UNIDAD 2 ALUMNO: Módulo 1: Sistema de fuerzas. sistemas de fuerzas. sistema de fuerzas (método gráfico) sistema de fuerzas paralelas (método gráfico)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "UNIDAD 2 ALUMNO: Módulo 1: Sistema de fuerzas. sistemas de fuerzas. sistema de fuerzas (método gráfico) sistema de fuerzas paralelas (método gráfico)"

Transcripción

1 Módulo 1: Sistema de fuerzas UNIDAD 2 Tema 1: Concepto de fuerza Tema 2: Sistema de fuerzas, resultante y equilibrante Tema 3: Clasificación de los sistemas de fuerzas Módulo 2: esultante de un sistema de fuerzas (método gráfico) Tema 1: Obtención de la resultante de un sistema de fuerzas Tema 2: Sistema de fuerzas colineales Tema 3: Sistema de fuerzas concurrentes (no colineales) Módulo 3: esultante de un sistema de fuerzas paralelas (método gráfico) Módulo 4: Descomposición de fuerzas Módulo 5: esultante de un sistema de fuerzas concurrentes (método analítico) ALUMNO: 3º Año División. CUSO 2010 PAGINA 1

2 1- CONCEPTO DE FUEZA En el lenguaje cotidiano, la palabra FUEZA tiene diversos significados. Muchas veces se la usa como sinónimo de poder, intensidad o vigor. Así, se mencionan la fuerza de la naturaleza, la fuerza del amor, la fuerza de voluntad y las fuerzas pro- se reconoce como fuerza un ductivas. En física, sin embargo, el concepto es muy específico y su significado es preciso. En principio agente físico capaz de cambiar la forma o la velocidad de un objeto. Para cambiar la velocidad de un objeto, ponerlo en mo- en el sistema vimiento, detenerlo, deformarlo o romperlo es necesario aplicar una fuerza. (1) Las unidades para medir las fuerzas son el Newton (N) en el sistema internacional y el Kilogramofuerza técnico. La fuerza es una magnitud VECTOIAL, por lo tanto se representan mediante vectores. Para ello siempre hay que elegir una escala de representación, por ejemplo aplicando una escala de 10 N por cm, el vector representativo de una fuerza de 50 N será de 5 cm. 2- SISTEMA DE FUEZAS, ESULTANTE EQUILIBANTE Un sistema de fuerzas está formado por todas las fuerzas que actúan so- bre un cuerpo. El conjunto de estas fuerzas provocan sobre el cuerpo una ac- del sistema por una única fuerza que produzca la misma acción, que se llama ción determinada. En teoría, se pueden reemplazar las fuerzas componentes ESULTANTE. Esta fuerza se obtiene por suma vectorial de las fuerzas com- igual recta de acción, pero de sentido contrario, obtendremos una fuerza llamada EQUILIBANTE, y ponentes. Si reemplazamos la resultante por una fuerza de igual módulo, su función consiste en anular la acción producida por las fuerzas componentes del sistema. 3- CLASIFICACION DE LOS SISTEMAS DE FUEZAS Las fuerzas pueden actuar sobre los cuerpos de diferente forma, según varíen los puntos de aplicación, las direcciones o las rectas de acción. La primera clasificación que puede hacerse es si los sistemas de fuerzas son COPLANAES (todas las fuer- en el mismo plano que las zas están contenidas en el mismo plano) o ESPACIALES (al menos una fuerza no esta contenida otras). A continuación se presenta un cuadro clasificando las fuerzas coplanares: COLINEALES: Todas las fuerzas tienen la misma recta de acción. CONCUENTES: CONCUENTES (no colineales): Todas sus rectas de Todas las fuerzas tienen distinta acción se cortan en recta de acción, pero se un mismo punto. éstas cortan en un mismo punto. SISTEMAS DE FUEZAS NO CONCUENTES: Al menos una recta de acción, no se corta en el mismo punto que las demás. PAALELAS: Todas las rectas de acción tienen la misma dirección. NO CONCUENTES (No paralelas) Las fuerzas paralelas, pueden considerarse no concurrentes, cuando se considera que las rectas paralelas no se cortan, pero también pueden considerarse concurrentes, si se considera que las rectas paralelas se cortan en el in- uno u otro método, finito (geometría euclideana). Paraa el cálculo de la resultante, puede aplicarse indistintamente y el resultado será el mismo. 1 Extraído del libro Física Ed. Tin PAGINA 2 nta fresca, Autores: Nélida Ana Gonzalez, Juan Carlos Muñoz y Lucía Iulliani.

3 4- AUTOEVALUACION 1- Completar: a) Se denomina fuerza a. b) Las unidades para medir fuerzas son:. c) Las fuerzas son magnitudes. d) Se denomina sistema de fuerzas a. e) La resultante es. d) La resultante se obtiene. e) La función de la equilibrante es. f) La equilibrante se obtiene como. g) La primera clasificación que puede hacerse de los sistemas de fuerzas es:. h) Un sistema de fuerzas es concurrentee cuando. i) Las fuerzas concurrentes pueden clasificarse en. j) Las fuerzas no concurrentes son aquellas que:. k) Las fuerzas que tienen igual dirección, pero distintas rectas de acción son. l) Las fuerzas paralelas pueden clasificarse como. 2- Dar un ejemplo de: a) Sistema de fuerzas colineales:. b) Sistema de fuerzas concurrentes:. c) Sistema de fuerzas paralelas:. 3- Clasificar los siguientes sistemas: PAGINA 3

4 1- OBTENCION DE LA ESULTANTE DE UN SISTEMA DE FUEZAS La resultante de un sistema de fuerzas es una única fuerza que reemplaza a todas las fuerzas del sistema, produciendo el mismo efecto. Dado que las fuerzas son magnitudes vectoriales, la resultante se obtiene mediante LA SUMA VECTOIAL de todas las fuerzas componentes. La suma vectorial se puede obtener mediante métodos gráficos y analíticos. Para la resolución gráfica es indispensable determinar primero la escala de representación de fuerzas. 2- SISTEMA DE FUEZAS COLINEALES 2.1 EJEMPLO: Un grupo de chicos están jugando una cinchada (tirar de una soga). Se dividen en dos equipos. El equipo A, tira hacia la izquierda, y está formado por Fernando, que hace una fuerza de 200N, Maximiliano, que hace una fuerza de 300N y Jonathan, que hace una fuerza de 250N. El equipo B tira hacia el lado contrario, y está formado por Daniel, que hace una fuerza de 300N, Tomás, que hace una fuerza de 350N y Joaquín, que hace una fuerza de 250N. Qué equipo ganará la cinchada?, con qué fuerza empujará al otro equipo? esolución por el METODO GAFICO: a) Antes que nada hay que elegir una escala de representación. En este caso se puede elegir ESC F: 100N/cm; que significa que representaremos con un cm una fuerza de 100N. b) Luego hay que trazar una recta (con lápiz bien suave) en la dirección de las fuerzas (en este caso, horizontal): c) Sobre la línea, indicaremos un punto que será el origen para la primera fuerza: 0 d) Sobre la línea, con origen en 0, representaremos la primera fuerza, que será la del equipo A, es decir la que hace Fernando, de 200N hacia la izquierda. (dibujaremos un vector de 2 cm): 200N 0 e) A continuación, con origen en el final de la fuerza de Fernando, representaremos la fuerza que realiza Maximiliano, de 300N hacia la izquierda (dibujaremos un vector de 3 cm): 300N 200N 0 f) De igual forma representaremos la fuerza que hace Jonathan, de 250N (hacia la izquierda, con un vector de 2,5 cm): 250N 300N 200N 0 g) Siguiendo el mismo procedimiento, representaremos las fuerzas del equipo B (todas haciaa la derecha), primero la de Daúltima fuerza. Este vector repre- niel de 300N, luego la de Tomás de 350N y por último la de Joaquín de 250N. 250N 300N 200N 300N 350N 0 250N h) Ahora hay que representar un vector con origen en 0, y final coincidente con el final de la senta a la ESULTANTE. =150N 250N 300N 200N 300N 350N 0 250N i) Finalmente, hay que medir este último vector (en este caso 1,5 cm) y luego multiplicarlo por la escala (resulta una fuerza de 150N). Observando el vector resultante, podemos responder que: Ganó el equipo B, y empujó al otro equipo con una fuerza de 150N). No te olvides nunca de escribir la respuesta a un problema planteado. Nota: Los vectores son todos COLINEALES, pero fueron representados en una recta de acción diferente para tener mayor claridad en el gráfico explicativo. PAGINA 4

