Particiones convexas en productos de grafos

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Particiones convexas en productos de grafos"

Transcripción

1 Particiones convexas en productos de grafos Felipe Contreras Salinas DIM, Universidad de Chile Junio, 2016

2 Convexidad Definición Un conjunto S de vértices de un grafo es convexo si ningún (u, v)-camino mínimo tiene vértices fuera de S, para todo par de vértices u, v en S.

3 Convexidad Definición Un conjunto S de vértices de un grafo es convexo si ningún (u, v)-camino mínimo tiene vértices fuera de S, para todo par de vértices u, v en S.

4 Convexidad Definición Un conjunto S de vértices de un grafo es convexo si ningún (u, v)-camino mínimo tiene vértices fuera de S, para todo par de vértices u, v en S.

5 Particiones convexas p-particiónconvexa Entrada: Un grafo G Salida: Si G tiene una partición en p conjuntos convexos.

6 Particiones convexas p-particiónconvexa Entrada: Un grafo G Salida: Si G tiene una partición en p conjuntos convexos. NP-completo para grafos arbitrarios y p 2

7 Particiones convexas p-particiónconvexa Entrada: Un grafo G Salida: Si G tiene una partición en p conjuntos convexos. NP-completo para grafos arbitrarios y p 2 Cordados: O(1)

8 Particiones convexas p-particiónconvexa Entrada: Un grafo G Salida: Si G tiene una partición en p conjuntos convexos. NP-completo para grafos arbitrarios y p 2 Cordados: O(1) Cografos: O(n + m)

9 Particiones convexas p-particiónconvexa Entrada: Un grafo G Salida: Si G tiene una partición en p conjuntos convexos. NP-completo para grafos arbitrarios y p 2 Cordados: O(1) Cografos: O(n + m) Bipartitos: Polinomial

10 Particiones convexas p-particiónconvexa Entrada: Un grafo G Salida: Si G tiene una partición en p conjuntos convexos. NP-completo para grafos arbitrarios y p 2 Cordados: O(1) Cografos: O(n + m) Bipartitos: Polinomial Planares: O(n 7 ) para p = 2

11 Particiones convexas p-particiónconvexa Entrada: Un grafo G Salida: Si G tiene una partición en p conjuntos convexos. NP-completo para grafos arbitrarios y p 2 Cordados: O(1) Cografos: O(n + m) Bipartitos: Polinomial Planares: O(n 7 ) para p = 2 (?)

12 Producto Cartesiano Definición G 1 G2 está dado por V(G 1 G 2 ) = V(G 1 ) V(G 2 )

13 Producto Cartesiano Definición G 1 G2 está dado por V(G 1 G 2 ) = V(G 1 ) V(G 2 ) (u, x)(v, y) E(G 1 G 2 ) ssi uv E(G 1 ), x = y o u = v, xy E(G 2 )

14 Producto Cartesiano Definición G 1 G2 está dado por V(G 1 G 2 ) = V(G 1 ) V(G 2 ) (u, x)(v, y) E(G 1 G 2 ) ssi uv E(G 1 ), x = y o u = v, xy E(G 2 )

15 Métrica en el producto Definición Sean u, v V(G). Definimos el intervalo entre u y v como I G (u, v) = {w V(G): w está en un (u, v)-camino mínimo}

16 Métrica en el producto Lema Sean (u, x), (v, y) V(G 1 G 2 ). Entonces d((u, x), (v, y)) = d G1 (u, v) + d G2 (x, y)

17 Métrica en el producto Lema Sean (u, x), (v, y) V(G 1 G 2 ). Entonces Demostración. d((u, x), (v, y)) = d G1 (u, v) + d G2 (x, y) d((u, x), (v, y)) d G1 (u, v) + d G2 (x, y)

18 Métrica en el producto Lema Sean (u, x), (v, y) V(G 1 G 2 ). Entonces Demostración. d((u, x), (v, y)) = d G1 (u, v) + d G2 (x, y) d((u, x), (v, y)) d G1 (u, v) + d G2 (x, y)

19 Métrica en el producto Lema Sean (u, x), (v, y) V(G 1 G 2 ). Entonces d((u, x), (v, y)) = d G1 (u, v) + d G2 (x, y) Observación Sea P un camino mínimo en G 1 G 2. De este lema, tenemos que sus proyecciones en G 1 y G 2 son caminos mínimos.

20 Métrica en el producto Lema Sean a = (u, x), b = (v, y), c = (w, z) V(G 1 G 2 ). Entonces, b I(a, c) si y solo si v I G1 (u, w), y I G2 (x, z).

21 Métrica en el producto Lema Sean a = (u, x), b = (v, y), c = (w, z) V(G 1 G 2 ). Entonces, b I(a, c) si y solo si v I G1 (u, w), y I G2 (x, z). Demostración. ( ) Sea P (a, c)-camino mínimo que pasa por b. Entonces sus proyecciones cumplen lo pedido.

22 Métrica en el producto Lema Sean a = (u, x), b = (v, y), c = (w, z) V(G 1 G 2 ). Entonces, b I(a, c) si y solo si v I G1 (u, w), y I G2 (x, z). Demostración. ( ) urza pls

23 Métrica en el producto Lema Sean a = (u, x), b = (v, y), c = (w, z) V(G 1 G 2 ). Entonces, b I(a, c) si y solo si v I G1 (u, w), y I G2 (x, z). Observación Sea S convexo en G 1 G 2. De este lema, tenemos que sus proyecciones en G 1 y G 2 son convexas.

24 Convexidad en el producto Teorema Los conjuntos convexos de G 1 G 2 son de la forma S 1 S 2, donde S 1 y S 2 son convexos en G 1 y G 2, respectivamente.

25 Convexidad en el producto Teorema Los conjuntos convexos de G 1 G 2 son de la forma S 1 S 2, donde S 1 y S 2 son convexos en G 1 y G 2, respectivamente. Demostración. ( ) Del lema anterior, si S 1, S 2 convexos S 1 S 2 convexo.

