Tema 2: Variables Aleatorias Unidimensionales

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 2: Variables Aleatorias Unidimensionales"

Transcripción

1 Tema 2: Variables Aleatorias Unidimensionales Teorı a de la Comunicacio n Curso 27-28

2 Contenido 1 Concepto de Variable Aleatoria 2 Función Distribución 3 Clasificación de Variables Aleatorias 4 Función Densidad de Probabilidad 5 Distribuciones Prácticas 6 Distribuciones Condicionales 7 Media y Varianza de Variables Aleatorias 8 Desigualdad de Chebychev

3 Contenido 1 Concepto de Variable Aleatoria 2 Función Distribución 3 Clasificación de Variables Aleatorias 4 Función Densidad de Probabilidad 5 Distribuciones Prácticas 6 Distribuciones Condicionales 7 Media y Varianza de Variables Aleatorias 8 Desigualdad de Chebychev

4 Concepto de Variable Aleatoria Variable aleatoria Intuición: Una variable aleatoria X es una función que asocia números a cada posible resultado de un experimento aleatorio. X: Ω R S Ω X(S) R Propiedades X ha de cumplir las siguientes condiciones: Un solo valor para cada resultado. El conjunto {X x} es un suceso x. P ({X = }) = P ({X = }) =. Rango de una v.a.: Conjunto de números reales que tienen asociado un resultado del espacio muestral Ω X = {x R S Ω, X(S) = x}

5 Concepto de Variable Aleatoria Ejemplos ε: Observación de una carta de la baraja española extraída al azar Ω = { as de oros, dos de oros,..., rey de bastos } Ω = 4 1 X( n o de palo ) = n o Ω X = {1, 2,..., 7, 1, 11, 12} 2 X( n o de palo ) = 1 n o Ω X = {1, 2,..., 7, 1, 11, 12} 3 X( n o de palo ) = { si es de oros 1 si no es de oros Ω X = {, 1} Ω S 4 S 3 S 2 S 1 X x 1 x 2 x 4 x 3 R Ω X

6 Contenido 1 Concepto de Variable Aleatoria 2 Función Distribución 3 Clasificación de Variables Aleatorias 4 Función Densidad de Probabilidad 5 Distribuciones Prácticas 6 Distribuciones Condicionales 7 Media y Varianza de Variables Aleatorias 8 Desigualdad de Chebychev

7 Definición Función Distribución Definición: Sea < Ω, F, P > ligado a ε y X una v.a. Se define la Función de Distribución F X : R R x R F X (x) = P ({X x}) La función de distribución F X contiene toda la información probabilística de la variable aleatoria X. Ejemplo Baraja española: Ω X = {1, 2, 3, 4, 5, 6, 7, 1, 11, 12} x = 3 F X ( 3) = P ({X 3}) = P ( ) = x = 1 F X (1) = P ({X 1}) = P ({1}) = 1/1 x = 1.5 F X (1.5) = P ({X 1.5}) = P ({1}) = 1/1 x = 2 F X (2) = P ({X 2}) = P ({1, 2}) = 2/1

8 Ejemplos Ejemplo Función Distribución. P(X x) Función Distribución. Ejemplo x

9 Ejemplos Otros Ejemplos X( n o de palo ) = 1 n o Ω X = {1, 2,..., 7, 1, 11, 12} Función Distribución. P(X x) Función Distribución. Ejemplo x

10 Ejemplos Otros Ejemplos X( n o de palo ) = { si es de oros 1 si no es de oros Ω X = {, 1} 1 Función Distribución. Ejemplo 3 Función Distribución. P(X x) 3/4 1/2 1/ x

11 Interpretación frecuencial Interpretación frecuencial n realizaciones n valores x 1, x 2,..., x n n x: n o de resultados x 1 n x def. frec. lím = P (X x) = F n X(x) n Función Distribución. Interpretación Frecuencial P(X x) x

12 Propiedades Función Distribución. Propiedades 1 F X ( ) = lím x F X (x) = F X ( ) = lím x F X (x) = 1 2 FD es no decreciente 3 FD es continua por la derecha x 1 < x 2 F X (x 1 ) F X (x 2 ) F X (x + ) = lím F X (x + ɛ) = F X (x) ɛ ɛ> 4 P ({X = x }) = F X (x ) F X (x ) F X(x ) = lím ɛ,ɛ> F X (x ɛ) 5 x 1 < x 2 P (x 1 < X x 2 ) = F X (x 2 ) F X (x 1 ) P (x 1 X x 2 ) = F X (x 2 ) F X (x 1 ) P (x 1 < X < x 2 ) = F X (x 2 ) F X(x 1 ) P (x 1 X < x 2 ) = F X (x 2 ) F X(x 1 ) *Observación: si x 1 < x 2 y F X (x 1 ) = F X (x 2 ) (x 1, x 2 ) Ω X = 6 P (X > x) = 1 F X (x)

13 Contenido 1 Concepto de Variable Aleatoria 2 Función Distribución 3 Clasificación de Variables Aleatorias 4 Función Densidad de Probabilidad 5 Distribuciones Prácticas 6 Distribuciones Condicionales 7 Media y Varianza de Variables Aleatorias 8 Desigualdad de Chebychev

14 Clasificación de Variables Aleatorias Variables Aleatorias Continuas Definición: X v.a. continua F X(x) continua { F X(x) = F X(x + ) = F X(x ) } Si X es continua Ω X es infinito no numerable Propiedad: P (X = x ) = F X (x ) F X (x ) = Ejemplo Un circuito requiere un resistencia de valor (91Ω 19Ω) Se emplea una resistencia estándar de 1KΩ y tolerancia 1 % x < 9 x 9 F X(x) = 9 x x > 11 Probabilidad: P (91 < X 19) = F X(19) F X(91) =.9

15 Clasificación de Variables Aleatorias Variables Aleatorias Discretas Definición: X v.a. discreta F X(x) escalonada, Ω X discreto N N F X(x) = P (X = x i) u(x x i) P (X = x i) = F X( ) = 1 }{{} i=1 i=1 función escalón Propiedades: P (X = x i) = F X(x i) F X(x i ) P (x i 1 < X < x i) = F X(x i ) FX(xi 1) = (xi 1, xi) ΩX = Ejemplo: Baraja española Variables Aleatorias Mixtas Mezcla de las dos anteriores Función Distribución no escalonada pero con discontinuidades. Ω X continuo. x, P (X = x ) = F X(x ) F X(x ) Ejemplos?

16 Contenido 1 Concepto de Variable Aleatoria 2 Función Distribución 3 Clasificación de Variables Aleatorias 4 Función Densidad de Probabilidad 5 Distribuciones Prácticas 6 Distribuciones Condicionales 7 Media y Varianza de Variables Aleatorias 8 Desigualdad de Chebychev

17 Definición Función densidad de probabilidad (fdp) Definición: Dada una F X (x) ligada a una v.a. X, se define la fdp como f X (x) = df X(x) dx Casos particulares: Si X v.a. continua No hay problemas con la derivada. a Si X v.a. discreta No existe la derivada en Ω X f X (x) = N i=1 P (X = x i ) du(x x i) dx = N i=1 P (X = x i ) δ(x x i ) }{{} Delta de Dirac a Aunque en ciertos puntos no sea derivable, dichos puntos carecen de interés.