5 esolución por el METODO ANALÍTICO: a) Antes que nada hay que elegir un sistema de referencia, por ejemplo establecer que todas las fuerzas con sentido hacia la derecha son positivas. (recuerda siempre aclarar esto con el siguiente gráfico): + b) En el problema tenemos tres fuerzas negativas (las del equipo A) y tres fuerzas positivas (las del equipo B). Por lo tanto: planteamos y resolvemos: = -200N 300N 250N + 300N N N = 150N Observa que hemos obtenido el mismo resultado. Si no hubiese sido así algo habría salido mal, ya que se trata del mismo problema resuelto por dos métodos diferentes Autoevaluación: a) Dos chicos empujan una caja, uno desde atrás y otro de adelante en el mismo sentido, haciendo Alejandro una fuerza de 400N y Nicolás una fuerza de 300N. Con qué fuerza mueven la caja?. ESC F= N/cm = = N espuesta:. b) Cinco chicos juegan una cinchada. Juan, Gabriel y Alberto, tiran hacia la izquierda con fuerzas de 100N, 200N y 150n res- ganó y con qué fuerza em- pectivamente. Miguel e Ignacio, tiran hacia la derecha con fuerzas de 150N y 200N. Qué equipo pujó al otro equipo?. ESC F= N/cm = = N espuesta:. c) Calcular la resultante del siguiente sistema de fuerzas (EscF: 10 kgf/cm) F4 F5 = = kgf d) Calcular la resultante del siguiente sistema de fuerzas (EscF: 100 N/cm) F4 = = N e) 6 libros están apoyados sobre una mesa, uno sobre el otro. Pesan 800 gr, 1 kg, 600 gr, 1,5 kg, 900 gr y 1,2 kg. Que fuerza están ejerciendo sobre la mesa? (Para resolverlo gráficamente utilizar el eje vertical presentado sobre el margen derecho de la página). EscF: : /cm) = = espuesta:. f) Calcular la equilibrante del siguiente sistema de fuerzas. (recuerda que la equilibrante es igual a ): (EscF: 10 N/cm) F4 F5 = = N E= N PAGINA 5

6 3- SISTEMA DE FUEZAS CONCUENTES (no colineales). Para obtener la resultante de un sistema de fuerzas concurrentes no colineales, vamos a explicar primero dos métodos gráficos y luego un método analítico. 3.1 METODO DEL POLIGONO (gráfico). Dato: sistema con dos fuerzas componentes: y fuerza colocando su origen Paso 1: Trasladar la primera en cualquier punto del plano Paso 2: Se traslada la segun- da fuerza, haciendo coincidir su origen con el extremo de la primera. Paso 3: La resultante se obtiene uniendo el origen de la primera fuerza con el extremo de la última. NOTA: TASLADA una fuerza significa dibujar un vector de igual módulo, dirección y sentido. Ejemplo con 3 fuerzas: Dato: Paso 1: Paso 2: Paso 4: Paso 3: 3.2 METODO DEL PAALELOGAMO (gráfico). Dato: sistema con dos Paso 1: Se trasladan las fuerzas componentes: y fuerzas, haciéndolas coincidir en un mismo origen Paso 2: Se traza una recta paralela a la dirección de, por el extremo de. Paso 3: Se traza una recta paralela a la dirección de, por el extremo de. Paso 4: La resultante se obtiene uniendo el origen de las fuerzas, con el punto donde se cortan las rectas paralelas a las fuerzas. Ejemplo con 3 fuerzas: Dato: Paso 1: Paso 2: Paso 3: NOTA: Aplicando uno u otroo método para obtener la resultante, el resultado debe ser el mismo vector. Tanto el método del polígono como el del paralelogramo, consiste en una SUMA de vectores, por lo tanto es indistinto comenzar por una u otra fuerza. + + = + + = + + = = Paso 4: 12 Se repite el procedimiento con 12 y 12 Paso 5: 12 Paso 6 12 Paso 7: es la resultante parcial, que reemplaza a las fuerzas y. PAGINA 6

7 3.3.- Autoevaluación: esolver los siguientes sistemas por el método del polígono y por el método del paralelogramo. 1) 2) 3) F4 PAGINA 7

8 Ejemplo 1: DATOS: Fuerzas y. 1-Se obtiene la resultante como suma de y, como si fueran colineales. 2- Ahora hay que determinar la ubicación exacta de al resultante. El primer paso es hacer coincidir los orígenes de las fuerzas con una misma línea recta perpendicular a las fuerzas. 3- A partir de se lleva una fuerza igual a, y a partir de, se lleva una fuerza igual a. 4- Se trazan dos segmentos, uniendo el origen de con el final de y el origen de con el final de. 5- Finalmente la intersección de los dos segmentoss es un punto por donde pasa la resultante. Ejemplo 2: DATOS: Fuerzas y. 1-Se obtiene la resultante como suma de y, como si fueran colineales. 2- Ahora hay que determinarr la ubicación exacta de al resul- coincidir los orígenes tante. El primer paso es hacer de las fuerzas con una misma línea recta perpendicular a las fuerzas. 3- A partir de se lleva una fuerza igual a, y a partir de, se lleva una fuerza igual a. 4- Se trazan dos segmentos, uniendo el origen de con el final de y el origen de con el final de, y se prolongan hasta que se corten. 5- Finalmente la intersección de la prolongación de los dos segmentoss es el punto por donde pasa la resultante. Hallar la esultante: Hallar la esultante PAGINA 8

