICOS APÉNDICE 1 GLOSARIO DE TÉRMINOS BÁSICOS OBSERVACIÓN: todas las definiciones para grafos son válidas tanto para grafos orientados como para noorientados, a menos que se especifique lo contrario. 1. Grafo:

Más detalles

Clausuras. , se define la clausura algebráica de A como

Clausuras. , se define la clausura algebráica de A como Mónica Ribero - 201126017 Rafael Mantilla - 201124446 Andrés Rodríguez - 201123795 Matías Ruíz - 201126728 Conferencista: Alf Onshuus NIño Clausuras Introducción En este trabajo hablaremos, con intención

Más detalles

Escuela de algoritmos de aproximación

Escuela de algoritmos de aproximación Escuela de algoritmos de aproximación Módulo 2: Introducción a los algoritmos de aproximación Francisco Javier Zaragoza Martínez Universidad Autónoma Metropolitana Unidad Azcapotzalco ITAM, 14 de septiembre

Más detalles

Conjuntos y funciones convexas

Conjuntos y funciones convexas Conjuntos y funciones convexas Un conjunto X R n se dice convexo si para todo par de puntos x 1 y x 2 en X, λ x 1 + ( 1- λ) x 2 X, para todo λ [0,1] Qué significa esto geométricamente? Un punto λ x 1 +

Más detalles

Dualidad. Dpto. Ingeniería Industrial, Universidad de Chile. 22 de abril de IN3701, Optimización

Dualidad. Dpto. Ingeniería Industrial, Universidad de Chile. 22 de abril de IN3701, Optimización Contenidos Motivación y Representación de Poliedros IN3701, Optimización 22 de abril de 2009 Contenidos Motivación y Representación de Poliedros Contenidos 1 Motivación 2 y Representación de Poliedros

Más detalles

Algebra lineal y conjuntos convexos

Algebra lineal y conjuntos convexos Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar

Más detalles

Apuntes de Teórico de Programación 3. Apuntes de Teórico PROGRAMACIÓN 3. Greedy. Versión 1.1

Apuntes de Teórico de Programación 3. Apuntes de Teórico PROGRAMACIÓN 3. Greedy. Versión 1.1 Apuntes de Teórico PROGRAMACIÓN 3 Greedy Versión 1.1 1 Índice Índice... Introducción... 3 Ejemplo 1 (problema de las monedas)... 3 Ejemplo (problema de la mochila)... 4 Aplicaciones del método Greedy a

Más detalles

Grafos clique K 5 -free con cada triángulo contenido en a lo sumo un K 4 con un único generador crítico

Grafos clique K 5 -free con cada triángulo contenido en a lo sumo un K 4 con un único generador crítico 1 / 21 Grafos clique K 5 -free con cada triángulo contenido en a lo sumo un K 4 con un único generador crítico Lic. Gabriela Ravenna Dra. Liliana Alcón UMA- Bahía Blanca 21 de Septiembre de 2016 Esquema

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales Espacios Vectoriales Verónica Briceño V. noviembre 2013 Verónica Briceño V. () Espacios Vectoriales noviembre 2013 1 / 47 En esta Presentación... En esta Presentación veremos: Espacios

Más detalles

Introducción a la Teoría de Códigos

Introducción a la Teoría de Códigos Introducción a la Teoría de Códigos M.A.García, L. Martínez, T.Ramírez Facultad de Ciencia y Tecnología. UPV/EHU Resumen Teórico Apartado 3 del Tema 1: Base y dimensión de un espacio vectorial Mayo de

Más detalles

Geometría y Poliedros

Geometría y Poliedros IN3701, Optimización 3 de agosto de 2009 Contenidos 1 Definiciones Básicas Definición 2.1 S R n es un poliedro si S = {x R n : Ax b} para algún A R m n, b R m. Definición 2.2 S R n es acotado si existe