18 Definición Delta de Dirac δ(x)dx = 1 g(x) δ(x) = g(x) g(x) = δ(t)g(x t)dt u a (x) u(x) 1 1 a/2 a/2 x δ a (x) x δ(x) 1/a a/2 a/2 x x

19 Ejemplos Función Densidad de Probabilidad (fdp) Ejemplo: Resistencia de 1K ± 1 % F X (x) = x < 9 x x 11 1 x > 11 f X (x) = x < < x < 11 x > 11 Función Distribución. P(X x) Función Densidad de Probabilidad (fdp) 1 1/ x x

20 Ejemplos Función Densidad de Probabilidad (fdp) Ejemplo: Baraja española Ω X = {1, 2,..., 7, 1, 11, 12} F X (x) = x i Ω x 1 1 u(x x i) f X (x) = x i Ω x 1 1 δ(x x i) Función Distribución. P(X x) x 1/1 Función Densidad de Probabilidad (fdp) x

21 Propiedades Función Densidad de Probabilidad (fdp) Propiedades: 1 f X(x) x R 2 fx(x)dx = 1 3 F X(x) = x fx(t)dt 4 P (x 1 < X x 2) = F X(x 2) F X(x 1) = x 2 f X(x)dx 5 Si X es una v.a. continua f X(x) = dfx(x) dx x 1 def. deriv. F X(x + x) F X(x) = lím = x x x> P (x < X x + x) Prob. intervalo = lím = x x long. intervalo x>

22 Propiedades Función Densidad de Probabilidad (fdp) Interpretación frecuencial: N realizaciones de v.a. X n x: n o de resultados pertenecientes a un intervalo de longitud x P X (x X x + x) f X (x) x n x/n P(x X x+δx)/δx N=1, Δx=1 Histograma fdp x

23 Propiedades Función Densidad de Probabilidad (fdp) Interpretación frecuencial: N realizaciones de v.a. X n x: n o de resultados pertenecientes a un intervalo de longitud x P X (x X x + x) f X (x) x n x/n P(x X x+δx)/δx N=1, Δx=.5 Histograma fdp x

24 Propiedades Función Densidad de Probabilidad (fdp) Interpretación frecuencial: N realizaciones de v.a. X n x: n o de resultados pertenecientes a un intervalo de longitud x P X (x X x + x) f X (x) x n x/n P(x X x+δx)/δx N=1, Δx=.1 Histograma fdp x

25 Contenido 1 Concepto de Variable Aleatoria 2 Función Distribución 3 Clasificación de Variables Aleatorias 4 Función Densidad de Probabilidad 5 Distribuciones Prácticas 6 Distribuciones Condicionales 7 Media y Varianza de Variables Aleatorias 8 Desigualdad de Chebychev

26 Distribuciones Continuas Distribución Uniforme f X(x) = { 1 x 2 x 1 x 1 x x 2 resto Ω X = [x 1, x 2 ] x < x 1 x x F X(x) = 1 x 2 x 1 x 1 x x 2 1 x > x 2 Distribución uniforme (fdp) Distribución uniforme (FD) K 1 x1 x x2 x1 x x2

27 Distribuciones Continuas Distribución Exponencial Ω X = [, ) parámetro c { ce cx x f X(x) = x < { 1 e cx x F X(x) = x < Distribución exponencial (fdp) Distribución exponencial (FD) c 1 1/c 2/c 3/c 4/c 5/c x 1/c 2/c 3/c 4/c 5/c x

28 Distribuciones Continuas Distribución Gaussiana o Normal Ω X = (, ) parámetros η, σ N (η, σ) f X(x) = 1 x e (x η)2 2σ 2 F X(x) = f(u)du 2πσ.6.4 Distribución Gaussiana (fdp) η=, σ 2 =1 η=, σ 2 =.5 η=, σ 2 =2 η=2, σ 2 = Distribución Gaussiana (FD) η=, σ 2 =1 η=, σ 2 =.5 η=, σ 2 =2 η=2, σ 2 = x x

29 Distribuciones Continuas Distribución Gaussiana o Normal Caso Particular: η =, σ = 1 Caso General: N (η, σ) F X(x) = 1 2πσ x F X(x) = G(x) = 1 2π x e (u η)2 2σ 2 du = t= u η σ e u2 2 du x η 1 σ 2π e t2 2 dt = G( x η σ ) Otras funciones Función error: erf(x) = 1 x e t2 2 dt = G(x) 1 2π 2 Función Q: Q(x) = 1 e t2 2 dt = 1 G(x) = G( x) 2π x

30 Distribuciones Continuas G(x) Segunda cifra decimal del valor de x x

31 Distribuciones Discretas Distribución de Bernoulli Ω X = {, 1} P (X = x) = { p x = 1 q = 1 p x = f X(x) = qδ(x) + pδ(x 1) F X(x) = qu(x) + pu(x 1) Distribución de Bernoulli (fdp) Distribución de Bernoulli (FD) 1 p q q 1 x 1 x

32 Distribuciones Discretas Distribución Binomial n ensayos de Bernoulli independientes. Suceso A con p cte. en todos los ensayos. (q = 1 p). X v.a. binomial cuenta el n o de veces que se verifica el suceso A. f X (x) = n k= X = n k= Xi B(n, p) ΩX = {, 1, 2,..., n} ( n k) p k q n k δ(x k) F X (x) = n k= ( n k) p k q n k u(x k) Distribución Binomial (fdp). n=1, p=.4 1 Distribución Binomial (FD). n=1, p= x x

33 Distribuciones Discretas Distribución Binomial Propiedades: F X(n) = 1 (a + b) n T a Binomial = Aproximación: p constante y n : n k= ( n k) a k b n k p + q = 1 Aproximable por N (η = np, σ = npq) p, n, np = a = cte: Aproximable por Poisson de parámetro a

34 Distribuciones Discretas Distribución de Poisson f X (x) = Ω X = {, 1, 2,...} = N + parámetro a > P(a) k= P (X = k) = e a a k k! a ak e k! δ(x k) F X (x) = a ak e u(x k) k! k= Distribución de Poisson (fdp). a=4 1 Distribución de Poisson (FD). a= x x

35 Distribuciones Discretas Distribución de Poisson Propiedades: F X( ) = 1 k= a ak e k! = e a e a = 1 Aproximación de la distribución Binomial: ( n lím p n k) k q n k n(n 2) (n k + 1) = lím n k! p np=a = ak k! = ak k! lím n lím n n n 1 n n n k + 1 n ( 1 a ) n = e a ak n k! ( a n ) k ( 1 a n ) n k = ( 1 a ) k ( 1 a ) n = n n Regla heurística: n 1, p 1 y a = np < 5

36 Distribuciones Discretas Ejemplo Distribución Binomial Distribución Binomial B(n = 1, p =.3) B(n = 1, p =.2) Aproximación: P(3) Aproximación: N (2, 4).25.2 Distribución Binomial (fdp) Binomial B(1,.3) Poisson P(3).1.8 Distribución Binomial (fdp) Binomial B(1,.2) N(2,4).15.6 fdp fdp x x

37 Distribuciones Discretas Ejemplo Dispositivo electrónico: n componentes con fallos independientes. Componentes con tiempo de vida exponencial de parámetro c Distribución del n o de componentes que fallan en [, t ] X i v.a. fallo componente i-ésimo { 1 fallo X i = no fallo Ω Xi = {, 1} n repeticiones independientes ensayo Bernoulli (prob. cte.) X v.a. n o fallos: Binomial B(n, p) X = N i=1 Xi T v.a. tiempo de vida de un componente { ce ct t f T (t) = p = P (T t t < ) = F T (t ) = 1 e ct P (X = k) = ( ) n (1 e ct ) k ( e ct ) n k k =, 1,..., n k

38 Distribuciones Discretas Ejemplo Prob. de fallo de un componente en un año es 1 3, Prob. de que de 1 componentes ninguno falle en 2 años?: P (T 1 año) = 1 3 = F T (1) = 1 e c c 1 3 años 1 P (T 2 años) = F T (2) = 1 e = = p X B(n, p) con n = 1, p =.2 P ( fallos en 2 años ) = P (X = ) = ( ) n p q n = e Aproximación mediante v.a. Y Poisson (n 1, p 1, a 2 < 5) P (Y = k) = e a a k k! P (Y = ) = e a = e 2

39 Contenido 1 Concepto de Variable Aleatoria 2 Función Distribución 3 Clasificación de Variables Aleatorias 4 Función Densidad de Probabilidad 5 Distribuciones Prácticas 6 Distribuciones Condicionales 7 Media y Varianza de Variables Aleatorias 8 Desigualdad de Chebychev

40 Distribuciones Condicionales Distribución Condicional Definición: Se define la Función Distribución Condicional de una v.a. X dado que se verifica el suceso M como F X(x M) = P ({X x} M) = P ({X x} M) P (M) Función Densidad de Probabilidad (fdp) Condicional Definición: f X(x M) = dfx(x M) dx P ({x < X x + x} M) = lím x x x> Propiedades Ambas funciones cumplen todas las propiedades de las funciones distribución y densidad