9 Hallar la esultante: Hallar la esultante: PAGINA 9

10 PAGINA 10

11 PAGINA 11

12 5 1- PASOS A SEGUI PAAA OBTENE LA ESULTANTE: Para obtener la resultante de un sistema de fuerzas concurrentes por el método analítico hay que seguir los pasos enu- horizontal. merados a continuación: 1- Indicar dos ejes: horizontal y vertical. 2- Ubicar las fuerzas con origen en (0,0) e indicar los ángulos medidos desde el eje positivoo 3- Descomponer cada una de las fuerzas según su componente horizontal y vertical. 4- Todas las componentes horizontales sobre el eje, forman un sistema de fuerzas colineales; por lo tanto se puede obte- por lo tanto se puede obtener ner su resultante, sumando sus módulos. 5- Todas las componentes verticales sobre el eje, forman un sistema de fuerzas colineales; su resultante, sumando sus módulos. 6- Las resultantes y son las componentes horizontal y vertical de la resultante. Formando el triángulo rectángulo con y como catetos, y con como hipotenusa, se puede obtener el módulo de aplicando el teorema de Pitágoras, y el ángulo que forma la resultante con la horizontal, por medio de la función trigonométrica tangente. Obtenidos el módulo y el ángulo de la resultante, queda resuelto el problema. 2- MODELO PAA LA ESOLUCION DEL POBLEMA: 4- COMPONENTE VETICAL DE CADA UNA DE LAS FUEZAS: y =. Sen α1 y =. Sen α2 y =. Sen α3 F4y = F4. Sen α4 y y y F4y 5- ESULTANTE VETICAL y: y : y + y + y + y 6-MODULO DE LA ESULTANTE: x = x 2 + y 2 y 7-DIECCION DE LA ESULTANTE α x Tan α = y / x Despejando α queda: α = arc tan (y / x) y El valor del módulo de la resultante y la dirección de la resultante α son las respuestas al problema planteado. 3- EJEMPLO NUMÉICO: Hallar la resultante por el método analítico del siguiente sistema de fuerzas: 200N 60º 240º 100N 50N Dado que las fuerzas no están todas medidas desdee el eje horizontal positivo, primero hay que referir la fuerza de 200N y la de 50N a ese eje. La fuerza de 200N está medida desde el 400N eje negativo (180º) por lo tanto el ángulo desde 200N 30º 0º será: 120º 45º 60º Para seguir el modelo, se da como dato cuatro fuerzas (una en cada cuadrante) y sus ángulos. 1-DATOS: 2- COMPONENTE HOIZONTAL DE CADA UNA DE LAS FUE- Fuerzas, ZAS:, y F4. α2 (Valor de los x =. Cos α1 x x Módulos y sus α1 x =. Cos α2 ángulos medidos desde el F4x = F4. Cos α4 x =. Cos α3 x F4x eje positivo α3 de las. α4 3- ESULTANTE HOIZONTAL x: x F4 : x + x + x + x La fuerza de 50N está medida desde el eje positivo pero en senti- do contrario (360º) por lo tanto el ángulo 45º desde 0º será: 315º 50N 180º - 60º = 120º 360º - 45º = 315º PAGINA 12

13 5 Calculo de las componentes horizontales: x =. Cos α1 = 400N. Cos 30º = 400N. 0,866 =346,40N x =. Cos α2 = 200N. Cos 120º = 200N = -100N x =. Cos α3 = 100N. Cos 240º = 100N.-0,50 = -50N F4x = F4. Cos α4 = 50N. Cos 315º = 50N. 0,707 = 35,35N Calculo de x: : x + x + x + x : 346,40N 100N 50N + 35,35N = 231,75 N Módulo de : = x 2 + y 2 = (231,75N) 2 + (251,25N) 2 = 341,81N Dirección de : α = arc tan (y/ x) =arc tan (251,25N/231,75N)= 47,31º Calculo de las componentes verticales: y =. Sen α1 = 400N. Sen 30º = 400N. 0,500 = 200N y =. Sen α2 = 200N. Sen 120º = 200N = 173,20N y =. Sen α3 = 100N. Sen 240º = 100N.-0,866 = -86,60N F4y = F4. Sen α4 = 50N. Sen 315º = 50N.-0,707 = -35,35N Calculo de y: : y + y + y + y : 200N + 173,20N 86,60N - 35,35N = 251,25 N La respuesta será: = 341,81N 47,31º 4- EJECICIO Nº 1: Datos: =30N 30º 45º =20N =40N 60º 30º F4=50N 1-Valor de los ángulos medidos desdee el eje horizontal positivo: α1= α2= α3= α4= EPESENTACION DE LA ESULTANTEE 2-Componentes horizontales: x= N. Cos º = N. = N x= N. Cos º = N. = N x= N. Cos º = N. = N F4x= N. Cos º = N. = N 3-esultante Horizontal: : N N N 4-Componentes verticales: y= N. Sen º = N. = N y= N. Sen º = N. = N y= N. Sen º = N. = N F4y= N. Sen º = N. = N 5-esultante Horizontal: : N N N 6-Módulo de la esultante: N = N N = N = ( N) 2 + ( N) 2 = N 7-Dirección de la esultante: 5- EJECICIO Nº 2: =300N =500N α = arc tan ( N / N) = º 60º 45º 30º 30º =200N F4=350N EPESENTACION DE LA ESULTANTE: : 4- PAGINA 13

Un vector es un segmento de recta orientado caracterizado por poseer 4 componentes: punto de aplicación, dirección, sentido y módulo o intensidad.

Un vector es un segmento de recta orientado caracterizado por poseer 4 componentes: punto de aplicación, dirección, sentido y módulo o intensidad. FUEZAS La palabra FUEZA viene del latín "fortia" que significa fuerte, resistente, protegido ante ataques. Sin embargo, en física se considera la FUEZA como una causa capaz de modificar el estado de reposo

Más detalles

MAGNITUDES FISICAS. Es una flecha o segmento orientado que tiene los siguientes elementos gráficos que lo representan: (fig. 7)

MAGNITUDES FISICAS. Es una flecha o segmento orientado que tiene los siguientes elementos gráficos que lo representan: (fig. 7) 1 MGNITUDES FISICS Magnitudes escalares Son aquellas cantidades que quedan determinadas por un número una unidad exclusivamente. Ej: el tiempo, la densidad, el trabajo, la temperatura, etc. Magnitudes

Más detalles

Est s á t t á i t c i a E s e l e es e t s ud u i d o o de d e las a s fue u r e zas a s en e equilibrio.

Est s á t t á i t c i a E s e l e es e t s ud u i d o o de d e las a s fue u r e zas a s en e equilibrio. Estática Es el estudio de las fuerzas en equilibrio. FUERZAS REPRESENTACIÓN GRÁFICA DE LAS FUERZAS Para que una fuerza quede determinada debemos conocer: Su recta de acción o directriz. Su intensidad.

Más detalles

Parte A. FISICA I Unidad N : 2 - Estática (Parte A) Profesor: Cazzaniga, Alejandro J. Física I E.T.N : 28 - República Francesa Pág.

Parte A. FISICA I Unidad N : 2 - Estática (Parte A) Profesor: Cazzaniga, Alejandro J. Física I E.T.N : 28 - República Francesa Pág. Parte A Todo hombre, por naturaleza, desea saber Profesor: Cazzaniga, Alejandro J. Física I E.T.N : 8 - República Francesa Pág. 1 de 16 Qué es la estática? La estática es la parte de la física que estudia

Más detalles

ESTRUCTURAS I B F1 = 100 N. TEMA: Revisión de Conceptos de Física Estática VECTOR. Conceptos que tendrá el alumno que repasar:

ESTRUCTURAS I B F1 = 100 N. TEMA: Revisión de Conceptos de Física Estática VECTOR. Conceptos que tendrá el alumno que repasar: Conceptos que tendrá el alumno que repasar: Dirección, sentido y módulo o magnitud de un vector. Operaciones con vectores. Composición y descomposición de fuerzas. Desplazamiento de un vector sobre su

Más detalles

GUIA DE PROBLEMAS Nº 2 FISICA 4 AÑO 2013

GUIA DE PROBLEMAS Nº 2 FISICA 4 AÑO 2013 FUERZAS 1- Expresar en Newton el módulo de una fuerza de 50 kgf. Expresar en kgf el módulo de una fuerza de 294 N. 2- Calcular la masa de un cuerpo cuyo peso es: a) 19,6 N; b) 1960 dy; c) 96 kgf. 3- Un

Más detalles

ESTATICA. Debajo se encuentran las formulas para calcular las componentes y el ángulo α que determina la dirección de la fuerza.

ESTATICA. Debajo se encuentran las formulas para calcular las componentes y el ángulo α que determina la dirección de la fuerza. ESTATICA Es la parte de la física que estudia las fuerzas en equilibrio. Si sobre un cuerpo no actúan fuerzas o actúan varias fuerzas cuya resultante es cero, decimos que el cuerpo está en equilibrio.

Más detalles

COMPLEJO EDUCATIVO SAN FRANCISCO PRIMER PERIODO. Nombre del estudiante: No.