Más detalles

Capítulo 4: Grafos Clase 2: Caminos, Circuitos Eulerianos y Hamiltonianos

Capítulo 4: Grafos Clase 2: Caminos, Circuitos Eulerianos y Hamiltonianos Capítulo 4: Grafos Clase 2: Caminos, Circuitos Eulerianos y Hamiltonianos Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 4: Grafos 1 / 29 Navegación de grafos

Más detalles

TEMA IV TEORÍA DE GRAFOS

TEMA IV TEORÍA DE GRAFOS TEMA IV TEORÍA DE GRAFOS Poli Abascal Fuentes TEMA IV Teoría de grafos p. 1/? TEMA IV 4. TEORÍA DE GRAFOS 4.1 GRAFOS 4.1.1 Introducción 4.1.2 Definiciones básicas 4.1.3 Caminos y recorridos 4.1.4 Subgrafos,

Más detalles

Tema 5: Problemas de Optimización

Tema 5: Problemas de Optimización Modelos de Informática Teórica - Universidad de Granada Contenido Problemas de Optimización Algoritmos ǫ-aproximados Análisis de problemas: cubrimiento por vértices, viajante de comercio, corte máximo,

Más detalles

Guía de Problemas para el Control 2

Guía de Problemas para el Control 2 Guía de Problemas para el Control 2 Geometría Problema 1 Demuestre que la intersección de conjuntos convexos es un conjunto convexo. Utilizando esto demuestre que todo poliedro es un conjunto convexo.

Más detalles

Algoritmos voraces (greedy)

Algoritmos voraces (greedy) Dr. Eduardo A. RODRÍGUEZ TELLO CINVESTAV-Tamaulipas 21 de marzo de 2018 Dr. Eduardo RODRÍGUEZ T. (CINVESTAV) Algoritmos voraces 21 de marzo de 2018 1 / 45 1 Algoritmos voraces (greedy) Aplicaciones de

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales Pedro Díaz Navarro * Abril de 26. Vectores en R 2 y R 3 2. Espacios Vectoriales Definición (Espacio vectorial) Decimos que un conjunto no vacío V es un espacio vectorial sobre un cuerpo

Más detalles

Algoritmos de Aproximación

Algoritmos de Aproximación Algoritmos de Aproximación M. Andrea Rodríguez-Tastets Ayudante: Erick Elejalde Universidad de Concepción,Chile www.inf.udec.cl\ andrea andrea@udec.cl I Semestre - 2014 Introducción La mayoría de los algoritmos

Más detalles

Grafos. Algoritmos y Estructuras de Datos III

Grafos. Algoritmos y Estructuras de Datos III Grafos Algoritmos y Estructuras de Datos III Grafos Un grafo G = (V, X ) es un par de conjuntos, donde V es un conjunto de puntos o nodos o vértices y X es un subconjunto del conjunto de pares no ordenados

Más detalles

Fiabilidad. Fiabilidad. María Isabel Hartillo Hermoso Granada, 25 de Mayo FQM-5849

Fiabilidad. Fiabilidad. María Isabel Hartillo Hermoso Granada, 25 de Mayo FQM-5849 Fiabilidad María Isabel Hartillo Hermoso hartillo@us.es Granada, 25 de Mayo FQM-5849 Sistemas Partimos de un sistema en serie: r 1 r 2 r 3 r 4 Sistemas Partimos de un sistema en serie: r 1 r 2 r 3 r 4

Más detalles

ADA TEMA 6.2 Introducción a la NP completitud

ADA TEMA 6.2 Introducción a la NP completitud ADA TEMA 6.2 Introducción a la Universitat Politècnica de Catalunya 27 de abril de 2006 1 2 3 4 5 6 1 2 3 4 5 6 Hasta ahora en ADA: Hemos estudiado algoritmos para distintos problemas. Estos algoritmos

Más detalles

Gráficas : teoría, aplicaciones e interacciones : II

Gráficas : teoría, aplicaciones e interacciones : II J. Ramírez Alfonsín Université Montpellier 2, Francia Facultad de Ciencias, UNAM, México 22 de Enero de 2013 1 Ciclos 2 Gráficas hamiltonianas 3 Arboles 4 Gráficas Eulerianas 5 Gráficas dirigidas 6 Problema

Más detalles

Coloreo de vértices Definiciones: Coloreo de Grafos. Cotas para χ Proposición: Si H es un subgrafo de G entonces χ(h) χ(g).