26 Convexidad en el producto Teorema Los conjuntos convexos de G 1 G 2 son de la forma S 1 S 2, donde S 1 y S 2 son convexos en G 1 y G 2, respectivamente. Demostración. ( ) urza pls

27 Convexidad en el producto Teorema Los conjuntos convexos de G 1 G 2 son de la forma S 1 S 2, donde S 1 y S 2 son convexos en G 1 y G 2, respectivamente. Demostración. ( ) urza pls

28 Convexidad en el producto Teorema Los conjuntos convexos de G 1 G 2 son de la forma S 1 S 2, donde S 1 y S 2 son convexos en G 1 y G 2, respectivamente. Demostración. ( ) urza pls

29 Convexidad en el producto Teorema Los conjuntos convexos de G 1 G 2 son de la forma S 1 S 2, donde S 1 y S 2 son convexos en G 1 y G 2, respectivamente. Demostración. ( ) urza pls

30 Convexidad en el producto Teorema Los conjuntos convexos de G 1 G 2 son de la forma S 1 S 2, donde S 1 y S 2 son convexos en G 1 y G 2, respectivamente. Demostración. ( ) urza pls

31 Convexidad en el producto Teorema Sea G 2 de p vértices tal que tiene una m-partición convexa, m [p]. Entonces G 1 G 2 tiene una t-partición convexa ssi G 1 tiene una q-partición convexa tal que t [q, pq].

32 Convexidad en el producto Teorema Sea G 2 de p vértices tal que tiene una m-partición convexa, m [p]. Entonces G 1 G 2 tiene una t-partición convexa ssi G 1 tiene una q-partición convexa tal que t [q, pq]. Demostración. ( ) urza pls

33 Convexidad en el producto Teorema Sea G 2 de p vértices tal que tiene una m-partición convexa, m [p]. Entonces G 1 G 2 tiene una t-partición convexa ssi G 1 tiene una q-partición convexa tal que t [q, pq]. Demostración. ( ) urza pls

34 Convexidad en el producto Teorema Sea G 2 de p vértices tal que tiene una m-partición convexa, m [p]. Entonces G 1 G 2 tiene una t-partición convexa ssi G 1 tiene una q-partición convexa tal que t [q, pq]. Demostración. ( ) q < q : no hay r (q, q ) tq G 1 tiene r-pc, t (pq, q )

35 Convexidad en el producto Teorema Sea G 2 de p vértices tal que tiene una m-partición convexa, m [p]. Entonces G 1 G 2 tiene una t-partición convexa ssi G 1 tiene una q-partición convexa tal que t [q, pq]. Demostración. ( ) q < q : no hay r (q, q ) tq G 1 tiene r-pc, t (pq, q )

36 Convexidad en el producto Teorema Sea G 2 de p vértices tal que tiene una m-partición convexa, m [p]. Entonces G 1 G 2 tiene una t-partición convexa ssi G 1 tiene una q-partición convexa tal que t [q, pq]. Demostración. ( ) q < q : no hay r (q, q ) tq G 1 tiene r-pc, t (pq, q )

37 Preguntas

UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS DEPARTAMENTO DE INGENIERÍA MATEMÁTICA

UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS DEPARTAMENTO DE INGENIERÍA MATEMÁTICA UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS DEPARTAMENTO DE INGENIERÍA MATEMÁTICA P -PARTICIONES CONVEXAS EN UNA FAMILIA DE GRAFOS CONSTRUIDOS MEDIANTE REEMPLAZOS TESIS PARA OPTAR AL

Más detalles

El problema de dominación Grundy para grafos block

El problema de dominación Grundy para grafos block El problema de dominación Grundy para grafos block Expositor: Carolina Lucía González Autores: Gabriela Argiroffo, Carolina Lucía González Universidad Nacional de Rosario 22 de septiembre de 2016 Definiciones

Más detalles

Curso de Posgrado: Tópicos avanzados en teoría de grafos

Curso de Posgrado: Tópicos avanzados en teoría de grafos Curso de Posgrado: Tópicos avanzados en teoría de grafos 1. Grafos planares 1.1. Preliminares Recordemos algunos conceptos: Una curva es la imagen de una función contínua f : [0, 1] R 2. Una curva poligonal

Más detalles

Cuadrados mágicos y matrices de permutación

Cuadrados mágicos y matrices de permutación Cuadrados mágicos y matrices de permutación Alexey Beshenov (cadadr@gmail.com) 13 de agosto de 016 Estos son mis apuntes para una pequeña presentación para los alumnos del Programa Jóvenes Talento de la

Más detalles

GRAFOS GEOMÉTRICOS. Introducción. Número de corte. Aplicaciones. Incidencias de puntos y rectas. Distancias unitarias. k-sets.

GRAFOS GEOMÉTRICOS. Introducción. Número de corte. Aplicaciones. Incidencias de puntos y rectas. Distancias unitarias. k-sets. GRAFOS GEOMÉTRICOS CROSSING LEMMA Y APLICACIONES GEOMÉTRICAS Introducción. Número de corte. Aplicaciones. Incidencias de puntos y rectas. Distancias unitarias. k-sets. Qué es un grafo geométrico? vi =

Más detalles

Coloreo de vértices. Coloreo de Grafos. Cota superior para χ(g) Algoritmos y Estructuras de Datos III. Definiciones:

Coloreo de vértices. Coloreo de Grafos. Cota superior para χ(g) Algoritmos y Estructuras de Datos III. Definiciones: Coloreo de vértices Definiciones: Coloreo de Grafos Algoritmos y Estructuras de Datos III Un coloreo de los vértices de un grafo G = (V, E) es una asignación f : V C, tal que f (v) f (u) (u, v) E. Para

Más detalles

Coloreo de vértices Definiciones: Coloreo de Grafos. Cotas para χ Proposición: Si H es un subgrafo de G entonces χ(h) χ(g).

Coloreo de vértices Definiciones: Coloreo de Grafos. Cotas para χ Proposición: Si H es un subgrafo de G entonces χ(h) χ(g). Coloreo de vértices Definiciones: Coloreo de Grafos Algoritmos y Estructuras de Datos III Un coloreo (válido) de los vértices de un grafo G = (V, X ) es una asignación f : V C, tal que f (v) f (u) (u,

Más detalles

Nicolás Rivera. 23 de Junio de 2011

Nicolás Rivera. 23 de Junio de 2011 Teoría de Matroides. Nicolás Rivera 23 de Junio de 2011 Pontificia Universidad Católica de Chile Índice 1 Introducción: Definiciones y Propiedades básicas Índice 1 Introducción: Definiciones y Propiedades

Más detalles

Escuela de algoritmos de aproximación

Escuela de algoritmos de aproximación Escuela de algoritmos de aproximación Módulo 3: Algoritmos de aproximación para problemas de ruteo Francisco Javier Zaragoza Martínez Universidad Autónoma Metropolitana Unidad Azcapotzalco ITAM, de septiembre

Más detalles

Figura 9. Convención: Si B está entre el punto A y el punto C lo notamos A-B-C ó C-B-A.

