PROCEDIMIENTO HEURÍSTICO PARA MINIMIZAR EL C max EN CELDAS ROBOTIZADAS CON BUFFERS FINITOS Y PIEZAS DISTINTAS

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PROCEDIMIENTO HEURÍSTICO PARA MINIMIZAR EL C max EN CELDAS ROBOTIZADAS CON BUFFERS FINITOS Y PIEZAS DISTINTAS"

Transcripción

1 27 Congreso Nacional de Estadística e Investigación Operativa Lleida, 8 11 de abril de 2003 PROCEDIMIENTO HEURÍSTICO PARA MINIMIZAR EL C max EN CELDAS ROBOTIZADAS CON BUFFERS FINITOS Y PIEZAS DISTINTAS Juan Pablo Pendones 1, Albert Corominas Subias 2, Rafael Pastor Moreno 2. 1 Departamento Electromecánica, Facultad de Ingeniería, Universidad Nacional del Centro de la Provincia de Buenos Aires, 7400 Olavarría, Buenos Aires, Argentina 2 Institut d Organització i Control de Sistemes Industrials (IOC), Universitat Politècnica de Catalunya (UPC), Barcelona, España. RESUMEN Se presenta el problema de minimización del makespan de un conjunto de piezas distintas, en celdas robotizadas formadas por un robot único, m máquinas y m 1 buffers ubicados entre las máquinas. Se propone un procedimiento heurístico en dos fases: i) determinación de una secuencia de piezas mediante un procedimiento basado en la técnica GRASP; y ii) dada la secuencia de piezas, determinación de la secuencia de movimientos del robot mediante un procedimiento heurístico basado en branch and bound. Para el GRASP de la primera fase se emplean índices obtenidos a partir de la resolución de modelos de programación lineal mixta. Palabras y frases clave: Celdas robotizadas, buffers, scheduling. Clasificación AMS: 90B Introducción En este trabajo se propone un procedimiento para resolver el problema de minimización del C max en celdas robotizadas de tipo flowshop en el que se procesa un conjunto de n piezas distintas. La figura 1 muestra el esquema de una celda robotizada tratada en este trabajo, la cual está compuesta de un conjunto de m máquinas: M 1, M 2,..., M m, un conjunto de m 1 buffers: B 1, B 2,..., B m 1 de capacidad pequeña b i conocida, una estación de entrada de piezas I, una estación de salida de piezas O, y un robot industrial que realiza el transporte de las piezas entre las máquinas y los buffers. 1

2 PSfrag replacements B 1 = E 3 M 2 = E 4 B 2 = E 5 M 1 = E 2 M 3 = E 6 I = E 1 O = E 7 Robot Figura 1: Esquema de la celda. Problemas de piezas iguales sin buffers para el caso de minimización del tiempo de ciclo C t, son resueltos por Crama y van de Klundert (1997) y Sethi et al. (1992) en tiempo polinomial. El mismo problema con piezas distintas es resuelto mediante heurísticas por Kamoun et al. (1999) para el caso de tres y cuatro máquinas. El problema C max con buffers finitos es resuelto de forma exacta en Hitomi y Yoshimura (1986), donde se asumen tiempos de carga y descarga dependientes de las piezas. En virtud de la complejidad que presenta el problema, se propone un procedimiento heurístico para resolver esta última variante del mismo. Se asumen las siguientes condiciones: 1. Las piezas siguen una ruta tipo flowshop. 2. Todas las máquinas observan la misma secuencia de piezas. 3. Se permiten transportes directos de una máquina a la siguiente sin pasar por el buffer correspondiente, cuando no se viola la condición del punto No se permite la interrupción de los procesos sobre las piezas. 5. Ninguna máquina puede procesar más de una pieza de forma simultánea. 2. Nomenclatura La estación de entrada, las máquinas, los buffers y la estación de salida, según el orden I, M 1, B 1, M 2, B 2,..., B m 1, M m, O conforman una secuencia de estaciones E 1, E 2,..., E 2m+1. A partir de esta notación se introduce la nomenclatura para los tiempos de viaje, carga y descarga de las piezas en las estaciones: t c i,j: denota el tiempo empleado en depositar la pieza P j en la estación E i (i = 2,..., 2m + 1; j = 1,..., n). t d i,j: denota el tiempo empleado en retirar la pieza P j de la estación E i (i = 1,..., 2m; j = 1,..., n). 2

3 t v h,i,j : denota el tiempo empleado por el robot en viajar transportando la pieza P j desde la estación E h hasta la estación E i (h = 1,..., 2m; i = 2,..., 2m + 1; j = 1,..., n). Se denota mediante t v h,i,ø el tiempo empleado en el movimiento del robot sin pieza. t p i,j : representa el tiempo de proceso de la pieza P j en la máquina M i (i = 1,..., m; j = 1,..., n). 3. Descripción del método El procedimiento se basa en la separación del problema en dos subproblemas: a) la determinación de una secuencia de piezas y b) en base a ésta, la determinación de la secuencia de movimientos del robot. Puede resumirse en los siguientes pasos. Paso 1: Determinar mediante la resolución de un programa lineal mixto unos índices de prioridad para ser empleados en el paso 2.1. Paso 2: Repetir un cierto número de veces los pasos siguientes: Paso 2.1: Determinar una secuencia de piezas σ p mediante un procedimiento aleatorizado basado en GRASP, tratado en la sección 3.2. Paso 2.2: Determinar la secuencia de movimientos del robot σ m a partir de la secuencia de piezas mediante un procedimiento basado en Branch and Bound, tratado en la sección Determinación de los índices de prioridad El primer paso del método consiste en los índices de prioridad. Éstos se obtienen mediante la programación lineal mixta formulando un modelo simplificado. En este modelo se tienen en cuenta las precedencias de piezas en una máquina dada, las precedencias entre máquinas para una pieza dada, y las restricciones impuestas por la capacidad limitada de los buffers; no se tiene en cuenta las disyunciones que surgen a partir de que el robot es único, y por tanto, que no puede realizar más de una actividad simultáneamente. Con el fin de simplificar la nomenclatura del modelo lineal se amplia la notación incorporando nuevos tiempos derivados de los definidos previamente. Se definen las matrices y vectores siguientes (todos de componentes reales) que constituyen los datos del problema. 3