COMPLEJO EDUCATIVO SAN FRANCISCO PRIMER PERIODO. Nombre del estudiante: No. 1 COMPLEJO EDUCATIVO SAN FRANCISCO PRIMER PERIODO CIENCIAS NATURALES Primer año Sección: Nombre del estudiante: No. UNIDAD No 3 Tema: Vectores Cuando vas en coche por una carretera, una autovía o una autopista,

Más detalles

MAGNITUDES ESCALARES. expresadas por medio de un número y la correspondiente unidad. Masa Temperatura Presión Densidad

MAGNITUDES ESCALARES. expresadas por medio de un número y la correspondiente unidad. Masa Temperatura Presión Densidad MAGNITUDES ESCALARES Son aquellas en donde las medidas quedan correctamente expresadas por medio de un número y la correspondiente unidad. Masa Temperatura Presión Densidad Para muchas magnitudes físicas

Más detalles

OPERACIONES GEOMÉTRICAS CON VECTORES

OPERACIONES GEOMÉTRICAS CON VECTORES GUÍA DE APRENDIZAJE Introducción al álgebra vectorial www.fisic.ch Profesor: David Valenzuela Z Magnitudes escalares y vectoriales La gran variedad de cosas medibles (magnitudes) se pueden clasificar en

Más detalles

Conversión de unidades y vectores

Conversión de unidades y vectores Conversión de unidades y vectores Por: Enrique Hernández Gallardo Equivalencia entre unidades Para convertir unidades de un sistema a otro, o bien a un múltiplo o submúltiplo del mismo, es necesario antes

Más detalles

GUÍA DE APRENDIZAJE Introducción al álgebra vectorial

GUÍA DE APRENDIZAJE Introducción al álgebra vectorial Liceo Juan XXIII V.A Departamento de ciencias Física Prof. David Valenzuela GUÍA DE APRENDIZAJE Introducción al álgebra vectorial www.fisic.jimdo.com Tercero medio diferenciado Magnitudes escalares y vectoriales

Más detalles

MÓDULO 8: VECTORES. Física

MÓDULO 8: VECTORES. Física MÓDULO 8: VECTORES Física Magnitud vectorial. Elementos. Producto de un vector por un escalar. Operaciones vectoriales. Vector unitario. Suma de vectores por el método de componentes rectangulares. UTN

Más detalles

FACULTAD DE INGENIERIA. ESTABILIDAD I A Sistemas de fuerzas concentradas. Principios de la estática

FACULTAD DE INGENIERIA. ESTABILIDAD I A Sistemas de fuerzas concentradas. Principios de la estática FACULTAD DE INGENIERIA ESTABILIDAD I A Sistemas de fuerzas concentradas. Principios de la estática 1 Mecánica: Rama de la física que se ocupa del estado de reposo o movimiento de cuerpos sometidos a la

Más detalles

Nociones elementales de trigonometría

Nociones elementales de trigonometría Nociones elementales de trigonometría La parte de la Matemática que se basa en las propiedades especiales de un triángulo rectángulo se llama trigonometría. Muchos conceptos de trigonometría son muy importantes

Más detalles

ESTATICA. FUERZA Es la acción que uno ejerce con la mano cuando empuja algo o tira de algo. Por ejemplo:

ESTATICA. FUERZA Es la acción que uno ejerce con la mano cuando empuja algo o tira de algo. Por ejemplo: 1 ESTATICA En estática uno suele tener un cuerpo que tiene un montón de fuerzas aplicadas. Resolver un problema de estática quiere decir calcular cuánto vale alguna de esas fuerzas. Entonces primero fíjate

Más detalles

Mecánica Unidad 2. Sistema de vectores. Profesores: Ing. Iraid Hebed Hernández Barragán Ing. Mario Rivero Reyes

Mecánica Unidad 2. Sistema de vectores. Profesores: Ing. Iraid Hebed Hernández Barragán Ing. Mario Rivero Reyes Mecánica Unidad 2. Sistema de vectores Profesores: Ing. Iraid Hebed Hernández Barragán Ing. Mario Rivero Reyes En esta unidad el alumno podrá identificar claramente el concepto de vector así como la clasificación

Más detalles

INTRODUCCIÓN A LOS TIPOS ESTRUCTURALES Cat. Ing. CANCIANI

INTRODUCCIÓN A LOS TIPOS ESTRUCTURALES Cat. Ing. CANCIANI 1 INTRODUCCIÓN A LOS TIPOS ESTRUCTURALES Cat. Ing. CANCIANI TRABAJO PRÁCTICO Nº 4: COMPOSICIÓN DE FUERZAS 4.1- Componer el siguiente sistema de Fuerzas Concurrentes gráficamente. Hallar la Fuerza Resultante

Más detalles

Trigonometría y Análisis Vectorial

Trigonometría y Análisis Vectorial Unidad Educativa enezuela Trigonometría nálisis ectorial Prof. Ronn J. ltuve Unidad Educativa enezuela Trigonometría nálisis ectorial 1. Teorema de Pitágoras: establece que en un triángulo rectángulo el

Más detalles

Geometría analítica del plano

Geometría analítica del plano 8 Geometría analítica del plano Objetivos En esta quincena aprenderás a: Reconocer los elementos de un vector identificando cuando dos vectores son equipolentes. Hacer operaciones con vectores libres tanto

Más detalles

TEMA: LAS FUERZAS - PLÁSTICAS - ELÁSTICAS - ANGULARES O CONCURRENTES

TEMA: LAS FUERZAS - PLÁSTICAS - ELÁSTICAS - ANGULARES O CONCURRENTES TEMA: LAS UEZAS U E - CONCEPTO - ELEMENTOS - EPESENTACIÓN - EECTOS - ESTÁTICO: DEOMACIONES - DINÁMICO: MOVIMIENTOS - PLÁSTICAS - ELÁSTICAS Z A S - MEDIDA - UNIDADES DE UEZA. EQUIVALENCIAS - SISTEMAS DE

Más detalles

Física I. TEMA I. Vectores. Ing. Alejandra Escobar UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA

Física I. TEMA I. Vectores. Ing. Alejandra Escobar UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA Física I TEMA I. Vectores UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA Ing. Alejandra Escobar TEMA I. VECTORES Magnitudes Una magnitud se define como toda aquella propiedad que

Más detalles

REPRESENTACIÓN DE FUERZAS. Hay dos tipos de magnitudes: ESCALARES y VECTORIALES

REPRESENTACIÓN DE FUERZAS. Hay dos tipos de magnitudes: ESCALARES y VECTORIALES VECTORES REPRESENTACIÓN DE UERZAS Hay dos tipos de magnitudes: ESCALARES y VECTORIALES Las magnitudes ESCALARES quedan determinadas mediante una cantidad y su unidad correspondiente: L (Longitud) 5 m m

Más detalles

CLASE I Estática de las construcciones I

CLASE I Estática de las construcciones I Introducción a las construcciones CLASE I Estática de las construcciones I Casa sobre el arroyo. Mar del Plata. Amancio Williams Física: estudio de los fenómenos que sufren los cuerpos Cinemática Mecánica

Más detalles

UNIVERSIDAD DEL ZULIA PROGRAMA DE INGENIERÍA NÚCLEO COSTA ORIENTAL DEL LAGO UNIDAD CURRICULAR: FÍSICA I

UNIVERSIDAD DEL ZULIA PROGRAMA DE INGENIERÍA NÚCLEO COSTA ORIENTAL DEL LAGO UNIDAD CURRICULAR: FÍSICA I UNIVESIDAD DEL ZULIA POGAMA DE INGENIEÍA NÚCLEO COSTA OIENTAL DEL LAGO UNIDAD CUICULA: ÍSICA I INSTUCTIVO PÁCTICA Nº 4. UEZAS COPLANAES CONCUENTES Preparado por. Ing. onny J. Chirinos S., MSc OBJETIVO

Más detalles

Formato para prácticas de laboratorio

Formato para prácticas de laboratorio CARRERA TRONCO COMÚN PLAN DE ESTUDIO CLAVE ASIGNATURA 2003-1 4347 ESTÁTICA NOMBRE DE LA ASIGNATURA PRÁCTICA No. LABORATORIO DE CIENCIAS BÁSICAS DURACIÓN(HORAS) NOMBRE DE LA DESCOMPOSICIÓN DE EST-02 2:00

Más detalles

Coordenadas polares: Cuando expreso el vector con módulo y ángulo:

Coordenadas polares: Cuando expreso el vector con módulo y ángulo: MAGNITUDES ESCALARES Y VECTORIALES (V7) Hay magnitudes como la masa, o el tiempo, que basta con dar su magnitud numéricamente. Ej: Una masa de 5 kg, un tiempo de 18 s, Estas magnitudes se denominan magnitudes

Más detalles

Apéndice A. Vectores: propiedades y operaciones básicas.