41 Distribuciones Condicionales Ejemplo Variable aleatoria X. Se verifica el suceso M = {b < X a}. F X(x M) = F X(x b < X a) = Función Distribución Condicionada x a: P ({X x} {b < X a}) P ({b < X a}) {X x} {b < X a} = {b < X a} F X (x M) = 1 b x < a: x < b: {X x} {b < X a} = {b < X x} F X (x M) = P ({b < X x}) P ({b < X a}) = F X(x) F X (b) F X (a) F X (b) {X x} {b < X a} = F X (x M) =

42 Distribuciones Condicionales Ejemplo fdp condicionada: f X(x b < x a) = f X(x) F X(a) F X(b) b x < a fdp condicionada f X (x)=n(,1) f X (x b<x a) b= 1 a=.5 x

43 Teoremas de la Probabilidad Total y de Bayes Recordemos... P (B) A i partición = P (B A i)p (A i) i P (A B) = P (B A)P (A) P (B) Analizemos P (A B) = P (B A)P (A)/P (B) B = {X x} B = {x 1 < X x 2} B = {X = x} P (A X x) = FX(x A) F X(x) P (A) P (A x 1 < X x 2) = FX(x2 A) FX(x1 A) P (A) F X(x 2) F X(x 1) fx(x A) P (A X = x) = lím P (A x < X x + x) = x f P (A) X(x)

44 Teoremas de la Probabilidad Total y de Bayes Teorema de la Probabilidad Total Teorema: Sea < Ω, F, P > ligado a ε y {A 1, A 2,..., A N } partición de Ω F X(x) = B={X x} i=1 N N F X(x A i)p (A i) f X(x) = f X(x A i)p (A i) i=1 Teorema de la Probabilidad Total (Versión continua) P (A) = P (A X = x)f X(x)dx Teorema de Bayes (Versión continua) f X(x A) = P (A X = x) f X(x) = P (A) P (A X = x)f X(x) P (A X = x)fx(x)dx

45 Teoremas de la Probabilidad Total y de Bayes Ejemplo T : v.a. exponencial tiempo de vida de un componente { ce ct t f T (t) = t < { 1 e ct t F T (t) = t < P ({ fallo antes de t 1 segundos }) = P (T t 1) = F T (t 1) = 1 e ct 1 En un instante t se comprueba que un componente sigue funcionando. Cual es la probabilidad de que falle antes de t 1 segundos adicionales? P (t < T t + t 1 T > t ) = P ({t < T t + t 1 } {T > t }) P (T > t ) = P (t < T t + t 1 ) 1 P (T t ) = e ct (1 e ct 1) e ct La v.a. exponencial es Sin Memoria = = F T (t + t 1 ) F T (t ) 1 F T (t ) = 1 e ct 1 = F T (t 1 ) =

46 Contenido 1 Concepto de Variable Aleatoria 2 Función Distribución 3 Clasificación de Variables Aleatorias 4 Función Densidad de Probabilidad 5 Distribuciones Prácticas 6 Distribuciones Condicionales 7 Media y Varianza de Variables Aleatorias 8 Desigualdad de Chebychev

47 Media y Varianza de Variables Aleatorias Media de una Variable Aleatoria Definición: Dada una v.a. X se define su media como η = E[X] = xf X(x)dx Interpretación frecuencial η = i p i x i i n xi n x i = 1 n n xi x i i Media Condicional E[X M] = xf X (x M)dx Otras medidas: Moda: Valor x m que maximiza f X(x m). Mediana: x m Ω X es mediana de X sii F X(x m) = 1/2

48 Media y Varianza de Variables Aleatorias Varianza de una Variable Aleatoria Definición: Dada una v.a. X se define su varianza como σ 2 = Var[X] = E[(X η) 2 ] = (x η) 2 f X(x)dx Se puede ver como una medida de la dispersión en torno a la media. Además: σ 2 = (x η) 2 f X (x)dx = (x 2 + η 2 2xη)f X (x)dx = = x 2 f X (x)dx η 2 Desviación típica: σ = Var[X] (unidades de X)

49 Ejemplos Variables aleatorias continuas Variable Aleatoria Uniforme: { 1 f X(x) = x 2 x 1 x 1 x x 2 resto Media: η = xf X (x)dx = x2 x x 2 x 2 x dx = x 2 x 1 x 2 x 1 2 = x 1 + x 2 x 1 2 Varianza: x2 σ 2 = x 2 f X (x)dx η 2 = x 2 1 dx (x 1 + x 2 ) 2 = x 1 x 2 x 1 4 Interpretación: = x3 2 x3 1 3(x 2 x 1 ) (x 1 + x 2 ) 2 = = (x 2 x 1 ) fdp simétrica media en el centro A menor (x 2 x 1) menor dispersión menor σ 2

50 Ejemplos Variables aleatorias continuas Variable Aleatoria Exponencial: { ce cx x f X(x) = x < Media: η = xf X (x)dx = c Varianza: σ 2 = x 2 f X (x)dx η 2 = c Interpretación: xe cx Int. partes dx = 1 c x 2 e cx 2 Int. partes 1 dx η = c 2 Al aumentar c f X(x) decrece más rápidamente. Al aumentar c valores más probables en torno a cero. Al aumentar c menor dispersión.

51 Ejemplos Variables aleatorias continuas Variable Aleatoria Gaussiana: N (a, b) f X(x) = 1 e (x a)2 2b 2 2πb Media: η = 1 2πb = 1 2π = ag( ) = a xe (x a)2 2b 2 dx bte t2 2 dt }{{} por impar t= x a b = + 1 (bt + a)e t2 2 bdt = 2πb ae t2 2 dt = a 1 2π e t2 2 dt =

52 Ejemplos Variables aleatorias continuas Variable Aleatoria Gaussiana: N (a, b) Varianza: Sabemos que: 1 e (x a)2 2b 2 dx = 1 2πb derivando respecto a b Finalmente: Interpretación: (x a) 2 b 3 e (x a) 2 2b 2 dx = 2π σ 2 = (x a) 2 1 e (x a)2 2b 2 dx = b 2 2πb Gaussiana centrada en η = a σ = b controla la dispersión en torno a a e (x a)2 2b 2 dx = 2πb

53 Ejemplos Variables aleatorias discretas Variable Aleatoria de Bernoulli: Ω X = {, 1} P (X = 1) = p P (X = ) = q = 1 p f X(x) = qδ(x) + pδ(x 1) Media: Varianza: η = xf X (x)dx = i σ 2 = i p i x i = q + p1 = p p i x 2 i η2 = q 2 + p1 2 p 2 = pq Interpretación: Media en p Máxima varianza para p = 1 2

54 Ejemplos Variables aleatorias discretas Binomial: B(n, p) Ω X = {, 1,..., n} P (X = k) = Partiremos del Binomio de Newton: derivando respecto a p: y multiplicando por p (p + q) n = n(p + q) n 1 = np(p + q) n 1 = n k= n k= ( n k) p k q n k ( n k) kp k 1 q n k n k= ( n k) kp k q n k ( ) n p k q n k k

55 Ejemplos Variables aleatorias discretas Binomial: B(n, p) Media: η = n ( n kp k) k q n k n 1 p+q=1 = np(p + q) = np k= Para obtener la varianza volvemos a derivar y multiplicar: n ( n(p + q) n 1 + np(n 1)(p + q) n 2 n = k k) 2 p k 1 q n k Varianza: Observaciones: k= np [ (p + q) n 1 + p(n 1)(p + q) n 2] n ( n = k k) 2 p k q n k σ 2 p+q=1 = n k= k= ( n k) k 2 p k q n k η 2 = np(1 p) = npq Media y varianza como Bernoulli multiplicadas por n Técnica de derivar y multiplicar frecuente en el cálculo de η y σ 2

56 Ejemplos Variables aleatorias discretas Poisson: P(a) Ω X = N + Partimos del desarrollo en serie derivando y multiplicando por a Media: e a = P (X = k) = e a a k k= η = k ak 1 k! k= e a = k= a k k! k! a ae a = k =, 1,... k= a ak ke k! = e a ae a = a k ak k!

