Tema 2: Variables Aleatorias Unidimensionales

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 2: Variables Aleatorias Unidimensionales"

Transcripción

1 Tema 2: Variables Aleatorias Unidimensionales Teorı a de la Comunicacio n Curso 27-28

2 Contenido 1 Concepto de Variable Aleatoria 2 Función Distribución 3 Clasificación de Variables Aleatorias 4 Función Densidad de Probabilidad 5 Distribuciones Prácticas 6 Distribuciones Condicionales 7 Media y Varianza de Variables Aleatorias 8 Desigualdad de Chebychev

3 Contenido 1 Concepto de Variable Aleatoria 2 Función Distribución 3 Clasificación de Variables Aleatorias 4 Función Densidad de Probabilidad 5 Distribuciones Prácticas 6 Distribuciones Condicionales 7 Media y Varianza de Variables Aleatorias 8 Desigualdad de Chebychev

4 Concepto de Variable Aleatoria Variable aleatoria Intuición: Una variable aleatoria X es una función que asocia números a cada posible resultado de un experimento aleatorio. X: Ω R S Ω X(S) R Propiedades X ha de cumplir las siguientes condiciones: Un solo valor para cada resultado. El conjunto {X x} es un suceso x. P ({X = }) = P ({X = }) =. Rango de una v.a.: Conjunto de números reales que tienen asociado un resultado del espacio muestral Ω X = {x R S Ω, X(S) = x}

5 Concepto de Variable Aleatoria Ejemplos ε: Observación de una carta de la baraja española extraída al azar Ω = { as de oros, dos de oros,..., rey de bastos } Ω = 4 1 X( n o de palo ) = n o Ω X = {1, 2,..., 7, 1, 11, 12} 2 X( n o de palo ) = 1 n o Ω X = {1, 2,..., 7, 1, 11, 12} 3 X( n o de palo ) = { si es de oros 1 si no es de oros Ω X = {, 1} Ω S 4 S 3 S 2 S 1 X x 1 x 2 x 4 x 3 R Ω X

6 Contenido 1 Concepto de Variable Aleatoria 2 Función Distribución 3 Clasificación de Variables Aleatorias 4 Función Densidad de Probabilidad 5 Distribuciones Prácticas 6 Distribuciones Condicionales 7 Media y Varianza de Variables Aleatorias 8 Desigualdad de Chebychev

7 Definición Función Distribución Definición: Sea < Ω, F, P > ligado a ε y X una v.a. Se define la Función de Distribución F X : R R x R F X (x) = P ({X x}) La función de distribución F X contiene toda la información probabilística de la variable aleatoria X. Ejemplo Baraja española: Ω X = {1, 2, 3, 4, 5, 6, 7, 1, 11, 12} x = 3 F X ( 3) = P ({X 3}) = P ( ) = x = 1 F X (1) = P ({X 1}) = P ({1}) = 1/1 x = 1.5 F X (1.5) = P ({X 1.5}) = P ({1}) = 1/1 x = 2 F X (2) = P ({X 2}) = P ({1, 2}) = 2/1

8 Ejemplos Ejemplo Función Distribución. P(X x) Función Distribución. Ejemplo x

9 Ejemplos Otros Ejemplos X( n o de palo ) = 1 n o Ω X = {1, 2,..., 7, 1, 11, 12} Función Distribución. P(X x) Función Distribución. Ejemplo x

10 Ejemplos Otros Ejemplos X( n o de palo ) = { si es de oros 1 si no es de oros Ω X = {, 1} 1 Función Distribución. Ejemplo 3 Función Distribución. P(X x) 3/4 1/2 1/ x

11 Interpretación frecuencial Interpretación frecuencial n realizaciones n valores x 1, x 2,..., x n n x: n o de resultados x 1 n x def. frec. lím = P (X x) = F n X(x) n Función Distribución. Interpretación Frecuencial P(X x) x

12 Propiedades Función Distribución. Propiedades 1 F X ( ) = lím x F X (x) = F X ( ) = lím x F X (x) = 1 2 FD es no decreciente 3 FD es continua por la derecha x 1 < x 2 F X (x 1 ) F X (x 2 ) F X (x + ) = lím F X (x + ɛ) = F X (x) ɛ ɛ> 4 P ({X = x }) = F X (x ) F X (x ) F X(x ) = lím ɛ,ɛ> F X (x ɛ) 5 x 1 < x 2 P (x 1 < X x 2 ) = F X (x 2 ) F X (x 1 ) P (x 1 X x 2 ) = F X (x 2 ) F X (x 1 ) P (x 1 < X < x 2 ) = F X (x 2 ) F X(x 1 ) P (x 1 X < x 2 ) = F X (x 2 ) F X(x 1 ) *Observación: si x 1 < x 2 y F X (x 1 ) = F X (x 2 ) (x 1, x 2 ) Ω X = 6 P (X > x) = 1 F X (x)

13 Contenido 1 Concepto de Variable Aleatoria 2 Función Distribución 3 Clasificación de Variables Aleatorias 4 Función Densidad de Probabilidad 5 Distribuciones Prácticas 6 Distribuciones Condicionales 7 Media y Varianza de Variables Aleatorias 8 Desigualdad de Chebychev

14 Clasificación de Variables Aleatorias Variables Aleatorias Continuas Definición: X v.a. continua F X(x) continua { F X(x) = F X(x + ) = F X(x ) } Si X es continua Ω X es infinito no numerable Propiedad: P (X = x ) = F X (x ) F X (x ) = Ejemplo Un circuito requiere un resistencia de valor (91Ω 19Ω) Se emplea una resistencia estándar de 1KΩ y tolerancia 1 % x < 9 x 9 F X(x) = 9 x x > 11 Probabilidad: P (91 < X 19) = F X(19) F X(91) =.9

15 Clasificación de Variables Aleatorias Variables Aleatorias Discretas Definición: X v.a. discreta F X(x) escalonada, Ω X discreto N N F X(x) = P (X = x i) u(x x i) P (X = x i) = F X( ) = 1 }{{} i=1 i=1 función escalón Propiedades: P (X = x i) = F X(x i) F X(x i ) P (x i 1 < X < x i) = F X(x i ) FX(xi 1) = (xi 1, xi) ΩX = Ejemplo: Baraja española Variables Aleatorias Mixtas Mezcla de las dos anteriores Función Distribución no escalonada pero con discontinuidades. Ω X continuo. x, P (X = x ) = F X(x ) F X(x ) Ejemplos?

16 Contenido 1 Concepto de Variable Aleatoria 2 Función Distribución 3 Clasificación de Variables Aleatorias 4 Función Densidad de Probabilidad 5 Distribuciones Prácticas 6 Distribuciones Condicionales 7 Media y Varianza de Variables Aleatorias 8 Desigualdad de Chebychev

17 Definición Función densidad de probabilidad (fdp) Definición: Dada una F X (x) ligada a una v.a. X, se define la fdp como f X (x) = df X(x) dx Casos particulares: Si X v.a. continua No hay problemas con la derivada. a Si X v.a. discreta No existe la derivada en Ω X f X (x) = N i=1 P (X = x i ) du(x x i) dx = N i=1 P (X = x i ) δ(x x i ) }{{} Delta de Dirac a Aunque en ciertos puntos no sea derivable, dichos puntos carecen de interés.