Coloreo de vértices Definiciones: Coloreo de Grafos. Cotas para χ Proposición: Si H es un subgrafo de G entonces χ(h) χ(g). Coloreo de vértices Definiciones: Coloreo de Grafos Algoritmos y Estructuras de Datos III Un coloreo (válido) de los vértices de un grafo G = (V, X ) es una asignación f : V C, tal que f (v) f (u) (u,

Más detalles

Tema 2 Conjuntos convexos

Tema 2 Conjuntos convexos Tema 2 Conjuntos convexos José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Contenidos del tema 2 Conjuntos convexos. Propiedades básicas y ejemplos. Cierre e interior de un

Más detalles

TEST IO-I T1. CONCEPTOS PREVIOS. C1.1. Cualquier conjunto convexo tiene al menos un punto extremo?

TEST IO-I T1. CONCEPTOS PREVIOS. C1.1. Cualquier conjunto convexo tiene al menos un punto extremo? TEST IO-I T1. CONCEPTOS PREVIOS C1.1. Cualquier conjunto convexo tiene al menos un punto extremo? a) Puede tener puntos extremos. b) Puede no tener puntos extremos. c) Puede tener vértices. C1.2. Es convexo

Más detalles

Ejercicio Greedy. Algoritmos y Estructuras de Datos III FCEN, UBA. 27 de Marzo de 2015

Ejercicio Greedy. Algoritmos y Estructuras de Datos III FCEN, UBA. 27 de Marzo de 2015 Ejercicio Greedy Algoritmos y Estructuras de Datos III FCEN, UBA 27 de Marzo de 2015 Algo III (FCEN, UBA) Ejercicio Greedy 27 de Marzo de 2015 1 / 20 Enunciado Problema 1 Un conjunto de intervalos {[x

Más detalles

( 1 0 BLOQUE DE GEOMETRÍA TEMA 4: ESPACIOS VECTORIALES. ( 5+ 3i )+ ( 2 i )=7+ 2i. La suma de dos números complejos es un número complejo.

( 1 0 BLOQUE DE GEOMETRÍA TEMA 4: ESPACIOS VECTORIALES. ( 5+ 3i )+ ( 2 i )=7+ 2i. La suma de dos números complejos es un número complejo. BLOQUE DE GEOMETRÍA TEMA 4: ESPACIOS VECTORIALES. Operaciones Binarias: Observamos las siguientes operaciones: ( 5+ 3i )+ ( 2 i )=7+ 2i. La suma de dos números complejos es un número complejo. ( 1 0 2

Más detalles

Complejidad computacional (Análisis de Algoritmos)

Complejidad computacional (Análisis de Algoritmos) Definición. Complejidad computacional (Análisis de Algoritmos) Es la rama de las ciencias de la computación que estudia, de manera teórica, la optimización de los recursos requeridos durante la ejecución

Más detalles

Formulando con modelos lineales enteros

Formulando con modelos lineales enteros Universidad de Chile 19 de marzo de 2012 Contenidos 1 Forma de un problema Lineal Entero 2 Modelando con variables binarias 3 Tipos de Problemas Forma General de un MILP Problema de optimización lineal

Más detalles

Teorema de Hahn-Banach

Teorema de Hahn-Banach Capítulo 3 Teorema de Hahn-Banach 3.1. Introducción Una vez introducidos los espacios vectoriales más importantes donde se tiene una estructura métrica a saber, los espacios de Hilbert y los espacios de