Apéndice A. Vectores: propiedades y operaciones básicas. Vectores 145 Apéndice A. Vectores: propiedades y operaciones básicas. Una clasificación básica de las distintas propiedades físicas medibles, establece que estas pueden dividirse en dos tipos: a) Aquellas

Más detalles

Clase 5 - Magnitudes en Física

Clase 5 - Magnitudes en Física Clase 5 - Magnitudes en Física 1. Magnitudes escalares y vectoriales Magnitud: es un indicador usado para describir la situación de un sistema particular, nos explicita que la variable bajo estudio es

Más detalles

ESTATICA: TIPOS DE MAGNITUDES: CARACTERÍSTICAS DE UN VECTOR. Rama de la física que estudia el equilibrio de los cuerpos.

ESTATICA: TIPOS DE MAGNITUDES: CARACTERÍSTICAS DE UN VECTOR. Rama de la física que estudia el equilibrio de los cuerpos. ESTATICA: Rama de la física que estudia el equilibrio de los cuerpos. TIPOS DE MAGNITUDES: MAGNITUD ESCALAR: Es una cantidad física que se especifica por un número y una unidad. Ejemplos: La temperatura

Más detalles

TEMA 8. FUERZAS FÍSICA Y QUÍMICA 4º ESO

TEMA 8. FUERZAS FÍSICA Y QUÍMICA 4º ESO TEMA 8. FUERZAS FÍSICA Y QUÍMICA 4º ESO 1. Introducción. 2. La fuerza es un vector. 2.1. Fuerza resultante. 2.2. Composición de fuerzas. 2.3. Descomposición de una fuerza sobre dos ejes perpendiculares.

Más detalles

TEMA 2 4º ESO Editorial Oxford. INTERACCIONES ENTRE LOS CUERPOS: Fuerzas

TEMA 2 4º ESO Editorial Oxford. INTERACCIONES ENTRE LOS CUERPOS: Fuerzas TEMA 2 4º ESO Editorial Oxford INTERACCIONES ENTRE LOS CUERPOS: Fuerzas 1 LAS FUERZAS Y SUS EFECTOS. Fuerza es toda causa capaz de modificar el estada de reposo o de movimiento de un cuerpo, o de producir

Más detalles

ÍNDICE TEMÁTICO 2. VECTORES

ÍNDICE TEMÁTICO 2. VECTORES ÍNDICE TEMÁTICO 2. VECTORES 2.1. CANTIDADES VECTORIALES Y ESCALARES 2.2 COMPONENTES DE UN VECTOR 2.3 TIPOS DE VECTORES 2.4. SUMA DE VECTORES MEDIANTE MÉTODOS GRÁFICOS 2.4.1 Método del polígono 2.4.2 Método

Más detalles

TEMA VI: ÁNGULOS ENTRE ELEMENTOS

TEMA VI: ÁNGULOS ENTRE ELEMENTOS TEMA VI: ÁNGULOS ENTRE ELEMENTOS 6.1.D Ángulo entre dos rectas El cálculo del ángulo de dos rectas que se cortan es sencillo. Si las rectas se cruzan, el ángulo es el formado entre una de las rectas y

Más detalles

Las leyes de Newton. Unidad III, tema 2 Segundo medio Graciela Lobos G. Profesora de física

Las leyes de Newton. Unidad III, tema 2 Segundo medio Graciela Lobos G. Profesora de física Las leyes de Newton Unidad III, tema 2 Segundo medio Graciela Lobos G. Profesora de física Diagrama de cuerpo libre (DCL) Esquema que sirve para representar y visualizar las fuerzas que actúan en un cuerpo.

Más detalles

Coordenadas polares:cuando expreso el vector con módulo y ángulo:

Coordenadas polares:cuando expreso el vector con módulo y ángulo: MAGNITUDES ESCALARES Y VECTORIALES (V5) Hay magnitudes como la masa, o el tiempo, que basta con dar su magnitud numéricamente. Ej: Una masa de 5 kg, un tiempo de 18 s, Estas magnitudes se denominan magnitudes

Más detalles

TORNEOS GEOMÉTRICOS Primera Ronda Primer Nivel - 5º Año de Escolaridad

TORNEOS GEOMÉTRICOS Primera Ronda Primer Nivel - 5º Año de Escolaridad TORNEOS GEOMÉTRICOS 2017. Primera Ronda Primer Nivel - 5º Año de Escolaridad Problema 1. El hexágono regular de la figura tiene área 6cm 2. Halla el área de la región sombreada. Solución: El triángulo

Más detalles

Sesión 2. Fuerzas y vectores. 3.1 Fuerza resultante.

Sesión 2. Fuerzas y vectores. 3.1 Fuerza resultante. Sesión 2. Fuerzas y vectores. 3.1 Fuerza resultante. Cuando 2 o mas fuerzas actúan sobre un mismo punto de un objeto, se dice que son fuerzas concurrentes. El efecto combinado de tales fuerzas se llama

Más detalles

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS U.T. 4.- ESTATICA. 3.1.- Centro de gravedad de un cuerpo. Un cuerpo de masa M, se puede considerar compuesto por multitud de partículas

Más detalles

DISTANCIA ENTRE DOS PUNTOS EN EL PLANO CARTESIANO.

DISTANCIA ENTRE DOS PUNTOS EN EL PLANO CARTESIANO. RAZONAMIENTO Y DEMOSTRACIÓN Determina la distancia entre pares de puntos. Calcula las coordenadas del punto medio del segmento cuyos extremos son dos puntos dados. Halla la pendiente de una recta. COMUNICACIÓN

Más detalles

Tema 3. Magnitudes escalares y vectoriales

Tema 3. Magnitudes escalares y vectoriales 1 de 13 09/07/2012 12:51 Tema 3. Magnitudes escalares y vectoriales Algunos derechos reservados por manelzaera Como sabes, una magnitud es todo aquello que se puede medir. Por ejemplo, la fuerza, el tiempo,

Más detalles

r 2 A 1 r 1 UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO

r 2 A 1 r 1 UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO UNIVERSIDDES PÚLICS DE L COMUNIDD DE MDRID PRUE DE CCESO LS ENSEÑNZS UNIVERSITRIS OFICILES DE GRDO MTERI: DIUJO TÉCNICO II Curso 2010-2011 4 INSTRUCCIONES Y CRITERIOS GENERLES DE CLIFICCIÓN La prueba consiste

Más detalles

2.-GEOMETRÍA PLANA O EUCLIDIANA

2.-GEOMETRÍA PLANA O EUCLIDIANA 2.-GEOMETRÍA PLANA O EUCLIDIANA 2.2.-Cuadriláteros. Definición, clasificación y notación. Clasificación de los cuadriláteros: Paralelogramos y no paralelogramos. Los cuadriláteros son los polígonos de

