C A P Í T U L O 1 LA PROBABILIDAD DE HELADA Y EL RIESGO DE DAÑO IMPORTANCIA DE LA PROBABILIDAD Y DEL RIESGO

Tamaño: px
Comenzar la demostración a partir de la página:

Download "C A P Í T U L O 1 LA PROBABILIDAD DE HELADA Y EL RIESGO DE DAÑO IMPORTANCIA DE LA PROBABILIDAD Y DEL RIESGO"

Transcripción

1 C A P Í T U L O 1 LA PROBABILIDAD DE HELADA Y EL RIESGO DE DAÑO IMPORTANCIA DE LA PROBABILIDAD Y DEL RIESGO Los métodos más eficaces de protección contra las heladas son la plantación de cultivos que no sean sensibles a la congelación, la plantación en localidades sin temperaturas de congelación, o plantar un cultivo que emerja o florezca una vez que el peligro de helada haya pasado. Los dos primeros métodos se consiguen pocas veces si lo que queremos es obtener un producto específico en un lugar que presenta temperaturas de congelación. En la mayoría de áreas del mundo, a excepción de las regiones con clima únicamente tropical, son posible las temperaturas bajo cero. Las heladas pueden producirse incluso en países con climas tropicales en altitudes elevadas. La probabilidad y el riesgo de temperaturas que causan daño varían con la época del año y, para algunos cultivos, la sensibilidad al daño a las temperaturas bajo cero también cambia. Es importante conocer la probabilidad y el riesgo ya que ayuda a los agricultores a decidir si se planta, qué y cuándo en una localidad en particular. La probabilidad nos indica qué posibilidades hay de experimentar temperaturas que causen daño en un año dado y el riesgo nos dice la probabilidad de que ocurra una helada a lo largo de un periodo dado (e.g. la esperanza de vida en años de una plantación frutal o de un método de protección contra heladas). Por ello, el análisis de probabilidad y riesgo de heladas es una herramienta útil en la toma de decisiones. La toma de decisiones sobre protección contra las heladas depende del tipo de cultivo. Por ejemplo, la helada puede dañar cultivos extensivos anuales y la probabilidad de daño por helada está afectada principalmente por la selección de plantas en los cultivos de invierno y cuándo deben sembrarse los cultivos plantados en primavera. Para los cultivos de invierno, el daño ocurre, a menudo, en la época más fría del invierno. Si utilizamos cálculos de probabilidad y de riesgo, se pueden determinar las posibilidades de que el cultivo sea dañado por la helada. Si el riesgo es alto, el cereal de invierno podría sustituirse por un cereal de primavera para reducir las pérdidas. Haan (1979) presentó la metodología para determinar la probabilidad y el riesgo para los cultivos que son dañados normalmente por congelaciones graves a mediados de invierno. Mostró cómo calcular la probabilidad de que la temperatura caiga por debajo de la temperatura crítica de daño en un año cualquiera y mostró cómo determinar el riesgo de ocurrencia una 1

2 P R O T E C C I Ó N C O N T R A L A S H E L A D A S : F U N D A M E N T O S, P R Á C T I C A Y E C O N O M Í A 2] [ o más veces en un número dado de años. El enfoque es similar al utilizado por los hidrólogos cuando determinan el período de retorno de las inundaciones o los geólogos cuando estiman la probabilidad y el riesgo de terremotos. La estadística de la probabilidad y del riesgo de inundaciones y terremotos se utiliza para tomar decisiones sobre cuánto dinero hay que invertir en edificios e infraestructuras para evitar el daño y la pérdida de vidas humanas. De forma similar la información sobre la probabilidad y el riesgo de temperaturas mínimas se utiliza para tomar decisiones acerca de la posibilidad de que se pierda un cultivo por daño por heladas, en un año cualquiera o a lo largo de varios años. Estas posibilidades calculadas se utilizan para decidir si debería plantarse el cultivo, si vale la pena invertir en seguros, si debe plantarse un cultivo distinto, o si la protección contra las heladas es eficaz en costes. Conocer la probabilidad exacta de alcanzar una temperatura crítica específica de daño en una fecha determinada, en primavera y en otoño, es útil para determinar fechas de siembra y de cosecha en cultivos anuales y la duración deseable de la estación de crecimiento para evitar el daño por helada. Con este libro se proporciona el procedimiento para estimar estas probabilidades y un programa Excel FriskS.xls para realizar los cálculos. En frutales y en viña, las temperaturas críticas de daño cambian con el estado de desarrollo del cultivo y las fechas de los estados de crecimiento varían de un año a otro. En consecuencia, determinar la probabilidad y el riesgo para plantaciones frutales y de viña es más complicado que para cultivos anuales. Por ejemplo, una temperatura crítica de daño (T c ) puede ser 7 C o inferior en el estadio de rotura de yemas pero puede aumentar hasta 2 C o superior durante el estado de fruto pequeño, un mes más o menos más tarde. Con este libro se proporciona un programa (TempRisk.xls) para calcular la probabilidad y el riesgo asociado con una temperatura crítica de daño durante un período de tiempo específico correspondiente a un estado de crecimiento. Por ejemplo, en la aplicación, la T c y las fechas de inicio y finalización para el período de interés son datos a introducir. Luego, utilizando 20 o más años de datos climáticos de temperatura mínima, se calcula la probabilidad de que la temperatura caiga por debajo de T c durante este período en un año dado y el riesgo de que ocurra una o más veces dentro de 5, 10,, 30 años y se representa gráficamente. En este capítulo se discuten los métodos y las instrucciones de uso de TempRisk.xls. CÁLCULOS DE RIESGO Y CERTIDUMBRE El análisis de riesgo se utiliza para estimar las probabilidades de que un evento dañino ocurra o no a largo plazo (i.e. en varios años). Por ejemplo, un agricultor quiere saber el riesgo de que un cultivo en particular se pierda por helada durante

3 LA PROBABILIDAD DE HELADA Y EL RIESGO DE DAÑO la vida esperada de la plantación o la vida prevista del método de protección contra helada. En este libro, el riesgo se determina con el método de Haan (1979) que utiliza una distribución binomial (i.e. un proceso de Bernoulli). En una distribución binomial, el riesgo (R) de tener una o más ocurrencias de temperatura por debajo de la temperatura mínima seleccionada en un período de n años se calcula como: donde es la combinación de n elementos tomando 0 cada vez y P 0 = 1,0. Simplificando esta ecuación obtenemos: donde P = P ( T < T c ). Como este es el riesgo de tener uno o más eventos de heladas dañinas en n años, la certidumbre (C) de no tener heladas viene dada por: Entonces, la probabilidad (P) de tener una helada en un año dado puede calcularse a partir de la certidumbre (C) como: donde C es la probabilidad, en tanto por uno, de que el evento no ocurrirá en un número especificado de años (n). En la Tabla 1.1 se muestra una tabla de probabilidades del suceso de heladas en un año correspondiente a un rango de valores de certidumbre y períodos de diseño (años). Por ejemplo, para tener una certidumbre del 90% (i.e. C = 0,90) de que la temperatura mínima no caerá por debajo de una temperatura de daño en particular (T c ) en los próximos 15 años, la probabilidad de que este evento ocurra en cualquier año debe ser menor de 0,007 o 0,7% (i.e. en años, no debería ocurrir más de siete veces). CÁLCULOS DE LA PROBABILIDAD DE LOS EVENTOS En la sección previa se ha establecido que una probabilidad P = 0,007 corresponde a una certidumbre del 90% de que un evento extremo no ocurrirá más de 7 veces cada años. La probabilidad de que un evento extremo ocurra en un año dado debería determinarse a ser posible calculando el cociente de sucesos extremos observados a lo largo del número de años registrados. Sin embargo, normalmente se tiene suerte si se dispone de 20 o 30 años de datos, antes que los años o 3

