PT04600 Habilidades VI. Cómo resolver problemas?

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PT04600 Habilidades VI. Cómo resolver problemas?"

Transcripción

1 PT04600 Habilidades VI Actividad. Problemas Aritméticos. Cómo resolver problemas? En este curso resolverás problemas, por ello es conveniente que intentes identificar la forma en la que te aproximas normalmente a la solución de un problema. Prefieres métodos geométricos o algebraicos? Los primeros hacen representaciones visuales de las relaciones matemáticas. Los segundos intentan reducir todo tipo de problema a otro algebraico equivalente. 2

2 El proceso de resolver problemas Para resolver un problema en matemáticas puede ayudar el siguiente esquema de trabajo:. Comprender el problema, - Qué se pide? - Qué datos hay? - Qué relaciones están implícitas? 2. Concebir un plan - Identificar si se conoce un caso similar - Encontrar relaciones que puedan ser útiles como fórmulas o teoremas. 3. Ejecutar el plan. Resolver. 4. Examinar la solución obtenida - Revisar si se trata de un resultado lógico. 3 Ejemplo. (fracciones) Cuál es la parte fraccional que corresponde a la rebanada del pastel que falta? 4 2

3 Qué se pregunta? El tamaño del pastel que falta expresado como fracción (como las que aparecen indicadas). Qué datos se tienen? La correspondencia de cada fracción de pastel en fracciones. 5 Qué relación matemática está implícita? El hecho h de que todas las rebanadas forman el pastel entero es decir la suma de las fracciones es. Cómo lo expreso matemáticamente? 2 x

4 Desarrollo matemático (en este caso es una suma de fracciones): x Expresar todo en pues es el denominador común x 77 x 77 x 3 x Sumar las fracciones Despejar x Solución: 7 Interpretar en el contexto del problema? El pedazo de pastel que falta corresponde a 3/ Esto puede comprobarse ya que

5 Ejemplo 2. (series) Cuál es el quinto término de la serie dada por: x+y, 2x, 3x-y, Qué se pregunta? El término número cinco (que se obtendrá bajo el mismo esquema que los dos elementos 2x y 3x-y y el origen de la serie dados ) Qué datos se tienen? Inicia en: x+y Segundo término 2x Tercer término: 3x-y 9 Qué relación matemática está implícita? En los términos. x+y, 2x, 3x-y, El segundo término se obtiene a partir del primero restando una y, y sumando una x. El tercer término se obtiene del segundo sumando una x y restando una y 0 5

6 Fórmula A 2 = A +x-y 2 y Desarrollo matemático (en este caso es una suma de fracciones) A =x+y A 2 =x+y+(x-y)=2x A 3= 2x+(x-y)=3x-y y Solución: A 4 =3x-y+(x-y)=4x-2y A 5 =4x-2y+(x-y)=5x-3y Porcentajes Útiles para presentar la relación numérica de una cantidad respecto a otra, que se usa mucho en la vida cotidiana. Porcentaje: valor inicial por porcentaje entre 00. Ejemplo: Cuál es el 3% de 8? (80)

7 Cómo se calcula el nuevo valor? Cuando se quiere determinar un valor afectado por un porcentaje: El valor final se determina a partir del valor inicial más el porcentaje multiplicado por el valor inicial. Si un artículo costaba $00 y se aumenta 8% el nuevo precio del artículo es 00+00(0.08)= $08 3 (porcentaje) Cuánto vale la casa? La señora Juárez está vendiendo d su casa, ella originalmente pedía $ pesos por ella. Con la intención de acelerar la venta un mes después de publicado el anuncio, lo sustituyó por otro en el que la rebajaba en un 0%. Hoy se enteró que por la creación de un nuevo acceso su propiedad aumentó de valor 0%, así que decidió incrementar el precio en 0% cuánto pide ahora por su casa? 4 7

8 (porcentaje) Qué se pregunta? El nuevo valor de la casa Qué datos se tienen? El precio original: P pesos, $ El valor del primer descuento: 0%, El valor del incremento 0% Qué relación matemática está implícita? El porcentaje 5 (porcentaje) Qué estrategia puede desarrollarse?. Aplicar el descuento al precio original: P (multiplicar por 0.)= Obtener el nuevo valor de la casa: P- 0.P pesos = 0.9P = Se calcula el valor del aumento: (0.9P)(0.)=0.09P (0.)= Se suma al valor anterior: 0.9P+0.09P=0.99P que corresponde al 99% del valor original de la casa = $

9 Créditos Autor del contenido: Lic. Francisco García Rodríguez Diseñador instruccional: Lic. Yesika Canales Diseño Gráfico: Ing. Felipe Leyva Silva 9

Porcentajes. Cajón de Ciencias. Qué es un porcentaje?

Porcentajes. Cajón de Ciencias. Qué es un porcentaje? Porcentajes Qué es un porcentaje? Para empezar, qué me están preguntando cuando me piden que calcule el tanto por ciento de un número? "Porcentaje" quiere decir "de cada 100, cojo tanto". Por ejemplo,

Más detalles

ARITMÉTICA MERCANTIL

ARITMÉTICA MERCANTIL ARITMÉTICA MERCANTIL Página 49 REFLEXIONA Y RESUELVE Aumentos porcentuales En cuánto se transforman 50 si aumentan el 1%? 50 1,1 = 80 Calcula en cuánto se transforma un capital C si sufre un aumento del:

Más detalles

DETERMINACIÓN DE GRÁFICOS. 70E09.- Cuál es la gráfica que representa correctamente los valores numéricos de la ecuación y = x 2 + 12x?