Más detalles

Espacios vectoriales con producto interno

Espacios vectoriales con producto interno Espacios vectoriales con producto interno Problemas teóricos En todos los problemas relacionados con el caso complejo se supone que el producto interno es lineal con respecto al segundo argumento. Definición

Más detalles

Algoritmos de emparejamiento

Algoritmos de emparejamiento Algoritmos de emparejamiento Mager, Jesús 1 Universidad Autónoma Metropolitana Unidad Azcapozalco 2015 Introducción El presente trabajo es un resumen del libro Combinatorial Optimization. Algorithms and

Más detalles

Espacios vectoriales

Espacios vectoriales Espacios vectoriales Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza 1 Concepto de espacio vectorial y propiedades 1.1 Definición Se llama espacio vectorial sobre K (IR o C a toda terna

Más detalles

Espacios vectoriales

Espacios vectoriales Espacios vectoriales [Versión preliminar] Prof. Isabel Arratia Z. Algebra Lineal 1 En el estudio de las matrices y, en particular, de los sistemas de ecuaciones lineales realizamos sumas y multiplicación

Más detalles

Un procedimiento de difusión de la información

Un procedimiento de difusión de la información Un procedimiento de difusión de la información M. Amblàs, E. Bendito, A. Carmona, A.M. Encinas, J. Joan y M. Mitjana Resumen En este trabajo presentamos un procedimiento de diseminación de la información

Más detalles

Conjuntos Parcialmente Ordenados y Reticulados. Matemática Discreta. Agustín G. Bonifacio UNSL. Conjuntos Parcialmente Ordenados y Reticulados

Conjuntos Parcialmente Ordenados y Reticulados. Matemática Discreta. Agustín G. Bonifacio UNSL. Conjuntos Parcialmente Ordenados y Reticulados y UNSL y y y Capítulo 4 del libro de B. Kolman, R. Busby y S. Ross. Definición Una relación R sobre un conjunto X es un orden orden parcial si es reflexiva, antisimétrica y transitiva. El conjunto A con

Más detalles

Tecnología Maximización del beneficio. Teoría de la Firma. Alvaro J. Riascos Villegas Universidad de los Andes. Septiembre 2 de 2014

Tecnología Maximización del beneficio. Teoría de la Firma. Alvaro J. Riascos Villegas Universidad de los Andes. Septiembre 2 de 2014 Tecnología Maximización del beneficio Teoría de la Firma Alvaro J. Riascos Villegas Universidad de los Andes Septiembre 2 de 2014 Universidad de los Andes Teoría de la Firma Contenido Tecnología Maximización

Más detalles

El espacio proyectivo P n (k). Sistemas de referencia. Dualidad. Departamento de Algebra Septiembre El espacio proyectivo P n (k).

El espacio proyectivo P n (k). Sistemas de referencia. Dualidad. Departamento de Algebra Septiembre El espacio proyectivo P n (k). Notas de la asignatura AMPLIACIÓN DE GEOMETRÍA de la Licenciatura de Matemáticas, Facultad de Matemáticas, Universidad de Sevilla, para el curso 2000-01 Departamento de Algebra Septiembre 2000 Tema 1-

Más detalles

Estructura de ciclos en MSDs (Minimally Strong Digraphs)

Estructura de ciclos en MSDs (Minimally Strong Digraphs) (Minimally Strong Digraphs) 28 de marzo de 2017 Jesús García MSD versus trees 21 de marzo de 2017 Luis M. Pozo 1 MSD Definición Árbol (grafo conexo minimal) Caracterización MSD versus trees Árbol Árbol

Más detalles

Temas de representabilidad de matroides sobre campos finitos e infinitos. Wilson Pico Sánchez Código:

Temas de representabilidad de matroides sobre campos finitos e infinitos. Wilson Pico Sánchez Código: Temas de representabilidad de matroides sobre campos finitos e infinitos Wilson Pico Sánchez Código: 830217 Universidad Nacional de Colombia Facultad de Ciencias Departamento de Matemáticas Bogotá, D.C.