4 P R O T E C C I Ó N C O N T R A L A S H E L A D A S : F U N D A M E N T O S, P R Á C T I C A Y E C O N O M Í A 4] [ T A B L A 1. 1 Probabilidad (P) de que ocurra un evento en un año dado correspondiente a la certidumbre (%) de que el evento no ocurra durante el periodo propuesto CERTIDUMBRE % ,2140 0,1894 0,1674 0,1476 0,1294 0,1127 0,0971 0,0825 0,0689 0,0559 0,0436 0,0320 0,0209 0,0102 0,1134 0,0997 0,0876 0,0767 0,0670 0,0580 0,0498 0,0422 0,0350 0,0284 0,0221 0,0161 0,0105 0,0051 PERIODO DE DISEÑO (AÑOS) ,0771 0,0676 0,0593 0,0518 0,0452 0,0391 0,0335 0,0283 0,0235 0,0190 0,0148 0,0108 0,0070 0,0034 0,0584 0,0511 0,0448 0,0391 0,0341 0,0294 0,0252 0,0213 0,0177 0,0143 0,0111 0,0081 0,0053 0,0026 más necesarios. Dado que los datos son limitados, la mejor aproximación es determinar una función de densidad de probabilidad a partir del conjunto de datos existentes. La función de densidad de probabilidad es una aproximación de lo que cabría esperar si dispusiéramos de o más años de datos. Hay muchos tipos de funciones de densidad de probabilidad, pero Haan (1979) obtuvo buenos resultados para datos de temperaturas mínimas utilizando una función de densidad de probabilidad de valor extremo tipo I. La curva acumulada para una función de densidad de probabilidad de valor extremo tipo I es: donde α = σ/1,283, β = µ + 0,45α; y µ es la temperatura mínima media y σ es la desviación típica de las temperaturas mínimas en los años registrados. Por tanto, calculando la media y la desviación típica de las temperaturas mínimas de los años, calculando α y β e insertándolos en la Ecuación 1.5, se puede encontrar la probabilidad de que la temperatura mínima en un año cualquiera caiga por debajo de T c. La probabilidad resultante (P) de que ocurra el evento en un año 25 0,0470 0,0411 0,0360 0,0314 0,0273 0,0236 0,0202 0,0171 0,0142 0,0114 0,0089 0,0065 0,0042 0, ,0393 0,0344 0,0301 0,0263 0,0228 0,0197 0,0169 0,0143 0,0118 0,0095 0,0074 0,0054 0,0035 0,0017

5 LA PROBABILIDAD DE HELADA Y EL RIESGO DE DAÑO dado puede ser un dato de entrada en la Ecuación 1.3 con un periodo de diseño (n) para estimar la certidumbre de que una temperatura extrema por debajo de T c no ocurrirá dentro de los n años. Por ejemplo, si P = 0,0111 y el periodo de diseño es de 20 años, se corresponde con una certidumbre C = 80% de que el evento no ocurrirá en un período de 20 años (Tabla 1.1). CULTIVOS CON UNA SENSIBILIDAD ESTABLECIDA Haan (1979) presentó un método para estimar la probabilidad y el riesgo de que la temperatura caiga por debajo de un valor crítico cuando se ha establecido la sensibilidad del cultivo al daño. Se modificó el modelo y se escribió un programa MS Excel TempRisk.xls para hacer cálculos para un período de tiempo seleccionado por el usuario. Las probabilidades se calculan utilizando una función de valor extremo tipo I y el riesgo se calcula utilizando un proceso de Bernoulli. Con este libro se incluye el programa TempRisk.xls. Datos de entrada Hasta 50 años de datos de temperatura mínima pueden introducirse en la hoja Datos de TempRisk.xls (Figura 1.1) y ser analizados para calcular la probabilidad y el riesgo. Una precisión mayor se asocia con más años de datos, pero para un análisis fiable se requieren un mínimo de 20 años de datos. Las fechas de inicio y de finalización para el período a evaluar y la temperatura crítica son datos de entrada en las celdas de la parte superior izquierda de la hoja Datos y la probabilidad de sobrepasar el evento se muestra debajo de la celda de la temperatura crítica. F I GU R A 1. 1 Ejemplo de la hoja Datos del programa TempRisk.xls 5

6 P R O T E C C I Ó N C O N T R A L A S H E L A D A S : F U N D A M E N T O S, P R Á C T I C A Y E C O N O M Í A 6] [ Resultados de la Probabilidad La probabilidad de que la temperatura mínima caiga por debajo de la temperatura crítica se representa en la hoja Datos. Sin embargo, la probabilidad de tener una temperatura inferior dentro de un intervalo de temperaturas bajo cero se traza en el gráfico ProbHelada (Figura 1.2). Por ejemplo, en la Figura 1.2, hay sobre un 8% de probabilidad de que la temperatura mínima caiga por debajo de -4 C durante el período del 1 de mayo hasta el 20 de diciembre para los datos que se han introducido en TempRisk.xls. F I GU R A 1. 2 La probabilidad de tener una temperatura mínima más baja durante un período de tiempo definido (del gráfico ProbHelada del programa TempRisk.xls) trazada frente a la correspondiente temperatura mínima Hoja de cálculo y gráfico del riesgo La certidumbre de no tener temperaturas mínimas por debajo de la temperatura crítica de daño para períodos de diseño de 5, 10,, 30 años se ha trazado en el gráfico Riesgo de TempRisk.xls (Figura 1.3). Por ejemplo, existe una certidumbre de un 65% de que la temperatura mínima no caiga por debajo de -4 C en un período de 5 años. Al mismo tiempo, hay una certidumbre de tan sólo un 10% de que ésto no ocurra durante un período de 30 años. Claramente, un período de diseño más largo tiene más oportunidades de ocurrencia del daño.

7 LA PROBABILIDAD DE HELADA Y EL RIESGO DE DAÑO F I GU R A 1. 3 Certidumbre (%) de no tener eventos con la temperatura mínima cayendo por debajo de la temperatura crítica fijada (i.e. -4,0 C) entre el 1 de mayo y el 20 de diciembre dentro de un período de diseño de 5, 10,, 30 años (de la hoja Riesgos y gráfico del programa TempRisk.xls) FECHAS DE LA ÚLTIMA HELADA EN PRIMAVERA Y DE LA PRIMERA HELADA EN OTOÑO Es importante conocer la probabilidad asociada con la fecha de la última helada perjudicial en primavera y la primera helada perjudicial en otoño para planificar cuándo plantar un cultivo. Por ejemplo, una fecha de plantación tardía es apropiada si la probabilidad de temperatura dañina es demasiado alta en primavera. En el caso de que la probabilidad de una temperatura dañina sea alta, antes de la cosecha, en otoño, lo más inteligente es plantar una variedad de ciclo corto. También es ventajoso conocer la probabilidad y el riesgo cuando se desarrollan estrategias a largo plazo sobre las fechas de siembra y de cosecha, y para la selección de variedades. Además de identificar posibles problemas de heladas, analizar la probabilidad y el riesgo proporciona información sobre las posibilidades de que ocurran estos problemas. Por consiguiente, es útil decidir un nivel aceptable de riesgo para cultivar un cultivo así como para decidir si es justificable la protección contra las heladas. Con este libro se suministra el programa FriskS.xls para hacer los cálculos de probabilidad y de riesgo asociados con las fechas de la última helada de primavera y de la primera helada de otoño. 7

8 P R O T E C C I Ó N C O N T R A L A S H E L A D A S : F U N D A M E N T O S, P R Á C T I C A Y E C O N O M Í A 8] [ Introducción de datos La precisión de los cálculos de probabilidad de los datos de temperatura viene limitada por los años disponibles, por ello, un número mayor de años proporciona una estimación más precisa. Para utilizar la aplicación FriskS.xls, se introducen un mínimo de 20 años de datos de temperatura mínima diaria en la hoja Data. No obstante, se utilizan más años de datos si están disponibles. Es importante poner el año correspondiente a los datos de temperatura en la parte superior de la columna. Una temperatura crítica introducida en una celda cerca de la parte superior izquierda de la hoja Datos (Figura 1.4). Resultados de la Probabilidad Una vez entrados los datos, FriskS.xls calcula las probabilidades de que ocurra una temperatura mínima por debajo de la temperatura crítica en una fecha más tardía en primavera. De forma similar, se calculan las probabilidades de que ocurra una temperatura mínima por debajo de la temperatura crítica en una fecha más temprana en otoño. Después se representan las probabilidades de tener una temperatura mínima más baja que la temperatura crítica en una fecha más tardía en primavera o más temprana en otoño con respecto a la fecha en el gráfico ProbHeladas (Figura 1.5). Gráfico de la estación de crecimiento La aplicación FriskS.xls también calcula las probabilidades de duración de la estación de crecimiento. Aquí, la duración de la estación de crecimiento se define como el número de días entre la media de las fechas del último día de primavera con una temperatura mínima por debajo de la temperatura crítica y la media de F I GU R A 1. 4 Ejemplo de datos de entrada en la hoja Datos del programa FriskS.xls, con una temperatura crítica T c = -2,0 C