DETERMINACIÓN DE GRÁFICOS. 70E09.- Cuál es la gráfica que representa correctamente los valores numéricos de la ecuación y = x 2 + 12x? DETERMINACIÓN DE GRÁFICOS 67E09.- Cuál gráfica corresponde a la siguiente ecuación? y = 2x 2 1 Si tomamos x = 0, y = 2(0) 2 1 = 1 70E09.- Cuál es la gráfica que representa correctamente los valores numéricos

Más detalles

Polinomios. Objetivos. Antes de empezar. 1.Expresiones algebraicas pág. 64 De expresiones a ecuaciones Valor numérico Expresión en coeficientes

Polinomios. Objetivos. Antes de empezar. 1.Expresiones algebraicas pág. 64 De expresiones a ecuaciones Valor numérico Expresión en coeficientes 4 Polinomios Objetivos En esta quincena aprenderás: A trabajar con expresiones literales para la obtención de valores concretos en fórmulas y ecuaciones en diferentes contextos. La regla de Ruffini. El

Más detalles

1. Números Reales 1.1 Clasificación y propiedades

1. Números Reales 1.1 Clasificación y propiedades 1. Números Reales 1.1 Clasificación y propiedades 1.1.1 Definición Número real, cualquier número racional o irracional. Los números reales pueden expresarse en forma decimal mediante un número entero,

Más detalles

Unidad de Planeación, Evaluación y Control Educativo

Unidad de Planeación, Evaluación y Control Educativo Nivel de Dominio I II III IV Descriptor Los alumnos que se encuentran en este nivel de logro demuestran deficiencias en el desarrollo de los conocimientos y habilidades relacionados con las competencias

Más detalles

Ecuaciones de primer grado con dos incógnitas

Ecuaciones de primer grado con dos incógnitas Ecuaciones de primer grado con dos incógnitas Si decimos: "las edades de mis padres suman 120 años", podemos expresar esta frase algebraicamente de la siguiente forma: Entonces, Denominamos x a la edad

Más detalles

MATEMÁTICAS ESO EVALUACIÓN: CRITERIOS E INSTRUMENTOS CURSO 2014-2015 Colegio B. V. María (Irlandesas) Castilleja de la Cuesta (Sevilla) Página 1 de 7

MATEMÁTICAS ESO EVALUACIÓN: CRITERIOS E INSTRUMENTOS CURSO 2014-2015 Colegio B. V. María (Irlandesas) Castilleja de la Cuesta (Sevilla) Página 1 de 7 Página 1 de 7 1 CRITERIOS DE EVALUACIÓN 1.1 SECUENCIA POR CURSOS DE LOS CRITERIOS DE EVALUACION PRIMER CURSO 1. Utilizar números naturales y enteros y fracciones y decimales sencillos, sus operaciones

Más detalles

Sistemas de Numeración

Sistemas de Numeración UNIDAD Sistemas de Numeración Introducción a la unidad Para la mayoría de nosotros el sistema numérico base 0 aparentemente es algo natural, sin embargo si se establecen reglas de construcción basadas

Más detalles

PARA EMPEZAR. Arquímedes nació en el año 287 a. C. en Siracusa (Sicilia). Cuántos años han transcurrido desde su nacimiento?

PARA EMPEZAR. Arquímedes nació en el año 287 a. C. en Siracusa (Sicilia). Cuántos años han transcurrido desde su nacimiento? NÚMEROS RACIONALES PARA EMPEZAR.. Arquímedes nació en el año a. C. en Siracusa (Sicilia). Cuántos años han transcurrido desde su nacimiento? x Han transcurrido años, siendo x el número de día del año actual.

Más detalles

VII. Estructuras Algebraicas

VII. Estructuras Algebraicas VII. Estructuras Algebraicas Objetivo Se analizarán las operaciones binarias y sus propiedades dentro de una estructura algebraica. Definición de operación binaria Operaciones como la suma, resta, multiplicación

Más detalles

TERCERA RELACIÓN LEYES FINANCIERAS DE DESCUENTO COMPUESTO

TERCERA RELACIÓN LEYES FINANCIERAS DE DESCUENTO COMPUESTO TERCERA RELACIÓN LEYES FINANCIERAS DE DESCUENTO COMPUESTO 1.- Tenemos que pagar una deuda de 1.500 dentro de 3 años. Si se adelanta su pago al momento presente, qué cantidad tendremos que pagar sabiendo

Más detalles

Polinomios y fracciones algebraicas

Polinomios y fracciones algebraicas 0 Polinomios y fracciones algebraicas En esta Unidad aprenderás a: d Trabajar con epresiones polinómicas. d Factorizar polinomios. d Operar con fracciones algebraicas. d Descomponer una fracción algebraica

Más detalles

a) x 1 = 2 b) x + x 6 = 2 + = + = c) x 9x + 20 = 2 d) x 6x 7 = a) x = 1 y x = 1 b) x = 3 y x = 2 c) x = 4 y x = 5 d) x = 1 y x = 7

a) x 1 = 2 b) x + x 6 = 2 + = + = c) x 9x + 20 = 2 d) x 6x 7 = a) x = 1 y x = 1 b) x = 3 y x = 2 c) x = 4 y x = 5 d) x = 1 y x = 7 1 Resuelve las siguientes ecuaciones: a) x 1 = x + x 6 = c) x 9x + = d) x 6x 7 = = a) x = 1 y x = 1 x = 3 y x = c) x = 4 y x = 5 d) x = 1 y x = 7 Resuelve las siguientes ecuaciones de primer grado: a)

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES SISTEMAS DE ECUACIONES LINEALES INTRODUCCIÓN En el presente documento se explican detalladamente dos importantes temas: 1. Descomposición LU. 2. Método de Gauss-Seidel. Se trata de dos importantes herramientas

Más detalles

UNIVERSIDAD DEL MAGDALENA FACULTAD DE ESTUDIOS GENERALES RAZONAMIENTO Y REPRESENTACIÓN MATEMÁTICA GUIA Nº 3 (II parte) 2013 I

UNIVERSIDAD DEL MAGDALENA FACULTAD DE ESTUDIOS GENERALES RAZONAMIENTO Y REPRESENTACIÓN MATEMÁTICA GUIA Nº 3 (II parte) 2013 I UNIVERSIDAD DEL MAGDALENA FACULTAD DE ESTUDIOS GENERALES RAZONAMIENTO Y REPRESENTACIÓN MATEMÁTICA GUIA Nº 3 (II parte) 2013 I INTERES SIMPLE Y COMPUESTO Objetivos: Aplicar la proporcionalidad en la resolución