57 Ejemplos Variables aleatorias discretas Poisson: P(a) Ω X = N + P (X = k) = e a a k k! k =, 1,... Para obtener la varianza volvemos a derivar y multiplicar Varianza: Interpretación e a + ae a = k= σ 2 = i k 2 ak 1 k! p i x 2 i η2 = a ae a (1 + a) = k= = e a ae a (1 + a) a 2 = a k 2 a ak e k! a2 = Al disminuir a f X(x) se concentra en torno a Aproximación de B(n, p), np = a k= k 2 ak k!

58 Contenido 1 Concepto de Variable Aleatoria 2 Función Distribución 3 Clasificación de Variables Aleatorias 4 Función Densidad de Probabilidad 5 Distribuciones Prácticas 6 Distribuciones Condicionales 7 Media y Varianza de Variables Aleatorias 8 Desigualdad de Chebychev

59 Desigualdad de Chebychev Desigualdad de Chebychev Sea X una variable aleatoria con media η y varianza σ 2, se tiene P ( X η ɛ) σ2 ɛ 2 ɛ En función del suceso contrario: P ( X η < ɛ) 1 σ2 ɛ 2 ɛ=kσ P ( X η < Kσ) 1 1 K 2 Aproximación general pero muy conservadora. Demostración: η ɛ P ( X η ɛ) = f X (x)dx + f X (x)dx = f X (x)dx η+ɛ x η ɛ σ 2 = (x η) 2 f X (x)dx (x η) 2 f X (x)dx x η ɛ ɛ 2 f X (x)dx = ɛ 2 P ( X η ɛ) x η ɛ

60 Desigualdad de Chebychev Ejemplo Calcular P ( X η < Kσ) Desigualdad de Chebychev: Distribución Gaussiana N (η, σ) P ( X η < Kσ) 1 1 K 2 P ( X η < Kσ) = P (η Kσ < X < η + Kσ) = = F X (η + Kσ) F X (η Kσ) = = G(K) G( K) = 2G(K) 1

61 Desigualdad de Chebychev Ejemplo Calcular P ( X η < Kσ) Distribución Uniforme en [x 1, x 2] x < x 1 x x F X (x) = 1 x 1 + x 2 x x 2 x 1 < x < x 2 1 η = 2 1 x > x 2 Asumimos entonces: P ( X η < Kσ) = F X (η + Kσ) F X (η Kσ) { η + Kσ x2 η Kσ x 1 σ 2 = (x 2 x 1 ) 2 12 P ( X η < Kσ) = η + Kσ x 1 η Kσ x 1 = 2Kσ = K x 2 x 1 x 2 x 1 x 2 x 1 3 { K 3 < K < 3 P ( X η < Kσ) = 1 K > 3

62 Desigualdad de Chebychev Ejemplo Desigualdad de Chebychev 1.86 P( X η <Kσ).68 Chebychev Dist. Uniforme Dist. Gaussiana K 3 4

63 Resumen Matemáticas Desarrollo en serie Binomio de Newton Límite: e a = (p + q) n = k= n k= a k k! ( ) n p k q n k k ( lím 1 a ) n = e a n n

64 Resumen Matemáticas Serie Geométrica: a k+1 = a k r con r < 1 a k = an 1 r k=n Progresión Aritmética: a k+1 = a k + d Integración por partes. n a k = k=1 an + a1 n 2 Derivar y multiplicar (media y varianza de v.a. discretas).

Variables aleatorias unidimensionales

Variables aleatorias unidimensionales Estadística II Universidad de Salamanca Curso 2011/2012 Outline Variable aleatoria 1 Variable aleatoria 2 3 4 Variable aleatoria Definición Las variables aleatorias son funciones cuyos valores dependen

Más detalles

Definición de probabilidad

Definición de probabilidad Tema 5: LA DISTRIBUCIÓN NORMAL 1. INTRODUCCIÓN A LA PROBABILIDAD: Definición de probabilidad Repaso de propiedades de conjuntos (Leyes de Morgan) Probabilidad condicionada Teorema de la probabilidad total

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

Sistemas de ayuda a la decisión Modelización de la incertidumbre Tema 2. Incertidumbre y Probabilidad

Sistemas de ayuda a la decisión Modelización de la incertidumbre Tema 2. Incertidumbre y Probabilidad Sistemas de ayuda a la decisión Modelización de la incertidumbre Tema 2. Incertidumbre y Probabilidad Indice 1) Sucesos aleatorios. Espacio muestral. 2) Operaciones con sucesos. 3) Enfoques de la Probabilidad.

Más detalles

Unidad 1: Espacio de Probabilidad

Unidad 1: Espacio de Probabilidad Unidad 1: Espacio de Probabilidad 1.1 Espacios de Probabilidad. (1) Breve introducción histórica de las probabilidades (2) Diferencial entre modelos matemáticos deterministicos y probabilísticos (3) Identificar

Más detalles

Probabilidad II Algunas distribuciones notables. Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid

Probabilidad II Algunas distribuciones notables. Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid Probabilidad II Algunas distribuciones notables Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid La distribución normal f (x; µ, σ) = 1 σ 2π e 1 2( x µ σ ) 2, x R, µ R, σ > 0 E(X

Más detalles

Variables aleatorias

Variables aleatorias Variables aleatorias DEFINICIÓN En temas anteriores, se han estudiado las variables estadísticas, que representaban el conjunto de resultados observados al realizar un experimento aleatorio, presentando

Más detalles

Distribuciones de probabilidad

Distribuciones de probabilidad Distribuciones de probabilidad Prof, Dr. Jose Jacobo Zubcoff Departamento de Ciencias del Mar y Biología Aplicada Inferencia estadística: Parte de la estadística que estudia grandes colectivos a partir

Más detalles

Grupo 23 Semestre Segundo examen parcial

Grupo 23 Semestre Segundo examen parcial Probabilidad Grupo 23 Semestre 2015-2 Segundo examen parcial La tabla siguiente presenta 20 postulados, algunos de los cuales son verdaderos y otros son falsos. Analiza detenidamente cada postulado y elige

Más detalles

T1. Distribuciones de probabilidad discretas

T1. Distribuciones de probabilidad discretas Estadística T1. Distribuciones de probabilidad discretas Departamento de Ciencias del Mar y Biología Aplicada Inferencia estadística: Parte de la estadística que estudia grandes colectivos a partir de

Más detalles

Variable Aleatoria Continua. Principales Distribuciones

Variable Aleatoria Continua. Principales Distribuciones Variable Aleatoria Continua. Definición de v. a. continua Función de Densidad Función de Distribución Características de las v.a. continuas continuas Ejercicios Definición de v. a. continua Las variables

Más detalles

Definición: Se llama variable aleatoria a toda función X que asigna a c/u de los elementos del espacio muestral S, un número Real X(s).

Definición: Se llama variable aleatoria a toda función X que asigna a c/u de los elementos del espacio muestral S, un número Real X(s). VARIABLE ALEATORIA Definición: Se llama variable aleatoria a toda función X que asigna a c/u de los elementos del espacio muestral S, un número Real X(s). X : S S s s X () s X(s) Rx Rx es el recorrido

Más detalles

2. Probabilidad y. variable aleatoria. Curso 2011-2012 Estadística. 2. 1 Probabilidad. Probabilidad y variable aleatoria

2. Probabilidad y. variable aleatoria. Curso 2011-2012 Estadística. 2. 1 Probabilidad. Probabilidad y variable aleatoria 2. Probabilidad y variable aleatoria Curso 2011-2012 Estadística 2. 1 Probabilidad 2 Experimento Aleatorio EL término experimento aleatorio se utiliza en la teoría de la probabilidad para referirse a un

Más detalles

18 Experimentos aleatorios. Sucesos y espacio muestral. Frecuencia y probabilidad de un suceso.

18 Experimentos aleatorios. Sucesos y espacio muestral. Frecuencia y probabilidad de un suceso. PRIMER CURSO DE E.S.O Criterios de calificación: 80% exámenes, 10% actividades, 10% actitud y trabajo 1 Números naturales. 2 Potencias de exponente natural. Raíces cuadradas exactas. 3 Divisibilidad. Concepto

Más detalles

Maestría en Bioinformática Probabilidad y Estadística: Clase 3

Maestría en Bioinformática Probabilidad y Estadística: Clase 3 Maestría en Bioinformática Probabilidad y Estadística: Clase 3 Gustavo Guerberoff gguerber@fing.edu.uy Facultad de Ingeniería Universidad de la República Abril de 2010 Contenidos 1 Variables aleatorias

Más detalles

CÁLCULO DE PROBABILIDADES

CÁLCULO DE PROBABILIDADES CÁLCULO DE PROBABILIDADES Tipo de asignatura: Troncal Anual. Créditos ECTS: 15 I.- INTRODUCCIÓN AL CÁLCULO DE PROBABILIDADES. (16 horas presenciales) Tema 1.- La naturaleza del cálculo de probabilidades.