Más detalles

Guía de Matemática Segundo Medio

Guía de Matemática Segundo Medio Guía de Matemática Segundo Medio Aprendizaje Esperado:. Analizan la ecuación de la recta; establecen la dependencia entre las variables y la expresan gráfica y algebraicamente.. Identifican e interpretan

Más detalles

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 2 ÁLGEBRA VECTORIAL

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 2 ÁLGEBRA VECTORIAL Vectores y escalares. REPÚBLICA BOLIVARIANA DE VENEZUELA APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 2 ÁLGEBRA VECTORIAL Las magnitudes escalares son aquellas magnitudes físicas que

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE ODONTOLOGÍA CURSO: FÍSICA MATEMATICA DOCENTE:

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE ODONTOLOGÍA CURSO: FÍSICA MATEMATICA DOCENTE: UNIVESIDAD DE SAN CALOS DE GUATEMALA FACULTAD DE ODONTOLOGÍA CUSO: FÍSICA MATEMATICA DOCENTE: Dr. Edwin López Año 2017 Documento de apoyo a la docencia VECTOES Toda la teoría que se desarrolla acerca de

Más detalles

Unidad II Sistemas de Vectores "A resolver ejercicios

Unidad II Sistemas de Vectores A resolver ejercicios Unidad II Sistemas de Vectores "A resolver ejercicios Ing. Laura Istabhay Ensástiga Alfaro. 1 Resolución de problemas. Lo más complicado en las ciencias que se consideran exactas (Matemáticas, Física y

Más detalles

31. SISTEMA AXONOMÉTRICO. LA RECTA Y EL PLANO

31. SISTEMA AXONOMÉTRICO. LA RECTA Y EL PLANO 31. SISTEMA AXONOMÉTRICO. LA RECTA Y EL PLANO 31.1. Representación de la recta. Si un punto se representaba por cuatro proyecciones, la recta se representa igual por cuatro proyecciones. Tenemos la recta

Más detalles

INDICADOR DE DESEMPEÑO Interpreta y soluciona diferentes problemas de física, empleando conceptos de cinemática y operaciones entre vectores.

INDICADOR DE DESEMPEÑO Interpreta y soluciona diferentes problemas de física, empleando conceptos de cinemática y operaciones entre vectores. INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: MATEMATICAS DOCENTE: HUGO HERNAN BEDOYA TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO FECHA DURACION 0 7 DE MARZO

Más detalles

Clase 2. Matricula de AIEAS Nª 237/2012 Autor: M.A.R.F Salta

Clase 2. Matricula de AIEAS Nª 237/2012 Autor: M.A.R.F Salta Clase 2 1 Introducción En esta etapa veremos teoremas y funciones especiales que emplearemos en el desarrollo de los cálculos de las variables eléctricas. Es imprescindible conocer el Teorema de Pitágoras

Más detalles

ESTÁTICA 3 3 VECTORES

ESTÁTICA 3 3 VECTORES ESTÁTICA Sesión 3 3 VECTORES 3.1. Componentes en dos dimensiones 3.1.1. Operación con vectores por sus componentes 3.1.2. Vectores de posición por sus componentes 3.2. Componentes en tres dimensiones 3.2.1.

Más detalles

Titulo: FUERZA RESULTANTE (FISICA ESTATICA) Año escolar: 3er. año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo electrónico:

Más detalles

TEMA 8. GEOMETRÍA ANALÍTICA.

TEMA 8. GEOMETRÍA ANALÍTICA. TEMA 8. GEOMETRÍA ANALÍTICA. 8..- El plano. Definimos el plano euclideo como el conjunto de puntos ( x, y) R. Así, cada punto del plano posee dos coordenadas. Para representar puntos del plano utilizaremos

Más detalles

La recta en el plano.

La recta en el plano. 1 CONOCIMIENTOS PREVIOS. 1 La recta en el plano. 1. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Intervalos y sus definiciones básicas. Representación

Más detalles

Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos:

Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: CONOCIMIENTOS PREVIOS. Vectores.. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Trigonometría. Resolución de ecuaciones de primer grado. Sería

Más detalles

TALLER 5. GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA

TALLER 5. GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA TALLER 5. GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA. 013-1 Profesor: Jaime Andres Jaramillo González. jaimeaj@conceptocomputadores.com Parte de este documento es tomado

Más detalles

DIÉDRICO: SECCIÓN PLANA EN UN HEXAEDRO (unidades en milímetros)

DIÉDRICO: SECCIÓN PLANA EN UN HEXAEDRO (unidades en milímetros) 1 / 14 DIÉDRICO: SECCIÓN PLANA EN UN HEXAEDRO (unidades en milímetros) Dibujar un hexaedro apoyado en el plano horizontal de proyección diédrica de forma que su base esté inscrita en una circunferencia

Más detalles

31. SISTEMA AXONOMÉTRICO. LA RECTA Y EL PLANO

31. SISTEMA AXONOMÉTRICO. LA RECTA Y EL PLANO 31. SISTEMA AXONOMÉTRICO. LA RECTA Y EL PLANO 31.1. Representación de la recta. Si un punto se representaba por cuatro proyecciones, la recta se representa igual por cuatro proyecciones. Proyecciones de

Más detalles

VECTORES : Las Cantidades Vectoriales cantidades escalares

VECTORES : Las Cantidades Vectoriales cantidades escalares VECTORES En física hay dos tipos de cantidades: Las Cantidades Vectoriales son aquellas que tiene tanto magnitud como dirección y sentido sobre la dirección), mientras que las cantidades escalares son

Más detalles

TALLER 5. GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA

TALLER 5. GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA TALLER 5. GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA. 01-1 Profesor: Jaime Andres Jaramillo González. jaimeaj@conceptocomputadores.com Parte de este documento es tomado

Más detalles

Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática.

Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática. Álgebra Geometría Analítica Prof. Gisela Saslavsk Vectores en R en R 3. Rectas planos en el espacio Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática..

Más detalles

MAGNITUDES. INTRODUCCIÓN AL ANÁLISIS DIMENSIONAL

MAGNITUDES. INTRODUCCIÓN AL ANÁLISIS DIMENSIONAL MGNITUDES. INTRODUCCIÓN L NÁLISIS DIMENSIONL IES La Magdalena. vilés. sturias Magnitud es todo aquello que puede ser medido. Por eemplo una longitud, la temperatura, la intensidad de corriente, la fuerza

Más detalles

Resumen teórico de los conceptos necesarios para resolver el práctico 1. Vectores VECTORES

Resumen teórico de los conceptos necesarios para resolver el práctico 1. Vectores VECTORES Resumen teórico de los conceptos necesarios para resolver el práctico 1. Vectores En física algunas cantidades se pueden representar mediante un valor y su correspondiente unidad (1 litro, 10 kilogramos).