Más detalles

ELEMENTOS DE ANÁLISIS FUNCIONAL

ELEMENTOS DE ANÁLISIS FUNCIONAL ELEMENTOS DE ANÁLISIS FUNCIONAL Guillermo Ames Universidad Tecnológica Nacional - Facultad Regional Córdoba 2011 TEMA 1: NOCIONES BÁSICAS DE ESPACIOS MÉTRICOS Espacios métricos: definición y ejemplos Definición

Más detalles

1. Diseñe algoritmos que permitan resolver eficientemente el problema de la mochila 0/1 para los siguientes casos:

1. Diseñe algoritmos que permitan resolver eficientemente el problema de la mochila 0/1 para los siguientes casos: PROGRAMACIÓN DINÁMICA RELACIÓN DE EJERCICIOS Y PROBLEMAS 1. Diseñe algoritmos que permitan resolver eficientemente el problema de la mochila /1 para los siguientes casos: a. Mochila de capacidad W=15:

Más detalles

Clases de complejidad computacional: P y NP

Clases de complejidad computacional: P y NP 1er cuatrimestre 2006 La teoría de Se aplica a problemas de decisión, o sea problemas que tienen como respuesta SI o NO (aunque es sencillo ver que sus implicancias pueden extenderse a problemas de optimización).

Más detalles

Algebra Lineal. Gustavo Rodríguez Gómez. Verano 2011 INAOE. Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano / 21

Algebra Lineal. Gustavo Rodríguez Gómez. Verano 2011 INAOE. Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano / 21 Algebra Lineal Gustavo Rodríguez Gómez INAOE Verano 2011 Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano 2011 1 / 21 Espacios Vectoriales Espacios Vectoriales INAOE Gustavo Rodríguez Gómez (INAOE)

Más detalles

Cálculo diferencial e integral 3

Cálculo diferencial e integral 3 Cálculo diferencial e integral 3 Guía 1 1. Sean a 1,..., a n R n. Demuestra que el conjunto { W = x = (x 1,..., x n ) R n es un subespacio vectorial de R n. } n a i x i = 0 i=1 2. Sean W y V subespacios

Más detalles

The Traveling Salesperson Problem. D.Moshkovitz Complexity

The Traveling Salesperson Problem. D.Moshkovitz Complexity The Traveling Salesperson Problem 1 La misión: La vuelta al mundo 2 El problema: El dinero que cuesta 1795$ 3 Introducción Objetivos: Estudiar el problema Traveling Salesperson Problem (TSP). Resumen:

Más detalles

Coloreo de Grafos. Algoritmos y Estructuras de Datos III

Coloreo de Grafos. Algoritmos y Estructuras de Datos III Coloreo de Grafos Algoritmos y Estructuras de Datos III Coloreo de nodos Definiciones: Un coloreo (válido) de los nodos de un grafo G = (V, X ) es una asignación f : V C, tal que f (v) f (u) (u, v) E.

Más detalles

2. Problemas. Espacios Vectoriales. Álgebra Lineal- Propedéutico Mayo de 2012

2. Problemas. Espacios Vectoriales. Álgebra Lineal- Propedéutico Mayo de 2012 2. Problemas. Espacios Vectoriales. Álgebra Lineal- Propedéutico Mayo de 2012 1. En R 2 se define la suma: (a 1, b 1 ) + (a 2, b 2 ) = (a 1 + a 2, b 1 + b 2 ) y el producto por un escalar: λ(a, b) = (0,

Más detalles

Análisis y Diseño de Algoritmos Árboles de Mínima Expansión (Minimum Spanning Trees) DR. JESÚS A. GONZÁLEZ BERNAL CIENCIAS COMPUTACIONALES INAOE