18 Definición Delta de Dirac δ(x)dx = 1 g(x) δ(x) = g(x) g(x) = δ(t)g(x t)dt u a (x) u(x) 1 1 a/2 a/2 x δ a (x) x δ(x) 1/a a/2 a/2 x x

19 Ejemplos Función Densidad de Probabilidad (fdp) Ejemplo: Resistencia de 1K ± 1 % F X (x) = x < 9 x x 11 1 x > 11 f X (x) = x < < x < 11 x > 11 Función Distribución. P(X x) Función Densidad de Probabilidad (fdp) 1 1/ x x

20 Ejemplos Función Densidad de Probabilidad (fdp) Ejemplo: Baraja española Ω X = {1, 2,..., 7, 1, 11, 12} F X (x) = x i Ω x 1 1 u(x x i) f X (x) = x i Ω x 1 1 δ(x x i) Función Distribución. P(X x) x 1/1 Función Densidad de Probabilidad (fdp) x

21 Propiedades Función Densidad de Probabilidad (fdp) Propiedades: 1 f X(x) x R 2 fx(x)dx = 1 3 F X(x) = x fx(t)dt 4 P (x 1 < X x 2) = F X(x 2) F X(x 1) = x 2 f X(x)dx 5 Si X es una v.a. continua f X(x) = dfx(x) dx x 1 def. deriv. F X(x + x) F X(x) = lím = x x x> P (x < X x + x) Prob. intervalo = lím = x x long. intervalo x>

22 Propiedades Función Densidad de Probabilidad (fdp) Interpretación frecuencial: N realizaciones de v.a. X n x: n o de resultados pertenecientes a un intervalo de longitud x P X (x X x + x) f X (x) x n x/n P(x X x+δx)/δx N=1, Δx=1 Histograma fdp x

23 Propiedades Función Densidad de Probabilidad (fdp) Interpretación frecuencial: N realizaciones de v.a. X n x: n o de resultados pertenecientes a un intervalo de longitud x P X (x X x + x) f X (x) x n x/n P(x X x+δx)/δx N=1, Δx=.5 Histograma fdp x

24 Propiedades Función Densidad de Probabilidad (fdp) Interpretación frecuencial: N realizaciones de v.a. X n x: n o de resultados pertenecientes a un intervalo de longitud x P X (x X x + x) f X (x) x n x/n P(x X x+δx)/δx N=1, Δx=.1 Histograma fdp x

25 Contenido 1 Concepto de Variable Aleatoria 2 Función Distribución 3 Clasificación de Variables Aleatorias 4 Función Densidad de Probabilidad 5 Distribuciones Prácticas 6 Distribuciones Condicionales 7 Media y Varianza de Variables Aleatorias 8 Desigualdad de Chebychev

26 Distribuciones Continuas Distribución Uniforme f X(x) = { 1 x 2 x 1 x 1 x x 2 resto Ω X = [x 1, x 2 ] x < x 1 x x F X(x) = 1 x 2 x 1 x 1 x x 2 1 x > x 2 Distribución uniforme (fdp) Distribución uniforme (FD) K 1 x1 x x2 x1 x x2

27 Distribuciones Continuas Distribución Exponencial Ω X = [, ) parámetro c { ce cx x f X(x) = x < { 1 e cx x F X(x) = x < Distribución exponencial (fdp) Distribución exponencial (FD) c 1 1/c 2/c 3/c 4/c 5/c x 1/c 2/c 3/c 4/c 5/c x

28 Distribuciones Continuas Distribución Gaussiana o Normal Ω X = (, ) parámetros η, σ N (η, σ) f X(x) = 1 x e (x η)2 2σ 2 F X(x) = f(u)du 2πσ.6.4 Distribución Gaussiana (fdp) η=, σ 2 =1 η=, σ 2 =.5 η=, σ 2 =2 η=2, σ 2 = Distribución Gaussiana (FD) η=, σ 2 =1 η=, σ 2 =.5 η=, σ 2 =2 η=2, σ 2 = x x

29 Distribuciones Continuas Distribución Gaussiana o Normal Caso Particular: η =, σ = 1 Caso General: N (η, σ) F X(x) = 1 2πσ x F X(x) = G(x) = 1 2π x e (u η)2 2σ 2 du = t= u η σ e u2 2 du x η 1 σ 2π e t2 2 dt = G( x η σ ) Otras funciones Función error: erf(x) = 1 x e t2 2 dt = G(x) 1 2π 2 Función Q: Q(x) = 1 e t2 2 dt = 1 G(x) = G( x) 2π x

30 Distribuciones Continuas G(x) Segunda cifra decimal del valor de x x

31 Distribuciones Discretas Distribución de Bernoulli Ω X = {, 1} P (X = x) = { p x = 1 q = 1 p x = f X(x) = qδ(x) + pδ(x 1) F X(x) = qu(x) + pu(x 1) Distribución de Bernoulli (fdp) Distribución de Bernoulli (FD) 1 p q q 1 x 1 x

32 Distribuciones Discretas Distribución Binomial n ensayos de Bernoulli independientes. Suceso A con p cte. en todos los ensayos. (q = 1 p). X v.a. binomial cuenta el n o de veces que se verifica el suceso A. f X (x) = n k= X = n k= Xi B(n, p) ΩX = {, 1, 2,..., n} ( n k) p k q n k δ(x k) F X (x) = n k= ( n k) p k q n k u(x k) Distribución Binomial (fdp). n=1, p=.4 1 Distribución Binomial (FD). n=1, p= x x

33 Distribuciones Discretas Distribución Binomial Propiedades: F X(n) = 1 (a + b) n T a Binomial = Aproximación: p constante y n : n k= ( n k) a k b n k p + q = 1 Aproximable por N (η = np, σ = npq) p, n, np = a = cte: Aproximable por Poisson de parámetro a

34 Distribuciones Discretas Distribución de Poisson f X (x) = Ω X = {, 1, 2,...} = N + parámetro a > P(a) k= P (X = k) = e a a k k! a ak e k! δ(x k) F X (x) = a ak e u(x k) k! k= Distribución de Poisson (fdp). a=4 1 Distribución de Poisson (FD). a= x x

35 Distribuciones Discretas Distribución de Poisson Propiedades: F X( ) = 1 k= a ak e k! = e a e a = 1 Aproximación de la distribución Binomial: ( n lím p n k) k q n k n(n 2) (n k + 1) = lím n k! p np=a = ak k! = ak k! lím n lím n n n 1 n n n k + 1 n ( 1 a ) n = e a ak n k! ( a n ) k ( 1 a n ) n k = ( 1 a ) k ( 1 a ) n = n n Regla heurística: n 1, p 1 y a = np < 5

36 Distribuciones Discretas Ejemplo Distribución Binomial Distribución Binomial B(n = 1, p =.3) B(n = 1, p =.2) Aproximación: P(3) Aproximación: N (2, 4).25.2 Distribución Binomial (fdp) Binomial B(1,.3) Poisson P(3).1.8 Distribución Binomial (fdp) Binomial B(1,.2) N(2,4).15.6 fdp fdp x x

37 Distribuciones Discretas Ejemplo Dispositivo electrónico: n componentes con fallos independientes. Componentes con tiempo de vida exponencial de parámetro c Distribución del n o de componentes que fallan en [, t ] X i v.a. fallo componente i-ésimo { 1 fallo X i = no fallo Ω Xi = {, 1} n repeticiones independientes ensayo Bernoulli (prob. cte.) X v.a. n o fallos: Binomial B(n, p) X = N i=1 Xi T v.a. tiempo de vida de un componente { ce ct t f T (t) = p = P (T t t < ) = F T (t ) = 1 e ct P (X = k) = ( ) n (1 e ct ) k ( e ct ) n k k =, 1,..., n k

38 Distribuciones Discretas Ejemplo Prob. de fallo de un componente en un año es 1 3, Prob. de que de 1 componentes ninguno falle en 2 años?: P (T 1 año) = 1 3 = F T (1) = 1 e c c 1 3 años 1 P (T 2 años) = F T (2) = 1 e = = p X B(n, p) con n = 1, p =.2 P ( fallos en 2 años ) = P (X = ) = ( ) n p q n = e Aproximación mediante v.a. Y Poisson (n 1, p 1, a 2 < 5) P (Y = k) = e a a k k! P (Y = ) = e a = e 2

39 Contenido 1 Concepto de Variable Aleatoria 2 Función Distribución 3 Clasificación de Variables Aleatorias 4 Función Densidad de Probabilidad 5 Distribuciones Prácticas 6 Distribuciones Condicionales 7 Media y Varianza de Variables Aleatorias 8 Desigualdad de Chebychev

40 Distribuciones Condicionales Distribución Condicional Definición: Se define la Función Distribución Condicional de una v.a. X dado que se verifica el suceso M como F X(x M) = P ({X x} M) = P ({X x} M) P (M) Función Densidad de Probabilidad (fdp) Condicional Definición: f X(x M) = dfx(x M) dx P ({x < X x + x} M) = lím x x x> Propiedades Ambas funciones cumplen todas las propiedades de las funciones distribución y densidad