Más detalles

Distribuciones de probabilidad multivariadas

Distribuciones de probabilidad multivariadas Capítulo 3 Distribuciones de probabilidad multivariadas Sobre un dado espacio muestral podemos definir diferentes variables aleatorias. Por ejemplo, en un experimento binomial, X 1 podría ser la variable

Más detalles

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA PROBABILIDAD Y ESTADÍSTICA 4 horas a la semana 8 créditos Semestre variable según la carrera Objetivo del curso: Analizar y resolver problemas de naturaleza aleatoria en la ingeniería, aplicando conceptos

Más detalles

Capítulo 6: Variable Aleatoria Bidimensional

Capítulo 6: Variable Aleatoria Bidimensional Capítulo 6: Variable Aleatoria Bidimensional Cuando introducíamos el concepto de variable aleatoria unidimensional, decíamos que se pretendía modelizar los resultados de un experimento aleatorio en el

Más detalles

FACULTAD DE INGENIERÍA UNAM PROBABILIDAD Y ESTADÍSTICA Irene Patricia Valdez y Alfaro irenev@servidor.unam.m T E M A S DEL CURSO. Análisis Estadístico de datos muestrales.. Fundamentos de la Teoría de

Más detalles

Números reales. Valor absoluto. Desigualdades. Distancias entre la recta real. Intervalos y entornos.

Números reales. Valor absoluto. Desigualdades. Distancias entre la recta real. Intervalos y entornos. MATEMÁTICAS I Contenidos. Aritmética y álgebra: Números reales. Valor absoluto. Desigualdades. Distancias entre la recta real. Intervalos y entornos. Resolución e interpretación gráfica de ecuaciones e

Más detalles

Unidad IV: Distribuciones muestrales

Unidad IV: Distribuciones muestrales Unidad IV: Distribuciones muestrales 4.1 Función de probabilidad En teoría de la probabilidad, una función de probabilidad (también denominada función de masa de probabilidad) es una función que asocia

Más detalles

Distribuciones de probabilidad bidimensionales o conjuntas

Distribuciones de probabilidad bidimensionales o conjuntas Distribuciones de probabilidad bidimensionales o conjuntas Si disponemos de dos variables aleatorias podemos definir distribuciones bidimensionales de forma semejante al caso unidimensional. Para el caso

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Grado en Ingeniería Informática Tema 3 Variables aleatorias Javier Cárcamo Departamento de Matemáticas Universidad Autónoma de Madrid javier.carcamo@uam.es Javier Cárcamo PREST.

Más detalles

6. VARIABLES ALEATORIAS

6. VARIABLES ALEATORIAS 6. VARIABLES ALEATORIAS Objetivo Introducir la idea de una variable aleatoria y su distribución y características como media, varianza etc. Bibliografía recomendada Peña y Romo (1997), Capítulo 15. Hasta

Más detalles

VARIABLES ALEATORIAS DISCRETAS

VARIABLES ALEATORIAS DISCRETAS VARIABLES ALEATORIAS DISCRETAS M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional Primavera 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Variables Aleatorias Variables Aleatorias Definición:

Más detalles

Tema 5. Variables Aleatorias

Tema 5. Variables Aleatorias Tema 5. Variables Aleatorias Presentación y Objetivos. En este tema se estudia el concepto básico de Variable Aleatoria así como diversas funciones fundamentales en su desarrollo. Es un concepto clave,

Más detalles

Tema 3: Cálculo de Probabilidades Unidad 2: Variables Aleatorias

Tema 3: Cálculo de Probabilidades Unidad 2: Variables Aleatorias Estadística Tema 3: Cálculo de Probabilidades Unidad 2: Variables Aleatorias Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Noviembre 2010 Contenidos...............................................................

Más detalles

Distribuciones de probabilidad más usuales

Distribuciones de probabilidad más usuales Tema 5 Distribuciones de probabilidad más usuales En este tema se estudiarán algunas de las distribuciones discretas y continuas más comunes, que se pueden aplicar a una gran diversidad de problemas y

Más detalles

Modelado de la aleatoriedad: Distribuciones

Modelado de la aleatoriedad: Distribuciones Modelado de la aleatoriedad: Distribuciones Begoña Vitoriano Villanueva Bvitoriano@mat.ucm.es Facultad de CC. Matemáticas Universidad Complutense de Madrid I. Distribuciones Discretas Bernoulli (p) Aplicaciones:

Más detalles

Tema 3: Variables aleatorias y vectores aleatorios bidimensionales

Tema 3: Variables aleatorias y vectores aleatorios bidimensionales Estadística 38 Tema 3: Variables aleatorias y vectores aleatorios bidimensionales El concepto de variable aleatoria surge de la necesidad de hacer más manejables matemáticamente los resultados de los experimentos

Más detalles

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Algunas Distribuciones Continuas de Probabilidad UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción El comportamiento de una variable aleatoria queda

Más detalles

HOJA DE TRABAJO UNIDAD 3

HOJA DE TRABAJO UNIDAD 3 HOJA DE TRABAJO UNIDAD 3 1. Defina que es probabilidad Es el estudio de experimentos aleatorios o libres de determinación, el resultado es al azar. Se refiere al estudio de la aleatoriedad y a la incertidumbre.

Más detalles

Unidad II: Fundamentos de la teoría de probabilidad

Unidad II: Fundamentos de la teoría de probabilidad Unidad II: Fundamentos de la teoría de probabilidad 2.1 Teoría elemental de probabilidad El Cálculo de Probabilidades se ocupa de estudiar ciertos experimentos que se denominan aleatorios, cuya característica

Más detalles

478 Índice alfabético

478 Índice alfabético Índice alfabético Símbolos A, suceso contrario de A, 187 A B, diferencia de los sucesos A y B, 188 A/B, suceso A condicionado por el suceso B, 194 A B, intersección de los sucesos A y B, 188 A B, unión

Más detalles

Algunas distribuciones importantes de probabilidad

Algunas distribuciones importantes de probabilidad Capítulo 5 Algunas distribuciones importantes de probabilidad En los temas anteriores se presentaban ejemplos de distintos experimentos aleatorios y de variables aleatorias que expresan sus resultados.

Más detalles

Tema 5 Variables aleatorias: distribuciones de probabilidad y características.

Tema 5 Variables aleatorias: distribuciones de probabilidad y características. Tema 5 Variables aleatorias: distribuciones de probabilidad y características. 1. Introducción Según se ha reflejado hasta el momento, el espacio muestral asociado a un experimento aleatorio puede ser

Más detalles

LECTURA 01: LA DISTRIBUCIÓN NORMAL GENERAL. LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I). TEMA 1: LA DISTRIBUCION NORMAL GENERAL.