Análisis y Diseño de Algoritmos Árboles de Mínima Expansión (Minimum Spanning Trees) DR. JESÚS A. GONZÁLEZ BERNAL CIENCIAS COMPUTACIONALES INAOE Análisis y Diseño de Algoritmos Árboles de Mínima Expansión (Minimum Spanning Trees) DR. JESÚS A. GONZÁLEZ BERNAL CIENCIAS COMPUTACIONALES INAOE Problema de Cableado de Circuitos Electrónicos 2 Diseño

Más detalles

Análisis de Algoritmos Problemas de grafos

Análisis de Algoritmos Problemas de grafos Análisis de Algoritmos Problemas de grafos Dra. Elisa Schaeffer elisa.schaeffer@gmail.com PISIS / FIME / UANL Problemas de grafos p. 1 INDEPENDENT SET es NP-completo Necesitamos un gadget : el triángulo.

Más detalles

Diseño Topológico de Redes

Diseño Topológico de Redes Diseño Topológico de Redes Departamento de Investigación Operativa - UDELAR OBLIGATORIO FINAL - Segundo Semestre de 2015 Dr. Ing. Franco Robledo Amoza Fecha de Entrega: 30 de Diciembre de 2015 Ejercicio

Más detalles

Teorema de Kirk y estructura normal en espacios de Banach

Teorema de Kirk y estructura normal en espacios de Banach Teorema de Kirk y estructura normal en espacios de Banach Introducción En el anterior artículo se comentaron los llamados problemas del milenio de las matemáticas [8]. Sólo uno de ellos se ha podido resolver

Más detalles

Modelos Avanzados de Computación

Modelos Avanzados de Computación UNIVERSIDAD DE GRANADA Departamento de Ciencias de la Computación e Inteligencia Artificial Modelos Avanzados de Computación Práctica 4 Problemas NP-Completos Curso 2014-2015 Doble Grado en Ingeniería

Más detalles

Extensiones finitas.

Extensiones finitas. 2. EXTENSIONES ALGEBRAICAS. Hemos dividido este tema en dos secciones: Extensiones finitas, y Clausura algebraica. En la primera relacionamos extensión finita y extensión algebraica: probamos que toda

Más detalles

Gustavo Rodríguez Gómez. Agosto Dicembre 2011

Gustavo Rodríguez Gómez. Agosto Dicembre 2011 Computación Científica Gustavo Rodríguez Gómez INAOE Agosto Dicembre 2011 1 / 44 Capítulo III Descomposición de Matrices 2 / 44 1 Descomposición de Matrices Notación Matrices Operaciones con Matrices 2

Más detalles

Optimización con restricciones de desigualdad. Yolanda Hinojosa

Optimización con restricciones de desigualdad. Yolanda Hinojosa Optimización con restricciones de desigualdad Yolanda Hinojosa Contenido Optimización no lineal con restricciones de desigualdad. Condiciones necesarias y suficientes de óptimo Análisis de sensibilidad.

Más detalles

Problemas con soluciones

Problemas con soluciones Departamento de Matemática, Universidad Técnica Federico Santa María, MAT-223. Problemas con soluciones 1) Muestre que si A es una base de una toplogía en X, entonces la topología generada por A es iqual

Más detalles

520142: ALGEBRA y ALGEBRA LINEAL

520142: ALGEBRA y ALGEBRA LINEAL 520142: ALGEBRA y ALGEBRA LINEAL Segundo Semestre 2008, Universidad de Concepción CAPITULO 10: Espacios Vectoriales DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición

Más detalles

Modelización Avanzada en Logística y Transporte

Modelización Avanzada en Logística y Transporte Modelización Avanzada en Logística y Transporte Unidad 2: Bases de programación matemática y teoría de grafos Luis M. Torres Escuela Politécnica del Litoral Guayaquil, Octubre 2006 Maestría en Control