4 C : c i,j = t d 2i,j + t v 2i,2i+1,j + t c 2i+1,j (i = 1,..., m 1; j = 1,..., n) D : d i,j = t d 2i+1,j + t v 2i+1,2i+2,j + t c 2i+2,j (i = 1,..., m 1; j = 1,..., n) U : u i,j = d i,j + t p i,j + c i,j (i = 1,..., m; j = 1,..., n) V : v i = t v 2i 1,2i+1,Ø (i = 1,..., m 1) W : w i = t v 2i,2i+2,Ø (i = 1,..., m 1) Las variables del problema son: la matriz de instantes de salida S (de variable real) y la matriz asignación X (de variable binaria). Las ecuaciones que modelizan el problema son las siguientes: Asignación de una pieza en una dada posición: imponen la condición de que toda posición k puede contener una y sólo una pieza P j. x j,k = 1 (1 k n) (1) Asignación de una posición para una dada pieza: imponen la condición de que toda pieza P j sólo puede ocupar una y sólo una posición k. x j,k = 1 (1 j n) (2) k=1 Primera pieza en la primera máquina: expresa el instante de salida de la primera pieza en la primera máquina. u 1,j x j,1 s 1,1 0 (3) Precedencia entre posiciones consecutivas en una máquina dada: expresan la condición de que en una dada máquina M i, la pieza que ocupa la posición k sólo puede comenzar una vez finalizado el proceso de la pieza en la posición k 1 en la misma máquina. u i,j x j,k + s i,k 1 s i,k v i (1 i m, 2 k n) (4) Precedencia entre máquinas consecutivas para una posición dada: para toda posición k, la pieza que ocupa dicha posición, no puede comenzar su proceso en una máquina M i si no ha terminado de procesarse en la máquina anterior M i 1. u i,j x j,k + s i 1,k s i,k 0 (2 i m, 1 k n) (5) 4

5 Restricciones impuestas por la capacidad de los buffers: debido a la capacidad limitada de los buffers la pieza que ha entrado primero a un dado buffer de capacidad b i (la pieza que ocupa la posición k b i ) debe ser retirada para permitir la entrada de una nueva pieza (la pieza que ocupa la posición k). c i+1,j x j,k bi + d i,j x j,k s i,k + s i+1,k bi 1 w i v i+1 (1 i m 1, b i + 2 k n) (6) A partir de la resolución del modelo presentado, o de la relajación del mismo, se obtiene una solución en la que algunos de los elementos de X pueden resultar valores no enteros. El índice de prioridad de cada pieza se obtiene a partir de la expresión siguiente: I j = k=1 kx j,k 3.2. Determinación de la secuencia de piezas σ p. En esta sección se describe un procedimiento aleatorizado basado en la técnica GRASP que deriva en la obtención de la secuencia de piezas σ p. El procedimiento consiste en lo siguiente: Paso 1: Crear una lista L p de piezas. Paso 2: Determinar la secuencia de piezas σ p según el siguiente procedimiento: para toda posición k de la secuencia σ p hacer: Paso 2.1: Realizar un sorteo entre las piezas que componen la lista, en el que cada pieza participa con una probabilidad dada por la expresión siguiente: p j = I γ j Is γ s/p s σ p (7) En la ecuación 7, γ tiene como función regular la distribución de probabilidades asociadas a las piezas. Paso 2.2: Asignar la pieza favorecida en el sorteo a la posición k de la secuencia σ p, y eliminarla de la lista de piezas a ser asignadas. 5

6 3.3. Determinación de la secuencia de movimientos del robot σ m La secuencia de movimientos del robot σ m se determina a partir de la secuencia de piezas hallada, σ p, mediante una variante heurística del método de Branch and Bound que se explica a continuación. Se denota BB(e i, L m ) e f, σ m a un procedimiento tipo Branch and Bound aplicado al problema enunciado, con el objetivo de optimización consistente en minimizar C max, en el que se parte de un estado inicial e i y se secuencia una lista de movimientos candidatos L m, y, como resultado se obtiene un estado final e f y una secuencia de movimientos σ m para la lista de movimientos L m. La estrategia de selección de los movimientos que son incorporados en la lista se basa en una estimación de los instantes de inicio de los mismos. Concretamente, son incluidos en la lista los 2 m primeros movimientos según su estimación de los instantes de inicio. La exploración es guiada por la cota más prometedora. A partir de esta definición se describe el método de la forma siguiente: Paso 1: Inicializar e i al estado que corresponde a todas las máquinas sin pieza y las piezas todas en la estación de entrada. Paso 2: En cada paso k = 1,..., n hacer: Paso 2.1: Determinar una lista de movimientos candidatos L m de cardinalidad 2 m compatibles con la secuencia de piezas σ p. Paso 2.2: Resolver BB(e i, L m ). Paso 2.2: Incorporar la secuencia de movimientos parcial σ m a la solución σ m. Hacer e i = e f. Al final del método se han secuenciado un máximo de 2 n m movimientos, correspondiente al caso en que todos los movimientos se realizan a través del buffer intermedio; y un mínimo de n m movimientos, correspondiente al caso en que todos los movimientos se realizan de máquina a máquina sin pasar por los buffers. 6

7 Referencias Crama, Y. y van de Klundert, J. J. (1997). Cyclic scheduling of identical parts in a robotic cell. Operations Research 45, 6, Hitomi, K. y Yoshimura, M. (1986). Operation scheduling for work transportation by industrial robots in automated manufacturing systems. Material Flow 3, Kamoun, H., Hall, N. G., y Sriskandarajah, C. (1999). Scheduling in robotic cells: heuristics and cell design. Operations Research 47, Sethi, S. P., Sriskandarajah, C., Sorger, G., Blazewicz, J., y Kubiak, W. (1992). Sequencing of parts and robot moves in a robotic cell. The International Journal of Flexible Manufacturing Systems. 4,

Flow-Shop Dinámico. Por: Juan Carlos Rivera Samuel De Greiff

Flow-Shop Dinámico. Por: Juan Carlos Rivera Samuel De Greiff Flow-Shop Dinámico Por: Juan Carlos Rivera Samuel De Greiff 1 Configuración tipo Flow- Shop Disposición lineal de los equipos. Productos con altos niveles de estandarización. Varios productos en volúmenes

Más detalles

Scientia Et Technica ISSN: 0122-1701 scientia@utp.edu.co Universidad Tecnológica de Pereira Colombia

Scientia Et Technica ISSN: 0122-1701 scientia@utp.edu.co Universidad Tecnológica de Pereira Colombia Scientia Et Technica ISSN: 0122-1701 scientia@utp.edu.co Universidad Tecnológica de Pereira Colombia Escobar Alvarán, Daniel Felipe; Garcés Hincapié, Julián Alberto; Restrepo Correa, Jorge Hernán Aplicación

Más detalles

Scheduling Problem. Cuándo y dónde debo hacer cada trabajo?