9 LA PROBABILIDAD DE HELADA Y EL RIESGO DE DAÑO las fechas del primer día de otoño con una temperatura mínima por debajo de la temperatura crítica. Las probabilidades son trazadas respecto a la fecha en el gráfico EstaciónCrecimiento. En la Figura 1.6 se muestra un ejemplo. F I GU R A 1. 5 Un gráfico con la probabilidad de tener una fecha con la temperatura mínima más baja más tarde en primavera o más temprana en otoño versus fecha (del gráfico ProbHeladas del programa FriskS.xls) F I GU R A 1. 6 Probabilidad de menos días entre la última fecha en primavera y la primera fecha en otoño con una temperatura mínima por debajo de la temperatura crítica (del gráfico EstaciónCrecimiento del programa FriskS.xls) 9

10 ] P R O T E C C I Ó N C O N T R A L A S H E L A D A S : F U N D A M E N T O S, P R Á C T I C A Y E C O N O M Í A [ Hoja de cálculo y gráfico del riesgo La certidumbre de no tener temperaturas mínimas por debajo de la temperatura crítica (e.g. T c = 0,0 C) después de una fecha seleccionada en la primavera se calcula y se muestra en la hoja y en el gráfico RiesgosPrimavera (Figura 1.7). La fecha seleccionada (i.e. para determinar la probabilidad de que T < T c en una fecha posterior) es un dato de entrada en la parte superior de la hoja RiesgosPrimavera (e.g. 20 de marzo en la Figura 1.7). Se calcula y se muestra la probabilidad (%) de que ocurra un día con T < T c después de esta fecha en un año cualquiera. Entonces, las certidumbres (%) de que no se observarán temperaturas por debajo de T c durante los periodos de diseño de 5, 10,, 30 años se muestran en un gráfico de columnas. Por ejemplo, hay una certidumbre de un 45% de que no se observará una temperatura por debajo de T c = 0 C después del 20 de marzo, pero hay menos del 1% de certidumbre de que no ocurrirá una temperatura por debajo de 0 C después del 20 de marzo durante un periodo de 30 años (Figura 1.7). Se utiliza un procedimiento similar para calcular y mostrar certidumbres de que una temperatura mínima caerá por debajo de T c antes de la fecha seleccionada en otoño. La Figura 1.8 muestra un ejemplo de la hoja RiesgosOtoño con la fecha seleccionada de 1 de noviembre y una T c = 0,0 C. De nuevo las certidumbres se muestran en un gráfico de columnas. Por ejemplo, hay una certidumbre cercana al 85% de que no habrá temperaturas mínimas por debajo de 0 C antes del 1 de noviembre durante un período de 5 años. Para un período de 30 años, la certidumbre es únicamente del 35%. Métodos de cálculo El programa FriskS.xls primero determina, para cada año, la fecha del último día de primavera en que la temperatura mínima cae por debajo de la temperatura crítica introducida. Después calcula la media (µ d ) y la desviación típica (σ d ) de la última fecha en primavera durante los años registrados. Las probabilidades para la última fecha de helada en primavera se calculan utilizando: donde d es el día del año, α d = σ d / 1,283 y β d = µ d + 0,45 α d. 10

11 LA PROBABILIDAD DE HELADA Y EL RIESGO DE DAÑO F I GU R A 1. 7 Certidumbre (%) de que no haya eventos de temperatura mínima cayendo por debajo de T c después de 20 Marzo en 5, 10,, 30 años (de la hoja y gráfico RiesgosPrimavera del programa FriskS.xls) F I GU R A 1. 8 Certidumbre (%) de que no haya eventos con temperatura mínima cayendo por debajo de T c antes del 1 de noviembre en 5, 10,, 30 años (de la hoja y gráfico RiesgosOtoño del programa FriskS.xls) 11

12 ] P R O T E C C I Ó N C O N T R A L A S H E L A D A S : F U N D A M E N T O S, P R Á C T I C A Y E C O N O M Í A [ Para la primera fecha con temperatura dañina en otoño se calcula la media y la desviación típica sobre los años de registro y las probabilidades se calculan utilizando las mismas ecuaciones para α d, β d y P(T n < T). Los cálculos de la certidumbre para los gráficos RiesgosPrimavera y RiesgosOtoño se hacen utilizando la Ecuación 1.3. Para los cálculos de la estación de crecimiento, las diferencias anuales entre la última fecha en primavera y la primera en otoño se utilizan para calcular la media y la desviación típica del período. Después, se utilizan las mismas ecuaciones usadas para la última fecha en primavera y la primera en otoño para calcular las probabilidades de tener menos días durante la estación de crecimiento. APLICACION DEL ESTIMADOR DE DAÑO (DEST.XLS) El programa estimador de daño MS Excel DEST.xls se usa para calcular el daño esperado por helada y el rendimiento esperado del cultivo, utilizando datos climáticos específicos del lugar, de temperatura máxima y mínima para cultivos que no tienen protección contra las heladas, y utilizando hasta 11 métodos distintos de protección contra las heladas. En el análisis pueden utilizarse hasta 50 años de datos de temperatura máxima y mínima. Las temperaturas críticas asociadas con un daño del 90% (T 90 ) y del 10% (T 10 ) son los datos de entrada correspondientes a los momentos fenológicos específicos. Se asume que el daño por helada es multiplicativo. Por ejemplo, una helada que causa un daño del 50% seguida de una segunda helada con un daño del 50% resultará en un pérdida de cosecha del 75% (i.e. 50% en la primera helada y 50% de 50% = 25% en la segunda helada). Se asume que el daño está directamente relacionado con la temperatura mínima y que no está relacionado con su duración. El programa está estructurado en tres pasos. En el primero, las estimaciones de ºC de protección esperadas para los 11 métodos de protección son datos de entrada en la hoja EmpezarAquí (Figura 1.9). A continuación, hay que introducir el nombre del cultivo, la altura del cultivo, las plantas por hectárea, el tipo de planta y el rendimiento esperable sin daños por helada. Si se aplica aclareo al cultivo, hay que entrar el porcentaje de frutos eliminados en la celda apropiada. Si en el cultivo no se aplica aclareo, hay que dejar un 0% en la celda de aclareo. Cuando la aplicación se hace correr de nuevo, escriba Y en la celda Borrar todas las entradas previas para eliminar las entradas previas. Hay que dejar la N o teclear N para dejar las entradas mostradas en la hoja, Una vez finalizadas las entradas, hay que presionar Completar paso 1 de 3 para continuar con el paso 2. 12

13 LA PROBABILIDAD DE HELADA Y EL RIESGO DE DAÑO F I GU R A 1. 9 Ejemplo de entradas para la hoja EmpezarAquí En el segundo paso, hay que entrar los datos climáticos de la temperatura máxima y mínima. En la Figura 1.10 se muestra un ejemplo con los datos de temperaturas máximas y mínimas de unos pocos primeros días de algunos años. Únicamente es necesario entrar datos para el período en que sean probables las heladas. Este período debería incluir las fechas en las que hay temperaturas críticas en la tabla incluida en la hoja Cultivo. Una vez finalizado, hay que presionar en Completar paso 2 de 3 para continuar. Finalmente, el tercer paso es entrar los datos de la temperatura crítica correspondiente a las fechas de los estados fenológicos sensibles. Por ejemplo, la Figura 1.11 muestra la entrada de los datos de T 90 y de T 10 y las fechas de los estados fenológicos de manzano cv. Golden Delicious. El programa analizará únicamente los datos entre la primera y la última fecha con estados críticos. Por consiguiente, debería entrarse en último estadio tal como se muestra en la Figura 1.11 para identificar el último período. 13

14 ] P R O T E C C I Ó N C O N T R A L A S H E L A D A S : F U N D A M E N T O S, P R Á C T I C A Y E C O N O M Í A F I GU R A Un ejemplo de entrada de temperaturas mínimas y máximas para la hoja Meteorología F I GU R A Ejemplo de los datos de entrada de T 90 y de T 10 correspondientes a las fechas de los estadios fenológicos críticos en la hoja Cultivo [ Una vez se ha finalizado con la hoja Cultivo, presiona sobre Completar paso 3 de 3 y la aplicación muestra los resultados en la hoja Resultados donde se puede encontrar: 1. Una tabla del porcentaje anual de daño por helada en el fruto para un cultivo no protegido y para los 11 métodos de protección (Figura 1.12). 14