Más detalles

Nicolás Rivera. 20 de Marzo de 2012

Nicolás Rivera. 20 de Marzo de 2012 Gramáticas Libre de Contexto Aleatorias. Nicolás Rivera 20 de Marzo de 2012 Pontificia Universidad Católica de Chile Tabla de Contenidos 1 Introducción Gramáticas Libres de Contexto Sistema de Producción

Más detalles

ALGORITMOS HEURÍSTICOS Y APROXIMADOS. Análisis y diseño de algoritmos II- 2009

ALGORITMOS HEURÍSTICOS Y APROXIMADOS. Análisis y diseño de algoritmos II- 2009 ALGORITMOS HEURÍSTICOS Y APROXIMADOS Análisis y diseño de algoritmos II- 2009 Problemas difíciles : Definiciones, ejemplos y propiedades Análisis y diseño de algoritmos II- 2009 Un viaje a Ciencias de

Más detalles

Capítulo 4: Grafos Clase 4: Árboles

Capítulo 4: Grafos Clase 4: Árboles Capítulo 4: Grafos Clase 4: Árboles Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 4: Grafos 1 / 12 Árboles Los árboles son una clase particular de grafos que

Más detalles

Definiciones Una relación R en un conjunto A es una relación de orden si verifica las propiedades reflexiva, antisimétrica y transitiva.

Definiciones Una relación R en un conjunto A es una relación de orden si verifica las propiedades reflexiva, antisimétrica y transitiva. RELACIONES DE ORDEN Definiciones Una relación R en un conjunto A es una relación de orden si verifica las propiedades reflexiva, antisimétrica y transitiva. Un conjunto parcialmente ordenado ( A, R ) es

Más detalles

Optimización lineal. Diego A. Patino. 2 de septiembre de Pontificia Universidad Javeriana 1/ 29

Optimización lineal. Diego A. Patino. 2 de septiembre de Pontificia Universidad Javeriana 1/ 29 Optimización lineal Diego A. Patino Pontificia Universidad Javeriana 2 de septiembre de 2016 1/ 29 Introducción Formulación del problema Herramientes del análisis convexo Formas de las restricciones 2/

Más detalles

Álgebra Lineal I. Espacios Vectoriales. Guillermo Garro y Araceli Guzmán. Facultad de ciencias, UNAM. Febrero, 2018

Álgebra Lineal I. Espacios Vectoriales. Guillermo Garro y Araceli Guzmán. Facultad de ciencias, UNAM. Febrero, 2018 Álgebra Lineal I Espacios Vectoriales Guillermo Garro y Araceli Guzmán Febrero, 2018 Facultad de ciencias, UNAM Índice 1. Espacios Vectoriales 2. Subespacios 3. Subespacios generados 4. Dependencia e independencia

Más detalles

4. Complejidad computacional

4. Complejidad computacional Fundamentos de Programación Entera 4. Complejidad computacional Carlos Testuri Germán Ferrari Departamento de Investigación Operativa Instituto de Computación Facultad de Ingeniería Universidad de la República

Más detalles

Curso de Posgrado: Tópicos avanzados en teoría de grafos

Curso de Posgrado: Tópicos avanzados en teoría de grafos Curso de Posgrado: Tópicos avanzados en teoría de grafos 1. Grafos planares 1.1. Preliminares Recordemos algunos conceptos: Una curva es la imagen de una función contínua f : [0, 1] R 2. Una curva poligonal

Más detalles

Espacios Vectoriales www.math.com.mx

Espacios Vectoriales www.math.com.mx Espacios Vectoriales Definiciones básicas de Espacios Vectoriales www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx MathCon c 007-009 Contenido. Espacios Vectoriales.. Idea Básica de Espacio Vectorial.................................

Más detalles

El Problema del Vendedor Viajero

El Problema del Vendedor Viajero IN47B, Ingeniería de Operaciones Contenidos 1 Introducción 2 Resolviendo TSP 3 Programación Entera y el TSP Descripción del Problema Definición: Dado un conjunto finito de ciudades, y costos de viaje entre

Más detalles

Dualidad 1. 1 Formas simétricas. 2 Relación primal-dual. 3 Dualidad: el caso general. 4 Teoremas de dualidad. 5 Condiciones de holgura complementaria.