Más detalles

SISTEMAS DE NUMERACIÓN (11001, 011) 1.2 1.2 0.2 0.2 1.2 0.2 1.2 1.2 = + + + + + + + = 1 1 4 8 (32,12)

SISTEMAS DE NUMERACIÓN (11001, 011) 1.2 1.2 0.2 0.2 1.2 0.2 1.2 1.2 = + + + + + + + = 1 1 4 8 (32,12) SISTEMAS DE NUMERACIÓN 1. Expresa en base decimal los siguientes números: (10011) ; ( 11001,011 ) 4 (10011) = 1. + 0. + 0. + 1. + 1. = 16 + + 1 = 19 (11001, 011) 1. 1. 0. 0. 1. 0. 1. 1. 4 1 = + + + + +

Más detalles

El rincón de los problemas. Nuevos horizontes matemáticos mediante variaciones de un problema

El rincón de los problemas. Nuevos horizontes matemáticos mediante variaciones de un problema www.fisem.org/web/union El rincón de los problemas ISSN: 1815-0640 Número 35. Septiembre de 2013 páginas 135-143 Pontificia Universidad Católica del Perú umalasp@pucp.edu.pe Nuevos horizontes matemáticos

Más detalles

UNIDAD DE APRENDIZAJE IV

UNIDAD DE APRENDIZAJE IV UNIDAD DE APRENDIZAJE IV Saberes procedimentales 1. Interpreta y utiliza correctamente el lenguaje simbólico ara el manejo de expresiones algebraicas. 2. Identifica operaciones básicas con expresiones

Más detalles

3ª Parte: Funciones y sus gráficas

3ª Parte: Funciones y sus gráficas 3ª Parte: Funciones y sus gráficas Relaciones funcionales. Estudio gráfico y algebraico de funciones 1. Interpretación de gráficas 1. Un médico dispone de 1hora diaria para consulta. El tiempo que podría,

Más detalles

3 POLINOMIOS Y FRACCIONES ALGEBRAICAS

3 POLINOMIOS Y FRACCIONES ALGEBRAICAS POLINOMIOS Y FRACCIONES ALGEBRAICAS PARA EMPEZAR Un cuadrado tiene 5 centímetros de lado. Escribe la epresión algebraica que da el área cuando el lado aumenta centímetros. A ( 5) Señala cuáles de las siguientes

Más detalles

5 Expresiones algebraicas

5 Expresiones algebraicas 8948 _ 04-008.qxd /9/07 :0 Página 9 Expresiones algebraicas INTRODUCCIÓN RESUMEN DE LA UNIDAD El lenguaje algebraico sirve para expresar situaciones relacionadas con la vida cotidiana, utilizando letras

Más detalles

Equivalencia financiera

Equivalencia financiera Equivalencia financiera 04 En esta Unidad aprenderás a: 1. Reconocer la equivalencia de capitales en distintas operaciones financieras a interés simple. 2. Calcular a interés simple los vencimientos común

Más detalles

INSTITUTO DE EDUCACIÓN SUPERIOR TECNOLÓGICO IBEROTEC SEMESTRE ACADÉMICO: 2014-II SÍLABO UNIDAD DIDÁCTICA : MATEMÁTICAS BÁSICAS PARA TELECOMUNICACONES

INSTITUTO DE EDUCACIÓN SUPERIOR TECNOLÓGICO IBEROTEC SEMESTRE ACADÉMICO: 2014-II SÍLABO UNIDAD DIDÁCTICA : MATEMÁTICAS BÁSICAS PARA TELECOMUNICACONES INSTITUTO DE EDUCACIÓN SUPERIOR TECNOLÓGICO IBEROTEC SEMESTRE ACADÉMICO: 2014-II 1. DATOS GENERALES SÍLABO UNIDAD DIDÁCTICA : MATEMÁTICAS BÁSICAS PARA TELECOMUNICACONES MÓDULO : REDES MICROINFORMÁTICAS

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales Departamento de Matemáticas, CCIR/ITESM 4 de enero de 2 Índice 3.. Objetivos................................................ 3.2. Motivación...............................................

Más detalles

guía para LOS PADRES APOYANDO A SU HIJO EN LA PREPARATORIA (HIGH SCHOOL) MATEMÁTICAS

guía para LOS PADRES APOYANDO A SU HIJO EN LA PREPARATORIA (HIGH SCHOOL) MATEMÁTICAS guía para LOS PADRES APOYANDO A SU HIJO EN LA PREPARATORIA (HIGH SCHOOL) MATEMÁTICAS HS Las escuelas de los Estados Unidos de América están trabajando para brindar una enseñanza de mayor calidad nunca

Más detalles

PROCEDIMIENTOS DE EVALUACIÓN Y CRITERIOS DE CALIFICACION.

PROCEDIMIENTOS DE EVALUACIÓN Y CRITERIOS DE CALIFICACION. PROCEDIMIENTOS DE EVALUACIÓN Y CRITERIOS DE CALIFICACION. A) EN LA ESO En 1º de ESO se comenzará la evaluación realizando a principio de curso una prueba inicial para ver el nivel de conocimientos que

Más detalles

Porcentaje. Problemas sobre porcentaje. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.mx

Porcentaje. Problemas sobre porcentaje. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.mx Porcentaje Problemas sobre porcentaje www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx MathCon c 2007-2011 Contenido 1. Porcentajes 2 2. Porcentajes simplificado 4 3. Porcentajes especiales 5

Más detalles

Propiedades de les desigualdades.