Más detalles

U IVERSIDAD ACIO AL AUTO OMA DE HO DURAS CE TRO U IVERSITARIO DE ESTUDIOS GE ERALES DEPARTAME TO DE FÍSICA

U IVERSIDAD ACIO AL AUTO OMA DE HO DURAS CE TRO U IVERSITARIO DE ESTUDIOS GE ERALES DEPARTAME TO DE FÍSICA U IVERSIDAD ACIO AL AUTO OMA DE HO DURAS CE TRO U IVERSITARIO DE ESTUDIOS GE ERALES DEPARTAME TO DE FÍSICA FISICA MÉDICA I FS-111 LABORATORIO º 1 VECTORES Elaborado por: Lic. Enma Zúñiga de Guillén (Coordinadora)

Más detalles

GEOMETRÍA ANALÍTICA PARA LA CLASE. A (x 2 ;y 2 ) y 2. d(a,b) y 2 y 1. x 1 x 2. y 1. B (x 1 ;y 1 ) x 2. Geometría Analítica DISTANCIA ENTRE DOS PUNTOS

GEOMETRÍA ANALÍTICA PARA LA CLASE. A (x 2 ;y 2 ) y 2. d(a,b) y 2 y 1. x 1 x 2. y 1. B (x 1 ;y 1 ) x 2. Geometría Analítica DISTANCIA ENTRE DOS PUNTOS GEOMETRÍA ANALÍTICA La Geometría Analítica hace uso del Álgebra y la Geometría plana. Con ella expresamos y resolvemos fácilmente problemas geométricos de forma algebraica, siendo los sistemas de coordenadas

Más detalles

SISTEMA DE COORDENADAS CARTESIANAS

SISTEMA DE COORDENADAS CARTESIANAS SISTEA DE COORDENADAS CARTESIANAS Un par ordenado de números reales (, y) lo podemos representar en el plano en un sistema de coordenadas cartesianas o rectangulares o plano y Este sistema está constituido

Más detalles

Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática.

Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática. Álgebra Geometría Analítica Vectores en R en R 3. Rectas planos en el espacio Prof. Gisela Saslavs Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática..

Más detalles

I.T.I. FRANCISCO JOSÉ DE CALDAS Física Mecánica Félix Rodríguez - 10 Guía 2 Vectores

I.T.I. FRANCISCO JOSÉ DE CALDAS Física Mecánica Félix Rodríguez - 10 Guía 2 Vectores I.T.I. FRANCISCO JOSÉ DE CALDAS Física Mecánica Félix Rodríguez - 10 Guía 2 Vectores CARACTERÍSTICAS DE UN VECTOR Un vector cualquiera tiene las siguientes características: 1. Punto de aplicación u origen.

Más detalles

EDUCACIÓN PLÁSTICA Y VISUAL BLOQUE: GEOMETRÍA CUADERNO ADAPTADO 1º E.S.O. Alumno/a: Curso escolar: Grupo: 1º

EDUCACIÓN PLÁSTICA Y VISUAL BLOQUE: GEOMETRÍA CUADERNO ADAPTADO 1º E.S.O. Alumno/a: Curso escolar: Grupo: 1º EDUCACIÓN PLÁSTICA Y VISUAL BLOQUE: GEOMETRÍA CUADERNO ADAPTADO 1º E.S.O. Alumno/a: Curso escolar: Grupo: 1º TEMA 1. TRAZADOS GEOMÉTRICOS (tema 7 del libro) INTRODUCCIÓN: LOS MATERIALES DE DIBUJO Vamos

Más detalles

a) Teoría: Teoría y problemas de examen para alumnos regulares y previos: Mecánica Técnica E. E. T. P. Nº 466

a) Teoría: Teoría y problemas de examen para alumnos regulares y previos: Mecánica Técnica E. E. T. P. Nº 466 Asignatura: Mecánica Técnica Teoría y problemas de examen para alumnos regulares y previos: a) Teoría: 1) Hipótesis de la Estática. 2) Definición de fuerza. Características. Unidades. 3) Resultante de

Más detalles

PRESENTACIÓN TODOS LOS APUNTES Y HOJAS DE EJERCICIOS ESTÁN EN EL BLOG QUE HE CREADO PARA MIS CLASES:

PRESENTACIÓN TODOS LOS APUNTES Y HOJAS DE EJERCICIOS ESTÁN EN EL BLOG QUE HE CREADO PARA MIS CLASES: PRESENTACIÓN TODOS LOS APUNTES Y HOJAS DE EJERCICIOS ESTÁN EN EL BLOG QUE HE CREADO PARA MIS CLASES: http://espaiescolar.wordpress.com CONCEPTOS PREVIOS PROPORCIONALIDAD Recta: línea continua formada por

Más detalles

Dibujo técnico 1º Bachillerato. McGraw-Hill

Dibujo técnico 1º Bachillerato. McGraw-Hill Dibujo técnico 1º Bachillerato McGraw-Hill Transformaciones geométricas en el plano Transformaciones geométricas en el plano Relaciones métricas. Igualdad Transformaciones geométricas en el plano Relaciones

Más detalles

EQUILIBRIO. Cátedra Estructuras 3 FAREZ LOZADA LANGER

EQUILIBRIO. Cátedra Estructuras 3 FAREZ LOZADA LANGER EQUILIBRIO FUERZA EQUILIBRIO HORMIGON, CRISTAL Y AGUA 20 toneladas de granito la gravedad Casa Hemeroscopium Arq. Antón García Abril y Ensamble Studio Apilamiento estructural en EQUILIBRIO EQUILIBRIO EXTERNO:

Más detalles

Tema 3. GEOMETRIA ANALITICA.

Tema 3. GEOMETRIA ANALITICA. Álgebra lineal. Curso 087-009. Tema. Hoja 1 Tema. GEOMETRIA ANALITICA. 1. Hallar la ecuación de la recta: a) que pase por ( 4, ) y tenga pendiente 1. b) que pase por (0, 5) y tenga pendiente. c) que pase

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: DIBUJO TÉCNICO II

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: DIBUJO TÉCNICO II UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2012-2013 MATERIA: DIBUJO TÉCNICO II Examen para coincidencias INSTRUCCIONES Y

Más detalles

Ejercicios de Vectores y Trigonometría

Ejercicios de Vectores y Trigonometría Ejercicios de Vectores y Trigonometría 1) Suma los siguientes vectores gráficamente. 2) Suma gráficamente los tres vectores siguientes. c 3) Suma estos dos vectores paralelos y de igual sentido. Determina

Más detalles

TEMA 9. S.D. PARALELISMO Y PERPENDICULARIDAD.

TEMA 9. S.D. PARALELISMO Y PERPENDICULARIDAD. TEMA 9. S.D. PARALELISMO Y PERPENDICULARIDAD. 9.1. PARALELISMO. Rectas paralelas. Si dos rectas son paralelas en el espacio sus proyecciones ortogonales sobre los planos de proyección serán paralelas.

Más detalles

RAZONES TRIGONOMÉTRICAS

RAZONES TRIGONOMÉTRICAS RAZONES TRIGONOMÉTRICAS Las Razones trigonométricas se definen comúnmente como el cociente entre dos lados de un triangulo rectángulo asociado a sus ángulos. SENO, COSENO Y TANGENTE Recordarás que eisten

Más detalles

Cantidad escalar o escalar: es aquella que se especifica por su magnitud y una unidad o especie.

Cantidad escalar o escalar: es aquella que se especifica por su magnitud y una unidad o especie. CANTIDADES ESCALARES Y VECTORIALES. Cantidad escalar o escalar: es aquella que se especifica por su magnitud y una unidad o especie. Ejemplos: 10 Kg., 3m, 50 Km./h. Las cantidades escalares pueden sumarse

Más detalles

CALCULO VECTORIAL.CONCEPTOS BÁSICOS.