15 LA PROBABILIDAD DE HELADA Y EL RIESGO DE DAÑO F I GU R A Ejemplo de la hoja Resultados que muestra las medias y las desviaciones típicas del porcentaje de daño y del rendimiento para los 11 métodos de protección y sin protección En la hoja de cálculo se muestra también la fracción de pérdida de producción potencial debido al daño por helada y la producción comercial para cada año y método de protección. En la aplicación DEST.xls, se muestra la parte inferior de la tabla a la derecha de la tabla del medio. 2. Una tabla del rendimiento anual en toneladas por hectárea para el cultivo no protegido y para los 11 métodos de protección. Si en la hoja EmpezarAquí se ha entrado un porcentaje de frutos aclarados, no hay reducción del rendimiento hasta que ese porcentaje de frutos se ha perdido primero debido a daño por helada. Por ello, si hay una helada, se asume que el daño 15

16 por helada aclara el cultivo y únicamente las pérdidas adicionales al aclareo afectarán al rendimiento final. 3. Una tabla resumen con medias y desviaciones típicas anuales del porcentaje de pérdidas de frutos, y medias y desviaciones típicas de los rendimientos del cultivo (Figura 1.12). 4. En la tabla resumen se muestran la media y la desviación típica del número de heladas y de su duración. En este capítulo se investiga el cálculo del riesgo físico de daño por helada, y se presenta cómo utilizar e interpretar el calculador de riesgo de daño físico de helada (DEST.xls). En el próximo capítulo, se investiga y se evalúa, en términos económicos, la decisión financiera de si hay que implementar o no la protección contra las heladas. El concepto de riesgo es, en consecuencia, extendido desde el riesgo físico al riesgo financiero. Se presenta un programa de ordenador personal para ayudar en la toma de decisiones. [ ] P R O T E C C I Ó N C O N T R A L A S H E L A D A S : F U N D A M E N T O S, P R Á C T I C A Y E C O N O M Í A 16

C A P Í T U L O 2 EVALUACIÓN ECONÓMICA DE LOS MÉTODOS DE PROTECCIÓN INTRODUCCIÓN

C A P Í T U L O 2 EVALUACIÓN ECONÓMICA DE LOS MÉTODOS DE PROTECCIÓN INTRODUCCIÓN C A P Í T U L O 2 EVALUACIÓN ECONÓMICA DE LOS MÉTODOS DE PROTECCIÓN INTRODUCCIÓN Los problemas financieros aparecen, a menudo, por malas inversiones en tierra, maquinaria, edificaciones y otros activos

Más detalles

Estadística con Excel Informática 4º ESO ESTADÍSTICA CON EXCEL

Estadística con Excel Informática 4º ESO ESTADÍSTICA CON EXCEL 1. Introducción ESTADÍSTICA CO EXCEL La estadística es la rama de las matemáticas que se dedica al análisis e interpretación de series de datos, generando unos resultados que se utilizan básicamente en

Más detalles

El rendimiento de la inversión con BIM

El rendimiento de la inversión con BIM MODELADO DE INFORMACIÓN DE EDIFICIOS REVIT El rendimiento de la inversión con BIM En este documento se analiza en profundidad el rendimiento de la inversión (ROI) de las soluciones de modelado de información

Más detalles

1.1. Introducción y conceptos básicos

1.1. Introducción y conceptos básicos Tema 1 Variables estadísticas Contenido 1.1. Introducción y conceptos básicos.................. 1 1.2. Tipos de variables estadísticas................... 2 1.3. Distribuciones de frecuencias....................

Más detalles

ANALISIS DE DATOS CON EXCEL

ANALISIS DE DATOS CON EXCEL 1 ANALISIS DE DATOS CON EXCEL 1 USAR FORMULAS Y FUNCIONES PARA CALCULAR VALORES Las funciones son fórmulas predefinidas que ejecutan cálculos utilizando valores específicos, denominados argumentos, en

Más detalles

Capítulo 10. Análisis descriptivo: Los procedimientos Frecuencias y Descriptivos

Capítulo 10. Análisis descriptivo: Los procedimientos Frecuencias y Descriptivos Capítulo 10 Análisis descriptivo: Los procedimientos Frecuencias y Descriptivos Al analizar datos, lo primero que conviene hacer con una variable es, generalmente, formarse una idea lo más exacta posible

Más detalles

UNIVERSIDAD NACIONAL AGRARIA Escuela de Post-Grado. Estadistica Aplicada a la FORESTERIA II INDICE DE TEMAS

UNIVERSIDAD NACIONAL AGRARIA Escuela de Post-Grado. Estadistica Aplicada a la FORESTERIA II INDICE DE TEMAS UNIVERSIDAD NACIONAL AGRARIA Escuela de Post-Grado Estadistica Aplicada a la FORESTERIA II 2007 INDICE DE TEMAS Metodos Generales: 1. Principios basicos del diseño experimental 2. Tipos de experimentos

Más detalles

EVALUACIÓN ECONÓMICA DEL CULTIVO DEL PALTO Carlos A. Wilhelmy Gorget

EVALUACIÓN ECONÓMICA DEL CULTIVO DEL PALTO Carlos A. Wilhelmy Gorget EVALUACIÓN ECONÓMICA DEL CULTIVO DEL PALTO Carlos A. Wilhelmy Gorget Para hacer una evaluación económica lo más completa, clara y real posible, es preferible plantear un proyecto específico, de manera

Más detalles

3. Descripción física del rayo. Parámetros

3. Descripción física del rayo. Parámetros 3. Descripción ísica del rayo. Parámetros 3.1. PROCESO DE DESCARGA DE UNA NUBE El rayo es una descarga transitoria de elevada intensidad; la mitad de estos rayos ocurren en el interior de la nube, y la

Más detalles

ANÁLISIS AGROMETEOROLÓGICO OASIS SUR CAMPAÑA VITÍCOLA 2011-2012

ANÁLISIS AGROMETEOROLÓGICO OASIS SUR CAMPAÑA VITÍCOLA 2011-2012 ANÁLISIS AGROMETEOROLÓGICO OASIS SUR CAMPAÑA VITÍCOLA 2011-2012 RED DE ESTACIONES RED TELEMÉTRICAS AUTOMÁTICAS Latitud Longitud Altitud Las Paredes S 34º30 34,8 W 68º22 25,6 813 msnm La Llave S 34º38 51,7

Más detalles

Proyectos de inversión. Economía de la Empresa (ISS)

Proyectos de inversión. Economía de la Empresa (ISS) Proyectos de inversión Economía de la Empresa (ISS) 1 Categorías de Flujo de Efectivo El flujo de caja flujos suelen contener las siguientes categorías de flujo de caja. Estas categorías se describen para

Más detalles

CAPÍTULO 5 ANÁLISIS DE CONVERGENCIA DEL MÉTODO BINOMIAL AL MODELO DE BLACK & SCHOLES

CAPÍTULO 5 ANÁLISIS DE CONVERGENCIA DEL MÉTODO BINOMIAL AL MODELO DE BLACK & SCHOLES CAPÍTULO 5 ANÁLISIS DE CONVERGENCIA DEL MÉTODO BINOMIAL AL MODELO DE BLACK & SCHOLES Para la valuación de opciones hay dos modelos ampliamente reconocidos como son el modelo binomial y el modelo de Black

Más detalles

PROSAP-UTF/ARG/017/ARG Desarrollo Institucional para la Inversión

PROSAP-UTF/ARG/017/ARG Desarrollo Institucional para la Inversión PROSAP-UTF/ARG/017/ARG Desarrollo Institucional para la Inversión ESTUDIO DE AMPLIACIÓN DEL POTENCIAL DE IRRIGACIÓN EN ARGENTINA Metodología de Simulación Montecarlo Julio 2014 Anexo: Metodología de Simulación

Más detalles

PÉRDIDA DE CARGA Y EFICIENCIA ENERGÉTICA.