41 Distribuciones Condicionales Ejemplo Variable aleatoria X. Se verifica el suceso M = {b < X a}. F X(x M) = F X(x b < X a) = Función Distribución Condicionada x a: P ({X x} {b < X a}) P ({b < X a}) {X x} {b < X a} = {b < X a} F X (x M) = 1 b x < a: x < b: {X x} {b < X a} = {b < X x} F X (x M) = P ({b < X x}) P ({b < X a}) = F X(x) F X (b) F X (a) F X (b) {X x} {b < X a} = F X (x M) =

42 Distribuciones Condicionales Ejemplo fdp condicionada: f X(x b < x a) = f X(x) F X(a) F X(b) b x < a fdp condicionada f X (x)=n(,1) f X (x b<x a) b= 1 a=.5 x

43 Teoremas de la Probabilidad Total y de Bayes Recordemos... P (B) A i partición = P (B A i)p (A i) i P (A B) = P (B A)P (A) P (B) Analizemos P (A B) = P (B A)P (A)/P (B) B = {X x} B = {x 1 < X x 2} B = {X = x} P (A X x) = FX(x A) F X(x) P (A) P (A x 1 < X x 2) = FX(x2 A) FX(x1 A) P (A) F X(x 2) F X(x 1) fx(x A) P (A X = x) = lím P (A x < X x + x) = x f P (A) X(x)

44 Teoremas de la Probabilidad Total y de Bayes Teorema de la Probabilidad Total Teorema: Sea < Ω, F, P > ligado a ε y {A 1, A 2,..., A N } partición de Ω F X(x) = B={X x} i=1 N N F X(x A i)p (A i) f X(x) = f X(x A i)p (A i) i=1 Teorema de la Probabilidad Total (Versión continua) P (A) = P (A X = x)f X(x)dx Teorema de Bayes (Versión continua) f X(x A) = P (A X = x) f X(x) = P (A) P (A X = x)f X(x) P (A X = x)fx(x)dx

45 Teoremas de la Probabilidad Total y de Bayes Ejemplo T : v.a. exponencial tiempo de vida de un componente { ce ct t f T (t) = t < { 1 e ct t F T (t) = t < P ({ fallo antes de t 1 segundos }) = P (T t 1) = F T (t 1) = 1 e ct 1 En un instante t se comprueba que un componente sigue funcionando. Cual es la probabilidad de que falle antes de t 1 segundos adicionales? P (t < T t + t 1 T > t ) = P ({t < T t + t 1 } {T > t }) P (T > t ) = P (t < T t + t 1 ) 1 P (T t ) = e ct (1 e ct 1) e ct La v.a. exponencial es Sin Memoria = = F T (t + t 1 ) F T (t ) 1 F T (t ) = 1 e ct 1 = F T (t 1 ) =

46 Contenido 1 Concepto de Variable Aleatoria 2 Función Distribución 3 Clasificación de Variables Aleatorias 4 Función Densidad de Probabilidad 5 Distribuciones Prácticas 6 Distribuciones Condicionales 7 Media y Varianza de Variables Aleatorias 8 Desigualdad de Chebychev

47 Media y Varianza de Variables Aleatorias Media de una Variable Aleatoria Definición: Dada una v.a. X se define su media como η = E[X] = xf X(x)dx Interpretación frecuencial η = i p i x i i n xi n x i = 1 n n xi x i i Media Condicional E[X M] = xf X (x M)dx Otras medidas: Moda: Valor x m que maximiza f X(x m). Mediana: x m Ω X es mediana de X sii F X(x m) = 1/2

48 Media y Varianza de Variables Aleatorias Varianza de una Variable Aleatoria Definición: Dada una v.a. X se define su varianza como σ 2 = Var[X] = E[(X η) 2 ] = (x η) 2 f X(x)dx Se puede ver como una medida de la dispersión en torno a la media. Además: σ 2 = (x η) 2 f X (x)dx = (x 2 + η 2 2xη)f X (x)dx = = x 2 f X (x)dx η 2 Desviación típica: σ = Var[X] (unidades de X)

49 Ejemplos Variables aleatorias continuas Variable Aleatoria Uniforme: { 1 f X(x) = x 2 x 1 x 1 x x 2 resto Media: η = xf X (x)dx = x2 x x 2 x 2 x dx = x 2 x 1 x 2 x 1 2 = x 1 + x 2 x 1 2 Varianza: x2 σ 2 = x 2 f X (x)dx η 2 = x 2 1 dx (x 1 + x 2 ) 2 = x 1 x 2 x 1 4 Interpretación: = x3 2 x3 1 3(x 2 x 1 ) (x 1 + x 2 ) 2 = = (x 2 x 1 ) fdp simétrica media en el centro A menor (x 2 x 1) menor dispersión menor σ 2

50 Ejemplos Variables aleatorias continuas Variable Aleatoria Exponencial: { ce cx x f X(x) = x < Media: η = xf X (x)dx = c Varianza: σ 2 = x 2 f X (x)dx η 2 = c Interpretación: xe cx Int. partes dx = 1 c x 2 e cx 2 Int. partes 1 dx η = c 2 Al aumentar c f X(x) decrece más rápidamente. Al aumentar c valores más probables en torno a cero. Al aumentar c menor dispersión.

51 Ejemplos Variables aleatorias continuas Variable Aleatoria Gaussiana: N (a, b) f X(x) = 1 e (x a)2 2b 2 2πb Media: η = 1 2πb = 1 2π = ag( ) = a xe (x a)2 2b 2 dx bte t2 2 dt }{{} por impar t= x a b = + 1 (bt + a)e t2 2 bdt = 2πb ae t2 2 dt = a 1 2π e t2 2 dt =

52 Ejemplos Variables aleatorias continuas Variable Aleatoria Gaussiana: N (a, b) Varianza: Sabemos que: 1 e (x a)2 2b 2 dx = 1 2πb derivando respecto a b Finalmente: Interpretación: (x a) 2 b 3 e (x a) 2 2b 2 dx = 2π σ 2 = (x a) 2 1 e (x a)2 2b 2 dx = b 2 2πb Gaussiana centrada en η = a σ = b controla la dispersión en torno a a e (x a)2 2b 2 dx = 2πb

53 Ejemplos Variables aleatorias discretas Variable Aleatoria de Bernoulli: Ω X = {, 1} P (X = 1) = p P (X = ) = q = 1 p f X(x) = qδ(x) + pδ(x 1) Media: Varianza: η = xf X (x)dx = i σ 2 = i p i x i = q + p1 = p p i x 2 i η2 = q 2 + p1 2 p 2 = pq Interpretación: Media en p Máxima varianza para p = 1 2

54 Ejemplos Variables aleatorias discretas Binomial: B(n, p) Ω X = {, 1,..., n} P (X = k) = Partiremos del Binomio de Newton: derivando respecto a p: y multiplicando por p (p + q) n = n(p + q) n 1 = np(p + q) n 1 = n k= n k= ( n k) p k q n k ( n k) kp k 1 q n k n k= ( n k) kp k q n k ( ) n p k q n k k

55 Ejemplos Variables aleatorias discretas Binomial: B(n, p) Media: η = n ( n kp k) k q n k n 1 p+q=1 = np(p + q) = np k= Para obtener la varianza volvemos a derivar y multiplicar: n ( n(p + q) n 1 + np(n 1)(p + q) n 2 n = k k) 2 p k 1 q n k Varianza: Observaciones: k= np [ (p + q) n 1 + p(n 1)(p + q) n 2] n ( n = k k) 2 p k q n k σ 2 p+q=1 = n k= k= ( n k) k 2 p k q n k η 2 = np(1 p) = npq Media y varianza como Bernoulli multiplicadas por n Técnica de derivar y multiplicar frecuente en el cálculo de η y σ 2

56 Ejemplos Variables aleatorias discretas Poisson: P(a) Ω X = N + Partimos del desarrollo en serie derivando y multiplicando por a Media: e a = P (X = k) = e a a k k= η = k ak 1 k! k= e a = k= a k k! k! a ae a = k =, 1,... k= a ak ke k! = e a ae a = a k ak k!