LECTURA 01: LA DISTRIBUCIÓN NORMAL GENERAL. LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I). TEMA 1: LA DISTRIBUCION NORMAL GENERAL. LECTURA 1: LA DISTRIBUCIÓN NORMAL GENERAL LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I) TEMA 1: LA DISTRIBUCION NORMAL GENERAL PROPIEDADES 1 INTRODUCCION La distribución de probabilidad continua más importante

Más detalles

Problemas. Variables Aleatorias. Modelos de Probabilidad

Problemas. Variables Aleatorias. Modelos de Probabilidad Problemas. Variables Aleatorias. Modelos de Probabilidad Ejemplos resueltos y propuestos Variables Aleatorias Discretas Una variable aleatoria discreta X de valores x 1, x 2,..., x k con función de probabilidad

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 2. Modelos de probabilidad

Estadística y sus aplicaciones en Ciencias Sociales 2. Modelos de probabilidad Estadística y sus aplicaciones en Ciencias Sociales 2. Modelos de probabilidad Facultad de Ciencias Sociales Universidad de la República Curso 2016 Índice 2.1. Variables aleatorias: funciones de distribución,

Más detalles

Variables Aleatorias. Introducción

Variables Aleatorias. Introducción Variables Aleatorias Introducción Concepto de variable aleatoria Es conveniente que los resultados de un experimento aleatorio estén expresados numéricamente. Se prueban tres componentes electrónicos,

Más detalles

Prueba Integral Lapso /6

Prueba Integral Lapso /6 Prueba Integral Lapso 2 009-2 76 - /6 Universidad Nacional Abierta Probabilidad y Estadística I (76) Vicerrectorado Académico Cód. Carrera: 06-20 - 508 Fecha: 2-2 - 2 009 MODELO DE RESPUESTAS Objetivos,

Más detalles

Tema 5 Algunas distribuciones importantes

Tema 5 Algunas distribuciones importantes Algunas distribuciones importantes 1 Modelo Bernoulli Distribución Bernoulli Se llama experimento de Bernoulli a un experimento con las siguientes características: 1. Se realiza un experimento con dos

Más detalles

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales Grado en Ingeniería agrícola y del medio rural Tema 8 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es 2016 Licencia Creative Commons 4.0 Internacional J.

Más detalles

X = beneficio del jugador = (ganancia neta) (recursos invertidos) Cuántos euros debo poner yo para que el juego sea justo?

X = beneficio del jugador = (ganancia neta) (recursos invertidos) Cuántos euros debo poner yo para que el juego sea justo? Ejemplo: el valor esperado y los juegos justos. En los juegos de azar es importante la variable aleatoria X = beneficio del jugador = (ganancia neta) (recursos invertidos) El juego consiste en una caja

Más detalles

1. Los números reales. 2. Representación. 3. Densidad de los números racionales. 4. Propiedades de los números reales

1. Los números reales. 2. Representación. 3. Densidad de los números racionales. 4. Propiedades de los números reales EJES ARTICULADORES Y PRODUCTIVOS DEL AREA SISTEMA DE CONOCIMIENTOS GRADO: 10 11 1. Los números reales 1. Desigualdades. 2. Representación 2. Propiedades. 3. Densidad de los números racionales 4. Propiedades

Más detalles

Distribución binomial

Distribución binomial Distribución binomial Cuando la Distribución de Benoulli se preguntaba Que pasara si sucede un único evento? la binomial esta asociada a la pregunta " Cuantas veces hay que realizar la prueba para que

Más detalles

Análisis de procesos estocásticos en el dominio del tiempo

Análisis de procesos estocásticos en el dominio del tiempo Análisis de procesos estocásticos en el dominio del tiempo F. Javier Cara ETSII-UPM Curso 2012-2013 1 Contenido Introducción Procesos estocásticos Variables aleatorias Una variable aleatoria Dos variables

Más detalles

03 Variables aleatorias y distribuciones de probabilidad. Contenido. Variable aleatoria

03 Variables aleatorias y distribuciones de probabilidad. Contenido. Variable aleatoria 03 Variables aleatorias y distribuciones de probabilidad Contenido Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales 1 Variable aleatoria Sea Ω un espacio muestral.

Más detalles

Título: ESTADISTICA I DESDE UN ENFOQUE POR COMPETENCIAS Primera edición. de esta edición. Fondo Editorial. Universidad San Ignacio de Loyola

Título: ESTADISTICA I DESDE UN ENFOQUE POR COMPETENCIAS Primera edición. de esta edición. Fondo Editorial. Universidad San Ignacio de Loyola Título: ESTADISTICA I DESDE UN ENFOQUE POR COMPETENCIAS 2014. Primera edición de esta edición Fondo Editorial Universidad San Ignacio de Loyola Av. La Fontana 750, La Molina Teléfono: 317-1000 anexo 3705

Más detalles

Unidad IV. Una variable aleatoria X es continua si su función de distribución es una función continua.

Unidad IV. Una variable aleatoria X es continua si su función de distribución es una función continua. Unidad IV Distribuciones de Probabilidad Continuas 4.1. Definición de variable aleatoria continúa. Una variable aleatoria X es continua si su función de distribución es una función continua. En la práctica,

Más detalles

Tema 4: Variable aleatoria. Métodos Estadísticos

Tema 4: Variable aleatoria. Métodos Estadísticos Tema 4: Variable aleatoria. Métodos Estadísticos Definición de v.a. Definición: Una variable aleatoria (v.a.) es un número real asociado al resultado de un experimento aleatorio, es decir, una función

Más detalles

Formulario y Tablas de Probabilidad para los Cursos de Probabilidad, Inferencia Estadística y Econometría

Formulario y Tablas de Probabilidad para los Cursos de Probabilidad, Inferencia Estadística y Econometría Formulario y Tablas de Probabilidad para los Cursos de Probabilidad, Inferencia Estadística y Econometría Ernesto Barrios Zamudio 1 José Ángel García Pérez2 Departamento Académico de Estadística Instituto

Más detalles

5 DISTRIBUCIONES BINOMIAL Y DE POISSON

5 DISTRIBUCIONES BINOMIAL Y DE POISSON 5 DISTRIBUCIONES BINOMIAL Y DE POISSON La repetición sucesiva de n pruebas (ensayos) de BERNOUILLI de modo independiente y manteniendo constante la probabilidad de éxito p da lugar a la variable aleatoria

Más detalles

UNIVERSIDAD DEL NORTE

UNIVERSIDAD DEL NORTE UNIVERSIDAD DEL NORTE 1. IDENTIFICACIÓN DIVISIÓN ACADÉMICA DIVISIÓN DE CIENCIAS BÁSICAS DEPARTAMENTO MATEMÁTICAS Y ESATADÍSTICA. PROGRAMA ACADÉMICO ESTADÍSTICA I-AD CÓDIGO DE LA ASIGNATURA EST 1022 PRE-REQUISITO

Más detalles

2. Probabilidad y. variable aleatoria. Curso 2011-2012 Estadística. 2. 1 Probabilidad. Probabilidad y variable aleatoria

2. Probabilidad y. variable aleatoria. Curso 2011-2012 Estadística. 2. 1 Probabilidad. Probabilidad y variable aleatoria 2. Probabilidad y variable aleatoria Curso 2011-2012 Estadística 2. 1 Probabilidad 2 Experimento Aleatorio EL término experimento aleatorio se utiliza en la teoría de la probabilidad para referirse a un

Más detalles

Tema 3. Variables aleatorias. Inferencia estadística

Tema 3. Variables aleatorias. Inferencia estadística Estadística y metodología de la investigación Curso 2012-2013 Pedro Faraldo, Beatriz Pateiro Tema 3. Variables aleatorias. Inferencia estadística 1. Introducción 1 2. Variables aleatorias 1 2.1. Variable

Más detalles

EXPERIMENTO ALEATORIO

EXPERIMENTO ALEATORIO EXPERIMENTO ALEATORIO En concepto de la probabilidad, un experimento aleatorio es aquel que bajo el mismo conjunto aparente de condiciones iniciales, puede presentar resultados diferentes, en otras palabras,

Más detalles

Números aleatorios. Contenidos

Números aleatorios. Contenidos Números aleatorios. Contenidos 1. Descripción estadística de datos. 2. Generación de números aleatorios Números aleatorios con distribución uniforme. Números aleatorios con otras distribuciones. Método

Más detalles

Variables aleatorias. Función de distribución y características asociadas

Variables aleatorias. Función de distribución y características asociadas Índice 3 Variables aleatorias. Función de distribución y características asociadas 3.1 3.1 Introducción.......................................... 3.1 3.2 Concepto de variable aleatoria................................