PÉRDIDA DE CARGA Y EFICIENCIA ENERGÉTICA. PÉRDIDA DE CARGA Y EFICIENCIA ENERGÉTICA. Con unos costos de la energía en aumento y con unas limitaciones cada vez mayores a la emisión de gases de efecto invernadero, el diseño de equipos e instalaciones

Más detalles

Ejercicio de estadística para 3º de la ESO

Ejercicio de estadística para 3º de la ESO Ejercicio de estadística para 3º de la ESO Unibelia La estadística es una disciplina técnica que se apoya en las matemáticas y que tiene como objetivo la interpretación de la realidad de una población

Más detalles

Medidas de tendencia central o de posición: situación de los valores alrededor

Medidas de tendencia central o de posición: situación de los valores alrededor Tema 10: Medidas de posición y dispersión Una vez agrupados los datos en distribuciones de frecuencias, se calculan unos valores que sintetizan la información. Estudiaremos dos grandes secciones: Medidas

Más detalles

Centro de Capacitación en Informática

Centro de Capacitación en Informática Combinación de funciones y fórmulas =SI(Y(...)...) o =Si(O(...)...) En secciones anteriores vimos que la función SI() debía cumplir una condición, como por ejemplo, controlar si en una celda determinada

Más detalles

3.1 Opciones reales Opciones Call Opciones Put Compra de Call

3.1 Opciones reales Opciones Call Opciones Put Compra de Call 3.1 Opciones reales La teoría de opciones tiene un origen puramente financiero, se usa ampliamente como estrategia de cobertura de riesgos para inversiones en valores o acciones e inclusive existen opciones

Más detalles

3. CÁLCULOS Y FORMATOS CONDICIONALES

3. CÁLCULOS Y FORMATOS CONDICIONALES colores, tendremos las opciones Mínima y Máxima, con tres campos cada una: Tipo, Valor y Color. Con este formato podemos crear una regla que le asigne un color al menor valor y otro al mayor, y dé a los

Más detalles

= C18+C19+C20+C21+C22 = SUMA(C18:C22) Con este sencillo ejemplo hemos querido demostrar que las funciones nos permiten simplificar los cálculos.

= C18+C19+C20+C21+C22 = SUMA(C18:C22) Con este sencillo ejemplo hemos querido demostrar que las funciones nos permiten simplificar los cálculos. Alexandra Hernández Mesa LAS FUNCIONES EN EXCEL Las funciones son la principal característica de una Hoja de Cálculos. El primer paso para exprimir al máximo el potencial de Excel es conocer y dominar

Más detalles

LECCIÓN SEIS: Preparando un Presupuesto de Efectivo

LECCIÓN SEIS: Preparando un Presupuesto de Efectivo Elaborando un Presupuesto Una guía de auto estudio para miembros y personal de cooperativas agrícolas LECCIÓN SEIS: Preparando un Presupuesto de Efectivo Objetivo: En esta lección el gerente de la Cooperativa

Más detalles

REPRESENTACIÓN DE UNA DISTRIBUCIÓN DE PROBABILIDAD DISCRETA

REPRESENTACIÓN DE UNA DISTRIBUCIÓN DE PROBABILIDAD DISCRETA REPRESENTACIÓN DE UNA DISTRIBUCIÓN DE PROBABILIDAD DISCRETA Similar a las distribuciones de frecuencia, una distribución de probabilidad discreta puede ser representada (descrita) tanto gráficamente como

Más detalles

C A P Í T U L O LA PREDICCIÓN DE

C A P Í T U L O LA PREDICCIÓN DE C A P Í T U L O 5 LA PREDICCIÓN DE LAS HELADAS Y SU SEGUIMIENTO EL VALOR DE LA PREDICCIÓN DE LAS HELADAS Evaluar el valor de la predicción de las heladas implica análisis complejos de toma de decisiones,

Más detalles

H E R R A M I E N T A S D E A N Á L I S I S D E D A T O S HERRAMIENTAS DE ANÁLISIS DE DATOS

H E R R A M I E N T A S D E A N Á L I S I S D E D A T O S HERRAMIENTAS DE ANÁLISIS DE DATOS H E R R A M I E N T A S D E A N Á L I S I S D E D A T O S HERRAMIENTAS DE ANÁLISIS DE DATOS Una situación que se nos plantea algunas veces es la de resolver un problema hacia atrás, esto es, encontrar

Más detalles

Reporte climático especial a la mitad dela primavera de 2015

Reporte climático especial a la mitad dela primavera de 2015 Reporte climático especial a la mitad dela primavera de 2015 ZONA SUR (Regiones IX a X) Prohibida su reproducción total o parcial, salvo que se indique la fuente haciendo referencia al sitio web, a la

Más detalles

4. PROYECCIÓN DE EGRESOS... 4 Costos variables...4 Gastos fijos...5 Inversiones...6 Amortizaciones...6

4. PROYECCIÓN DE EGRESOS... 4 Costos variables...4 Gastos fijos...5 Inversiones...6 Amortizaciones...6 Valor actual neto Un caso aplicado a la Valuación de Empresas MSc Pablo Lledó Índice 1. INTRODUCCIÓN... 2 2. SUPUESTOS PARA LA VALUACIÓN... 2 3. PROYECCIÓN DE INGRESOS... 3 3.1. Ingresos por ventas...3

Más detalles

Lección n 5. Modelos de distribución n potencial de especies

Lección n 5. Modelos de distribución n potencial de especies Lección n 5. Modelos de distribución n potencial de especies 1. Elaboración de modelos de distribución de especies. a. Planteamiento. El modelado del nicho ambiental se basa en el principio de que la distribución

Más detalles

Monografías de Juan Mascareñas sobre Finanzas Corporativas ISSN: 1988-1878 Introducción al VaR

Monografías de Juan Mascareñas sobre Finanzas Corporativas ISSN: 1988-1878 Introducción al VaR Juan Mascareñas Universidad Complutense de Madrid Versión inicial: mayo 1998 - Última versión: mayo 2008 - El valor en riesgo (VaR), 2 - El método histórico, 3 - El método varianza-covarianza, 6 - El método

Más detalles

Plan de tarificación. Redes telefónicas. Requisitos a cumplir por el plan.

Plan de tarificación. Redes telefónicas. Requisitos a cumplir por el plan. Redes telefónicas Plan de tarificación Plan de tarificación Requisitos a cumplir por el plan Métodos de tarificación Llamadas locales Llamadas a larga distancia Métodos de registro de llamadas Tarifas

Más detalles

CONTROL DE PLAGAS EN LOS CEPES: Aplicando los Conocimientos para un Eficaz Manejo de Plagas del Césped:

CONTROL DE PLAGAS EN LOS CEPES: Aplicando los Conocimientos para un Eficaz Manejo de Plagas del Césped: CONTROL DE PLAGAS EN LOS CEPES: Aplicando los Conocimientos para un Eficaz Manejo de Plagas del Césped: Grillo Topo como ejemplo Las plagas del césped constituyen un desafío en el mundo entero. La cantidad

Más detalles

Análisis Estadístico de la Velocidad y Dirección del Viento en Los Taques- Estado Falcón

Análisis Estadístico de la Velocidad y Dirección del Viento en Los Taques- Estado Falcón Junio 9 FGLONGATT/R-9-13 Análisis Estadístico de la Velocidad y Dirección del Viento en Los Taques- Estado Falcón 1 Programa Fuentes Alternas de Energía y Generación Distribuida Acrónimo del proyecto EOLO-

Más detalles

El pronóstico climático para el verano del 2006. Víctor Magaña Centro de Ciencias de la Atmósfera Universidad Nacional Autónoma de México

El pronóstico climático para el verano del 2006. Víctor Magaña Centro de Ciencias de la Atmósfera Universidad Nacional Autónoma de México El pronóstico climático para el verano del 2006 Víctor Magaña Centro de Ciencias de la Atmósfera Universidad Nacional Autónoma de México qué significa aprovechar la información del clima? OMM Las variaciones

Más detalles

x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas.

x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas. Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Septiembre 2012 - Propuesta A 1. Queremos realizar una inversión en dos tipos

Más detalles

Matrices equivalentes. El método de Gauss

Matrices equivalentes. El método de Gauss Matrices equivalentes. El método de Gauss Dada una matriz A cualquiera decimos que B es equivalente a A si podemos transformar A en B mediante una combinación de las siguientes operaciones: Multiplicar

Más detalles

Cómo usar las nuevas herramientas de Recalificación en BizWorks. Introducción

Cómo usar las nuevas herramientas de Recalificación en BizWorks. Introducción Cómo usar las nuevas herramientas de Recalificación en BizWorks Introducción Este otoño presentamos dos nuevas herramientas en BizWorks diseñadas para simplificar los esfuerzos de administración de los

Más detalles

ANÁLISIS DESCRIPTIVO CON SPSS

ANÁLISIS DESCRIPTIVO CON SPSS ESCUELA SUPERIOR DE INFORMÁTICA Prácticas de Estadística ANÁLISIS DESCRIPTIVO CON SPSS 1.- INTRODUCCIÓN Existen dos procedimientos básicos que permiten describir las propiedades de las distribuciones:

Más detalles

SIMULACION. Modelos de. Julio A. Sarmiento S. http://www.javeriana.edu.co/decisiones/julio sarmien@javeriana.edu.co