CALCULO VECTORIAL.CONCEPTOS BÁSICOS. CALCULO VECTORIAL.CONCEPTOS BÁSICOS. 1. MAGNITUDES ESCALARES Y VECTORIALES. Magnitud física es todo aquello que se puede medir. Magnitudes escalares Son aquellas que están perfectamente definidas por un

Más detalles

UNIDAD N 2: VECTORES Y FUERZAS

UNIDAD N 2: VECTORES Y FUERZAS PROFESORADO EN EDUCACIÓN SECUNDARIA DE LA MODALIDAD TÉCNICO PROFESIONAL EN CONCURRENCIA CON EL TÍTULO DE BASE. ESPACIO CURRICULAR : FÍSICA AÑO: 2010 PROFESORES: BERTONI, JUAN; ; CATALDO JORGE; ; GARCÍA,

Más detalles

EJERCICIOS DE VERANO MATEMÁTICAS 4º ESO

EJERCICIOS DE VERANO MATEMÁTICAS 4º ESO EJERCICIOS DE VERANO MATEMÁTICAS 4º ESO Matemáticas 4º ESO Página 1 NOTA IMPORTANTE: Estos ejercicios se entregarán en septiembre, el día del examen de recuperación de matemáticas. La entrega de los mismos

Más detalles

AUTOEVALUACIÓN DE LOS TEMAS 7 y 8:SEMEJANZA Y TRIGONOMETRÍA NOMBRE Y APELLIDOS:

AUTOEVALUACIÓN DE LOS TEMAS 7 y 8:SEMEJANZA Y TRIGONOMETRÍA NOMBRE Y APELLIDOS: 1.TEOREMA DE TALES. 1. Sabiendo que las rectas r, s e t son paralelas, calcula la longitud del segmento B C. Qué teorema has aplicado? 2.En una foto están Sabela y su madre. Se sabe que Sabela mide en

Más detalles

CINEMÁTICA. Introducción

CINEMÁTICA. Introducción CINEMÁTICA 1- MAGNITUDES ESCALARES Y VECTORIALES. 2- CINEMÁTICA. MAGNITUDES FUNDAMENTALES PARA EL ESTUDIO DEL MOVIMIENTO. 3- CLASIFICACIÓN DE MOVIMIENTOS. Introducción La cinemática es una parte de la

Más detalles

COLEGIO TÉCNICO NACIONAL Arq. Raúl María Benítez Perdomo. Prof. María Teresa Szostak

COLEGIO TÉCNICO NACIONAL Arq. Raúl María Benítez Perdomo. Prof. María Teresa Szostak Arq. aúl María Benítez Perdomo ESTATICA Es la parte de la Mecánica, que tiene como objetivo, establecer si bajo la acción simultánea de varias fuerzas, un cuerpo se halla o no en equilibrio. FUEZA Se denomina

Más detalles

Unidad Didáctica 8. Dibujo Geométrico

Unidad Didáctica 8. Dibujo Geométrico Unidad Didáctica 8 Dibujo Geométrico 1.- Tazados Geométricos Básicos Trazados Rectas Paralelas Rectas paralelas. Las que no llegan nunca a cortarse, o se cortan en el infinito. Con Escuadra y Cartabón:

Más detalles

Vectores equipolentes. Dos vectores son equipolentes cuando tienen igual módulo, dirección y sentido.

Vectores equipolentes. Dos vectores son equipolentes cuando tienen igual módulo, dirección y sentido. TEMA 9: GEOMETRIA ANALÍTICA VECTORES EN EL PLANO Un vector fijo AB es un segmento orientado que va del punto A (origen) al punto B (extremo). Si las coordenadas de A son (x1, y1) y las de B, (X, y), las

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: DIBUJO TÉCNICO II

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: DIBUJO TÉCNICO II UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2013-2014 MATERIA: DIBUJO TÉCNICO II INSTRUCCIONES GENERALES Y CALIFICACIÓN Después

Más detalles

ÁNGULOS ÁNGULO FORMADO ENTRE DOS RECTAS

ÁNGULOS ÁNGULO FORMADO ENTRE DOS RECTAS ÁNGULOS ÁNGULO FORMADO ENTRE DOS RECTAS QUE SE CORTAN 1 - Se halla el plano que forman R y S. 2 Se abaten las dos rectas para hallar el ángulo. Se puede abatir con el método directo, o con el método tradicional

Más detalles

EJERCICIOS DE VERANO MATEMÁTICAS 4º ESO

EJERCICIOS DE VERANO MATEMÁTICAS 4º ESO EJERCICIOS DE VERANO MATEMÁTICAS 4º ESO NOTA IMPORTANTE: Estos ejercicios se entregarán en el mes de septiembre el mismo día del examen de recuperación de matemáticas. La entrega de los mismos será condición

Más detalles

Ángulos. Proporcionalidad. Igualdad y Semejanza

Ángulos. Proporcionalidad. Igualdad y Semejanza 3. ÁNGULOS 3.1 DEFINICIÓN Un ángulo es la parte del plano limitada por dos semirrectas que parten del mismo punto, que es el vértice del ángulo. Las semirrectas que lo limitan son los lados del ángulo.

Más detalles

MATEMÁTICA Teorema de Pitágoras Guía Nº 2

MATEMÁTICA Teorema de Pitágoras Guía Nº 2 MATEMÁTICA Teorema de Pitágoras Guía Nº 2 APELLIDO: Prof. Karina G. Rizzo 2. b) Trazar una recta y dividir en partes iguales ubicando, en la misma, desde el el año 700 hasta el año 0 (en múltiplos de 100).

Más detalles

MATEMÁTICAS 2º DE ESO

MATEMÁTICAS 2º DE ESO MATEMÁTICAS 2º DE ESO LOE TEMA VII: FUNCIONES Y GRÁFICAS Coordenadas cartesianas. Concepto de función. Tabla y ecuación. Representación gráfica de una función. Estudio gráfico de una función. o Continuidad

Más detalles

e s t r u c t u r a s

e s t r u c t u r a s MÓDULO PROFESIONAL ESTRUCTURAS DE CONSTRUCCIÓN Profesor: JORGE M. BADÁS PEITEADO UNIDAD DIDÁCTICA 1. CÓMO SE RESUELVEN LOS PROBLEMAS DE ESTÁTICA? ACTIVIDAD 1.1. FUERZAS Y MOMENTOS Página 1 de Estos están

Más detalles

Fuerza y vectores. Solución: Utilizando una escala de 1 cm = 10 Ib, se tiene 1 cm 1 cm 60 Ib X = 6 cm 20 Ib X = 2 cm 101b

Fuerza y vectores. Solución: Utilizando una escala de 1 cm = 10 Ib, se tiene 1 cm 1 cm 60 Ib X = 6 cm 20 Ib X = 2 cm 101b 2 0 Ib ^ 6 0 Ib libras 0 10 2 0 3 0 4 ( ------ 1 1----- 1----- 1------- 1 0 1 2 3 centímetros Encuentre la fuerza resultante sobre el burro de la figura 3.11, si el ángulo entre las dos cuerdas es de 120.

Más detalles

1 Imagen extraída de: E. Egaña, M. Berruti y Alejandro González. Interacciones, fuerzas y energía. Editorial: Contexto. Año: Uruguay.

1 Imagen extraída de: E. Egaña, M. Berruti y Alejandro González. Interacciones, fuerzas y energía. Editorial: Contexto. Año: Uruguay. Propiedades de la fuerza: - Una fuerza siempre es aplicada por un objeto material a otro. - Una fuerza se caracteriza por su módulo, dirección y sentido. - Cuando un objeto A ejerce una fuerza sobre un

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: DIBUJO TÉCNICO II

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: DIBUJO TÉCNICO II UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2014-2015 MATERIA: DIBUJO TÉCNICO II INSTRUCCIONES GENERALES Y CALIFICACIÓN Después

Más detalles

ANALISIS VECTORIAL. Vectores concurrentes: cuando se interceptan en un mismo punto.

ANALISIS VECTORIAL. Vectores concurrentes: cuando se interceptan en un mismo punto. ANALISIS VECTORIAL Vector: Es un operador matemático que sirve para representar a las magnitudes vectoriales. Vectores concurrentes: cuando se interceptan en un mismo punto. Vectores iguales: cuando tienen

Más detalles

FS-104 Física General UNAH. Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física. Mesa de fuerzas

FS-104 Física General UNAH. Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física. Mesa de fuerzas Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Elaboró: Lic. Enma Zuniga Objetivos Mesa de fuerzas 1. Visualizar las fuerzas como vectores, que poseen una magnitud y una

Más detalles