Más detalles

Propiedades en una muestra aleatoria

Propiedades en una muestra aleatoria Capítulo 5 Propiedades en una muestra aleatoria 5.1. Conceptos básicos sobre muestras aleatorias Definición 5.1.1 X 1,, X n son llamadas una muestra aleatoria de tamaño n de una población f(x) si son variables

Más detalles

todas especialidades Soluciones de las hojas de problemas

todas especialidades Soluciones de las hojas de problemas Universidad Politécnica de Cartagena Dpto. Matemática Aplicada y Estadística Ingeniería Técnica Industrial Métodos estadísticos de la ingeniería Métodos estadísticos de la ingeniería Ingeniería Técnica

Más detalles

ESCUELA COMERCIAL CÁMARA DE COMERCIO EXTENSIÓN DE ESTUDIOS PROFESIONALES MAESTRÍA EN ADMINISTRACIÓN

ESCUELA COMERCIAL CÁMARA DE COMERCIO EXTENSIÓN DE ESTUDIOS PROFESIONALES MAESTRÍA EN ADMINISTRACIÓN CICLO, ÁREA O MÓDULO: TERCER CUATRIMESTRE OBJETIVO GENERAL DE LA ASIGNATURA: Al termino del curso el alumno efectuara el análisis ordenado y sistemático de la Información, a través del uso de las técnicas

Más detalles

CONTENIDOS MÍNIMOS SEPTIEMBRE. DEPARTAMENTO DE MATEMÁTICAS

CONTENIDOS MÍNIMOS SEPTIEMBRE. DEPARTAMENTO DE MATEMÁTICAS CONTENIDOS MÍNIMOS SEPTIEMBRE. DEPARTAMENTO DE MATEMÁTICAS CONTENIDOS MÍNIMOS MATEMÁTICAS 1º ESO U.D. 1 Números Naturales El conjunto de los números naturales. Sistema de numeración decimal. Aproximaciones

Más detalles

Tema 2 Resolución de EcuacionesNo Lineales

Tema 2 Resolución de EcuacionesNo Lineales Tema 2 Resolución de Ecuaciones No Lineales E.T.S.I. Informática Indice Introducción 1 Introducción 2 Algoritmo del método de Bisección Análisis del 3 4 5 6 Algoritmo de los métodos iterativos Interpretación

Más detalles

Departamento de Matemáticas. 1º BACHILLERATO Ciencias y Tecnología CONVOCATORIA EXTRAORDINARIA DE SEPTIEMBRE 2014

Departamento de Matemáticas. 1º BACHILLERATO Ciencias y Tecnología CONVOCATORIA EXTRAORDINARIA DE SEPTIEMBRE 2014 IES SAN BENITO Departamento de Matemáticas 1º BACHILLERATO Ciencias y Tecnología CONVOCATORIA EXTRAORDINARIA DE SEPTIEMBRE 2014 PRUEBA EXTAORDINAORIA: La Prueba de septiembre será únicamente de contenidos

Más detalles

MOOC UJI: La Probabilidad en las PAU

MOOC UJI: La Probabilidad en las PAU 4. Probabilidad Condicionada: Teoremas de la Probabilidad Total y de Bayes 4.1. Probabilidad Condicionada Vamos a estudiar como cambia la probabilidad de un suceso A cuando sabemos que ha ocurrido otro

Más detalles

III Verano de Probabilidad y Estadística Curso de Procesos de Poisson (Víctor Pérez Abreu) Lista de Ejercicios

III Verano de Probabilidad y Estadística Curso de Procesos de Poisson (Víctor Pérez Abreu) Lista de Ejercicios III Verano de Probabilidad y Estadística Curso de Procesos de Poisson (Víctor Pérez Abreu) Lista de Ejercicios Esta lista contiene ejercicios y problemas tanto teóricos como de modelación. El objetivo

Más detalles

Conceptos Fundamentales. Curso de Estadística TAE, 2005 J.J. Gómez-Cadenas

Conceptos Fundamentales. Curso de Estadística TAE, 2005 J.J. Gómez-Cadenas Conceptos Fundamentales Curso de Estadística TAE, 2005 J.J. Gómez-Cadenas Análisis de datos en física de partículas Experimento en física de partículas: Observación de n sucesos de un cierto tipo (colisiones

Más detalles

MÉTODOS ESTADÍSTICOS APLICADOS

MÉTODOS ESTADÍSTICOS APLICADOS Pedro Sánchez Algarra (autor y coordinador) Xavier Baraza Sánchez Ferran Reverter Comas Esteban Vegas Lozano Departament d Estadística TEXTOS DOCENTS 3 MÉTODOS ESTADÍSTICOS APLICADOS Pedro Sánchez Algarra

Más detalles

03 Variables aleatorias y distribuciones de probabilidad

03 Variables aleatorias y distribuciones de probabilidad 03 Variables aleatorias y distribuciones de probabilidad Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales 1 Contenido Variables aleatorias discretas: función

Más detalles

Variables aleatorias

Variables aleatorias Distribuciones continuas Se dice que una variable aleatoria X tiene una distribución continua, o que X es una variable continua, si existe una función no negativa f, definida sobre los números reales,

Más detalles

Tema 6 Algunos modelos de distribuciones discretas.

Tema 6 Algunos modelos de distribuciones discretas. Tema 6 Algunos modelos de distribuciones discretas. Una vez epuesta la teoría general sobre variables aleatorias y sus distribuciones de probabilidad, vamos a describir algunas distribuciones particulares

Más detalles

SESION 12 LA DISTRIBUCIÓN BINOMIAL

SESION 12 LA DISTRIBUCIÓN BINOMIAL SESION LA DISTRIBUCIÓN BINOMIAL I. CONTENIDOS:. La distribución omial.. Variables aleatorias en una distribución omial. 3. Descripciones de la distribución omial. 4. Distribución de Poisson. II. OBJETIVOS:

Más detalles

CONTENIDO. Prólogo a la 3. a edición en español ampliada... Prólogo...

CONTENIDO. Prólogo a la 3. a edición en español ampliada... Prólogo... CONTENIDO Prólogo a la 3. a edición en español ampliada.................................. Prólogo.................................................................. vii xvii 1. Métodos descriptivos................................................

Más detalles

Ejercicios de Variables Aleatorias

Ejercicios de Variables Aleatorias Ejercicios de Variables Aleatorias Elisa M. Molanes-López, Depto. Estadística, UCM Función de distribución y función de densidad Ejercicio. Sea X una variable aleatoria con función de distribución dada

Más detalles

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición...

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición... Contenidos 1 Introducción al paquete estadístico S-PLUS 19 1.1 Introducción a S-PLUS............................ 21 1.1.1 Cómo entrar, salir y consultar la ayuda en S-PLUS........ 21 1.2 Conjuntos de datos..............................

Más detalles

Unidad 4: Variables aleatorias

Unidad 4: Variables aleatorias Unidad 4: Variables aleatorias Logro de la unidad 4 Al finalizar la unidad 4, el alumno aplica el concepto de variable aleatoria, valor esperado y probabilidad para la toma de decisiones en un trabajo

Más detalles

Teoría de Probabilidad

Teoría de Probabilidad Matemáticas Discretas L. Enrique Sucar INAOE Teoría de Probabilidad Considero que la probabilidad representa el estado de la mente con respecto a una afirmación, evento u otra cosa para las que no existe

Más detalles

Distribuciones de Probabilidad Para Variables Aleatorias Continuas

Distribuciones de Probabilidad Para Variables Aleatorias Continuas Distribuciones de Probabilidad Para Variables Aleatorias Continuas Departamento de Estadística-FACES-ULA 20 de Diciembre de 2013 Introducción Recordemos la definición de Variable Aleatoria Continua. Variable

Más detalles

Generación de variables aleatorias continuas Método de la transformada inversa

Generación de variables aleatorias continuas Método de la transformada inversa Generación de variables aleatorias continuas Método de la transformada inversa Georgina Flesia FaMAF 16 de abril, 2013 Generación de v.a. discretas Existen diversos métodos para generar v.a. discretas:

Más detalles

Tema 3 VARIABLE ALEATORIA DISCRETA. PRINCIPALES DISTRIBUCIONES

Tema 3 VARIABLE ALEATORIA DISCRETA. PRINCIPALES DISTRIBUCIONES Tema 3 VARIABLE ALEATORIA DISCRETA. PRINCIPALES DISTRIBUCIONES 1.- Definición de variable aleatoria discreta. Normalmente, los resultados posibles (espacio muestral Ω) de un experimento aleatorio no son

Más detalles

Definición 4.1 Diremos que una variable aleatoria discreta X tiene una distribución Uniforme de parámetro N, N 1, si. rg(x) = {1, 2,...