SIMULACION. Modelos de. Julio A. Sarmiento S. http://www.javeriana.edu.co/decisiones/julio sarmien@javeriana.edu.co SIMULACION Modelos de http://www.javeriana.edu.co/decisiones/julio sarmien@javeriana.edu.co Julio A. Sarmiento S. Profesor - investigador Departamento de Administración Pontificia Universidad Javeriana

Más detalles

3. LA DFT Y FFT PARA EL ANÁLISIS FRECUENCIAL. Una de las herramientas más útiles para el análisis y diseño de sistemas LIT (lineales e

3. LA DFT Y FFT PARA EL ANÁLISIS FRECUENCIAL. Una de las herramientas más útiles para el análisis y diseño de sistemas LIT (lineales e 3. LA DFT Y FFT PARA EL AÁLISIS FRECUECIAL Una de las herramientas más útiles para el análisis y diseño de sistemas LIT (lineales e invariantes en el tiempo), es la transformada de Fourier. Esta representación

Más detalles

MARKETING. Clase 15. CONCEPTO DE PRECIO

MARKETING. Clase 15. CONCEPTO DE PRECIO Clase 15. CONCEPTO DE PRECIO Todas las organizaciones lucrativas y muchas no lucrativas deben establecer precios para sus productos o servicios. El precio es la cantidad de dinero que se cobra por producto

Más detalles

www.fundibeq.org En estos casos, la herramienta Gráficos de Control por Variables" no es aplicable.

www.fundibeq.org En estos casos, la herramienta Gráficos de Control por Variables no es aplicable. GRAFICOS DE CONTROL POR ATRIBUTOS 1.- INTRODUCCIÓN Este documento describe la secuencia de construcción y las pautas de utilización de una de las herramientas para el control de procesos, los Gráficos

Más detalles

NT8. El Valor en Riesgo (VaR)

NT8. El Valor en Riesgo (VaR) NT8. El Valor en Riesgo (VaR) Introducción VaR son las siglas de Valor en el Riesgo (Value at Risk) y fue desarrollado por la división RiskMetric de JP Morgan en 1994. es una manera de medir el riesgo

Más detalles

Estimación de parámetros, validación de modelos y análisis de sensibilidad

Estimación de parámetros, validación de modelos y análisis de sensibilidad Tema 6 Estimación de parámetros, validación de modelos y análisis de sensibilidad 6.1 Calibración Una vez que se ha identificado el modelo y se ha programado, necesitamos aplicarlo al problema concreto

Más detalles

Módulo II - Excel. Identificando tipos de datos... 2. Introduciendo datos en las celdas... 3. Llenando automáticamente las celdas...

Módulo II - Excel. Identificando tipos de datos... 2. Introduciendo datos en las celdas... 3. Llenando automáticamente las celdas... Módulo II - Excel Índice Identificando tipos de datos... 2 Introduciendo datos en las celdas... 3 Llenando automáticamente las celdas... 4 Seleccionando un rango de celdas... 5 Seleccionando una fila o

Más detalles

El cambio climático y las anomalías climáticas:

El cambio climático y las anomalías climáticas: Seguros climáticos El cambio climático y las anomalías climáticas: Las consecuencias económicas para las empresas y nuevas soluciones de seguros Introducción Para proteger a las empresas contra los efectos

Más detalles

DISTRIBUCIONES DE VARIABLE CONTINUA

DISTRIBUCIONES DE VARIABLE CONTINUA UNIDAD 11 DISTRIBUCIONES DE VARIABLE CONTINUA Página 260 1. Los trenes de una cierta línea de cercanías pasan cada 20 minutos. Cuando llegamos a la estación, ignoramos cuándo pasó el último. La medida

Más detalles

APLICACIONES CON SOLVER OPCIONES DE SOLVER

APLICACIONES CON SOLVER OPCIONES DE SOLVER APLICACIONES CON SOLVER Una de las herramientas con que cuenta el Excel es el solver, que sirve para crear modelos al poderse, diseñar, construir y resolver problemas de optimización. Es una poderosa herramienta

Más detalles

CASO PRÁCTICO DISTRIBUCIÓN DE COSTES

CASO PRÁCTICO DISTRIBUCIÓN DE COSTES CASO PRÁCTICO DISTRIBUCIÓN DE COSTES Nuestra empresa tiene centros de distribución en tres ciudades europeas: Zaragoza, Milán y Burdeos. Hemos solicitado a los responsables de cada uno de los centros que

Más detalles

INDICADORES POR ENCUESTA. Cuaderno Práctico -1 -

INDICADORES POR ENCUESTA. Cuaderno Práctico -1 - INDICADORES POR ENCUESTA Cuaderno Práctico -1 - ÍNDICE Elaboración del CUESTIONARIO...- 4 - Selección de la MUESTRA...- 5 - APLICACIÓN del cuestionario...- 7 - MECANIZACIÓN de datos...- 8 - Cálculo de

Más detalles

INFORME STERN: La Economía del Cambio Climático

INFORME STERN: La Economía del Cambio Climático Resumen de las Conclusiones Aún queda tiempo para evitar los peores impactos del cambio climático, si emprendemos acciones enérgicas ahora La evidencia científica en estos momentos es abrumadora: el cambio

Más detalles

Cómo crear una línea de tiempo en Excel

Cómo crear una línea de tiempo en Excel Cómo crear una línea de tiempo en Excel Hoy aprenderemos a cómo crear un línea de tiempo (timeline) en Excel de una manera bastante fácil y rápida. Las líneas de tiempo nos sirven para resumir eventos

Más detalles

Pronósticos. Pronósticos y gráficos Diapositiva 1

Pronósticos. Pronósticos y gráficos Diapositiva 1 Pronósticos Pronósticos Información de base Media móvil Pronóstico lineal - Tendencia Pronóstico no lineal - Crecimiento Suavización exponencial Regresiones mediante líneas de tendencia en gráficos Gráficos:

Más detalles

todas especialidades Soluciones de las hojas de problemas

todas especialidades Soluciones de las hojas de problemas Universidad Politécnica de Cartagena Dpto. Matemática Aplicada y Estadística Ingeniería Técnica Industrial Métodos estadísticos de la ingeniería Métodos estadísticos de la ingeniería Ingeniería Técnica

Más detalles

INDICE 3. CALCULO Y DISEÑO DE LAS LINEAS DE REFRIGERANTE 3.1.1. PERDIDA DE PRESION 3.1.2. RETORNO DEL ACEITE AL COMPRESOR 3.1.3.

INDICE 3. CALCULO Y DISEÑO DE LAS LINEAS DE REFRIGERANTE 3.1.1. PERDIDA DE PRESION 3.1.2. RETORNO DEL ACEITE AL COMPRESOR 3.1.3. Cálculo y Diseño de Líneas de Refrigerante INDICE 0. INTRODUCCION 1. PRINCIPIOS BASICOS 2. MATERIAL 3. CALCULO Y DISEÑO DE LAS LINEAS DE REFRIGERANTE 3.1. LINEA DE ASPIRACION 3.1.1. PERDIDA DE PRESION

Más detalles

SIMULACION. Formulación de modelos: solución obtenida de manera analítica

SIMULACION. Formulación de modelos: solución obtenida de manera analítica SIMULACION Formulación de modelos: solución obtenida de manera analítica Modelos analíticos: suposiciones simplificatorias, sus soluciones son inadecuadas para ponerlas en práctica. Simulación: Imitar

Más detalles

Monitoreo y Control de la Eficiencia Energética para la Reducción de Costes

Monitoreo y Control de la Eficiencia Energética para la Reducción de Costes Monitoreo y Control de la Eficiencia Energética para la Reducción de Costes Introducción.- Las industrias se encuentra cada vez más bajo presión en medir el costo de los servicios que consumen, tales como:

Más detalles

Módulo 9: Gestión y tratamiento de los riesgos. Selección de los controles

Módulo 9: Gestión y tratamiento de los riesgos. Selección de los controles Módulo 9: Gestión y tratamiento de los riesgos. Selección de los controles Este apartado describirá en qué consiste la gestión de riesgos, cómo se deben escoger los controles, se darán recomendaciones

Más detalles

Clase 5: Variables Aleatorias y Distribuciones de Probabilidad

Clase 5: Variables Aleatorias y Distribuciones de Probabilidad Clase 5: Variables Aleatorias y Distribuciones de Probabilidad Variables Aleatorias Una variable aleatoria es una función que asocia un número real con cada elemento del EM. Ejemplo 1: El EM que da una

Más detalles

www.onda4.com SISTEMAS CON ALTO PORCENTAJE DE ACIERTOS

www.onda4.com SISTEMAS CON ALTO PORCENTAJE DE ACIERTOS www.onda4.com SISTEMAS CON ALTO PORCENTAJE DE ACIERTOS Cuando uno opera de forma mecánica (siguiendo un sistema) suele escoger el tipo de sistema que quiere utilizar de forma que se adecue a su personalidad.