Figura 9. Convención: Si B está entre el punto A y el punto C lo notamos A-B-C ó C-B-A. 2.3 GRUPO II. AXIOMAS DE ORDEN. Intuitivamente en Geometría, el orden establece la forma como se relacionan tres puntos distintos pertenecientes a una misma recta, esta relación es la que hemos denominado

Más detalles

OPTIMIZACIÓN EN GRAFOS Y EL PROBLEMA P=NP

OPTIMIZACIÓN EN GRAFOS Y EL PROBLEMA P=NP OPTIMIZACIÓN EN GRAFOS Y EL PROBLEMA P=NP David Pérez-García Universidad Complutense de Madrid EL PROBLEMA P=NP P VS. NP 1. Es uno de los problemas del milenio. Un millón de dólares. 2. La clase P es la

Más detalles

NP-Completitud. Agustín J. González ELO320: Estructura de Datos y Algoritmos 1er. Sem ELO320 1

NP-Completitud. Agustín J. González ELO320: Estructura de Datos y Algoritmos 1er. Sem ELO320 1 NP-Completitud Agustín J. González ELO320: Estructura de Datos y Algoritmos 1er. Sem. 2002 ELO320 1 Introducción Hasta ahora todos los algoritmos estudiados han sido algoritmos de tiempo polinomial: para

Más detalles

Grafos. Algoritmos y Estructuras de Datos III

Grafos. Algoritmos y Estructuras de Datos III Grafos Algoritmos y Estructuras de Datos III Grafos Un grafo G = (V, X ) es un par de conjuntos, donde V es un conjunto de puntos o nodos o vértices y X es un subconjunto del conjunto de pares no ordenados

Más detalles

Algoritmo de Fleury. por. Ramón Espinosa Armenta

Algoritmo de Fleury. por. Ramón Espinosa Armenta Algoritmo de Fleury por Ramón Espinosa Armenta El siguiente algoritmo, debido a Fleury (191), permite construir un circuito Euleriano en un multigrafo Euleriano. Algoritmo Fleury (G) Entrada. Un multigrafo

Más detalles

Coloreo de Grafos. Algoritmos y Estructuras de Datos III

Coloreo de Grafos. Algoritmos y Estructuras de Datos III Coloreo de Grafos Algoritmos y Estructuras de Datos III Coloreo de nodos Definiciones: Un coloreo (válido) de los nodos de un grafo G = (V, X ) es una asignación f : V C, tal que f (v) f (u) (u, v) E.

Más detalles

Coordinación de Matemática II (MAT022)

Coordinación de Matemática II (MAT022) Coordinación de Matemática II (MAT022) Primer semestre de 203 Semana 5: Lunes 5 de Abril Viernes 9 de Abril CÁLCULO Contenidos Clase : Área bajo la curva, áreas entre curvas. Clase 2: Ejercicios certamen

Más detalles

Introducción a la Teoría de Grafos

Introducción a la Teoría de Grafos Introducción a la Teoría de Grafos Conceptos Simples, Problemas Difíciles Héctor Ramírez C. 1 1 Departamento de Ingeniería Matemática Universidad de Chile Curso MA3701: Optimización Héctor Ramírez C. (U.

Más detalles

GRAFOS BIPARTITOS SOBRE CURVAS CONVEXAS PARALELAS MIGUEL GÓMEZ DOMÍNGUEZ JOSÉ LUIS ROSADO OLMO

GRAFOS BIPARTITOS SOBRE CURVAS CONVEXAS PARALELAS MIGUEL GÓMEZ DOMÍNGUEZ JOSÉ LUIS ROSADO OLMO GRAFOS BIPARTITOS SOBRE CURVAS CONVEXAS PARALELAS MIGUEL GÓMEZ DOMÍNGUEZ JOSÉ LUIS ROSADO OLMO Introducción Un grafo bipartito es biplanar si admite en un conjunto partito una recta dibujada de tal forma

Más detalles

y valores extremos. En esta sección estudiaremos los conjuntos convexos. Recordemos que un conjunto K R n es convexo si, para todo x,y K y t [0,1],

y valores extremos. En esta sección estudiaremos los conjuntos convexos. Recordemos que un conjunto K R n es convexo si, para todo x,y K y t [0,1], Capítulo 4 Convexidad 1. Conjuntos convexos En este capítulo estudiaremos el concepto de convexidad, el cual es sumamente importante en el análisis. Estudiaremos conjuntos convexos y funcionesconvexas

Más detalles

COMPLECIÓN DE CUERPOS CONVEXOS. Helmuth Villavicencio Fernández 1. (Recibido: 26/01/ Aceptado: 18/11/2014) COMPLETION OF CONVEX BODIES

COMPLECIÓN DE CUERPOS CONVEXOS. Helmuth Villavicencio Fernández 1. (Recibido: 26/01/ Aceptado: 18/11/2014) COMPLETION OF CONVEX BODIES PESQUIMAT, Revista de la F.C.M. de la Universidad Nacional Mayor de San Marcos Vol. XVIII N o 1, pp. 16-20, Lima -Perú, Abril 2015 COMPLECIÓN DE CUERPOS CONVEXOS Helmuth Villavicencio Fernández 1 (Recibido:

Más detalles

Profundidad familiar con respecto a caras de figuras regulares

Profundidad familiar con respecto a caras de figuras regulares Profundidad familiar con respecto a caras de figuras regulares Alexis Aburto, Sofía Armenta, Leonardo Martínez, José Luis Miranda, Yadira Sántiz Taller de Matemáticas Discretas 16 de junio de 2017 Conjuntos

Más detalles

Espacios Topológicos 1. Punto de Acumulación. Al conjunto de puntos de acumulación de A se le denomina el conjunto derivado de A (A a Notación).