Propiedades de les desigualdades. Desigualdades Inecuaciones Diremos que a < b a es menor que b si b a es un número positivo. Gráficamente, a queda a l esquerra de b. Diremos que a > b a mayor que b si a b es un número positivo. Gráficamente,

Más detalles

CONCENTRACIÓN DE UN FÁRMACO

CONCENTRACIÓN DE UN FÁRMACO CONCENTRACIÓN DE UN FÁRMACO A una mujer ingresada en un hospital le ponen una inyección de penicilina. Su cuerpo va descomponiendo gradualmente la penicilina de modo que, una hora después de la inyección,

Más detalles

INSTITUCIÓN EDUCATIVA HÉCTOR ABAD GÓMEZ

INSTITUCIÓN EDUCATIVA HÉCTOR ABAD GÓMEZ INSTITUCIÓN EDUCATIVA HÉCTOR ABAD GÓMEZ CONTENIDOS DEL AREA PERIODO: 01 MATEMATICAS Y ESTADISTICA DOCENTE: ADRIANA ZULAY VILLA URIBE GRADO 8 MATEMÁTICAS Objetivos: Explicar y justificar la importancia

Más detalles

1. Ecuaciones lineales 1.a. Definición. Solución.

1. Ecuaciones lineales 1.a. Definición. Solución. Sistemas de ecuaciones Contenidos 1. Ecuaciones lineales Definición. Solución 2. Sistemas de ecuaciones lineales Definición. Solución Número de soluciones 3. Métodos de resolución Reducción Sustitución

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales Índice general 1. Sistemas de ecuaciones lineales 2 2. Método de sustitución 5 3. Método de igualación 9 4. Método de eliminación 13 5. Conclusión 16 1 Sistemas de ecuaciones

Más detalles

MANEJO DE EXPRESIONES ALGEBRAICAS. Al finalizar el capítulo el alumno manejará expresiones algebraicas para la solución de problemas

MANEJO DE EXPRESIONES ALGEBRAICAS. Al finalizar el capítulo el alumno manejará expresiones algebraicas para la solución de problemas MANEJO DE EXPRESIONES ALGEBRAICAS Al finalizar el capítulo el alumno manejará expresiones algebraicas para la solución de problemas 34 Reforma académica 003 MAPA CURRICULAR Matemáticas I Aritmética y Álgebra

Más detalles

coordenadas (x,y) en el plano. Producto de matrices. Sean las dos matrices A = (a ij ) m n B = (b ij ) p q

coordenadas (x,y) en el plano. Producto de matrices. Sean las dos matrices A = (a ij ) m n B = (b ij ) p q APLICACIONES DE LAS MATRICES El presente estudio se originó como respuesta a la ayuda que me pidió mi nieto mayor, de 7 años, mientras hacía su curso en un colegio de Brisbane, Australia, a la fecha de

Más detalles

ARITMÉTICA MERCANTIL

ARITMÉTICA MERCANTIL UNIDAD 2 ARITMÉTICA MERCANTIL Página 52 1. Vamos a calcular en cuánto se transforma una cantidad C al sufrir un aumento del 12%: 12 C + 100 C = C + 0,12 C = 1,12 C Conclusión: Si C aumenta el 12%, se transforma

Más detalles

Funciones lineales. Objetivos. Antes de empezar. 1.Función de proporcionalidad directa pág. 170 Definición Representación gráfica

Funciones lineales. Objetivos. Antes de empezar. 1.Función de proporcionalidad directa pág. 170 Definición Representación gráfica 10 Funciones lineales Objetivos En esta quincena aprenderás a: Identificar problemas en los que intervienen magnitudes directamente proporcionales. Calcular la función que relaciona a esas magnitudes a

Más detalles

Introducción al Cálculo Simbólico a través de Maple

Introducción al Cálculo Simbólico a través de Maple 1 inn-edu.com ricardo.villafana@gmail.com Introducción al Cálculo Simbólico a través de Maple A manera de introducción, podemos decir que los lenguajes computacionales de cálculo simbólico son aquellos

Más detalles

6 Ecuaciones de 1. er y 2. o grado

6 Ecuaciones de 1. er y 2. o grado 8985 _ 009-08.qd /9/07 5:7 Página 09 Ecuaciones de. er y. o grado INTRODUCCIÓN La unidad comienza diferenciando entre ecuaciones e identidades, para pasar luego a la eposición de los conceptos asociados

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. Página 9 PRACTICA Sistemas lineales Comprueba si el par (, ) es solución de alguno de los siguientes sistemas: x + y 5 a) x y x y 5 x + y 8 El par (, ) es solución de un sistema si al sustituir x

Más detalles

I.E.S.MEDITERRÁNEO CURSO 2015 2016 DPTO DE MATEMÁTICAS PROGRAMA DE RECUPERACIÓN DE LOS APRENDIZAJES NO ADQUIRIDOS EN MATEMÁTICAS DE 3º DE E.S.O.

I.E.S.MEDITERRÁNEO CURSO 2015 2016 DPTO DE MATEMÁTICAS PROGRAMA DE RECUPERACIÓN DE LOS APRENDIZAJES NO ADQUIRIDOS EN MATEMÁTICAS DE 3º DE E.S.O. PROGRAMA DE RECUPERACIÓN DE LOS APRENDIZAJES NO ADQUIRIDOS EN MATEMÁTICAS DE 3º DE E.S.O. Este programa está destinado a los alumnos que han promocionado a cursos superiores sin haber superado esta materia.

Más detalles

Tema 3: Producto escalar

Tema 3: Producto escalar Tema 3: Producto escalar 1 Definición de producto escalar Un producto escalar en un R-espacio vectorial V es una operación en la que se operan vectores y el resultado es un número real, y que verifica

Más detalles

1. Lección 5 - Comparación y Sustitución de capitales

1. Lección 5 - Comparación y Sustitución de capitales Apuntes: Matemáticas Financieras 1. Lección 5 - Comparación y Sustitución de capitales 1.1. Comparación de Capitales Se dice que dos capitales son equivalentes cuando tienen el mismo valor en la fecha

Más detalles

Gestión Financiera 2º AF 1

Gestión Financiera 2º AF 1 LEY FINANCIERA DE INTERÉS SIMPLE Gestión Financiera 2º AF 1 1.1 Concepto Operación financiera cuyo objeto es la sustitución de un capital presente por otro equivalente con vencimiento posterior, mediante

Más detalles

De dos incógnitas. Por ejemplo, x + y 3 = 4. De tres incógnitas. Por ejemplo, x + y + 2z = 4. Y así sucesivamente.