Scheduling Problem. Cuándo y dónde debo hacer cada trabajo? Scheduling Problem Cuándo y dónde debo hacer cada trabajo? Ejemplos de problemas de asignación de recursos Fabricación de varios tipos de productos Asignación de turnos de trabajo Inversión financiera

Más detalles

Secuenciación de una línea mixed-model mediante un algoritmo exacto Pág. 1. Resumen

Secuenciación de una línea mixed-model mediante un algoritmo exacto Pág. 1. Resumen Secuenciación de una línea mixed-model mediante un algoritmo exacto Pág. 1 Resumen En una línea de montaje de productos mixtos, aquella que es responsable de la producción de diversas variaciones de un

Más detalles

Programación Lineal Entera

Programación Lineal Entera Programación Lineal Entera P.M. Mateo y David Lahoz 2 de julio de 2009 En este tema se presenta un tipo de problemas formalmente similares a los problemas de programación lineal, ya que en su descripción

Más detalles

FLEXIPLAN: UN SISTEMA DE PLANIFICACIÓN DE LA PRODUCCIÓN

FLEXIPLAN: UN SISTEMA DE PLANIFICACIÓN DE LA PRODUCCIÓN 27 Congreso Nacional de Estadística e Investigación Operativa Lleida, 8-11 de abril de 2003 FLEXIPLAN: UN SISTEMA DE PLANIFICACIÓN DE LA PRODUCCIÓN Vicente Valls 1, Jose Manuel Belenguer 1, Pilar Lino

Más detalles

Una heurística para la asignación de máquinas a trabajos fijos

Una heurística para la asignación de máquinas a trabajos fijos VIII Congreso de Ingeniería de Organización Leganés, 9 y 10 de septiembre de 2004 Una heurística para la asignación de máquinas a trabajos fijos José Manuel García Sánchez, Marcos Calle Suárez, Gabriel

Más detalles

BALANCEO DE CARGA ACADÉMICA EN EL DISEÑO DE UN CURRÍCULUM BASADO EN COMPETENCIAS

BALANCEO DE CARGA ACADÉMICA EN EL DISEÑO DE UN CURRÍCULUM BASADO EN COMPETENCIAS BALANCEO DE CARGA ACADÉMICA EN EL DISEÑO DE UN CURRÍCULUM BASADO EN COMPETENCIAS Martín G. Solar Monsalves Facultad de Ciencias de la Ingeniería Universidad Austral de Chile, Valdivia, Chile. Casilla 567,

Más detalles

Modelado de flujo en redes. Jhon Jairo Padilla A., PhD.

Modelado de flujo en redes. Jhon Jairo Padilla A., PhD. Modelado de flujo en redes Jhon Jairo Padilla A., PhD. Conceptos básicos Demanda o volumen de Demanda: Es el tráfico que están requiriendo los usuarios de una red. Para transportar el volumen de demanda

Más detalles

Estado del arte del problema de flujo general flexible con costes en la función objetivo *

Estado del arte del problema de flujo general flexible con costes en la función objetivo * Estado del arte del problema de fluo general flexible con costes en la función obetivo * Albert Corominas, Néstor Andrés González, Rafael Pastor Institut d'organització i Control de Sistemes Industrials

Más detalles

Métodos Numéricos: Guía de estudio Tema 6 Métodos iterativos para sistemas de ecuaciones lineales

Métodos Numéricos: Guía de estudio Tema 6 Métodos iterativos para sistemas de ecuaciones lineales Métodos Numéricos: Guía de estudio Tema 6 Métodos iterativos para sistemas de ecuaciones lineales Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña

Más detalles

Una permutación eficiente para minimizar la suma de los tiempos de acabado de "n" trabajos en "m" máquinas Freddy Abarca R. fabarca@ic-itcr.ac.

Una permutación eficiente para minimizar la suma de los tiempos de acabado de n trabajos en m máquinas Freddy Abarca R. fabarca@ic-itcr.ac. Una permutación eficiente para minimizar la suma de los tiempos de acabado de "n" trabajos en "m" máquinas Freddy Abarca R. fabarca@ic-itcr.ac.cr El problema de la asignación de cargas de trabajo, a pesar

Más detalles

Fundamentos de Investigación de Operaciones Asignación y Vendedor Viajero

Fundamentos de Investigación de Operaciones Asignación y Vendedor Viajero Fundamentos de Investigación de Operaciones y Vendedor Viajero 23 de mayo de 2004 Si bien la resolución del problema de transporte mediante tableau parece ser muy expedita, existen ciertos tipos de problemas

Más detalles

UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE INGENIERÍA ELÉCTRICA PROGRAMA DE MAESTRÍA EN INGENIERÍA ELÉCTRICA

UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE INGENIERÍA ELÉCTRICA PROGRAMA DE MAESTRÍA EN INGENIERÍA ELÉCTRICA UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE INGENIERÍA ELÉCTRICA PROGRAMA DE MAESTRÍA EN INGENIERÍA ELÉCTRICA ALGORITMOS GRASP Y SIMULATED ANNEALING COMO INICIALIZADORES DE BRANCH AND BOUND EN LA SOLUCIÓN

Más detalles

MODELOS DE PLANIFICACIÓN

MODELOS DE PLANIFICACIÓN MODELOS DE PLANIFICACIÓN Santiago de Compostela, Octubre 2006 1 s jk C max P Jm prmt L max NP Rm tree C j Algoritmos wj U j Uj Calendarios Fm prec w j U j Práctica CONTENIDO. Contents 1 Descripción del

Más detalles

DESARROLLO DE UN MODELO DE PROGRAMACIÓN DINÁMICA PARA LA MEJORA DE LA PRODUCCIÓN EN UNA EMPRESA DE FABRICACIÓN DEL SECTOR AZULEJERO

DESARROLLO DE UN MODELO DE PROGRAMACIÓN DINÁMICA PARA LA MEJORA DE LA PRODUCCIÓN EN UNA EMPRESA DE FABRICACIÓN DEL SECTOR AZULEJERO 27 Congreso Nacional de Estadística e Investigación Operativa Lleida, 8-11 de abril de 2003 DESARROLLO DE UN MODELO DE PROGRAMACIÓN DINÁMICA PARA LA MEJORA DE LA PRODUCCIÓN EN UNA EMPRESA DE FABRICACIÓN

Más detalles

TÉCNICAS DE PLANIFICACIÓN Y CONTROL DE PROYECTOS 1

TÉCNICAS DE PLANIFICACIÓN Y CONTROL DE PROYECTOS 1 Técnicas de planificación y control de proyectos Andrés Ramos Universidad Pontificia Comillas http://www.iit.comillas.edu/aramos/ Andres.Ramos@comillas.edu TÉCNICAS DE PLANIFICACIÓN Y CONTROL DE PROYECTOS

Más detalles

Estado del Arte del Job Shop Scheduling Problem

Estado del Arte del Job Shop Scheduling Problem Estado del Arte del Job Shop Scheduling Problem Víctor Peña y Lillo Zumelzu Departamento de Informática, Universidad Técnica Federico Santa María Valparaíso, Chile vpena@inf.utfsm.cl 17 de mayo de 2006