Espacios Topológicos 1. Punto de Acumulación. Al conjunto de puntos de acumulación de A se le denomina el conjunto derivado de A (A a Notación). Espacios Topológicos 1 Punto de Acumulación Definición: Sea A un subconjunto arbitrario de R n, se dice que x R n es un punto de acumulación de A si toda bola abierta con centro x contiene un punto A distinto

Más detalles

Variantes del problema de coloreo de grafos

Variantes del problema de coloreo de grafos Departamento de Matemática Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires 4 de diciembre de 005 Qué es un grafo? Un grafo está formado por un conjunto de vértices y un conjunto de

Más detalles

Teoría de Grafos Introducción Grafos isomorfos

Teoría de Grafos Introducción Grafos isomorfos Capítulo 1 Teoría de Grafos 1.1. Introducción Definición. Denominaremos pseudomultigrafo a una terna (V,E, γ), donde V y E son conjuntos y γ : E {{u,v}: u,v V }. El conjunto V se denomina conjunto de vértices

Más detalles

Observación En algunas fuentes, estas coloraciones se denominan coloraciones admisibles; aquí, por comodidad, las denominamos coloraciones.

Observación En algunas fuentes, estas coloraciones se denominan coloraciones admisibles; aquí, por comodidad, las denominamos coloraciones. Coloración de grafos Hay muchos problemas, como la asignación de tareas y los problemas de almacenamiento, donde es necesario partir el conjunto de vértices (resp. aristas) de un grafo asociado de tal

Más detalles

Dimensión métrica de grafos infinitos S

Dimensión métrica de grafos infinitos S Dimensión métrica de grafos infinitos S J Cáceres a, C Hernando b, M Mora c, A Moreno-González d, I Pelayo e, ML Puertas a, C Seara c (a) Departamento de Estadística y Matemática Aplicada, Universidad

Más detalles

Relaciones. Estructuras Discretas. Relaciones. Relaciones en un Conjunto. Propiedades de Relaciones en A Reflexividad

Relaciones. Estructuras Discretas. Relaciones. Relaciones en un Conjunto. Propiedades de Relaciones en A Reflexividad Estructuras Discretas Relaciones Definición: relación Relaciones Claudio Lobos, Jocelyn Simmonds clobos,jsimmond@inf.utfsm.cl Universidad Técnica Federico Santa María Estructuras Discretas INF 152 Sean

Más detalles

Conexión Motivación. Lección 10

Conexión Motivación. Lección 10 Lección 10 Conexión Estudiamos la propiedad topológica que nos va a permitir obtener una versión general para espacios métricos del teorema del valor intermedio que conocemos para funciones reales de variable

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I APLICACIONES DE LA DERIVADA. 1. Derivabilidad y monotonía. creciente para x en cierto intervalo f es < 0

CÁLCULO DIFERENCIAL E INTEGRAL I APLICACIONES DE LA DERIVADA. 1. Derivabilidad y monotonía. creciente para x en cierto intervalo f es < 0 CÁLCULO DIFERENCIAL E INTEGRAL I APLICACIONES DE LA DERIVADA 1. Derivabilidad y monotonía Tenemos también el resultado: f (x) > 0 creciente para x en cierto intervalo f es Lo cual es claro, pues: Si la

Más detalles

Ecuaciones Diferenciales Ordinarias

Ecuaciones Diferenciales Ordinarias Ecuaciones Diferenciales Ordinarias (Teoremas de Existencia y Unicidad) Julio López jclopez@dim.uchile.cl Depto Ingeniería Matemática, Universidad de Chile Otoño 2011, Resumen clases Julio López EDO 1/15

Más detalles

Teoría de grafos. Coloración de vértices

Teoría de grafos. Coloración de vértices Teoría de grafos Coloración de vértices Problema: cuántas jaulas son necesarias para transportar a estos cinco animales de forma que lleguen sanos y salvos a un mismo destino? León Hámster Si dos animales

Más detalles

Modelos de Informática TeóricaCapítulo 4 - demostración de NP-completitud p.1/68

Modelos de Informática TeóricaCapítulo 4 - demostración de NP-completitud p.1/68 Modelos de Informática Teórica Capítulo 4 - demostración de NP-completitud Serafín Moral Callejón Departamento de Ciencias de la Computación Universidad de Granada Modelos de Informática TeóricaCapítulo

Más detalles

Medida Cero y Contenido Cero

Medida Cero y Contenido Cero Medida Cero y Contenido Cero Ejemplo.- Sea f : [0, 1] [0, 1] definida como 1 si x o y Q f(x, y) = 0 si x y y / Q Mostrar que f Sea P cualquier partición de y i cualquier subrectángulo inducido por esta

Más detalles

Cálculo diferencial e integral 3

Cálculo diferencial e integral 3 Cálculo diferencial e integral 3 Guía 1 1. Sean a 1,..., a n R n. Demuestra que el conjunto { W = x = (x 1,..., x n ) R n es un subespacio vectorial de R n. } n a i x i = 0 i=1 2. Sean W y V subespacios

Más detalles

Deseamos interconectar entre si todos los ordenadores de un edificio

Deseamos interconectar entre si todos los ordenadores de un edificio Teoría de grafos Deseamos interconectar entre si todos los ordenadores de un edificio Tres problemas de conexión: Conectar una serie de ordenadores por pares Procurar que la distancia por cable entre dos

Más detalles

5 RELACIONES DEFINICION

5 RELACIONES DEFINICION 5 RELACIONES 5.. Conjuntos parcialmente ordenados Las relaciones transitivas antisimétricas conducen a los órdenes parciales. De hecho, existen dos tipos de órdenes parciales, según indicamos mediante

Más detalles

Conjuntos Distinguidos del Plano

Conjuntos Distinguidos del Plano Conjuntos Distinguidos del Plano La linea Recta Ricardo Santander Baeza Departamento de Matemática y Ciencia de la Computación Universidad de Santiago de Chile Agosto 2008 El Plano Cartesiano El ambiente

Más detalles

Solución. Las dimensiones de la caja para un coste mínimo son x = 4 cm e y = 80/(4 2 ) = 5m