De dos incógnitas. Por ejemplo, x + y 3 = 4. De tres incógnitas. Por ejemplo, x + y + 2z = 4. Y así sucesivamente. 3 Ecuaciones 17 3 Ecuaciones Una ecuación es una igualdad en la que aparecen ligados, mediante operaciones algebraicas, números y letras Las letras que aparecen en una ecuación se llaman incógnitas Existen

Más detalles

Matemáticas Financieras Avanzadas

Matemáticas Financieras Avanzadas Matemáticas Financieras Avanzadas 1 Sesión No. 1 Nombre: Interés simple Objetivo Al término de la sesión el estudiante solucionará problemas aplicando los conceptos de interés simple, a través de la resolución

Más detalles

Regla Comercial y Descuento compuesto.

Regla Comercial y Descuento compuesto. Regla Comercial y Descuento compuesto. Regla comercial: consiste en calcular el monto que se acumula durante los periodos de capitalización completos, utilizando la fórmula de interés compuesto, para luego

Más detalles

guía para LOS PADRES APOYANDO A SU HIJO EN QUINTO GRADO MATEMÁTICAS

guía para LOS PADRES APOYANDO A SU HIJO EN QUINTO GRADO MATEMÁTICAS TM guía para LOS PADRES APOYANDO A SU HIJO EN QUINTO GRADO MATEMÁTICAS 5 Las escuelas de los Estados Unidos de América están trabajando para brindar una enseñanza de mayor calidad nunca antes vista. La

Más detalles

HIgualdades y ecuacionesh. HElementos de una ecuaciónh. HEcuaciones equivalentes. HSin denominadoresh. HCon denominadoresh

HIgualdades y ecuacionesh. HElementos de una ecuaciónh. HEcuaciones equivalentes. HSin denominadoresh. HCon denominadoresh 6 Ecuaciones Objetivos En esta quincena aprenderás a: Reconocer situaciones que pueden resolverse con ecuaciones Traducir al lenguaje matemático enunciados del lenguaje ordinario. Conocer los elementos

Más detalles

Tema 3 : Algebra de Boole

Tema 3 : Algebra de Boole Tema 3 : Algebra de Boole Objetivo: Introducción al Algebra de Boole 1 INTRODUCCIÓN George Boole creó el álgebra que lleva su nombre en el primer cuarto del siglo XIX. Pretendía explicar las leyes fundamentales

Más detalles

Polinomios y Ecuaciones

Polinomios y Ecuaciones Ejercicios de Cálculo 0 Prof. María D. Ferrer G. Polinomios y Ecuaciones.. Polinomios: Un polinomio o función polinómica es una epresión de la forma: n n n P a a a a a a = n + n + n + + + + 0 () Los números

Más detalles

El primero se calcula utilizando la fórmula del interés simple M = C(1 + it)

El primero se calcula utilizando la fórmula del interés simple M = C(1 + it) Tasa de descuento: Se aplica para determinar el valor actual de un pago futuro. La tasa de descuento se diferencia de la tasa de interés, La tasa de interés se aplica a una cantidad original para obtener

Más detalles

1. Lección 4 - Leyes de Descuento

1. Lección 4 - Leyes de Descuento 1. Lección 4 - Leyes de Descuento Apuntes: Matemáticas Financieras 1.1. El descuento comercial La expresión matemática del descuento comercial es: A 1 (t) = 1 d t para d > 0 Por lo que una u.m. en el instante

Más detalles

Curso de Matemática Básica. Acción Emprendedora USA

Curso de Matemática Básica. Acción Emprendedora USA Curso de Matemática Básica Acción Emprendedora USA Curso de preparación para el Emprendedor ACCION EMPRENDEDORA - USA BIENVENIDOS al curso de Matemáticas básicas para el micro emprendedor de Acción Emprendedora

Más detalles

Operaciones Financieras

Operaciones Financieras Operaciones Financieras Módulo Instruccional Programático Barquisimeto, 2014 UNIDAD I - DESCUENTO SIMPLE OBJETIVO GENERAL Aplicar el Descuento Simple en las diferentes actividades comerciales desarrollando

Más detalles

Dependencia lineal de vectores y sus aplicaciones a la resolución de sistemas de ecuaciones lineales y de problemas geométricos.

Dependencia lineal de vectores y sus aplicaciones a la resolución de sistemas de ecuaciones lineales y de problemas geométricos. Dependencia lineal de vectores y sus aplicaciones a la resolución de sistemas de ecuaciones lineales y de problemas geométricos. Prof. D. Miguel Ángel García Hoyo. Septiembre de 2011 Dependencia lineal

Más detalles

ÍNDICE. Prólogo... 4. Tema 1. BIOMETRÍA... 5. Tema 2. VALORACIÓN FINANCIERA... 15. Tema 3. RENTAS FINANCIERAS... 22. Tema 4. RENTAS ACTUARIALES...

ÍNDICE. Prólogo... 4. Tema 1. BIOMETRÍA... 5. Tema 2. VALORACIÓN FINANCIERA... 15. Tema 3. RENTAS FINANCIERAS... 22. Tema 4. RENTAS ACTUARIALES... ÍNDICE Prólogo......................................................................................................... 4 Tema 1. BIOMETRÍA..........................................................................................