57 Ejemplos Variables aleatorias discretas Poisson: P(a) Ω X = N + P (X = k) = e a a k k! k =, 1,... Para obtener la varianza volvemos a derivar y multiplicar Varianza: Interpretación e a + ae a = k= σ 2 = i k 2 ak 1 k! p i x 2 i η2 = a ae a (1 + a) = k= = e a ae a (1 + a) a 2 = a k 2 a ak e k! a2 = Al disminuir a f X(x) se concentra en torno a Aproximación de B(n, p), np = a k= k 2 ak k!

58 Contenido 1 Concepto de Variable Aleatoria 2 Función Distribución 3 Clasificación de Variables Aleatorias 4 Función Densidad de Probabilidad 5 Distribuciones Prácticas 6 Distribuciones Condicionales 7 Media y Varianza de Variables Aleatorias 8 Desigualdad de Chebychev

59 Desigualdad de Chebychev Desigualdad de Chebychev Sea X una variable aleatoria con media η y varianza σ 2, se tiene P ( X η ɛ) σ2 ɛ 2 ɛ En función del suceso contrario: P ( X η < ɛ) 1 σ2 ɛ 2 ɛ=kσ P ( X η < Kσ) 1 1 K 2 Aproximación general pero muy conservadora. Demostración: η ɛ P ( X η ɛ) = f X (x)dx + f X (x)dx = f X (x)dx η+ɛ x η ɛ σ 2 = (x η) 2 f X (x)dx (x η) 2 f X (x)dx x η ɛ ɛ 2 f X (x)dx = ɛ 2 P ( X η ɛ) x η ɛ

60 Desigualdad de Chebychev Ejemplo Calcular P ( X η < Kσ) Desigualdad de Chebychev: Distribución Gaussiana N (η, σ) P ( X η < Kσ) 1 1 K 2 P ( X η < Kσ) = P (η Kσ < X < η + Kσ) = = F X (η + Kσ) F X (η Kσ) = = G(K) G( K) = 2G(K) 1

61 Desigualdad de Chebychev Ejemplo Calcular P ( X η < Kσ) Distribución Uniforme en [x 1, x 2] x < x 1 x x F X (x) = 1 x 1 + x 2 x x 2 x 1 < x < x 2 1 η = 2 1 x > x 2 Asumimos entonces: P ( X η < Kσ) = F X (η + Kσ) F X (η Kσ) { η + Kσ x2 η Kσ x 1 σ 2 = (x 2 x 1 ) 2 12 P ( X η < Kσ) = η + Kσ x 1 η Kσ x 1 = 2Kσ = K x 2 x 1 x 2 x 1 x 2 x 1 3 { K 3 < K < 3 P ( X η < Kσ) = 1 K > 3

62 Desigualdad de Chebychev Ejemplo Desigualdad de Chebychev 1.86 P( X η <Kσ).68 Chebychev Dist. Uniforme Dist. Gaussiana K 3 4

63 Resumen Matemáticas Desarrollo en serie Binomio de Newton Límite: e a = (p + q) n = k= n k= a k k! ( ) n p k q n k k ( lím 1 a ) n = e a n n

64 Resumen Matemáticas Serie Geométrica: a k+1 = a k r con r < 1 a k = an 1 r k=n Progresión Aritmética: a k+1 = a k + d Integración por partes. n a k = k=1 an + a1 n 2 Derivar y multiplicar (media y varianza de v.a. discretas).

Tema 3: Función de Variable Aleatoria y Teoremas Asintóticos

Tema 3: Función de Variable Aleatoria y Teoremas Asintóticos Tema 3: Función de Variable Aleatoria y Teoremas Asintóticos Curso 2016-2017 Contenido 1 Función de una Variable Aleatoria 2 Cálculo de la fdp 3 Generación de Números Aleatorios 4 Momentos de una Variable

Más detalles

Tema 3: Funcio n de Variable Aleatoria

Tema 3: Funcio n de Variable Aleatoria Tema 3: Funcio n de Variable Aleatoria Teorı a de la Comunicacio n Curso 2007-2008 Contenido 1 Función de una Variable Aleatoria 2 3 Cálculo de la fdp 4 Generación de Números Aleatorios 5 Momentos de una

Más detalles

Part I. Variables aleatorias unidimensionales. Estadística I. Mario Francisco. Definición de variable aleatoria. Variables aleatorias discretas

Part I. Variables aleatorias unidimensionales. Estadística I. Mario Francisco. Definición de variable aleatoria. Variables aleatorias discretas Part I unidimensionales de s de s Definición Dado un experimento aleatorio, con espacio muestral asociado Ω, una es cualquier función, X, X : Ω R que asocia a cada suceso elemental un número real, verificando

Más detalles

Tema 4: Variable Aleatoria Bidimensional

Tema 4: Variable Aleatoria Bidimensional Curso 2016-2017 Contenido 1 Definición de Variable Aleatoria Bidimensional 2 Distribución y fdp Conjunta 3 Clasificación de Variables Aleatorias Bidimensionales 4 Distribuciones Condicionales 5 Funciones

Más detalles

Tema 3. Probabilidad y variables aleatorias

Tema 3. Probabilidad y variables aleatorias 1 Tema 3. Probabilidad y variables aleatorias En este tema: Probabilidad: Experimentos aleatorios, espacio muestral, sucesos. Interpretaciones de la probabilidad. Propiedades de la probabilidad. Probabilidad

Más detalles

Cálculo de probabilidad. Tema 3: Variables aleatorias continuas

Cálculo de probabilidad. Tema 3: Variables aleatorias continuas Cálculo de probabilidad Tema 3: Variables aleatorias continuas Guión Guión 3.1. La función de densidad de probabilidad Definición 3.1 Sea P una medida de probabilidad en un espacio muestral Ω. Se dice

Más detalles

Variables aleatorias

Variables aleatorias Variables aleatorias Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Estadística I curso 2008 2009 Una variable aleatoria es un valor numérico que se corresponde con

Más detalles

Estadistica II Tema 0. Repaso de conceptos básicos. Curso 2009/10

Estadistica II Tema 0. Repaso de conceptos básicos. Curso 2009/10 Estadistica II Tema 0. Repaso de conceptos básicos Curso 2009/10 Tema 0. Repaso de conceptos básicos Contenidos Variables aleatorias y distribuciones de probabilidad La distribución normal Muestras aleatorias,

Más detalles

TEMA 3: Probabilidad. Modelos. Probabilidad

TEMA 3: Probabilidad. Modelos. Probabilidad TEM 3: Probabilidad. Modelos Probabilidad Fenómeno aleatorio: es aquel cuyos resultados son impredecibles. Ejemplos: Lanzamiento de una moneda: Resultados posibles: cara, cruz. Selección al azar de un

Más detalles

Tema 2: VARIABLE ALEATORIA UNIDIMENSIONAL

Tema 2: VARIABLE ALEATORIA UNIDIMENSIONAL Tema 2: VARIABLE ALEATORIA UNIDIMENSIONAL Carlos Alberola López Lab. Procesado de Imagen, ETSI Telecomunicación Despacho 2D014 caralb@tel.uva.es, jcasasec@tel.uva.es, http://www.lpi.tel.uva.es/sar Concepto

Más detalles

Curso de Probabilidad y Estadística

Curso de Probabilidad y Estadística Curso de Probabilidad y Estadística Distribuciones de Probabilidad Dr. José Antonio Camarena Ibarrola camarena@umich.mx Universidad Michoacana de San Nicolás de Hidalgo Facultad de Ingeniería Eléctrica

Más detalles

Variables aleatorias unidimensionales

Variables aleatorias unidimensionales Estadística II Universidad de Salamanca Curso 2011/2012 Outline Variable aleatoria 1 Variable aleatoria 2 3 4 Variable aleatoria Definición Las variables aleatorias son funciones cuyos valores dependen