Dualidad 1. 1 Formas simétricas. 2 Relación primal-dual. 3 Dualidad: el caso general. 4 Teoremas de dualidad. 5 Condiciones de holgura complementaria. Dualidad 1 1 Formas simétricas. 2 Relación primal-dual. 3 Dualidad: el caso general. 4 Teoremas de dualidad. Condiciones de holgura complementaria. 6 Solución dual óptima en la tabla. 7 Interpretación

Más detalles

MatemáticaDiscreta&Lógica 1. Conjuntos. Aylen Ricca. Tecnólogo en Informática San José 2014

MatemáticaDiscreta&Lógica 1. Conjuntos. Aylen Ricca. Tecnólogo en Informática San José 2014 MatemáticaDiscreta&Lógica 1 Conjuntos Aylen Ricca Tecnólogo en Informática San José 2014 http://www.fing.edu.uy/tecnoinf/sanjose/index.html CONJUNTOS.::. Definición. Según el diccionario de la Real Academia

Más detalles

Capítulo 3: Grafos Clase 1: Grafos: Modelos, tipos, representación e isomorfismo

Capítulo 3: Grafos Clase 1: Grafos: Modelos, tipos, representación e isomorfismo Capítulo 3: Grafos Clase 1: Grafos: Modelos, tipos, representación e isomorfismo Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 4: Grafos 1 / 35 Por qué estudiamos

Más detalles

Se puede dibujar la siguiente figura, empezando y terminando en el mismo punto, sin levantar e lápiz del papel?

Se puede dibujar la siguiente figura, empezando y terminando en el mismo punto, sin levantar e lápiz del papel? Se puede dibujar la siguiente figura, empezando y terminando en el mismo punto, sin levantar e lápiz del papel? Y esta otra? Los puentes de Königsberg Königsberg es famosa por ser la ciudad natal de Immanuel

Más detalles

Digrafos fuertemente conexos minimales (MSD) vs árboles

Digrafos fuertemente conexos minimales (MSD) vs árboles Digrafos fuertemente conexos minimales (MSD) vs árboles 21 de marzo de 2017 Digrafos fuertemente conexos minimales (MSD) 21vsde árboles marzo de 2017 1 / 26 Preliminares Deniciones(I): Grafo, digrafo,

Más detalles

Total de horas: Horas de teoría: semana UNIDAD 1 OBJETIVO

Total de horas: Horas de teoría: semana UNIDAD 1 OBJETIVO PROGRAMA DE ESTUDIOS Nombre de la unidad de aprendizaje Seminario de solución de problemas de Matemáticas Discretas Modalidad: Presencial Departamento: Departamento de Ciencias Básicas, Aplicadas e Ingenierías

Más detalles

Optimización Combinatoria y en Redes

Optimización Combinatoria y en Redes Optimización ombinatoria y en Redes Problema de flujo de coste mínimo. Problema de flujo máximo. Problema de la mochila. Problema de emparejamiento. Árbol de expansión de coste mínimo. Problema del viajante.

Más detalles

PAIEP. Complemento Ortogonal

PAIEP. Complemento Ortogonal Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP Universidad de Santiago de Chile Complemento Ortogonal Veamos ahora una aplicación de los vectores ortogonales a la caracterización de subespacios

Más detalles

Observación En algunas fuentes, estas coloraciones se denominan coloraciones admisibles; aquí, por comodidad, las denominamos coloraciones.

Observación En algunas fuentes, estas coloraciones se denominan coloraciones admisibles; aquí, por comodidad, las denominamos coloraciones. Coloración de grafos Hay muchos problemas, como la asignación de tareas y los problemas de almacenamiento, donde es necesario partir el conjunto de vértices (resp. aristas) de un grafo asociado de tal

Más detalles