Solución. Las dimensiones de la caja para un coste mínimo son x = 4 cm e y = 80/(4 2 ) = 5m Ejercicio n º 1 de la opción A de septiembre de 2004 [2'5 puntos] Se desea construir una caja de base cuadrada con una capacidad de 80 cm 3. Para la tapa y la superficie lateral se usa un material que

Más detalles

Guía Semana 8 1. RESUMEN. Universidad de Chile. Ingeniería Matemática

Guía Semana 8 1. RESUMEN. Universidad de Chile. Ingeniería Matemática 1. RESUMEN FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo en Varias Variables 08-1 Guía Semana 8 Puntos críticos y optimización sin restricciones. Dada f : Ω Ê, los puntos x 0

Más detalles

Misterios de las profundidades

Misterios de las profundidades Misterios de las profundidades Día 1 Leonardo Ignacio Martínez Sandoval José Luis Miranda Olvera 12 de junio de 2017 1. Introducción Antes de comenzar recordemos algunas definiciones, para ellas tomememos

Más detalles

Pauta 14 : Divisores del Cero, Cuerpos y Complejos

Pauta 14 : Divisores del Cero, Cuerpos y Complejos MA1101-5 Introducción al Álgebra Profesor: Mauricio Telias Auxiliar: Arturo Merino Pauta 14 : Divisores del Cero, Cuerpos y Complejos de julio del 017 P1. [Anillos Booleanos] Sea (A, +, ) un anillo booleano,

Más detalles

Relaciones Binarias. Matemática Discreta. Agustín G. Bonifacio UNSL. Relaciones Binarias

Relaciones Binarias. Matemática Discreta. Agustín G. Bonifacio UNSL. Relaciones Binarias UNSL Relaciones Binarias Relaciones Binarias (Sección 3.1 del libro) Definición Una relación (binaria) R de un conjunto X a un conjunto Y es un subconjunto del producto cartesiano X Y. Si (x,y) R, escribimos

Más detalles

Introducción a la Teoría de Grafos

Introducción a la Teoría de Grafos Introducción a la Teoría de Grafos Flavia Bonomo fbonomo@dc.uba.ar do. Cuatrimestre 009 Programa Introducción a la teoría de grafos Problemas de camino mínimo Problemas de flujo máximo Programación lineal

Más detalles

Estructura de ciclos en MSDs (Minimally Strong Digraphs)

Estructura de ciclos en MSDs (Minimally Strong Digraphs) (Minimally Strong Digraphs) 28 de marzo de 2017 Jesús García MSD versus trees 21 de marzo de 2017 Luis M. Pozo 1 MSD Definición Árbol (grafo conexo minimal) Caracterización MSD versus trees Árbol Árbol

Más detalles

INAPROXIMABILIDAD. Curso: Algoritmos de aproximación Docente: Pablo Romero Estudiante: Daniel La Buonora Octubre de 2016

INAPROXIMABILIDAD. Curso: Algoritmos de aproximación Docente: Pablo Romero Estudiante: Daniel La Buonora Octubre de 2016 INAPROXIMABILIDAD Curso: Algoritmos de aproximación Docente: Pablo Romero Estudiante: Daniel La Buonora Octubre de 2016 Plan de la presentación - Definición de inaproximabilidad - Ejemplo con el problema

Más detalles

Valores extremos en los parámetros de dominación y resolución de un grafo

Valores extremos en los parámetros de dominación y resolución de un grafo Valores extremos en los parámetros de dominación y resolución de un grafo J. Cáceres 1, C. Hernando 2, M. Mora 2, I.M. Pelayo 2 y M.L. Puertas 1 1 Universidad de Almería, {jcaceres,mpuertas}@ual.es 2 Universitat

Más detalles

Problemas en P y NP. Marcos Kiwi. Semestre Otoño U. Chile

Problemas en P y NP. Marcos Kiwi. Semestre Otoño U. Chile Problemas en P y NP Marcos Kiwi U. Chile Semestre Otoño 2012 Problemas en P Path = { G, s, t : Existe un dicamino de s a t en el digrafo G} Conexo = { G : G grafo conexo} { } A Q PL = A, b, c, k : m n,

Más detalles

Operaciones extendidas de conjuntos

Operaciones extendidas de conjuntos 234 A. GENERALIDADES DE TEORÍA DE CONJUNTOS Tema 3. Operaciones extendidas de conjuntos En este tema extenderemos las operaciones de conjuntos anteriormente definidas a familias arbitrarias de conjuntos.

Más detalles

Teoría de Grafos y Árboles.

Teoría de Grafos y Árboles. Estructuras Discretas Teoría de Grafos y Árboles. Prof. Miguel Fagúndez www.geocities.com/mfagundez4 1 www.geocities.com/mfagundez4 www.geocities.com/mfagundez4 3 Grafos: Definición Un grafo no es mas

Más detalles

OPCIÓN DE EXAMEN Nº 1

OPCIÓN DE EXAMEN Nº 1 INDICACIONES Elija una de las dos opciones. No se admitirá ningún resultado si no está debidamente razonado. No se permite el uso de calculadoras gráficas ni programables. Tampoco está permitido el uso

Más detalles

Espacios vectoriales con producto escalar

Espacios vectoriales con producto escalar 147 Fundamentos de Matemáticas : Álgebra Lineal Capítulo 10 Espacios vectoriales con producto escalar 10.1 Producto escalar. Norma. Distancia Definición 71.- Un producto escalar o producto interior en

Más detalles

Solución. Como f(2) = 0, tenemos 0 = -3/(2+1) + K = -3/3 + K = -1 + K, de donde K = 1, y la función es

Solución. Como f(2) = 0, tenemos 0 = -3/(2+1) + K = -3/3 + K = -1 + K, de donde K = 1, y la función es Ejercicio n º 1 de la opción A de junio de 2004 (Modelo 6) De la función f : (-1,+ ) R se sabe que f '(x) = 3/(x +1) 2 y que f(2) = 0. (a) [1'25 puntos] Determina f. [1'25 puntos] Halla la primitiva de

Más detalles

Álgebra Lineal Capítulo 11. Tópicos Especiales y Aplicaciones Producto tensorial de espacios vectoriales y matrices