Más detalles

Modelos de distribuciones discretas y continuas

Modelos de distribuciones discretas y continuas Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Modelos de distribuciones discretas y continuas Estadística I curso 2008 2009 1. Distribuciones discretas Aquellas

Más detalles

El momento k-ésimo para una variable aleatoria discreta respecto del origen, es. n = esperanza matemática de X

El momento k-ésimo para una variable aleatoria discreta respecto del origen, es. n = esperanza matemática de X Momentos El momento k-ésimo para una variable aleatoria discreta respecto del origen, es E(x) n = i = 1 k i ( ) x.p x El primer momento centrado en el origen (k=1) es la esperanza matemática de X También

Más detalles

Prof. Eliana Guzmán U. Semestre A-2015

Prof. Eliana Guzmán U. Semestre A-2015 Unidad III. Variables aleatorias Prof. Eliana Guzmán U. Semestre A-2015 Variable Aleatoria Concepto: es una función que asigna un número real, a cada elemento del espacio muestral. Solo los experimentos

Más detalles

Ruido en los sistemas de comunicaciones

Ruido en los sistemas de comunicaciones Capítulo 2 Ruido en los sistemas de comunicaciones Cuando una señal se transmite a través de un canal de comunicaciones hay dos tipos de imperfecciones que hacen que la señal recibida sea diferente de

Más detalles

Estadística Clase 2. Maestría en Finanzas Universidad del CEMA. Profesor: Alberto Landro Asistente: Julián R. Siri

Estadística Clase 2. Maestría en Finanzas Universidad del CEMA. Profesor: Alberto Landro Asistente: Julián R. Siri Estadística 010 Clase Maestría en Finanzas Universidad del CEMA Profesor: Alberto Landro Asistente: Julián R. Siri Clase 1. La distribución de Bernoulli. La distribución binomial 3. La distribución de

Más detalles

Estadística Descriptiva y Probabilidad FORMULARIO

Estadística Descriptiva y Probabilidad FORMULARIO Estadística Descriptiva y Probabilidad FORMULARIO Departament d Estadística i Investigació Operativa Universitat de València Angel Corberán Francisco Montes 2 3 Capítulo 1 Estadística Descriptiva 1.1.

Más detalles

DISTRIBUCIONES DE PROBABILIDAD

DISTRIBUCIONES DE PROBABILIDAD DISTRIBUCIONES DE PROBABILIDAD VARIABLE ALEATORIA Una variable x valuada numéricamente varía o cambia, dependiendo del resultado particular del experimento que se mida. Por ejemplo, suponga que se tira

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

VARIABLES ALEATORIAS CONTINUAS

VARIABLES ALEATORIAS CONTINUAS VARIABLES ALEATORIAS CONTINUAS M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional Primavera 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Definición de una V.A.C. Definición de una V.A.C.

Más detalles

Tema 6: Modelos de probabilidad.

Tema 6: Modelos de probabilidad. Estadística 60 Tema 6: Modelos de probabilidad. 6.1 Modelos discretos. (a) Distribución uniforme discreta: La variable aleatoria X tiene una distribución uniforme discreta de parámetro n,que denoteramos

Más detalles

Definición de probabilidad

Definición de probabilidad Tema 5: LA DISTRIBUCIÓN NORMAL 1. INTRODUCCIÓN A LA PROBABILIDAD: Definición de probabilidad Repaso de propiedades de conjuntos (Leyes de Morgan) Probabilidad condicionada Teorema de la probabilidad total

Más detalles

Estadística. Tema 2. Variables Aleatorias Funciones de distribución y probabilidad Ejemplos distribuciones discretas y continuas

Estadística. Tema 2. Variables Aleatorias Funciones de distribución y probabilidad Ejemplos distribuciones discretas y continuas Estadística Tema 2 Variables Aleatorias 21 Funciones de distribución y probabilidad 22 Ejemplos distribuciones discretas y continuas 23 Distribuciones conjuntas y marginales 24 Ejemplos distribuciones

Más detalles

VARIABLES ALEATORIAS CONTINUAS

VARIABLES ALEATORIAS CONTINUAS VARIABLES ALEATORIAS CONTINUAS El zoo binomial: las probabilidades en la distribución binomial. Tutorial 5, sección 2 X = número de éxitos al repetir n veces un experimento con probabilidaf de éxito p

Más detalles

ANALISIS DE FRECUENCIA EN HIDROLOGIA

ANALISIS DE FRECUENCIA EN HIDROLOGIA ANALISIS DE FRECUENCIA EN HIDROLOGIA Luis F. Carvajal Julián D. Rojo Universidad Nacional de Colombia Facultad de Minas Escuela de Geociencias y Medio Ambiente Introducción 1. Los eventos hidrológicos

Más detalles

Sesión 2: Teoría de Probabilidad

Sesión 2: Teoría de Probabilidad Modelos Gráficos Probabilistas L. Enrique Sucar INAOE Sesión 2: Teoría de Probabilidad las reglas mátemáticas de la probabilidad no son simplemente reglas para calcular frecuencias de variables aleatorias;

Más detalles

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema:

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema: Modelos de probabilidad Modelos de probabilidad Distribución de Bernoulli Distribución Binomial Distribución de Poisson Distribución Exponencial Objetivos del tema: Al final del tema el alumno será capaz

Más detalles

Variables aleatorias. Tema Introducción Variable aleatoria. Contenido

Variables aleatorias. Tema Introducción Variable aleatoria. Contenido Tema 4 Variables aleatorias En este tema se introduce el concepto de variable aleatoria y se estudian los distintos tipos de variables aleatorias a un nivel muy general, lo que nos permitirá manejar los

Más detalles

GRADO TURISMO TEMA 7: INTRODUCCIÓN A LOS MODELOS DE PROBABILIDAD

GRADO TURISMO TEMA 7: INTRODUCCIÓN A LOS MODELOS DE PROBABILIDAD GRADO TURISMO TEMA 7: INTRODUCCIÓN A LOS MODELOS DE PROBABILIDAD Prof. Rosario Martínez Verdú TEMA 7: INTRODUCCIÓN A LOS MODELOS DE PROBABILIDAD 1. Nociones básicas de teoría de la probabilidad. 2. Variable

Más detalles

Variables aleatorias continuas, TCL y Esperanza Condicional

Variables aleatorias continuas, TCL y Esperanza Condicional Variables aleatorias continuas, TCL y Esperanza Condicional FaMAF 17 de marzo, 2011 1 / 37 Poisson P(λ) Número de éxitos en una cantidad grande de ensayos independientes Rango: {0, 1, 2,... } = {0} N Función

Más detalles

4.1. Definición de variable aleatoria. Clasificación.

4.1. Definición de variable aleatoria. Clasificación. Capítulo 4 Variable aleatoria Una variable aleatoria es un valor numérico que corresponde a un resultado de un experimento aleatorio. Algunos ejemplos son: número de caras obtenidas al lanzar seis veces

Más detalles

viii CAPÍTULO 2 Métodos de muestreo CAPÍTULO 3 Análisis exploratorio de datos

viii CAPÍTULO 2 Métodos de muestreo CAPÍTULO 3 Análisis exploratorio de datos Contenido Acerca de los autores.............................. Prefacio.... xvii CAPÍTULO 1 Introducción... 1 Introducción.............................................. 1 1.1 Ideas de la estadística.........................................

Más detalles

Variables aleatorias

Variables aleatorias Variables aleatorias DEFINICIÓN En temas anteriores, se han estudiado las variables estadísticas, que representaban el conjunto de resultados observados al realizar un experimento aleatorio, presentando

Más detalles

Modelos de distribuciones discretas y continuas

Modelos de distribuciones discretas y continuas Tema 6 Modelos de distribuciones discretas y continuas 6.1. Modelos de distribuciones discretas 6.1.1. Distribución uniforme sobre n puntos Definición 6.1.2 Se dice que una v.a. X sigue una distribución

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Grado en Ingeniería Informática Tema 5 Esperanza y momentos Javier Cárcamo Departamento de Matemáticas Universidad Autónoma de Madrid javier.carcamo@uam.es Javier Cárcamo PREST.