Más detalles

Lecturas previas Cuando llegue a su primera sesión de laboratorio debe haber estudiado el contenido de la lectura que aparece a continuación.

Lecturas previas Cuando llegue a su primera sesión de laboratorio debe haber estudiado el contenido de la lectura que aparece a continuación. Laboratorio 1 Medición e incertidumbre La descripción de los fenómenos naturales comienza con la observación; el siguiente paso consiste en asignar a cada cantidad observada un número, es decir en medir

Más detalles

Rdto c = Ponda x Rdto A + Pondb x Rdto. B = 0,75 x 5% + 0,25 x 8% = 5,75%.

Rdto c = Ponda x Rdto A + Pondb x Rdto. B = 0,75 x 5% + 0,25 x 8% = 5,75%. DIVERSIFICACIÓN DEL RIESGO Un principio básico en las finanzas es que un inversionista no debería colocar todos sus recursos en un solo activo o en un número relativamente pequeño de activos, sino en un

Más detalles

www.bvbusiness-school.com

www.bvbusiness-school.com Gráficos de Control de Shewart www.bvbusiness-school.com GRÁFICOS DE CONTROL DE SHEWART Una de las herramientas estadísticas más importantes en el Control Estadístico de Procesos son los Gráficos de Control.

Más detalles

Qué organismos viven en nuestro cafetal?

Qué organismos viven en nuestro cafetal? Sección anterior 24 25 Qué organismos viven en nuestro cafetal? cafetaleras de alturas bajas e intermeintroducción Endias,laselzonas café vive, durante la época seca, uno de los momentos más importantes

Más detalles

Unidad 1: El Cuadro de control de Excel

Unidad 1: El Cuadro de control de Excel Unidad 1: El Cuadro de control de Excel 1,0 Introducción Excel nos ayuda a comprender los datos mejor al disponerlos en celdas (que forman filas y columnas) y usando fórmulas para realizar los cálculos

Más detalles

TEMA 5: HOJAS DE CÁLCULO. Edición de hojas de cálculo con OpenOffice Calc

TEMA 5: HOJAS DE CÁLCULO. Edición de hojas de cálculo con OpenOffice Calc TEMA 5: HOJAS DE CÁLCULO Edición de hojas de cálculo con OpenOffice Calc Qué vamos a ver? Qué es una hoja de cálculo y para qué sirve El entorno de trabajo de OpenOffice Calc Edición básica de hojas de

Más detalles

Experimento 4 MOVIMIENTO CON ACELERACIÓN CONSTANTE. Objetivos. Teoría

Experimento 4 MOVIMIENTO CON ACELERACIÓN CONSTANTE. Objetivos. Teoría Experimento 4 MOVIMIENTO CON ACELERACIÓN CONSTANTE Objetivos 1. Medir la distancia recorrida y la velocidad de un objeto que se mueve con: a. velocidad constante y b. aceleración constante,. Establecer

Más detalles

5. DISTRIBUCIONES DE PROBABILIDADES

5. DISTRIBUCIONES DE PROBABILIDADES 5. DISTRIBUCIONES DE PROBABILIDADES Dr. http://academic.uprm.edu/eacunaf UNIVERSIDAD DE PUERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ DISTRIBUCIONES DE PROBABILIDADES Se introducirá el concepto de variable

Más detalles

PROYECTO EDUCATIVO LA CALERA

PROYECTO EDUCATIVO LA CALERA Introducción a Excel2000. Es una de las planillas de cálculo, más utilizadas en todo el mercado informático - ahora con la novedosa versión de Excel2000 incorpora un conjunto de características nuevas

Más detalles

Curso Básico de Marco Lógico para el Diseño y la Conceptualización de Proyectos. Basado en un documento oficial de Banco Interamericano de Desarrollo

Curso Básico de Marco Lógico para el Diseño y la Conceptualización de Proyectos. Basado en un documento oficial de Banco Interamericano de Desarrollo Curso Básico de Marco Lógico para el Diseño y la Conceptualización de Proyectos Basado en un documento oficial de Banco Interamericano de Desarrollo Objetivos del Curso General Los participantes están

Más detalles

Combatir las plagas y enfermedades del jardín 2

Combatir las plagas y enfermedades del jardín 2 BRICOLAJE - CONSTRUCCIÓN - DECORACIÓN - JARDINERÍA Combatir las plagas y enfermedades del jardín 2 Rosales, arbustos ornamentales y plantas de huerta www.leroymerlin.es Leroy Merlin, S.A., 2003 1 Equipo

Más detalles

Hasta el momento hemos analizado como los agentes económicos toman sus decisiones de consumo o producción en condiciones de certeza total.

Hasta el momento hemos analizado como los agentes económicos toman sus decisiones de consumo o producción en condiciones de certeza total. III. Elección en condiciones de incertidumbre Hasta el momento hemos analizado como los agentes económicos toman sus decisiones de consumo o producción en condiciones de certeza total. Es decir, cuando

Más detalles

ANÁLISIS DE DATOS CONTROL DE CALIDAD. Ing. Carlos Brunatti

ANÁLISIS DE DATOS CONTROL DE CALIDAD. Ing. Carlos Brunatti ANÁLISIS DE DATOS CONTROL DE CALIDAD Ing. Carlos Brunatti Montevideo, ROU, junio 2015 Control de calidad No resulta sorprendente que el hormigón sea un material variable, pues hay muchos factores involucrados

Más detalles

Análisis de los datos

Análisis de los datos Universidad Complutense de Madrid CURSOS DE FORMACIÓN EN INFORMÁTICA Análisis de los datos Hojas de cálculo Tema 6 Análisis de los datos Una de las capacidades más interesantes de Excel es la actualización

Más detalles

www.pildorasinformaticas.com Página 1

www.pildorasinformaticas.com Página 1 Capítulo 1. CREACIÓN DE BBDD Y VALIDACIÓN DE DATOS... 4 1.1. Crear una BBDD... 4 1.2. Formulario de entrada de datos... 5 1.3. Importación de datos... 7 1.4. Ordenación de registros... 10 1.5. Autofiltros...

Más detalles

AVANCE DE LA COSECHA DE ARANDANOS EN ARGENTINA REPORTE DE CLIMA Y FENOLOGIA REGION POR REGION SEMANA 36 2015

AVANCE DE LA COSECHA DE ARANDANOS EN ARGENTINA REPORTE DE CLIMA Y FENOLOGIA REGION POR REGION SEMANA 36 2015 AVANCE DE LA COSECHA DE ARANDANOS EN ARGENTINA REPORTE DE CLIMA Y FENOLOGIA REGION POR REGION SEMANA 36 2015 NOA (Tucumán, Salta y Catamarca) Clima El otoño e invierno se caracterizaron por temperaturas

Más detalles

3. ANÁLISIS ESTADÍSTICOS DE LAS PRECIPITACIONES EN EL MAR CASPIO

3. ANÁLISIS ESTADÍSTICOS DE LAS PRECIPITACIONES EN EL MAR CASPIO Análisis estadístico 31 3. ANÁLII ETADÍTICO DE LA PRECIPITACIONE EN EL MAR CAPIO 3.1. ANÁLII Y MÉTODO ETADÍTICO UTILIZADO 3.1.1. Introducción Una vez analizado el balance de masas que afecta al mar Caspio

Más detalles

TEMA 7: Análisis de la Capacidad del Proceso

TEMA 7: Análisis de la Capacidad del Proceso TEMA 7: Análisis de la Capacidad del Proceso 1 Introducción Índices de capacidad 3 Herramientas estadísticas para el análisis de la capacidad 4 Límites de tolerancia naturales 1 Introducción La capacidad

Más detalles

Tema 3. La elección en condiciones de incertidumbre

Tema 3. La elección en condiciones de incertidumbre Tema 3 La elección en condiciones de incertidumbre Epígrafes El valor esperado La hipótesis de la utilidad esperada La aversión al riesgo La compra de un seguro Cap. 5 P-R 2 Introducción Cómo escogemos

Más detalles

6. Gestión de proyectos

6. Gestión de proyectos 6. Gestión de proyectos Versión estudiante Introducción 1. El proceso de gestión de proyectos 2. Gestión del riesgo "La gestión de proyectos se basa en establecer objetivos claros, gestionar el tiempo,