Más detalles

ASALBP: Alternative Subgraphs Assembly Line Balancing Problem *

ASALBP: Alternative Subgraphs Assembly Line Balancing Problem * IX Congreso de Ingeniería de Organización Gijón, 8 y 9 de septiembre de 2005 ASALBP: Alternative Subgraphs Assembly Line Balancing Problem * Liliana Capacho Betancourt 1, Rafael Pastor Moreno 2 1 Dpto

Más detalles

Capítulo VI MÉTODOS DE SOLUCIÓN PARA JOB SHOP SCHEDULING

Capítulo VI MÉTODOS DE SOLUCIÓN PARA JOB SHOP SCHEDULING Capítulo VI MÉTODOS DE SOLUCIÓN PARA JOB SHOP SCHEDULING 6.1. HEURÍSTICAS CONVENCIONALES El problema de job shop scheduling (JSSP) es un problema muy importante [69]; está entre los problemas de optimización

Más detalles

Matemáticas 2º BTO Aplicadas a las Ciencias Sociales

Matemáticas 2º BTO Aplicadas a las Ciencias Sociales Matemáticas 2º BTO Aplicadas a las Ciencias Sociales CONVOCATORIA EXTRAORDINARIA DE JUNIO 2014 MÍNIMOS: No son contenidos mínimos los señalados como de ampliación. I. PROBABILIDAD Y ESTADÍSTICA UNIDAD

Más detalles

Asignación de conductores a jornadas de trabajo en empresas de transporte colectivo

Asignación de conductores a jornadas de trabajo en empresas de transporte colectivo Tesis doctoral Asignación de conductores a jornadas de trabajo en empresas de transporte colectivo Por Carmen Esclapés Director: Tutora: Albert Corominas Elena Fernández Departament d Estadística i Investigació

Más detalles

ÍNDICE. 1 Conjuntos y lógica... 1. Prologo,... ix

ÍNDICE. 1 Conjuntos y lógica... 1. Prologo,... ix ÍNDICE Prologo,... ix 1 Conjuntos y lógica... 1 1-1 Conjuntos... 1 1-2 Notación... 1 1-3 Conjuntos iguales... 2 1-4 Conjunto vacío... 2 1-5 Subconjuntos... 2 1-1 Ejercicios... 3 1-6 Conjuntos equivalentes...

Más detalles

Programación Lineal Entera

Programación Lineal Entera Programación Lineal Entera Los modelos de programación entera son una extensión de los modelos lineales en los que algunas variables toman valores enteros. Con frecuencia las variables enteras sólo toman

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ALGEBRA II Guía de Matrices y Determinantes Primer año Plan Común de Ingeniería Segundo Semestre 2009 1. Hallar una matriz B que

Más detalles

3.- ALGUNOS CONCEPTOS BÁSICOS DE ÁLGEBRA DE BOOLE 4.- TRANSFORMACIÓN DE EXPRESIONES LÓGICAS A EXPRESIONES ALGEBRAICAS

3.- ALGUNOS CONCEPTOS BÁSICOS DE ÁLGEBRA DE BOOLE 4.- TRANSFORMACIÓN DE EXPRESIONES LÓGICAS A EXPRESIONES ALGEBRAICAS TEMA 12: MODELADO CON VARIABLES BINARIAS 1.- MOTIVACIÓN 2.- INTRODUCCIÓN 3.- ALGUNOS CONCEPTOS BÁSICOS DE ÁLGEBRA DE BOOLE 4.- TRANSFORMACIÓN DE EXPRESIONES LÓGICAS A EXPRESIONES ALGEBRAICAS 5.- MODELADO

Más detalles

Matrices equivalentes. El método de Gauss

Matrices equivalentes. El método de Gauss Matrices equivalentes. El método de Gauss Dada una matriz A cualquiera decimos que B es equivalente a A si podemos transformar A en B mediante una combinación de las siguientes operaciones: Multiplicar

Más detalles

Matemáticas. Si un error simple ha llevado a un problema más sencillo se disminuirá la puntuación.

Matemáticas. Si un error simple ha llevado a un problema más sencillo se disminuirá la puntuación. UNIVERSIDAD POLITÉCNICA DE CARTAGENA PRUEBAS DE ACCESO A LA UNIVERSIDAD DE LOS MAYORES DE 25 AÑOS CONVOCATORIA 2014 CRITERIOS DE EVALUACIÓN Matemáticas GENERALES: El examen constará de dos opciones (dos

Más detalles

Planificación y secuenciamiento de procesos por lotes. Prof. Cesar de Prada ISA-UVA

Planificación y secuenciamiento de procesos por lotes. Prof. Cesar de Prada ISA-UVA Planificación secuenciamiento de procesos por lotes Prof. Cesar de Prada ISA-UVA Indice Procesos plantas batch Conceptos básicos de secuenciamiento Formulación de problemas de secuenciamiento Resolución

Más detalles

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 Programación Lineal Entera

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 Programación Lineal Entera Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 11 de septiembre de 2003 1. Introducción Un LP donde se requiere que todas las variables sean enteras se denomina un problema

Más detalles

Problema de programación de operaciones y herramientas en un Sistema de Manufactura Flexible: Heurística de carga fase I

Problema de programación de operaciones y herramientas en un Sistema de Manufactura Flexible: Heurística de carga fase I Problema de programación de operaciones y herramientas en un Sistema de Manufactura Flexible: Heurística de carga fase I Pe d r o Da n i e l Me d i n a V. * Ed u a r d o rt u r o r u z T. ** Jo r g e He

Más detalles

Resumen de técnicas para resolver problemas de programación entera. 15.053 Martes, 9 de abril. Enumeración. Un árbol de enumeración

Resumen de técnicas para resolver problemas de programación entera. 15.053 Martes, 9 de abril. Enumeración. Un árbol de enumeración 5053 Martes, 9 de abril Ramificación y acotamiento () Entregas: material de clase Resumen de técnicas para resolver problemas de programación entera Técnicas de enumeración Enumeración completa hace una

Más detalles

Estructuras algebraicas

Estructuras algebraicas Tema 2 Estructuras algebraicas básicas 2.1. Operación interna Definición 29. Dados tres conjuntos A, B y C, se llama ley de composición en los conjuntos A y B y resultado en el conjunto C, y se denota

Más detalles

Jhoan Sebastián Cadavid Jaramillo Ingeniero Industrial, Universidad Nacional de Colombia, jscadav0@unal.edu.co RESUMEN

Jhoan Sebastián Cadavid Jaramillo Ingeniero Industrial, Universidad Nacional de Colombia, jscadav0@unal.edu.co RESUMEN PROBLEMA DE PROGRAMACIÓN DE PRODUCCIÓN ABIERTA CON CARACTERÍSTICAS DE MÁQUINAS MÓVILES DEDICADAS Y CON TIEMPOS DE PREPARACIÓN DEPENDIENTES DE LA SECUENCIA ENTRE ETAPAS Alexander Alberto Correa Espinal

Más detalles

CURSO CERO. Departamento de Matemáticas. Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre

CURSO CERO. Departamento de Matemáticas. Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre CURSO CERO Departamento de Matemáticas Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre Capítulo 1 La demostración matemática Demostración por inducción El razonamiento por inducción es una

Más detalles

Todo el alumnado que tenga un buen nivel podrá asistir a las clases de profundización que serán el por las tardes.