Más detalles

Gestión en Compraventas

Gestión en Compraventas Guía del Alumno Gestión en Compraventas Matemática FORTALECIMIENTO DE LA FORMACIÓN GENERAL COMO BASE DE SUSTENTACIÓN DEL ENFOQUE DE COMPETENCIAS LABORALES DE LA FORMACIÓN DIFERENCIADA DE LA EMTP Manual

Más detalles

ESTRATEGIAS DE CÁLCULO MENTAL

ESTRATEGIAS DE CÁLCULO MENTAL ESTRATEGIAS DE CÁLCULO MENTAL El cálculo mental consiste en realizar cálculos matemáticos utilizando sólo el cerebro sin ayudas de otros instrumentos como calculadoras o incluso lápiz y papel. Las operaciones

Más detalles

1º) Siempre que se pueda, hay que sacar factor común: :a b ± a c ± a d ± = a (b ± c ± d ± ):

1º) Siempre que se pueda, hay que sacar factor común: :a b ± a c ± a d ± = a (b ± c ± d ± ): Pág. 1 de 7 FAC T O R I Z AC I Ó N D E P O L I N O M I O S Factorizar (o descomponer en factores) un polinomio consiste en sustituirlo por un producto indicado de otros de menor grado tales que si se multiplicasen

Más detalles

1. Pasos en la resolución de ecuaciones de primer grado

1. Pasos en la resolución de ecuaciones de primer grado RESOLUCIÓN DE ECUACIONES DE PRIMER GRADO 1. Pasos en la resolución de ecuaciones de primer grado En este curso vamos resolver ecuaciones de primer grado un poco más complicadas que las del curso pasado.

Más detalles

RESUMEN INFORMATIVO PROGRAMACIÓN DIDÁCTICA CURSO 2014 /2015 DEPARTAMENTO: MATEMÁTICAS MATERIA: RECUPERACIÓN DE MATEMÁTICAS CURSO:

RESUMEN INFORMATIVO PROGRAMACIÓN DIDÁCTICA CURSO 2014 /2015 DEPARTAMENTO: MATEMÁTICAS MATERIA: RECUPERACIÓN DE MATEMÁTICAS CURSO: RESUMEN INFORMATIVO PROGRAMACIÓN DIDÁCTICA CURSO 2014 /2015 DEPARTAMENTO: MATEMÁTICAS MATERIA: RECUPERACIÓN DE MATEMÁTICAS CURSO: 2º ESO OBJETIVOS: Resolver problemas con enunciados relacionados con la

Más detalles

POLINOMIOS Y FRACCIONES ALGEBRAICAS

POLINOMIOS Y FRACCIONES ALGEBRAICAS POLINOMIOS Y FRACCIONES ALGEBRAICAS Página 66 PARA EMPEZAR, REFLEXIONA Y RESUELVE Múltiplos y divisores. Haz la división: 4 + 5 0 + 5 A la vista del resultado, di dos divisores del polinomio 4 + 5 0. (

Más detalles

Unidad IX. Razones y proporciones

Unidad IX. Razones y proporciones Razones y proporciones Unidad IX En esta unidad usted aprenderá a: Establecer la relación que existe entre dos cantidades para calcular los ingredientes en comida, postres, bebidas o actividades del hogar.

Más detalles

INTERVALOS, DESIGUALDADES Y VALOR ABSOLUTO

INTERVALOS, DESIGUALDADES Y VALOR ABSOLUTO INTERVALOS, DESIGUALDADES Y VALOR ABSOLUTO INTERVALOS Los Intervalos son una herramienta matemática que se utiliza para delimitar un conjunto determinado de números reales. Por ejemplo el intervalo [-5,3]

Más detalles

Grado en Magisterio de Educación Primaria Universidad de Alcalá Curso Académico 2011/2012 2º Curso 1º Cuatrimestre

Grado en Magisterio de Educación Primaria Universidad de Alcalá Curso Académico 2011/2012 2º Curso 1º Cuatrimestre MATEMÁTICAS I Grado en Magisterio de Educación Primaria Universidad de Alcalá Curso Académico 2011/2012 2º Curso 1º Cuatrimestre GUÍA DOCENTE Nombre de la asignatura: MATEMÁTICAS I Código: 4200*** GRADO

Más detalles

Estrategias Didácticas para la Comprensión del Concepto de Variable en la Resolución de Problemas

Estrategias Didácticas para la Comprensión del Concepto de Variable en la Resolución de Problemas Estrategias Didácticas para la Comprensión del Concepto de Variable en la Resolución de Problemas Presenta: Luz María Rojas Herrera Asesores Dra. Estela de Lourdes Juárez Ruiz Mtro. Jorge Lombardero Chartuni

Más detalles

Seminario Universitario Material para estudiantes. Física. Unidad 2. Vectores en el plano. Lic. Fabiana Prodanoff

Seminario Universitario Material para estudiantes. Física. Unidad 2. Vectores en el plano. Lic. Fabiana Prodanoff Seminario Universitario Material para estudiantes Física Unidad 2. Vectores en el plano Lic. Fabiana Prodanoff CONTENIDOS Vectores en el plano. Operaciones con vectores. Suma y producto por un número escalar.

Más detalles

PROGRAMACIÓN LINEAL. 8.1. Introducción. 8.2. Inecuaciones lineales con 2 variables

PROGRAMACIÓN LINEAL. 8.1. Introducción. 8.2. Inecuaciones lineales con 2 variables Capítulo 8 PROGRAMACIÓN LINEAL 8.1. Introducción La programación lineal es una técnica matemática relativamente reciente (siglo XX), que consiste en una serie de métodos y procedimientos que permiten resolver

Más detalles

CÁLCULO PARA LA INGENIERÍA 1

CÁLCULO PARA LA INGENIERÍA 1 CÁLCULO PARA LA INGENIERÍA 1 PROBLEMAS RESUELTOS Tema 3 Derivación de funciones de varias variables 3.1 Derivadas y diferenciales de funciones de varias variables! 1. Derivadas parciales de primer orden.!