Definición 4.1 Diremos que una variable aleatoria discreta X tiene una distribución Uniforme de parámetro N, N 1, si. rg(x) = {1, 2,... Índice 4 MODELOS DE DISTRIBUCIONES 4.1 4.1 Introducción.......................................... 4.1 4.2 Modelos de distribuciones discretas............................. 4.1 4.2.1 Distribución Uniforme

Más detalles

Kolmogorov y la teoría de la la probabilidad. David Nualart. Academia de Ciencias y Universidad de Barcelona

Kolmogorov y la teoría de la la probabilidad. David Nualart. Academia de Ciencias y Universidad de Barcelona Kolmogorov y la teoría de la la probabilidad David Nualart Academia de Ciencias y Universidad de Barcelona 1 La axiomatización del cálculo de probabilidades A. N. Kolmogorov: Grundbegriffe des Wahrscheinlichkeitsrechnung

Más detalles

Carrera: Ingeniería Civil Participantes Comité de Evaluación Curricular de Institutos Tecnológicos

Carrera: Ingeniería Civil Participantes Comité de Evaluación Curricular de Institutos Tecnológicos 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Probabilidad y Estadística Ingeniería Civil Clave de la asignatura: Horas teoría-horas práctica-créditos 3-2-8 2.- HISTORIA DEL PROGRAMA Lugar

Más detalles

Distribuciones unidimensionales discretas

Distribuciones unidimensionales discretas Estadística II Universidad de Salamanca Curso 2011/2012 Outline 1 Distribución de Bernouilli de parámetro p 2 3 4 5 6 7 Distribución de Bernouilli de parámetro p Experimento de Bernouilli Es un experimento

Más detalles

MATEMÁTICAS 2º DE BACHILLERATO

MATEMÁTICAS 2º DE BACHILLERATO MATRICES 1. Matrices y tipos de matrices 2. Operaciones con matrices 3. Producto de matrices 4. Matriz traspuesta 5. Matriz inversa 6. Rango de matrices DETERMINANTES 7. Determinantes de orden 2 y 3 8.

Más detalles

BACHILLERATO FÍSICA A. HERRAMIENTAS MATEMÁTICAS DE LA FÍSICA. Dpto. de Física y Química. R. Artacho

BACHILLERATO FÍSICA A. HERRAMIENTAS MATEMÁTICAS DE LA FÍSICA. Dpto. de Física y Química. R. Artacho BACHILLERATO FÍSICA A. HERRAMIENTAS MATEMÁTICAS DE LA FÍSICA R. Artacho Dpto. de Física y Química ÍNDICE 1. Áreas y volúmenes de figuras geométricas. Funciones trigonométricas 3. Productos de vectores

Más detalles

Tema 3: Cálculo de Probabilidades. Métodos Estadísticos

Tema 3: Cálculo de Probabilidades. Métodos Estadísticos Tema 3: Cálculo de Probabilidades Métodos Estadísticos 2 INTRODUCCIÓN Qué es la probabilidad? Es la creencia en la ocurrencia de un evento o suceso. Ejemplos de sucesos probables: Sacar cara en una moneda.

Más detalles

UNIVERSIDAD NACIONAL FEDERICO VILLARREAL FACULTAD DE INGENIERIA INDUSTRIAL Y DE SISTEMAS ESCUELA PROFESIONAL DE INGENIERIA AGROINDUSTRIAL

UNIVERSIDAD NACIONAL FEDERICO VILLARREAL FACULTAD DE INGENIERIA INDUSTRIAL Y DE SISTEMAS ESCUELA PROFESIONAL DE INGENIERIA AGROINDUSTRIAL UNIVERSIDAD NACIONAL FEDERICO VILLARREAL FACULTAD DE INGENIERIA INDUSTRIAL Y DE SISTEMAS ESCUELA PROFESIONAL DE INGENIERIA AGROINDUSTRIAL ASIGNATURA: ESTADÍSTICA I CODIGO : 5B0067 I.- DATOS GENERALES SILABO

Más detalles

Teoría de errores -Hitogramas

Teoría de errores -Hitogramas FÍSICA I Teoría de errores -Hitogramas Autores: Pablo Iván ikel - e-mail: pinikel@hotmail.com Ma. Florencia Kronberg - e-mail:sil_simba@hotmail.com Silvina Poncelas - e-mail:flo_kron@hotmail.com Introducción:

Más detalles

Estadística aplicada y modelización. 10 de septiembre de 2005

Estadística aplicada y modelización. 10 de septiembre de 2005 Estadística aplicada y modelización. 10 de septiembre de 005 SOLUCIÓN MODELO A 1. Una persona se está preparando para obtener el carnet de conducir, repitiendo un test de 0 preguntas. En la siguiente tabla

Más detalles

Solución a Problemas de tipo Dirichlet usando Análisis

Solución a Problemas de tipo Dirichlet usando Análisis Solución a Problemas de tipo Dirichlet usando Análisis Armónico Marysol Navarro Burruel UNISON 17 Abril, 2013 Marysol Navarro Burruel (UNISON) Análisis Armónico y problemas de tipo Dirichlet 17 Abril,

Más detalles

Tema 5. Variables aleatorias discretas

Tema 5. Variables aleatorias discretas Tema 5. Variables aleatorias discretas Resumen del tema 5.1. Definición de variable aleatoria discreta 5.1.1. Variables aleatorias Una variable aleatoria es una función que asigna un número a cada suceso

Más detalles

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7)

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7) TEMA Nº 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD OBJETIVOS DE APRENDIZAJE: Conocer las características de la distribución normal como distribución de probabilidad de una variable y la aproximación de

Más detalles

2 ln x dx. Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = dx, entonces u =ln x du = 1 x dx dv = dx v = x y por tanto

2 ln x dx. Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = dx, entonces u =ln x du = 1 x dx dv = dx v = x y por tanto Tema 6 Integración Definida Ejercicios resueltos Ejercicio Calcular la integral definida ln x dx Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = dx, entonces u =ln x du = x dx dv

Más detalles

JUNIO Opción A

JUNIO Opción A Junio 010 (Prueba Específica) JUNIO 010 Opción A 1.- Discute y resuelve según los distintos valores del parámetro a el siguiente sistema de ecuaciones: a x + a y + az 1 x + a y + z 0.- Una panadería se

Más detalles

PROBABILIDADES VARIABLES ALEATORIAS Y SUS DISTRIBUCIONES. Prof. Johnny Montenegro 1 M.

PROBABILIDADES VARIABLES ALEATORIAS Y SUS DISTRIBUCIONES. Prof. Johnny Montenegro 1 M. PROBABILIDADES VARIABLES ALEATORIAS Y SUS DISTRIBUCIONES Prof. Johnny Montenegro 1 M. PROBABILIDADES 2 Una variable es aleatoria si toma los valores de los resultados de un experimento aleatorio. Esta

Más detalles

PE - Probabilidad y Estadística

PE - Probabilidad y Estadística Unidad responsable: 230 - ETSETB - Escuela Técnica Superior de Ingeniería de Telecomunicación de Barcelona Unidad que imparte: 749 - MAT - Departamento de Matemáticas Curso: Titulación: 2016 GRADO EN INGENIERÍA

Más detalles

PROGRAMACIÓN DE LOS CONTENIDOS DE MATEMÁTICAS EN LA PREPARACIÓN DE LA PARTE COMÚN DE LA PRUEBA DE ACCESO A LOS C.F.G.S. (Opción C)

PROGRAMACIÓN DE LOS CONTENIDOS DE MATEMÁTICAS EN LA PREPARACIÓN DE LA PARTE COMÚN DE LA PRUEBA DE ACCESO A LOS C.F.G.S. (Opción C) PROGRAMACIÓN DE LOS CONTENIDOS DE MATEMÁTICAS EN LA PREPARACIÓN DE LA PARTE COMÚN DE LA PRUEBA DE ACCESO A LOS C.F.G.S. (Opción C) I.E.S. Universidad Laboral de Málaga Curso 2015/2016 PROGRAMACIÓN DE LA

Más detalles