Todo el alumnado que tenga un buen nivel podrá asistir a las clases de profundización que serán el por las tardes. SEGUNDO DE BACHILLERATO CIENCIAS NATURALEZA Y SALUD A continuación se especifican los contenidos y los objetivos mínimos y deseables para cada una de las unidades didácticas de cada bloque. Finalmente

Más detalles

DISEÑO DE METAHEURÍSTICOS HÍBRIDOS PARA PROBLEMAS DE RUTAS CON FLOTA HETEROGÉNEA (2 Parte) : GRASP Y CONCENTRACIÓN HEURÍSTICA

DISEÑO DE METAHEURÍSTICOS HÍBRIDOS PARA PROBLEMAS DE RUTAS CON FLOTA HETEROGÉNEA (2 Parte) : GRASP Y CONCENTRACIÓN HEURÍSTICA DISEÑO DE METAHEURÍSTICOS HÍBRIDOS PARA PROBLEMAS DE RUTAS CON FLOTA HETEROGÉNEA (2 Parte) : GRASP Y CONCENTRACIÓN HEURÍSTICA Cristina R. Delgado Serna Departamento de ECONOMÍA (Área de Economía Aplicada)

Más detalles

Split Delivery Vehicle Routing Problem: Heuristic based Algorithms

Split Delivery Vehicle Routing Problem: Heuristic based Algorithms Split Delivery Vehicle Routing Problem: Heuristic based Algorithms Sandro Moscatelli Instituto de Computación, Facultad de Ingeniería Universidad de la República moscatel@fing.edu.uy Diciembre 2007 Resumen

Más detalles

EXTENSIONES DE META-RAPS AL PROBLEMA DE MÁQUINAS PARALELAS NO RELACIONADAS

EXTENSIONES DE META-RAPS AL PROBLEMA DE MÁQUINAS PARALELAS NO RELACIONADAS 1 UNIVERSIDAD DEL BÍO-BÍO FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERÍA INDUSTRIAL EXTENSIONES DE META-RAPS AL PROBLEMA DE MÁQUINAS PARALELAS NO RELACIONADAS TESIS PARA OBTENER EL GRADO DE MAGÍSTER

Más detalles

Generación de secuencias de montaje y equilibrado de líneas. Liliana Capacho Betancourt, Rafael Pastor Moreno

Generación de secuencias de montaje y equilibrado de líneas. Liliana Capacho Betancourt, Rafael Pastor Moreno Generación de secuencias de montaje y equilibrado de líneas IOC-DT-P-2004-04 Abril 2004 GENERACIÓN DE SECUENCIAS DE MONTAJE Y EQUILIBRADO DE LÍNEAS Barcelona, España - Abril de 2004 Índice Índice de figuras,

Más detalles

Nota 1. Los determinantes de orden superior a 3 se calculan aplicando las siguientes propiedades:

Nota 1. Los determinantes de orden superior a 3 se calculan aplicando las siguientes propiedades: Capítulo 1 DETERMINANTES Definición 1 (Matriz traspuesta) Llamaremos matriz traspuesta de A = (a ij ) a la matriz A t = (a ji ); es decir la matriz que consiste en poner las filas de A como columnas Definición

Más detalles

6632 - Robótica PLANIFICACIONES Actualización: 2ºC/2015. Planificaciones. 6632 - Robótica. Docente responsable: ANIGSTEIN MAURICIO.

6632 - Robótica PLANIFICACIONES Actualización: 2ºC/2015. Planificaciones. 6632 - Robótica. Docente responsable: ANIGSTEIN MAURICIO. Planificaciones 6632 - Robótica Docente responsable: ANIGSTEIN MAURICIO 1 de 6 OBJETIVOS El Robot es un componente cada vez más frecuente en las líneas de producción industrial y en actividades de servicios.

Más detalles

Cadenas de Markov. http://humberto-r-alvarez-a.webs.com

Cadenas de Markov. http://humberto-r-alvarez-a.webs.com Cadenas de Markov http://humberto-r-alvarez-a.webs.com Definición Procesos estocásticos: procesos que evolucionan de forma no determinista a lo largo del tiempo en torno a un conjunto de estados. Estos

Más detalles

Tema 3 Resolución de Sistemas de Ecuaciones Lineales

Tema 3 Resolución de Sistemas de Ecuaciones Lineales Tema Resolución de Sistemas de Ecuaciones Lineales Índice Introducción 2 Método de Gauss 2 Resolución de sistemas triangulares 22 Triangulación por el método de Gauss 2 Variante Gauss-Jordan 24 Comentarios

Más detalles

Algoritmo de dispatching para la programación de la producción en una planta de fabricación Pág. 1. Resumen

Algoritmo de dispatching para la programación de la producción en una planta de fabricación Pág. 1. Resumen Algoritmo de dispatching para la programación de la producción en una planta de fabricación Pág. 1 Resumen Este proyecto tiene por objetivo resolver un problema real de secuenciación de operaciones de

Más detalles

Definición 1.1.1. Sea K un cuerpo. Un polinomio en x, con coeficientes en K es toda expresión del tipo

Definición 1.1.1. Sea K un cuerpo. Un polinomio en x, con coeficientes en K es toda expresión del tipo POLINOMIOS 1.1. DEFINICIONES Definición 1.1.1. Sea K un cuerpo. Un polinomio en x, con coeficientes en K es toda expresión del tipo p(x) = a i x i = a 0 + a 1 x + a 2 x 2 + + a n x n + ; a i, x K; n N

Más detalles

http://saeti.itson.mx/otrosusuarios/plandosmilnueveconsprogamplioimpma.asp?materia...

http://saeti.itson.mx/otrosusuarios/plandosmilnueveconsprogamplioimpma.asp?materia... Page 1 of 7 Departamento: Dpto Matematica Nombre del curso: ALGEBRA LINEAL Clave: 003866 Academia a la que pertenece: Algebra Lineal Requisitos: Requisito de Algebra Lineal: Calculo I, Fundamentos de Matem

Más detalles

Algoritmos exactos y heurísticos para minimizar el adelantamiento y retraso ponderados en una máquina con una fecha de entrega común