Álgebra Lineal Capítulo 11. Tópicos Especiales y Aplicaciones Producto tensorial de espacios vectoriales y matrices Álgebra Lineal Capítulo 11. Tópicos Especiales y Aplicaciones 11.4. Producto tensorial de espacios vectoriales y matrices En esta lección de nimos el producto tensorial de espacios vectoriales, transformaciones

Más detalles

2 Busca en la figura del ejercicio 1 tres vectores equivalentes a NC y otros tres equivalentes a MQ

2 Busca en la figura del ejercicio 1 tres vectores equivalentes a NC y otros tres equivalentes a MQ OPERCIONES CON VECTORES 1 La figura CD es un rombo. Compara el módulo, la dirección y el sentido de los siguientes pares de vectores: a) y C b) Q y C c)m y PD d) OC y OD a) y C tienen igual módulo y distinta

Más detalles

Trayectorias y circuitos Eulerianos y Hamiltonianos,

Trayectorias y circuitos Eulerianos y Hamiltonianos, Trayectorias y circuitos Eulerianos y Hamiltonianos, Eulerianos Trayectoria de Euler: recorrer una gráfica G utilizando cada arista de la gráfica sólo una vez, puede ser necesario o no comenzar y terminar

Más detalles

Tema: Los Grafos y su importancia para la optimización de redes.

Tema: Los Grafos y su importancia para la optimización de redes. Tema: Los Grafos y su importancia para la optimización de redes. Qué son los Grafos? Un grafo es una dupla G= {X,U}, donde X es un conjunto finito y no vacio de elementos llamados vértices y U es el conjunto

Más detalles

Comisión de Pedagogía - Diego Chamorro Análisis Funcional (Nivel 2).

Comisión de Pedagogía - Diego Chamorro Análisis Funcional (Nivel 2). AMARUN www.amarun.org Comisión de Pedagogía - Diego Chamorro Análisis Funcional (Nivel 2). Lección n 3: Lema de Baire y Teorema clásicos del Análisis Funcional EPN, verano 2012 Definición 1 (Espacio de

Más detalles

Tema 2 Conjuntos convexos

Tema 2 Conjuntos convexos Tema 2 Conjuntos convexos José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Contenidos del tema 2 Conjuntos convexos. Propiedades básicas y ejemplos. Cierre e interior de un

Más detalles

Capítulo 4: Grafos Clase 3: Grafos planares y Colorabilidad de Grafos

Capítulo 4: Grafos Clase 3: Grafos planares y Colorabilidad de Grafos Capítulo 4: Grafos Clase 3: Grafos planares y Colorabilidad de Grafos Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 4: Grafos 1 / 18 Problema de las utilidades

Más detalles

(2.b) PROPIEDADES DE LOS MODELOS LINEALES

(2.b) PROPIEDADES DE LOS MODELOS LINEALES (2.b) PROPIEDADES DE LOS MODELOS LINEALES ESTUDIO GRÁFICO DE UN P.P.L. EN R 2. Caracterización de la región factible. Resolución gráfica del problema. Óptimos alternativos. Problemas no factibles y no

Más detalles

Tema 4: FORMAS BILINEALES Y CUADRÁTICAS

Tema 4: FORMAS BILINEALES Y CUADRÁTICAS Tema 4: FORMAS BILINEALES Y CUADRÁTICAS Prof. Rafael López Camino Departamento de Geometría y Topología Universidad de Granada Material docente para el alumno Asignatura: Geometría I. Curso 2003/04 Licenciatura:

Más detalles

Conjuntos, Aplicaciones y Relaciones

Conjuntos, Aplicaciones y Relaciones Conjuntos, Aplicaciones y Relaciones Curso 2017-2018 1. Conjuntos Un conjunto será una colección de objetos; a cada uno de estos objetos lo llamaremos elemento del conjunto. Si x es un elemento del conjunto

Más detalles

Problemas de Geometría Proyectiva

Problemas de Geometría Proyectiva Problemas de Geometría Proyectiva José M. Sánchez Abril José M. Rodríguez-Sanjurjo, Jesús M. Ruiz 1995 * I. VARIEDADES PROYECTIVAS Número 1. Se consideran en el plano proyectivo P 2 los cuatro puntos a

Más detalles

TOPOLOGÍA Segundo Cuatrimestre 2009

TOPOLOGÍA Segundo Cuatrimestre 2009 TOPOLOGÍA Segundo Cuatrimestre 2009 Práctica 4: Topologías iniciales y finales Subespacios 1.1. Sea X un espacio topológico y sean Y X y Z Y subconjuntos. Muestre que la topología de Z como subespacio

Más detalles

CURVAS Y SUPERFICIES. RELACIÓN 2

CURVAS Y SUPERFICIES. RELACIÓN 2 CURVAS Y SUPERFICIES. RELACIÓN 2 SUPERFICIES EN EL ESPACIO Curso 2015-16 1. Demostrar que las siguientes cuádricas reales son superficies. Obtener una parametrización de cada una de ellas. En cada caso,

Más detalles

sup si A no es acotado.

sup si A no es acotado. Capítulo 6 Espacios completos 1. El teorema de Cantor En este capítulo estudiaremos más a fondo los espacios métricos completos. Lo primero que haremos es establecer la equivalencia entre completitud y

Más detalles

TÓPICOS AVANZADOS EN TEORÍA DE GRAFOS. F.C.E.I.A. - Universidad Nacional de Rosario Escuela de Posgrado y Ed. Continua

TÓPICOS AVANZADOS EN TEORÍA DE GRAFOS. F.C.E.I.A. - Universidad Nacional de Rosario Escuela de Posgrado y Ed. Continua TÓPICOS AVANZADOS EN TEORÍA DE GRAFOS F.C.E.I.A. - Universidad Nacional de Rosario Escuela de Posgrado y Ed. Continua 2016 UNA APLICACIÓN Problema: Cubrir (realizar) ciertos trabajos con personas (aspirantes).