Más detalles

www.fundibeq.org Además se recomienda su uso como herramienta de trabajo dentro de las actividades habituales de planificación y control.

www.fundibeq.org Además se recomienda su uso como herramienta de trabajo dentro de las actividades habituales de planificación y control. ESTUDIOS DE CAPACIDAD POTENCIAL DE CALIDAD 1.- INTRODUCCIÓN Este documento proporciona las pautas para la realización e interpretación de una de las herramientas fundamentales para el control y la planificación

Más detalles

TEMA 6 SELECCIÓN DE INVERSIONES PRODUCTIVAS CON RIESGO (parte II)

TEMA 6 SELECCIÓN DE INVERSIONES PRODUCTIVAS CON RIESGO (parte II) TEMA 6 SELECCIÓN DE INVERSIONES PRODUCTIVAS CON RIESGO (parte II) Tema 6- Parte II 1 ANÁLISIS DE PROYECTOS En ambiente de incertidumbre Los flujos de caja a descontar no son ciertos Criterio a aplicar

Más detalles

Medidor de radiación solar SLM O18 c-2 MAC SOLAR

Medidor de radiación solar SLM O18 c-2 MAC SOLAR Medidor de radiación solar SLM O18 c-2 MAC SOLAR I. INTRODUCCIÓN El medidor de radiación global Mac Solar ha sido desarrollado como elemento de gran ayuda para arquitectos, instaladores y proyectistas

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDAD GUÍA DE TRABAJO 2 Profesor: Hugo S. Salinas. Primer Semestre 2010 1. La dureza Rockwell de un metal

Más detalles

Explicación de la tarea 3 Felipe Guerra

Explicación de la tarea 3 Felipe Guerra Explicación de la tarea 3 Felipe Guerra 1. Una ruleta legal tiene los números del 1 al 15. Este problema corresponde a una variable aleatoria discreta. La lectura de la semana menciona lo siguiente: La

Más detalles

Statgraphics Centurión

Statgraphics Centurión Facultad de Ciencias Económicas y Empresariales. Universidad de Valladolid 1 Statgraphics Centurión I.- Nociones básicas El paquete Statgraphics Centurión es un programa para el análisis estadístico que

Más detalles

4.3 INTERPRETACIÓN ECONÓMICA DE LA DUALIDAD

4.3 INTERPRETACIÓN ECONÓMICA DE LA DUALIDAD 4.3 INTERPRETACIÓN ECONÓMICA DE LA DUALIDAD El problema de programación lineal se puede considerar como modelo de asignación de recursos, en el que el objetivo es maximizar los ingresos o las utilidades,

Más detalles

Contratos de arrendamiento: negociar no sólo el monto total sino también la modalidad de pago

Contratos de arrendamiento: negociar no sólo el monto total sino también la modalidad de pago nº 19 16 de abril de 2014 Contratos de arrendamiento: negociar no sólo el monto total sino también la modalidad de pago El resultado económico de un negocio de siembra puede ser muy distinto según cómo

Más detalles

Unidad IV: Cinética química

Unidad IV: Cinética química 63 Unidad IV: Cinética química El objetivo de la cinética química es el estudio de las velocidades de las reacciones químicas y de los factores de los que dependen dichas velocidades. De estos factores,

Más detalles

MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN

MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN Suponga que le pedimos a un grupo de estudiantes de la asignatura de estadística que registren su peso en kilogramos. Con los datos del peso de los estudiantes

Más detalles

ANÁLISIS ECONÓMICO DE INVERSIONES.

ANÁLISIS ECONÓMICO DE INVERSIONES. ANÁLISIS ECONÓMICO DE INVERSIONES. José Ignacio González Soriano Agosto 2013 INDICE 1. FORMULAS FINANCIERAS.... 2 1.1.- VALOR ACTUAL NETO.... 3 1.1.1.- DEFINICIÓN... 3 1.1.2.- CASO GENERAL... 3 1.1.3.-

Más detalles

FISICA I Escuela Politécnica de Ingeniería de Minas y Energía AJUSTE POR MÍNIMOS CUADRADOS

FISICA I Escuela Politécnica de Ingeniería de Minas y Energía AJUSTE POR MÍNIMOS CUADRADOS AJUSTE POR MÍNIMOS CUADRADOS Existen numerosas leyes físicas en las que se sabe de antemano que dos magnitudes x e y se relacionan a través de una ecuación lineal y = ax + b donde las constantes b (ordenada

Más detalles

ESCUELA SUPERIOR DE INFORMATICA Prácticas de Estadística UNA SESIÓN EN SPSS

ESCUELA SUPERIOR DE INFORMATICA Prácticas de Estadística UNA SESIÓN EN SPSS UNA SESIÓN EN SPSS INTRODUCCIÓN. SPSS (Statistical Product and Service Solutions) es un paquete estadístico orientado, en principio, al ámbito de aplicación de las Ciencias sociales, es uno de las herramientas

Más detalles

El cultivo de colza: Puntos claves para el éxito del cultivo

El cultivo de colza: Puntos claves para el éxito del cultivo El cultivo de colza: Puntos claves para el éxito del cultivo Pablo Calviño Mayo 2013 Aspectos clave del cultivo Variables Importancia Planificación 1 Aptitud de lote Fecha de siembra Calidad de siembra

Más detalles

STATISTICAL PROCESS CONTROL: MANUAL REFERENCIA QS 9000

STATISTICAL PROCESS CONTROL: MANUAL REFERENCIA QS 9000 STATISTICAL PROCESS CONTROL: MANUAL REFERENCIA QS 9000 SECCIÓN 2: SISTEMA DE CONTROL 1.- Proceso: Se entiende por proceso, la combinación de suministradores, productores, personas, equipos, imputs de materiales,

Más detalles

Práctica 3 Distribuciones de probabilidad

Práctica 3 Distribuciones de probabilidad Práctica 3 Distribuciones de probabilidad Contenido 1 Objetivos 1 2 Distribuciones de variables aleatorias 1 3 Gráficas de funciones de distribución, densidad y probabilidad 6 4 Bibliografía 10 1 Objetivos

Más detalles

PRINCIPIOS FINAN IEROS FUNDAMENTALE DEL FED

PRINCIPIOS FINAN IEROS FUNDAMENTALE DEL FED PRINCIPIOS FINAN IEROS FUNDAMENTALE DEL FED Ahorradores inteligentes 100 AÑOS Descripción de la lección Conceptos Objetivos Los estudiantes calculan el interés compuesto para identificar las ventajas de

Más detalles

Ing. Roberto Villalobos Ing. José Retana GESTION DE DESARROLLO INSTITUTO METEOROLOGICO NACIONAL COSTA RICA

Ing. Roberto Villalobos Ing. José Retana GESTION DE DESARROLLO INSTITUTO METEOROLOGICO NACIONAL COSTA RICA Sistema de Pronóstico de Lluvias en Costa Rica. Agrupación de años con características pluviométricas semejantes para la creación de escenarios climáticos 1. Introducción Ing. Roberto Villalobos Ing. José

Más detalles

Análisis estadístico. Tema 1 de Biología NS Diploma BI Curso 2013-2015

Análisis estadístico. Tema 1 de Biología NS Diploma BI Curso 2013-2015 Análisis estadístico Tema 1 de Biología NS Diploma BI Curso 2013-2015 Antes de comenzar Sobre qué crees que trata esta unidad? - Escríbelo es un post-it amarillo. Pregunta guía Cómo podemos saber si dos

Más detalles

MSFC203_INSTALACIONES DE CLIMATIZACIÓN Y VENTILACIÓN

MSFC203_INSTALACIONES DE CLIMATIZACIÓN Y VENTILACIÓN MSFC203_INSTALACIONES DE CLIMATIZACIÓN Y VENTILACIÓN ÍNDICE Parámetros fundamentales y operaciones básicas en aire acondicionado Condiciones de bienestar o confort Cálculo de la carga térmica de refrigeración

Más detalles

Movimiento a través de una. José San Martín

Movimiento a través de una. José San Martín Movimiento a través de una curva José San Martín 1. Introducción Una vez definida la curva sobre la cual queremos movernos, el siguiente paso es definir ese movimiento. Este movimiento se realiza mediante

Más detalles

Estimación. Intervalos de Confianza para la Media y para las Proporciones

Estimación. Intervalos de Confianza para la Media y para las Proporciones Estimación. Intervalos de Confianza para la Media y para las Proporciones Algunas secciones han sido tomadas de: Apuntes de Estadística Inferencial Instituto Tecnológico de Chiuhuahua Estimación El objetivo

Más detalles