Algoritmos exactos y heurísticos para minimizar el adelantamiento y retraso ponderados en una máquina con una fecha de entrega común Algoritmos... en una máquina con una fecha de entrega común Algoritmos exactos y heurísticos para minimizar el adelantamiento y retraso ponderados en una máquina con una fecha de entrega común R. Alvarez-Valdés,

Más detalles

CAPITULO III MARCO METODOLÓGICO. La presente investigación plantea como objetivo el diseño de un prototipo

CAPITULO III MARCO METODOLÓGICO. La presente investigación plantea como objetivo el diseño de un prototipo CAPITULO III MARCO METODOLÓGICO 1. Tipo de Investigación La presente investigación plantea como objetivo el diseño de un prototipo de robot industrial para la automatización del proceso de conformado de

Más detalles

MODELO JERÁRQUICO PARA EL JOB SHOP FLEXIBLE

MODELO JERÁRQUICO PARA EL JOB SHOP FLEXIBLE !#"$%$$ %!& '($! *)!!#% $)$ +-,/.103254 687/9:6(;=1.1?A@50

Más detalles

RESOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES

RESOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES RESOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES 1 La ecuación 2x - 3 = 0 se llama ecuación lineal de una variable. Obviamente sólo tiene una solución. La ecuación -3x + 2y = 7 se llama ecuación lineal de

Más detalles

GRASP para secuenciar modelos mixtos en una línea con sobrecarga, tiempo inerte y regularidad en la producción

GRASP para secuenciar modelos mixtos en una línea con sobrecarga, tiempo inerte y regularidad en la producción GRASP para secuenciar modelos mixtos en una línea con sobrecarga, tiempo inerte y regularidad en la producción Joaquín Bautista 1, Rocío Alfaro-Pozo 1, Cristina Batalla-García 1 1 Research Group OPE-PROTHIUS.

Más detalles

CAPÍTULO III PROCESO DE ANÁLISIS JERÁRQUICO (AHP)

CAPÍTULO III PROCESO DE ANÁLISIS JERÁRQUICO (AHP) CAPÍTULO III PROCESO DE ANÁLISIS JERÁRQUICO (AHP) 3.1 PROCESO DE ANÁLSIS JERÁRQUICO (AHP) El Proceso de Análisis Jerárquico, desarrollado por Thomas L. Saaty (The Analytic Hierarchy Process, 1980) está

Más detalles

MATEMÁTICAS aplicadas a las Ciencias Sociales II

MATEMÁTICAS aplicadas a las Ciencias Sociales II MATEMÁTICAS aplicadas a las Ciencias Sociales II UNIDAD 1: SISTEMAS DE ECUACIONES. MÉODO DE GAUSS Sistemas de ecuaciones lineales Sistemas equivalentes. Transformaciones que mantienen la equivalencia.

Más detalles

IN4703 Gestión de Operaciones. Programación de Operaciones (Operations Scheduling)

IN4703 Gestión de Operaciones. Programación de Operaciones (Operations Scheduling) IN4703 Gestión de Operaciones Programación de Operaciones (Operations Scheduling) Lineamientos de la Clase de Hoy Objetivos de la Programación de Operaciones Sistemas de Manufactura (Manufacturing Execution

Más detalles

ENTORNO PARA LA PLANIFICACION DE LA PRODUCCION DE SISTEMAS DE FABRICACION FLEXIBLES

ENTORNO PARA LA PLANIFICACION DE LA PRODUCCION DE SISTEMAS DE FABRICACION FLEXIBLES ENTORNO PARA LA PLANIFICACION DE LA PRODUCCION DE SISTEMAS DE FABRICACION FLEXIBLES Mercedes E. Narciso Farias, Miquel Angel Piera i Eroles Unidad de Ingeniería de Sistemas y Automática. Universidad Autónoma

Más detalles

1. Introducción RESUMEN

1. Introducción RESUMEN 27 Congreso Nacional de Estadística e Investigación Operativa Lleida, 8-11 de abril de 2003 ANÁLISIS COMPARATIVO DEL RENDIMIENTO DE REGLAS DE DESPACHO TRADICIONALES EN UN TALLER DE FLUJO HÍBRIDO CON TIEMPOS

Más detalles

ALGEBRA LINEAL. Héctor Jairo Martínez R. Ana María Sanabria R.

ALGEBRA LINEAL. Héctor Jairo Martínez R. Ana María Sanabria R. ALGEBRA LINEAL Héctor Jairo Martínez R. Ana María Sanabria R. SEGUNDO SEMESTRE 8 Índice general. SISTEMAS DE ECUACIONES LINEALES.. Introducción................................................ Conceptos

Más detalles

Redes de Kohonen y la Determinación Genética de las Clases

Redes de Kohonen y la Determinación Genética de las Clases Redes de Kohonen y la Determinación Genética de las Clases Angel Kuri Instituto Tecnológico Autónomo de México Octubre de 2001 Redes Neuronales de Kohonen Las Redes de Kohonen, también llamadas Mapas Auto-Organizados

Más detalles

EVALUACION DEL IMPACTO DEL TAMAÑO DEL LOTE DE TRANSFERENCIA EN LA PROGRAMACION DE OPERACIONES DE UN SISTEMA PRODUCTIVO DEL TIPO FLOW-SHOP

EVALUACION DEL IMPACTO DEL TAMAÑO DEL LOTE DE TRANSFERENCIA EN LA PROGRAMACION DE OPERACIONES DE UN SISTEMA PRODUCTIVO DEL TIPO FLOW-SHOP EVALUACION DEL IMPACTO DEL TAMAÑO DEL LOTE DE TRANSFERENCIA EN LA PROGRAMACION DE OPERACIONES DE UN SISTEMA PRODUCTIVO DEL TIPO FLOW-SHOP KATHERINE CABALLERO MOYA ESCUELA DE ESTUDIOS INDUSTRIALES Y EMPRESARIALES

Más detalles

METAHEURISTICAS Ideas, Mitos, Soluciones

METAHEURISTICAS Ideas, Mitos, Soluciones METAHEURISTICAS Ideas, Mitos, Soluciones OPTIMIZACION COMBINATORIA Qué es un problema de optimización combinatoria? Cómo se modela matemáticamente un problema de optimización combinatoria? Minimizar (o

Más detalles

Universidad Autónoma de Nuevo León

Universidad Autónoma de Nuevo León Universidad Autónoma de Nuevo León Facultad de Ingeniería Mecánica y Eléctrica División de Estudios de Posgrado Optimización de la producción en máquinas en paralelo de inyección de plástico por I.Q. Miguel