Más detalles

Funciones de una variable real II Fórmula de Taylor y aplicaciones

Funciones de una variable real II Fórmula de Taylor y aplicaciones Universidad de Murcia Departamento Matemáticas Funciones de una variable real II Fórmula de Taylor y aplicaciones B. Cascales J. M. Mira L. Oncina Departamento de Matemáticas Universidad de Murcia Grado

Más detalles

MARITZA HERRERA FLOREZ YUDY MARCELA BOLAÑOS RIVERA

MARITZA HERRERA FLOREZ YUDY MARCELA BOLAÑOS RIVERA ALGORITMOS DE APROXIMACIÓN PARA PROBLEMAS NP DUROS MARITZA HERRERA FLOREZ YUDY MARCELA BOLAÑOS RIVERA UNIVERSIDAD DEL CAUCA FACULTAD DE CIENCIAS NATURALES, EXACTAS Y DE LA EDUCACIÓN DEPARTAMENTO DE MATEMÁTICAS

Más detalles

Tema IV: NP completitud

Tema IV: NP completitud Tema IV: NP completitud Definición: Un lenguaje L Σ es NP duro sii para cada L NP se tiene que L p L. Proposición 1: Si L 1 es NP duro y L 1 p L 2, entonces L 2 es NP duro. Definición: Un lenguaje L Σ

Más detalles

Integral de norma M. C. Fausto Arturo Contreras Rosales Departamento de Matemáticas y Física Universidad Autónoma de Aguascalientes

Integral de norma M. C. Fausto Arturo Contreras Rosales Departamento de Matemáticas y Física Universidad Autónoma de Aguascalientes Integral de norma M. C. Fausto Arturo Contreras Rosales Departamento de Matemáticas y Física Universidad Autónoma de Aguascalientes Es bien sabido que la integral de Lebesgue es muy superior a la de Riemann

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID. PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) MODELO DE EXAMEN (Curso )

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID. PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) MODELO DE EXAMEN (Curso ) UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) MODELO DE EXAMEN (Curso 00-003) MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN INSTRUCCIONES:

Más detalles

PROGRAMA DE CURSO UNIDADES TEMÁTICAS. Cálculo en varias variables. Unidades Docentes Cátedra Auxiliares Trabajo Personal

PROGRAMA DE CURSO UNIDADES TEMÁTICAS. Cálculo en varias variables. Unidades Docentes Cátedra Auxiliares Trabajo Personal PROGRAMA DE CURSO Código MA1003 Nombre del Curso Cálculo en varias variables Unidades Docentes Cátedra Auxiliares Trabajo Personal 10 3 2 5 Requisitos Requisitos específicos Carácter del curso MA1002,

Más detalles

Capítulo 4: Grafos Clase 2: Caminos, Circuitos Eulerianos y Hamiltonianos

Capítulo 4: Grafos Clase 2: Caminos, Circuitos Eulerianos y Hamiltonianos Capítulo 4: Grafos Clase 2: Caminos, Circuitos Eulerianos y Hamiltonianos Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 4: Grafos 1 / 29 Navegación de grafos

Más detalles

IES Fco Ayala de Granada Junio de 2011 (Específico Modelo 5) Solución Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Junio de 2011 (Específico Modelo 5) Solución Germán-Jesús Rubio Luna. Opción A IES Fco Ayala de Granada Junio de 2011 (Específico Modelo 5) Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 2011 específico1 [2'5 puntos] Un alambre de 100 m de longitud se divide

Más detalles

Números Complejos. Números naturales: útiles para contar cosas N={ 0, 1, 2, } Pero con ellos no podemos resolver la ecuación: X+5=2

Números Complejos. Números naturales: útiles para contar cosas N={ 0, 1, 2, } Pero con ellos no podemos resolver la ecuación: X+5=2 Números Complejos Números naturales: útiles para contar cosas N={ 0, 1, 2, } Pero con ellos no podemos resolver la ecuación: X+5=2 Números Complejos Entonces inventamos los números enteros: Z = { -2, -1,

Más detalles

Un estado del arte acerca de grafos perfectos y algunas variaciones

Un estado del arte acerca de grafos perfectos y algunas variaciones Universidad de Buenos Aires Facultad de Ciencias Exactas y Naturales Departamento de Matemática Tesis de Licenciatura Un estado del arte acerca de grafos perfectos y algunas variaciones Nina Pardal Director:

Más detalles

TALLERES DE MATEMATICA INSTITUCION EDUCATIVA PRESBITERO DANIEL JORDAN TEMA: IDENTIDADES TRIGONOMETRICAS GEOMETRIA ANALITICA EXPERIMENTOS ALEATORIOS

TALLERES DE MATEMATICA INSTITUCION EDUCATIVA PRESBITERO DANIEL JORDAN TEMA: IDENTIDADES TRIGONOMETRICAS GEOMETRIA ANALITICA EXPERIMENTOS ALEATORIOS TEMAS: ANALISIS DE LAS FUNCIONES TRIGONOMETRICAS ECUACIONES TRIGONOMETRICAS LA LINEA RECTA SECCIONES CONICAS TALLER NO. 1 TRABAJO EXTRACLASE ANALISIS DE LAS FUNCIONES TRIGONOMETRICAS : Escriba debajo de

Más detalles

Tesis de Licenciatura. Problemas de Conjunto Dominante en Grafos

Tesis de Licenciatura. Problemas de Conjunto Dominante en Grafos UNIVERSIDAD DE BUENOS AIRES Facultad de Ciencias Exactas y Naturales Departamento de Matemática Tesis de Licenciatura Problemas de Conjunto Dominante en Grafos Verónica Moyano Director: Min Chih Lin Junio

Más detalles

CAPÍTULO 3: COLOREO DE GRAFOS

CAPÍTULO 3: COLOREO DE GRAFOS CAPÍTULO 3: COLOREO DE GRAFOS Pablo Torres Facultad de Ciencias Exactas, Ingeniería y Agrimensura - Universidad Nacional de Rosario Asignatura: Tópicos Avanzados en Teoría de Grafos INTRODUCCIÓN INTRODUCCIÓN

Más detalles

Vectores Aleatorios. Definición 1.1. Diremos que el par (X,Y) es un vector aleatorio si X e Y representan variables aleatorias

Vectores Aleatorios. Definición 1.1. Diremos que el par (X,Y) es un vector aleatorio si X e Y representan variables aleatorias Universidad de Chile Facultad De Ciencias Físicas y Matemáticas MA3403 - Probabilidades y Estadística Prof. Auxiliar: Alberto Vera Azócar. albvera@ing.uchile.cl Vectores Aleatorios 1. Vectores Aleatorios