Más detalles

Tema 4: Variables Aleatorias

Tema 4: Variables Aleatorias Tema 4: Variables Aleatorias Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Variables Aleatorias Curso 2009-2010 1 / 10 Índice 1 Concepto

Más detalles

Unidad 1: Espacio de Probabilidad

Unidad 1: Espacio de Probabilidad Unidad 1: Espacio de Probabilidad 1.1 Espacios de Probabilidad. (1) Breve introducción histórica de las probabilidades (2) Diferencial entre modelos matemáticos deterministicos y probabilísticos (3) Identificar

Más detalles

Nº Hermanos 30 Alumnos X i f i P(X i ) 0 8 0, , , , , ,00

Nº Hermanos 30 Alumnos X i f i P(X i ) 0 8 0, , , , , ,00 U.D.3: Distribuciones Discretas. La Distribución Binomial 3.1 Variable Aleatoria Discreta. Función o Distribución de Probabilidad. Variable Aleatoria: - En un experimento aleatorio, se llama variable aleatoria

Más detalles

Distribuciones de probabilidad

Distribuciones de probabilidad Distribuciones de probabilidad Prof, Dr. Jose Jacobo Zubcoff Departamento de Ciencias del Mar y Biología Aplicada Inferencia estadística: Parte de la estadística que estudia grandes colectivos a partir

Más detalles

Definición: Se llama variable aleatoria a toda función X que asigna a c/u de los elementos del espacio muestral S, un número Real X(s).

Definición: Se llama variable aleatoria a toda función X que asigna a c/u de los elementos del espacio muestral S, un número Real X(s). VARIABLE ALEATORIA Definición: Se llama variable aleatoria a toda función X que asigna a c/u de los elementos del espacio muestral S, un número Real X(s). X : S S s s X () s X(s) Rx Rx es el recorrido

Más detalles

ENUNCIADO y SOLUCIONES. Problema 1

ENUNCIADO y SOLUCIONES. Problema 1 Ingeniería Industrial Métodos estadísticos de la Ingeniería Examen Junio 007. ENUNCIADO y SOLUCIONES Problema La memoria RAM para un ordenador se puede recibir de dos fabricantes A y B con igual probabilidad.

Más detalles

Técnicas Cuantitativas para el Management y los Negocios I

Técnicas Cuantitativas para el Management y los Negocios I Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo II Unidad 4. Probabilidad Conceptos básicos de probabilidad:

Más detalles

Probabilidad II Algunas distribuciones notables. Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid

Probabilidad II Algunas distribuciones notables. Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid Probabilidad II Algunas distribuciones notables Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid La distribución normal f (x; µ, σ) = 1 σ 2π e 1 2( x µ σ ) 2, x R, µ R, σ > 0 E(X

Más detalles

Sistemas de ayuda a la decisión Modelización de la incertidumbre Tema 2. Incertidumbre y Probabilidad

Sistemas de ayuda a la decisión Modelización de la incertidumbre Tema 2. Incertidumbre y Probabilidad Sistemas de ayuda a la decisión Modelización de la incertidumbre Tema 2. Incertidumbre y Probabilidad Indice 1) Sucesos aleatorios. Espacio muestral. 2) Operaciones con sucesos. 3) Enfoques de la Probabilidad.

Más detalles

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA FACULTAD DE INGENIERÍA U N A M PROBABILIDAD Y ESTADÍSTICA Irene Patricia Valdez y Alfaro irenev@unam.mx T E M A S DEL CURSO 1. Análisis Estadístico de datos muestrales. 2. Fundamentos de la Teoría de la

Más detalles

Definición Se dice que una variable aleatoria X es continua si su conjunto de posibles valores es todo un intervalo (finito o infinito) de números

Definición Se dice que una variable aleatoria X es continua si su conjunto de posibles valores es todo un intervalo (finito o infinito) de números IV. Variables Aleatorias Continuas y sus Distribuciones de Probabilidad 1 Variable Aleatoria Continua Definición Se dice que una variable aleatoria X es continua si su conjunto de posibles valores es todo

Más detalles

Distribuciones de probabilidad multivariadas

Distribuciones de probabilidad multivariadas Capítulo 3 Distribuciones de probabilidad multivariadas Sobre un dado espacio muestral podemos definir diferentes variables aleatorias. Por ejemplo, en un experimento binomial, X 1 podría ser la variable

Más detalles

Probabilidad, Variable Aleatoria Pag 1 de 26 PROBABILIDAD

Probabilidad, Variable Aleatoria Pag 1 de 26 PROBABILIDAD Probabilidad, Variable Aleatoria Pag 1 de 6 PROBABILIDAD Actualmente la teoría de probabilidades desempeña un papel importante en el campo de los negocios, la investigación, específicamente en la toma

Más detalles

Variable Aleatoria Continua. Principales Distribuciones

Variable Aleatoria Continua. Principales Distribuciones Variable Aleatoria Continua. Definición de v. a. continua Función de Densidad Función de Distribución Características de las v.a. continuas continuas Ejercicios Definición de v. a. continua Las variables

Más detalles

Funciones de Una Variable Real I. Derivadas

Funciones de Una Variable Real I. Derivadas Contents : Derivadas Universidad de Murcia Curso 2010-2011 Contents 1 Funciones derivables Contents 1 Funciones derivables 2 Contents 1 Funciones derivables 2 3 Objetivos Funciones derivables Definir,

Más detalles

T1. Distribuciones de probabilidad discretas

T1. Distribuciones de probabilidad discretas Estadística T1. Distribuciones de probabilidad discretas Departamento de Ciencias del Mar y Biología Aplicada Inferencia estadística: Parte de la estadística que estudia grandes colectivos a partir de

Más detalles

ESTADÍSTICA I Tema 2: Algunas ideas básicas sobre inferencia estadística. Muestreo aleatorio

ESTADÍSTICA I Tema 2: Algunas ideas básicas sobre inferencia estadística. Muestreo aleatorio ESTADÍSTICA I Tema 2: Algunas ideas básicas sobre inferencia estadística. Muestreo aleatorio Muestra aleatoria Conceptos probabiĺısticos básicos El problema de inferencia Estadísticos. Media y varianza

Más detalles

Vectores Aleatorios. Definición 1.1. Diremos que el par (X,Y) es un vector aleatorio si X e Y representan variables aleatorias

Vectores Aleatorios. Definición 1.1. Diremos que el par (X,Y) es un vector aleatorio si X e Y representan variables aleatorias Universidad de Chile Facultad De Ciencias Físicas y Matemáticas MA3403 - Probabilidades y Estadística Prof. Auxiliar: Alberto Vera Azócar. albvera@ing.uchile.cl Vectores Aleatorios 1. Vectores Aleatorios

Más detalles

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA PROBABILIDAD Y ESTADÍSTICA 4 horas a la semana 8 créditos Semestre variable según la carrera Objetivo del curso: Analizar y resolver problemas de naturaleza aleatoria en la ingeniería, aplicando conceptos

Más detalles

JUEGO DE BASKETBALL. Repaso de Distribuciones de Probabilidad Discretas y Continuas

JUEGO DE BASKETBALL. Repaso de Distribuciones de Probabilidad Discretas y Continuas JUEGO DE BASKETBALL Repaso de Distribuciones de Probabilidad Discretas y Continuas PREGUNTA #1 Qué es una variable aleatoria uniforme discreta? Cómo es su distribución? Qué es una variable aleatoria uniforme

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Grado en Ingeniería Informática Tema 3 Variables aleatorias Javier Cárcamo Departamento de Matemáticas Universidad Autónoma de Madrid javier.carcamo@uam.es Javier Cárcamo PREST.