Más detalles

Universidad Autónoma de Nuevo León

Universidad Autónoma de Nuevo León Universidad Autónoma de Nuevo León Facultad de Ingeniería Mecánica y Eléctrica División de Estudios de Posgrado Secuenciación en máquinas paralelas no relacionadas con tiempos de preparación y tareas de

Más detalles

UNIVERSIDAD DE CONCEPCIÓN CHILE FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERÍA INDUSTRIAL

UNIVERSIDAD DE CONCEPCIÓN CHILE FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERÍA INDUSTRIAL UNIVERSIDAD DE CONCEPCIÓN CHILE FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERÍA INDUSTRIAL APLICACIÓN DE HEURÍSTICAS GRASP AL PROBLEMA DE MÁQUINAS PARALELAS NO RELACIONADAS CON TIEMPOS DE SETUP DEPENDIENTES

Más detalles

PROGRAMACION DINAMICA. CASOS PRACTICOS

PROGRAMACION DINAMICA. CASOS PRACTICOS 7 Congreso Nacional de Estadística e Investigación Operativa Lleida, 8- de abril de PROGRAMACION DINAMICA. CASOS PRACTICOS R. Pintor Departamento de Ingeniería Industrial Centro Universitario de Ciencias

Más detalles

UNIVERSIDAD DEL VALLE DE MÉXICO PROGRAMA DE ESTUDIO DE LICENCIATURA PRAXIS MES XXI

UNIVERSIDAD DEL VALLE DE MÉXICO PROGRAMA DE ESTUDIO DE LICENCIATURA PRAXIS MES XXI UNIVERSIDAD DEL VALLE DE MÉXICO PROGRAMA DE ESTUDIO DE LICENCIATURA PRAXIS MES XXI NOMBRE DE LA ASIGNATURA: SISTEMAS DE PRODUCCIÓN I FECHA DE ELABORACIÓN: ENERO 2005 ÁREA DEL PLAN DE ESTUDIOS: AS ( ) AC

Más detalles

Algoritmos. Autor: José Ángel Acosta Rodríguez

Algoritmos. Autor: José Ángel Acosta Rodríguez Autor: 2006 ÍNDICE Página Índice 1 Problema 1. Movimiento de figuras geométricas.2 Problema 2. Conversión decimal a binario....3 Problema 3. Secuencias binarias..4 Problema 4. Conversión a binario a octal...

Más detalles

El proyecto realizado consiste en un resolutor de sudokus mediante CSP.

El proyecto realizado consiste en un resolutor de sudokus mediante CSP. Introducción El proyecto realizado consiste en un resolutor de sudokus mediante CSP. El problema del sudoku fue inventado por Howard Garns en 1979 y se volvió muy popular en Japón en 1986. En España ha

Más detalles

Resolución de Problemas

Resolución de Problemas Introducción Resolución de Problemas La resolución de problemas es una capacidad que consideramos inteligente Somos capaces de resolver problemas muy diferentes Encontrar el camino en un laberinto Resolver

Más detalles

EL PROBLEMA DE LOCALIZACIÓN DE SERVICIOS

EL PROBLEMA DE LOCALIZACIÓN DE SERVICIOS Memorias de la XVII Semana Regional de Investigación y Docencia en Matemáticas, Departamento de Matemáticas, Universidad de Sonora, México. Mosaicos Matemáticos No. 20, agosto 2007, pp. 1-6. Nivel Medio

Más detalles

Nombre de la asignatura: Robótica Industrial. Carrera: Ingeniería Electrónica

Nombre de la asignatura: Robótica Industrial. Carrera: Ingeniería Electrónica 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Robótica Industrial Carrera: Ingeniería Electrónica Clave de la asignatura: Horas teoría - horas práctica créditos: 3 2 8 2.- HISTORIA DEL PROGRAMA Lugar

Más detalles

Yapura Pablo Fassola Hugo Enrique Crechi Ernesto Héctor Keller Aldo Esteban

Yapura Pablo Fassola Hugo Enrique Crechi Ernesto Héctor Keller Aldo Esteban Yapura Pablo Fassola Hugo Enrique Crechi Ernesto Héctor Keller Aldo Esteban Sañudo Gastón Cómo surge el problema? Mercado demanda d diferentes productos caracterizados por sus dimensiones y precio Surge

Más detalles

HEURISTIC FOR SCHEDULING OF PROJECTS WITH RESTRICTION OF RESOURCES UN HEURÍSTICO PARA PLANEACIÓN DE PROYECTOS CON RESTRICCIÓN DE RECURSOS

HEURISTIC FOR SCHEDULING OF PROJECTS WITH RESTRICTION OF RESOURCES UN HEURÍSTICO PARA PLANEACIÓN DE PROYECTOS CON RESTRICCIÓN DE RECURSOS HEURISTIC FOR SCHEDULING OF PROJECTS WITH RESTRICTION OF RESOURCES UN HEURÍSTICO PARA PLANEACIÓN DE PROYECTOS CON RESTRICCIÓN DE RECURSOS Juan C. Rivera, Luis F. Moreno, F. Javier Díaz, Gloria E. Peña

Más detalles

Modelización Avanzada en Logística y Transporte

Modelización Avanzada en Logística y Transporte Modelización Avanzada en Logística y Transporte El problema de enrutamiento vehicular (CVRP) Luis M. Torres Escuela Politécnica del Litoral Guayaquil, Diciembre 2010 Maestría en Control de Operaciones

Más detalles

Una heurística basada en memoria para el problema del diseño de recorridos en transporte público urbano

Una heurística basada en memoria para el problema del diseño de recorridos en transporte público urbano Una heurística basada en memoria para el problema del diseño de recorridos en transporte público urbano Antonio Mauttone María E. Urquhart Departamento de Investigación Operativa, Instituto de Computación,

Más detalles

UNIVERSIDAD DE SONORA

UNIVERSIDAD DE SONORA UNIVERSIDAD DE SONORA DIVISIÓN DE CIENCIAS EXACTAS Y NATURALES DEPARTAMENTO DE MATEMÁTICAS TRABAJO DE TESIS INTITULADO "EL MÉTODO DE BÚSQUEDA TABÚ PARA LA PROGRAMACIÓN DE HORARIOS" QUE PARA OBTENER EL

Más detalles

CAPÍTULO 3. ALGORITMOS DE PREVISIÓN BASADOS EN LA EXTRAPOLACIÓN DE LOS DATOS MÁS RECIENTES

CAPÍTULO 3. ALGORITMOS DE PREVISIÓN BASADOS EN LA EXTRAPOLACIÓN DE LOS DATOS MÁS RECIENTES CAPÍTULO 3. ALGORITMOS DE PREVISIÓN BASADOS EN LA EXTRAPOLACIÓN DE LOS DATOS MÁS RECIENTES El objetivo de esta tesina es la introducción de mejoras en la previsión meteorológica a corto plazo. El punto