Más detalles

Formulando con modelos lineales enteros

Formulando con modelos lineales enteros Universidad de Chile 19 de marzo de 2012 Contenidos 1 Forma de un problema Lineal Entero 2 Modelando con variables binarias 3 Tipos de Problemas Forma General de un MILP Problema de optimización lineal

Más detalles

Geometría convexa y politopos, día 2

Geometría convexa y politopos, día 2 Geometría convexa y politopos, día 2 Alexey Beshenov (cadadr@gmail.com) 9 de agosto de 2016 2. La envolvente convexa 2.1. Definición. Si X R n es cualquier conjunto, entonces la envolvente convexa de X

Más detalles

Algebra Lineal. Gustavo Rodríguez Gómez. Verano 2011 INAOE. Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano / 21

Algebra Lineal. Gustavo Rodríguez Gómez. Verano 2011 INAOE. Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano / 21 Algebra Lineal Gustavo Rodríguez Gómez INAOE Verano 2011 Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano 2011 1 / 21 Espacios Vectoriales Espacios Vectoriales INAOE Gustavo Rodríguez Gómez (INAOE)

Más detalles

Integrales múltiples

Integrales múltiples ntegrales múltiples Cálculo (2003) El objetivo de este capítulo es definir y aprender a calcular integrales de funciones reales de varias variables, que llamamos integrales múltiples. Las motivación más

Más detalles

1. Teorema de Fubini. Teorema de Fubini.

1. Teorema de Fubini. Teorema de Fubini. 1. El teorema de Fubini nos va a dar una técnica para el cálculo de integrales de funciones de varias variables mediante el cálculo de varias integrales de funciones de una variable. partir de ahí se podrán

Más detalles

Conjuntos. Relaciones. Aplicaciones

Conjuntos. Relaciones. Aplicaciones Conjuntos. Relaciones. Aplicaciones Conjuntos 1. Considera el subconjunto A de números naturales formado por los múltiplos de 4 y el conjunto B N de los números que terminan en 4. Comprueba que A B y B

Más detalles

EJERCICIOS DE GEOMETRÍA

EJERCICIOS DE GEOMETRÍA 1) Sean las rectas EJERCICIOS DE GEOMETRÍA x 2y 6z 1 r : x y 0 x y 1 s: z 2 a a) Determinar la posición relativa de r y s según los valores de a. b) Calcular la distancia entre las rectas r y s cuando

Más detalles

Tesis de Licenciatura. Isomorsmo fraccionario de grafos e hipergrafos y sus aplicaciones

Tesis de Licenciatura. Isomorsmo fraccionario de grafos e hipergrafos y sus aplicaciones UNIVERSIDAD DE BUENOS AIRES Facultad de Ciencias Exactas y Naturales Departamento de Matemática Tesis de Licenciatura Isomorsmo fraccionario de grafos e hipergrafos y sus aplicaciones Dora Elena Tilli

Más detalles

NP Completitud I: SAT y 3-SAT. Febrero 2017

NP Completitud I: SAT y 3-SAT. Febrero 2017 s NP NP Completitud I: SAT y Facultad de Ingeniería. Universidad del Valle Febrero 2017 Contenido s NP 1 s NP 2 Contenido s NP 1 s NP 2 s NPC s NP Definición Un problema de decisión NP es considerado NP

Más detalles

Tema 1: Introducción a la Teoría de Grafos

Tema 1: Introducción a la Teoría de Grafos Tema 1: Introducción a la Teoría de Grafos MATEMÁTICA A DISCRETA Nociones básicas Subgrafos. Operaciones con grafos Formas de definir un grafo Isomorfismo de grafos Tema 1: 1 Nociones básicas: Grafo: G

Más detalles

C/ Fernando Poo 5 Madrid (Metro Delicias o Embajadores).

C/ Fernando Poo 5 Madrid (Metro Delicias o Embajadores). Junio 2012-2013 OPCION A Problema 1: Dada la matriz a) Calcúlese la matriz A -1. A -1 = 1º Se calcula el determinante de A: 2º Se calcula el adjunto de la matriz A: 3º Se calcula la transpuesta del adjunto

Más detalles

El espacio euclideano

El espacio euclideano Capítulo 1 El espacio euclideano 1. Definiciones básicas El espacio Euclideano, denotado por R n, está definido por el conjunto (1.1) R n = {x = (x 1, x 2,..., x n ) : x i R}. Es decir, R n es efectivamente

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás de mayo de 13 Capítulo 6 Año 5 6.1. Modelo 5 - Opción A Problema 6.1.1 ( puntos) Justificar razonadamente

Más detalles

Contenido. Contenidos interactivos... xiii Plataforma de contenidos interactivos... xviii Prefacio... xix. Parte I Fundamentos...

Contenido. Contenidos interactivos... xiii Plataforma de contenidos interactivos... xviii Prefacio... xix. Parte I Fundamentos... Contenido Contenidos interactivos... xiii Plataforma de contenidos interactivos... xviii Prefacio... xix Parte I Fundamentos... 1 Capítulo I Lógica, conjuntos e inducción... 2 1.1 Introducción... 4 1.2

Más detalles

Puntos y Vectores. 16 de Marzo de 2012

Puntos y Vectores. 16 de Marzo de 2012 Geometría en Puntos y Vectores Universidad Autónoma Metropolitana Unidad Iztapalapa 16 de Marzo de 2012 Introducción En Geometría analítica plana las relaciones y las propiedades geométricas se expresan

Más detalles

Núcleos por trayectorias monocromáticas. digráficas m-coloreada

Núcleos por trayectorias monocromáticas. digráficas m-coloreada en digráficas m-coloreada Hortensia Galeana Sánchez Ma. Rocío Rojas Monroy Guadalupe Gaytán Gómez Marzo 20, 2013 Definiciones Básicas Definición Una digráfica D consiste de un conjunto finito no vacío

Más detalles

Teoría de Grafos I. 2. Describa tres situaciones prácticas en las cuales un grafo pueda ser útil.

Teoría de Grafos I. 2. Describa tres situaciones prácticas en las cuales un grafo pueda ser útil. UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE COMPUTACION Matemáticas Discretas III (Cód. 6108) Práctica # 1 Teoría de Grafos I 1. Defina y de ejemplos de cada uno de los siguientes

Más detalles