Más detalles

Complemento Microsoft Mathematics

Complemento Microsoft Mathematics Complemento Microsoft Mathematics El complemento Microsoft Mathematics es un conjunto de herramientas que se pueden usar para realizar operaciones matemáticas y trazado de gráficas con expresiones o ecuaciones

Más detalles

MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN

MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN Suponga que le pedimos a un grupo de estudiantes de la asignatura de estadística que registren su peso en kilogramos. Con los datos del peso de los estudiantes

Más detalles

MATEMÁTICAS A 4º ESO IES LOS CARDONES 2014-2015 PLAN DE RECUPERACIÓN. Contenidos Mínimos. I. Estrategias, habilidades, destrezas y actitudes generales

MATEMÁTICAS A 4º ESO IES LOS CARDONES 2014-2015 PLAN DE RECUPERACIÓN. Contenidos Mínimos. I. Estrategias, habilidades, destrezas y actitudes generales MATEMÁTICAS A 4º ESO IES LOS CARDONES 2014-2015 PLAN DE RECUPERACIÓN Contenidos Mínimos I. Estrategias, habilidades, destrezas y actitudes generales II. Números: Resolución de problemas utilizando toda

Más detalles

Ejercicios resueltos de porcentajes

Ejercicios resueltos de porcentajes Ejercicios resueltos de porcentajes 1) Calcula los siguientes porcentajes: a) 30% de 600 b) 45% de 81 c) 50% de 340 d) 25% de 48 2) Calcula el término que falta en las siguientes expresiones: a) 40% de

Más detalles

ASOCIATIVA: La suma no varia si se asocian en diferentes formas los sumandos. NEUTRO: El cero ( 0 ) es le elemento neutro aditivo.

ASOCIATIVA: La suma no varia si se asocian en diferentes formas los sumandos. NEUTRO: El cero ( 0 ) es le elemento neutro aditivo. ARITMETICA I. NÚMEROS NATURALES Ν Es el conjunto de los números positivos desde el cero hasta el infinito ( ). Ejemplo: Ν{0,1,,3,4,, } I.1 PROPIEDADES DEL CONJUNTO DE LOS NÚMEROS NATURALES. Dentro de las

Más detalles

CONTENIDOS MÍNIMOS BLOQUE III: ÁLGEBRA

CONTENIDOS MÍNIMOS BLOQUE III: ÁLGEBRA CONTENIDOS MÍNIMOS BLOQUE III: ÁLGEBRA Interpolación de términos en una sucesión. Cálculo del término general de sucesiones muy sencillas. Distinción entre progresiones aritméticas y geométricas. Interpolación

Más detalles

MATEMÁTICAS EMPRESARIALES II:

MATEMÁTICAS EMPRESARIALES II: MATEMÁTICAS EMPRESARIALES II: FUNCIÓN REAL DE VARIAS VARIABLES ÓPTIMOS DE UNA FUNCIÓN ESCALAR MATERIAL DIDÁCTICO DE SOPORTE González-Vila Puchades, Laura Ortí Celma, Francesc J. Sáez Madrid, José B. Departament

Más detalles

Polinomios. Jesús García de Jalón de la Fuente. IES Ramiro de Maeztu Madrid

Polinomios. Jesús García de Jalón de la Fuente. IES Ramiro de Maeztu Madrid Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Definición Un polinomio es una operación indicada de sumas y productos entre números y una variable x (indeterminada): P (x) = a n x n + a

Más detalles

ETS Caminos Santander. Curso 2012. Ejercicios de introducción a la programación.

ETS Caminos Santander. Curso 2012. Ejercicios de introducción a la programación. Ejercicio 1. Saludo. El programa preguntará el nombre al usuario y a continuación le saludará de la siguiente forma "Hola, NOMBRE" donde NOMBRE es el nombre del usuario. Ejercicio 2. Suma. El programa

Más detalles

Segundo de Bachillerato Geometría en el espacio

Segundo de Bachillerato Geometría en el espacio Segundo de Bachillerato Geometría en el espacio Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid 204-205. Coordenadas de un vector En el conjunto de los vectores libres del espacio el concepto

Más detalles

Unidad 2. Descuento simple

Unidad 2. Descuento simple Unidad 2. Descuento simple 0. ÍNDICE. 1. EL DESCUENTO. 2. CONCEPTO Y CLASES DE DESCUENTO SIMPLE. 3. EL DESCUENTO COMERCIAL O BANCARIO. 3.1. Concepto. 3.2. Operaciones de descuento comercial. 4. EL DESCUENTO

Más detalles

PRUEBA ESPECÍFICA PRUEBA 2015

PRUEBA ESPECÍFICA PRUEBA 2015 PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES DE 5 AÑOS PRUEBA ESPECÍFICA PRUEBA 015 PRUEBA SOLUCIONARIO HAUTAPROBAK 5 URTETIK 015eko MAIATZA DE 5 AÑOS MAYO 015 Aclaraciones previas Tiempo de duración de la

Más detalles

ESTUDIAR MATEMATICA EN CASA

ESTUDIAR MATEMATICA EN CASA ESTUDIAR MATEMATICA EN CASA Sugerencias para docentes Sea cual fuere el enfoque de enseñanza de la matemática adoptado, todos los docentes acuerdan en la importancia del tiempo extraescolar dedicado al

Más detalles

Fíjate cómo se expresan los siguientes porcentajes y completa la tabla calculando mentalmente:

Fíjate cómo se expresan los siguientes porcentajes y completa la tabla calculando mentalmente: 2 Matemática financiera 1. Porcentajes Piensa y calcula Fíjate cómo se expresan los siguientes porcentajes y completa la tabla calculando mentalmente: Porcentaje 10% = 10/100 = 1/10 20% = 20/100 = 1/5

Más detalles

PROBLEMAS DE BALANCES DE MATERIA

PROBLEMAS DE BALANCES DE MATERIA PROBLEMAS DE BALANCES DE MATERIA José Abril Requena 2013 2013 José Abril Requena INDICE Un poco de teoría... 3 Problemas resueltos... 8 Problema 1... 8 Problema 2... 8 Problema 3... 9 Problema 4... 10

Más detalles

PRESENTADO POR: OC. JAVIER GÓMEZ RAMÍREZ OC. DANIEL LOZANO MEDRANO LC. JOSE FRANCISCO GÓMEZ RAMÍREZ

PRESENTADO POR: OC. JAVIER GÓMEZ RAMÍREZ OC. DANIEL LOZANO MEDRANO LC. JOSE FRANCISCO GÓMEZ RAMÍREZ SOFTWARE EDUCATIVO PARA LA RESOLUCIÓN Y ANÁLISIS DE ECUACIONES CUADRÁTICAS, UNA PROPUESTA DIDÁCTICA PRESENTADO POR: OC. JAVIER GÓMEZ RAMÍREZ OC. DANIEL LOZANO MEDRANO LC. JOSE FRANCISCO GÓMEZ RAMÍREZ TUXPAN,