Más detalles

Tema 4. Probabilidad y variables aleatorias

Tema 4. Probabilidad y variables aleatorias Tema 4. Probabilidad y variables aleatorias En este tema: Probabilidad: Experimentos aleatorios, espacio muestral, sucesos. Interpretaciones de la probabilidad. Propiedades de la probabilidad. Probabilidad

Más detalles

Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico

Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico Formulario. Estadística Administrativa Módulo 1. Introducción al análisis estadístico Histogramas El número de intervalos de clase, k, se elige de tal forma que el valor 2 k sea menor (pero el valor más

Más detalles

18 Experimentos aleatorios. Sucesos y espacio muestral. Frecuencia y probabilidad de un suceso.

18 Experimentos aleatorios. Sucesos y espacio muestral. Frecuencia y probabilidad de un suceso. PRIMER CURSO DE E.S.O Criterios de calificación: 80% exámenes, 10% actividades, 10% actitud y trabajo 1 Números naturales. 2 Potencias de exponente natural. Raíces cuadradas exactas. 3 Divisibilidad. Concepto

Más detalles

Grupo 23 Semestre Segundo examen parcial

Grupo 23 Semestre Segundo examen parcial Probabilidad Grupo 23 Semestre 2015-2 Segundo examen parcial La tabla siguiente presenta 20 postulados, algunos de los cuales son verdaderos y otros son falsos. Analiza detenidamente cada postulado y elige

Más detalles

Objetivos. 1. Variable Aleatoria y Función de Probabilidad. Tema 4: Variables aleatorias discretas Denición de Variable aleatoria

Objetivos. 1. Variable Aleatoria y Función de Probabilidad. Tema 4: Variables aleatorias discretas Denición de Variable aleatoria Tema 4: Variables aleatorias discretas Objetivos Dominar el uso de las funciones asociadas a una variable aleatoria discreta para calcular probabilidades. Conocer el signicado y saber calcular la esperanza

Más detalles

Índice general. Pág. N. 1. Capítulo 1 ETAPAS DE UNA INVESTIGACIÓN. Diseño. Población. Muestra. Individuo (Observación, Caso, Sujeto) Variables

Índice general. Pág. N. 1. Capítulo 1 ETAPAS DE UNA INVESTIGACIÓN. Diseño. Población. Muestra. Individuo (Observación, Caso, Sujeto) Variables Pág. N. 1 Índice general Capítulo 1 ETAPAS DE UNA INVESTIGACIÓN 1.1 Diseño 1.2 Descriptiva 1.3 Inferencia Diseño Población Muestra Individuo (Observación, Caso, Sujeto) Variables Ejercicios de Población

Más detalles

2. Probabilidad y. variable aleatoria. Curso 2011-2012 Estadística. 2. 1 Probabilidad. Probabilidad y variable aleatoria

2. Probabilidad y. variable aleatoria. Curso 2011-2012 Estadística. 2. 1 Probabilidad. Probabilidad y variable aleatoria 2. Probabilidad y variable aleatoria Curso 2011-2012 Estadística 2. 1 Probabilidad 2 Experimento Aleatorio EL término experimento aleatorio se utiliza en la teoría de la probabilidad para referirse a un

Más detalles

Tema 3. VARIABLES ALEATORIAS.

Tema 3. VARIABLES ALEATORIAS. 3..- Introducción. Tema 3. VARIABLES ALEATORIAS. Objetivo: Encontrar modelos matemáticos para el trabajo con probabilidad de sucesos. En particular, se quiere trabajar con funciones reales de variable

Más detalles

Muestreo de variables aleatorias

Muestreo de variables aleatorias Estadística II Universidad de Salamanca Curso 2011/2012 Outline 1 Introducción 2 Distribución de la muestra 3 4 5 Distribuciones de la media y la varianza en poblaciones normales Introducción Tiene como

Más detalles

FUNDAMENTOS DE MATEMÁTICAS. ISBN: Depósito Legal: M Número de páginas: 487 Tamaño: 21 x 14,6 cm Precio: 23,93

FUNDAMENTOS DE MATEMÁTICAS. ISBN: Depósito Legal: M Número de páginas: 487 Tamaño: 21 x 14,6 cm Precio: 23,93 FUNDAMENTOS DE MATEMÁTICAS ISBN: 978-84-941559-0-1 Depósito Legal: M-20468-2013 Número de páginas: 487 Tamaño: 21 x 14,6 cm Precio: 23,93 FUNDAMENTOS DE MATEMÁTICAS INDICE MATEMÁTICAS BÁSICAS CONJUNTOS

Más detalles

8 Resolución de algunos ejemplos y ejercicios del tema 8.

8 Resolución de algunos ejemplos y ejercicios del tema 8. INTRODUCCIÓN A LA ESTADÍSTICA. GRUPO 71 LADE. 29 8 Resolución de algunos ejemplos y ejercicios del tema 8. 8.1 Ejemplos. Ejemplo 49 Supongamos que el tiempo que tarda en dar respuesta a un enfermo el personal

Más detalles

matemáticas como herramientas para solución de problemas en ingeniería. PS Probabilidad y Estadística Clave de la materia: Cuatrimestre: 4

matemáticas como herramientas para solución de problemas en ingeniería. PS Probabilidad y Estadística Clave de la materia: Cuatrimestre: 4 PS0401 - Probabilidad y Estadística DES: Ingeniería Programa(s) Educativo(s): Ingeniería de Software Tipo de materia: Obligatoria Clave de la materia: PS0401 Cuatrimestre: 4 UNIVERSIDAD AUTÓNOMA DE Área

Más detalles

Maestría en Bioinformática Probabilidad y Estadística: Clase 3

Maestría en Bioinformática Probabilidad y Estadística: Clase 3 Maestría en Bioinformática Probabilidad y Estadística: Clase 3 Gustavo Guerberoff gguerber@fing.edu.uy Facultad de Ingeniería Universidad de la República Abril de 2010 Contenidos 1 Variables aleatorias

Más detalles

La estadística descriptiva proporciona métodos gráficos y métodos numéricos para el análisis de uno o varios conjuntos de datos.

La estadística descriptiva proporciona métodos gráficos y métodos numéricos para el análisis de uno o varios conjuntos de datos. La estadística descriptiva proporciona métodos gráficos y métodos numéricos para el análisis de uno o varios conjuntos de datos. Cualitativa Cuantitativa Nominal Discreta Ordinal Continua Series Simples

Más detalles

Introducción al Tema 8. Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones.

Introducción al Tema 8. Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones. Introducción al Tema 8 1 Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones. V.A. de uso frecuente Tema 7. Modelos probabiĺısticos discretos

Más detalles

ÍNDICE CAPÍTULO 1. INTRODUCCIÓN

ÍNDICE CAPÍTULO 1. INTRODUCCIÓN ÍNDICE CAPÍTULO 1. INTRODUCCIÓN 1.1. OBJETO DE LA ESTADÍSTICA... 17 1.2. POBLACIONES... 18 1.3. VARIABLES ALEATORIAS... 19 1.3.1. Concepto... 19 1.3.2. Variables discretas y variables continuas... 20 1.3.3.

Más detalles

Tema 5. Variables Aleatorias

Tema 5. Variables Aleatorias Tema 5. Variables Aleatorias Presentación y Objetivos. En este tema se estudia el concepto básico de Variable Aleatoria así como diversas funciones fundamentales en su desarrollo. Es un concepto clave,

Más detalles

Expresión decimal. Aproximación y estimación. Notación científica. Polinomios. Divisibilidad de polinomios. Regla de Ruffini.

Expresión decimal. Aproximación y estimación. Notación científica. Polinomios. Divisibilidad de polinomios. Regla de Ruffini. Otras páginas Matemáticas 5º Matemáticas I. Bloque I: ARITMÉTICA Y ÁLGEBRA Los números reales Los números reales, concepto y características. Estructura algebraica, orden, representación en la recta real

Más detalles

Introducción al Tema 7. Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones.

Introducción al Tema 7. Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones. Introducción al Tema 7 1 Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones. V.A. de uso frecuente Tema 7. Modelos probabiĺısticos discretos

Más detalles

TEMA 1 VARIABLES ALEATORIAS MULTIDIMENSIONALES

TEMA 1 VARIABLES ALEATORIAS MULTIDIMENSIONALES TEMA 1 VARIABLES ALEATORIAS MULTIDIMENSIONALES Recordemos que el concepto de variable aleatoria surge de la necesidad de transformar el espacio muestral asociado a un experimento aleatorio en un espacio

Más detalles

Algunas Distribuciones Estadísticas Teóricas. c) Relación entre la Distribuciones de Poisson y Exponencial.