Más detalles

Notas de Diseño Digital

Notas de Diseño Digital Notas de Diseño Digital Introducción El objetivo de estas notas es el de agilizar las clases, incluyendo definiciones, gráficos, tablas y otros elementos que tardan en ser escritos en el pizarrón, permitiendo

Más detalles

Unidad 2. Interés simple. Objetivos. Al finalizar la unidad, el alumno:

Unidad 2. Interés simple. Objetivos. Al finalizar la unidad, el alumno: Unidad 2 Interés simple Objetivos Al finalizar la unidad, el alumno: Calculará el interés simple producido por un cierto capital colocado a una tasa determinada durante un periodo de tiempo dado. Calculará

Más detalles

Material didáctico de apoyo al trabajo del docente para el tratamiento del cálculo en los alumnos.

Material didáctico de apoyo al trabajo del docente para el tratamiento del cálculo en los alumnos. Material didáctico de apoyo al trabajo del docente para el tratamiento del cálculo en los alumnos. Alberto Moreira Fontes Yordanis Valdés Llanes Introducción. Muchos han sido los esfuerzos de los docentes

Más detalles

Profr. Efraín Soto Apolinar. La función lineal. y = a 0 + a 1 x. y = m x + b

Profr. Efraín Soto Apolinar. La función lineal. y = a 0 + a 1 x. y = m x + b La función lineal Una función polinomial de grado uno tiene la forma: y = a 0 + a 1 x El semestre pasado estudiamos la ecuación de la recta. y = m x + b En la notación de funciones polinomiales, el coeficiente

Más detalles

Expresiones algebraicas

Expresiones algebraicas 5 Expresiones algebraicas Objetivos Crear expresiones algebraicas a partir de un enunciado. Hallar el valor numérico de una expresión algebraica. Clasificar una expresión algebraica como monomio, binomio,...

Más detalles

Desarrollar y aplicar estrategias para resolver problemas Determinar si un gráfico es lineal dibujando puntos en una situación dada

Desarrollar y aplicar estrategias para resolver problemas Determinar si un gráfico es lineal dibujando puntos en una situación dada MANEJO DE DATOS Analizar gráficos o diagramas de situaciones dadas para identificar información específica Recoger datos, dibujar los datos usando escalas apropiadas y demostrar una comprensión de las

Más detalles

PROGRAMAS ANALÍTICOS PARA LA CARRERA DE CONTADOR PÚBLICO REVISIÓN CURRICULAR 2007. Créditos adicional estudiante II 5 5 10

PROGRAMAS ANALÍTICOS PARA LA CARRERA DE CONTADOR PÚBLICO REVISIÓN CURRICULAR 2007. Créditos adicional estudiante II 5 5 10 PROGRAMAS ANALÍTICOS PARA LA CARRERA DE CONTADOR PÚBLICO REVISIÓN CURRICULAR 2007 A) MATEMATICAS II B) DATOS BÁSICOS DEL CURSO Semestre Horas Presénciales Horas trabajo Créditos adicional estudiante II

Más detalles

Capítulo 4. Productos notables y factorización

Capítulo 4. Productos notables y factorización Capítulo 4 Productos notables y factorización Las siguientes fórmulas de multiplicación de expresiones algebraicas ayudan a factorizar muchas expresiones, sin embargo se debe aprender a reconocer cuál

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 3 Ecuaciones y sistemas. Inecuaciones Elaborado por la Profesora Doctora

Más detalles

UNIDAD I OPERACIONES CON MONOMIOS Y POLINOMIOS. I.S.C. Alejandro de Fuentes Martínez

UNIDAD I OPERACIONES CON MONOMIOS Y POLINOMIOS. I.S.C. Alejandro de Fuentes Martínez UNIDAD I OPERACIONES CON MONOMIOS Y POLINOMIOS I.S.C. Alejandro de Fuentes Martínez 1 ESQUEMA ESQUEMA-RESUMEN RESUMEN DE LA UNIDAD Álgebra (Concepstos básicos) Suma Resta Multiplicación División OPERACIONES

Más detalles

Los sistemas de numeración se clasifican en: posicionales y no posicionales.

Los sistemas de numeración se clasifican en: posicionales y no posicionales. SISTEMAS NUMERICOS Un sistema numérico es un conjunto de números que se relacionan para expresar la relación existente entre la cantidad y la unidad. Debido a que un número es un símbolo, podemos encontrar

Más detalles

Texto de Cálculo I Intervalos de la recta real R Versión preliminar. L. F. Reséndis O.

Texto de Cálculo I Intervalos de la recta real R Versión preliminar. L. F. Reséndis O. Texto de Cálculo I Intervalos de la recta real R Versión preliminar L. F. Reséndis O. 2 Contents 1 Números reales L.F. Reséndis O. 5 1.1 Números racionales e irracionales.l.f. Reséndis O............ 5

Más detalles

Módulo 9 Sistema matemático y operaciones binarias

Módulo 9 Sistema matemático y operaciones binarias Módulo 9 Sistema matemático y operaciones binarias OBJETIVO: Identificar los conjuntos de números naturales, enteros, racionales e irracionales; resolver una operación binaria, representar un número racional

Más detalles

PRUEBA DE CONOCIMIENTOS Y DESTREZAS INDISPENSABLES 3º ESO 2009. 1) Calcula el valor de A y B, dando el resultado de la forma más sencilla posible.

PRUEBA DE CONOCIMIENTOS Y DESTREZAS INDISPENSABLES 3º ESO 2009. 1) Calcula el valor de A y B, dando el resultado de la forma más sencilla posible. PRUEBA DE CONOCIMIENTOS Y DESTREZAS INDISPENSABLES º ESO 009 1) Calcula el valor de A y B, dando el resultado de la forma más sencilla posible. 1 A = 8 1 + 1 B = A = 8 1 = 8 = 8 = 6 4 B = = 4 4 = 4 16

Más detalles