Algunas Distribuciones Estadísticas Teóricas. c) Relación entre la Distribuciones de Poisson y Exponencial. Algunas Distribuciones Estadísticas Teóricas Distribución Continuas: a) Distribución Uniforme b) Distribución de Exponencial c) Relación entre la Distribuciones de Poisson y Exponencial. d) Distribución

Más detalles

Números reales. Valor absoluto. Desigualdades. Distancias entre la recta real. Intervalos y entornos.

Números reales. Valor absoluto. Desigualdades. Distancias entre la recta real. Intervalos y entornos. MATEMÁTICAS I Contenidos. Aritmética y álgebra: Números reales. Valor absoluto. Desigualdades. Distancias entre la recta real. Intervalos y entornos. Resolución e interpretación gráfica de ecuaciones e

Más detalles

contablemente infinito.

contablemente infinito. III. Variables aleatorias Discretas y sus Distribuciones de Probabilidad 1 Variable aleatoria discreta Definición Una variable aleatoria se llama discreta si se puede contar su conjunto de resultados posibles.

Más detalles

Unidad Temática 3: Probabilidad y Variables Aleatorias

Unidad Temática 3: Probabilidad y Variables Aleatorias Unidad Temática 3: Probabilidad y Variables Aleatorias 1) Qué entiende por probabilidad? Cómo lo relaciona con los Sistemas de Comunicaciones? Probabilidad - Definiciones Experimento aleatorio: Un experimento

Más detalles

Cátedra: Estadística Técnica Facultad de Ingeniería UNCuyo. Índice D. Fernández & M. Guitart TABLA DE CONTENIDOS

Cátedra: Estadística Técnica Facultad de Ingeniería UNCuyo. Índice D. Fernández & M. Guitart TABLA DE CONTENIDOS Cátedra: TABLA DE CONTENIDOS INTRODUCCIÓN Qué es la Probabilidad? Qué es la Estadística? La evolución histórica de la Estadística Algunos conceptos imprescindibles Fuentes de datos Tipos de datos y escalas

Más detalles

Probabilidad, Variables aleatorias y Distribuciones

Probabilidad, Variables aleatorias y Distribuciones Prueba de evaluación continua Grupo D 7-XII-.- Se sabe que el 90% de los fumadores llegaron a padecer cáncer de pulmón, mientras que entre los no fumadores la proporción de los que sufrieron de cáncer

Más detalles

Distribuciones de probabilidad más usuales

Distribuciones de probabilidad más usuales Tema 5 Distribuciones de probabilidad más usuales En este tema se estudiarán algunas de las distribuciones discretas y continuas más comunes, que se pueden aplicar a una gran diversidad de problemas y

Más detalles

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Algunas Distribuciones Continuas de Probabilidad UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción El comportamiento de una variable aleatoria queda

Más detalles

Introducción a los Procesos de Poisson *

Introducción a los Procesos de Poisson * Introducción a los Procesos de Poisson * Victor M. Pérez Abreu C. Departamento de Probabilidad y Estadística, CIMAT David Reynoso Valle Licenciatura en Matemáticas, DEMAT, Universidad de Guanajuato 22

Más detalles

PROGRAMA DE ESTUDIO. - Nombre de la asignatura : ESTADISTICA I. - Pre requisitos : Matemática III

PROGRAMA DE ESTUDIO. - Nombre de la asignatura : ESTADISTICA I. - Pre requisitos : Matemática III PROGRAMA DE ESTUDIO A. Antecedentes Generales - Nombre de la asignatura : ESTADISTICA I - Código : EME 221 - Carácter de la asignatura (obligatoria / electiva) : Obligatoria - Pre requisitos : Matemática

Más detalles

MODELOS DISCRETOS DE PROBABILIDAD

MODELOS DISCRETOS DE PROBABILIDAD MODELOS DISCRETOS DE PROBABILIDAD M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Modelo Uniforme Discreto Modelo Uniforme Discreto Sea

Más detalles

1. La Distribución Normal

1. La Distribución Normal 1. La Distribución Normal Los espacios muestrales continuos y las variables aleatorias continuas se presentan siempre que se manejan cantidades que se miden en una escala continua; por ejemplo, cuando

Más detalles

Teorema del límite central

Teorema del límite central TEMA 6 DISTRIBUCIONES MUESTRALES Teorema del límite central Si se seleccionan muestras aleatorias de n observaciones de una población con media y desviación estándar, entonces, cuando n es grande, la distribución

Más detalles

Distribuciones unidimensionales continuas

Distribuciones unidimensionales continuas Estadística II Universidad de Salamanca Curso 2011/2012 Outline 1 Distribución uniforme continua 2 Estándar 3 Distribución χ 2 de Pearson 4 Distribución uniforme continua Definición Es una variable continua

Más detalles

Tema 4: Variables aleatorias multidimensionales

Tema 4: Variables aleatorias multidimensionales 1 Tema 4: Variables aleatorias multidimensionales En este tema: Distribución conjunta de probabilidad Probabilidad/densidad marginal Probabilidad/densidad condicionada Esperanza, varianza, desviación típica

Más detalles

CÁLCULO DE PROBABILIDADES

CÁLCULO DE PROBABILIDADES CÁLCULO DE PROBABILIDADES Tipo de asignatura: Troncal Anual. Créditos ECTS: 15 I.- INTRODUCCIÓN AL CÁLCULO DE PROBABILIDADES. (16 horas presenciales) Tema 1.- La naturaleza del cálculo de probabilidades.

Más detalles

TEMA 2: DISTRIBUCIONES DE PROBABILIDAD

TEMA 2: DISTRIBUCIONES DE PROBABILIDAD ESTADÍSTICA, CURSO 008 009 TEMA : DISTRIBUCIONES DE PROBABILIDAD LEYES DE PROBABILIDAD. SUCESOS ALEATORIOS Experimetos aleatorios, espacio muestral. Sucesos elemetales y compuestos. Suceso imposible Ø,

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

VARIABLES ALEATORIAS Y DISTRIBUCIONES DE PROBABILIDAD TEMA 7. Métodos Estadísticos. Tema 7: Variables aleatorias y distribuciones de probabilidad.

VARIABLES ALEATORIAS Y DISTRIBUCIONES DE PROBABILIDAD TEMA 7. Métodos Estadísticos. Tema 7: Variables aleatorias y distribuciones de probabilidad. TEMA 7 VARIABLES ALEATORIAS Y DISTRIBUCIONES DE PROBABILIDAD González J.J., Guerra N., Quintana M.P. y Santana A. 53 . Variables Aleatorias. En muchos experimentos aleatorios los resultados no son intrínsecamente

Más detalles

Tema 7: Procesos Estoca sticos

Tema 7: Procesos Estoca sticos Tema 7: Procesos Estoca sticos Teorı a de la Comunicacio n Curso 2007-2008 Contenido 1 Definición 2 Caracterización Estadística 3 Estadísticos 4 Estacionariedad 5 Ergodicidad 6 Densidad Espectral de Potencia

Más detalles

Tema 7. Variables Aleatorias Continuas

Tema 7. Variables Aleatorias Continuas Presentación y Objetivos. Tema 7. Variables Aleatorias Continuas En este tema se propone el estudio de las variables aleatorias continuas más importantes, desde la más simple incrementando el grado de

Más detalles

TEMA 3. Algunos modelos de probabilidad de tipo discreto. 3.1 Al finalizar el tema el alumno debe conocer...

TEMA 3. Algunos modelos de probabilidad de tipo discreto. 3.1 Al finalizar el tema el alumno debe conocer... TEMA 3. Algunos modelos de probabilidad de tipo discreto En este capítulo se abordan «familias» muy específicas de probabilidad, que con cierta frecuencia se nos presentan en el mundo real. Van a ser distribuciones

Más detalles

Función Característica

Función Característica Germán Bassi 21 de marzo de 211 1. Variable Aleatoria Continua Para una variable aleatoria escalar y continua X, la función característica se define como el valor esperado de e jωx, donde j es la unidad

Más detalles