Más detalles

GPU IMPLEMENTATIONS OF SCHEDULING HEURISTICS FOR HETEROGENEOUS COMPUTING ENVIRONMENTS

GPU IMPLEMENTATIONS OF SCHEDULING HEURISTICS FOR HETEROGENEOUS COMPUTING ENVIRONMENTS GPU IMPLEMENTATIONS OF SCHEDULING HEURISTICS FOR HETEROGENEOUS COMPUTING ENVIRONMENTS MAURO CANABÉ SERGIO NESMACHNOW Centro de Cálculo, Facultad de Ingeniería Universidad de la República, Uruguay GPU IMPLEMENTATIONS

Más detalles

Joaquin Bautista Valhondo Generado desde: Universitat Politècnica de Catalunya Fecha del documento: 02/01/2015 b857bf24d14c583a091338356e6ec98c

Joaquin Bautista Valhondo Generado desde: Universitat Politècnica de Catalunya Fecha del documento: 02/01/2015 b857bf24d14c583a091338356e6ec98c Joaquin Bautista Valhondo Generado desde: Universitat Politècnica de Catalunya Fecha del documento: 02/01/2015 b857bf24d14c583a091338356e6ec98c Este fichero electrónico (PDF) contiene incrustada la tecnología

Más detalles

Fundamentos de Investigación de Operaciones CPM y PERT

Fundamentos de Investigación de Operaciones CPM y PERT Fundamentos de Investigación de Operaciones PM y PRT 9 de abril de 00. Introducción xisten modelos de redes que pueden ser empleados para programar proyectos que comprenden un gran número de actividades.

Más detalles

Universidad Autónoma de Nuevo León

Universidad Autónoma de Nuevo León Universidad Autónoma de Nuevo León Facultad de Ingeniería Mecánica y Eléctrica División de Estudios de Posgrado Programación pieza-molde-máquina en planeación de producción mediante una Búsqueda Local

Más detalles

Probabilidad y sus aplicaciones en ingeniería informática

Probabilidad y sus aplicaciones en ingeniería informática Probabilidad y sus aplicaciones en ingeniería informática Víctor Hernández Eduardo Ramos Ildefonso Yáñez c Víctor Hernández, Eduardo Ramos, Ildefonso Yánez EDICIONES CDÉMICS Probabilidad y sus aplicaciones

Más detalles

Problemas Resueltos de Desigualdades y Programación Lineal

Problemas Resueltos de Desigualdades y Programación Lineal Universidad de Sonora División de Ciencias Exactas y Naturales Departamento de Matemáticas. Problemas Resueltos de Desigualdades y Programación Lineal Para el curso de Cálculo Diferencial de Químico Biólogo

Más detalles

Uso de algoritmos genéticos para resolver el modelo determinista y estocástico para el diseño de una red de recogida de residuos

Uso de algoritmos genéticos para resolver el modelo determinista y estocástico para el diseño de una red de recogida de residuos International Conference on Industrial Engineering & Industrial Management - CIO 2007 1443 Uso de algoritmos genéticos para resolver el modelo determinista y estocástico para el diseño de una red de recogida

Más detalles

Metaheurísticas: una visión global *

Metaheurísticas: una visión global * Metaheurísticas: una visión global * Belén Melián, José A. Moreno Pérez, J. Marcos Moreno Vega DEIOC. Universidad de La Laguna 38271 La Laguna {mbmelian,jamoreno,jmmoreno}@ull.es Resumen Las metaheurísticas

Más detalles

2 Sea una unidad de disco duro de brazo móvil con las siguientes características:

2 Sea una unidad de disco duro de brazo móvil con las siguientes características: 1 Sea una unidad de disco duro de brazo móvil con las siguientes características: 18 superficies, 20.331 cilindros y 400 sectores por pista. Sectores de 1.024 bytes de información neta. Velocidad de rotación:

Más detalles

EL PROBLEMA DE PROGRAMACIÓN Y SECUENCIAMIENTO DE TAREAS EN EL PROCESO DE SECADO EN UN ASERRADERO

EL PROBLEMA DE PROGRAMACIÓN Y SECUENCIAMIENTO DE TAREAS EN EL PROCESO DE SECADO EN UN ASERRADERO Theoria, Vol. 16 (1): 15-22, 2007 ISSN 0717-196X Artículo / Article EL PROBLEMA DE PROGRAMACIÓN Y SECUENCIAMIENTO DE TAREAS EN EL PROCESO DE SECADO EN UN ASERRADERO THE PROBLEM OF TASK SCHEDULING AND SEQUENCING

Más detalles

SESIÓN 8 TIPOS DE SISTEMAS DE MANUFACTURA

SESIÓN 8 TIPOS DE SISTEMAS DE MANUFACTURA SESIÓN 8 TIPOS DE SISTEMAS DE MANUFACTURA CONTENIDO Términos en manufactura Clasificación de sistemas de manufactura Beneficios y ejemplos de sistemas de manufactura Los componentes de un sistema de manufactura

Más detalles

CONTENIDOS MÍNIMOS BACHILLERATO

CONTENIDOS MÍNIMOS BACHILLERATO CONTENIDOS MÍNIMOS BACHILLERATO I.E.S. Vasco de la zarza Dpto. de Matemáticas CURSO 2013-14 ÍNDICE Primero de Bachillerato de Humanidades y CCSS...2 Primero de Bachillerato de Ciencias y Tecnología...5

Más detalles

Algoritmo para resolver exactamente sistemas de ecuaciones lineales con coeficientes enteros

Algoritmo para resolver exactamente sistemas de ecuaciones lineales con coeficientes enteros Miscelánea Matemática 43 (2006) 7 132 SMM Algoritmo para resolver exactamente sistemas de ecuaciones lineales con coeficientes enteros Daniel Gómez-García Facultad de Ingeniería Universidad Autónoma de

Más detalles

SECUENCIACIÓN DE SISTEMAS DE TIPO JOB SHOP MEDIANTE APRENDIZAJE AUTOMÁTICO

SECUENCIACIÓN DE SISTEMAS DE TIPO JOB SHOP MEDIANTE APRENDIZAJE AUTOMÁTICO SECUENCIACIÓN DE SISTEMAS DE TIPO JOB SHOP MEDIANTE APRENDIZAJE AUTOMÁTICO Paolo Priore Moreno Raúl Pino Diez Alberto Gómez Gómez UNIVERSIDAD DE OVIEDO Una forma habitual de secuenciar de modo dinámico

Más detalles

Matrices. Definiciones básicas de matrices. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.mx

Matrices. Definiciones básicas de matrices. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.mx Matrices Definiciones básicas de matrices wwwmathcommx José de Jesús Angel Angel jjaa@mathcommx MathCon c 2007-2008 Contenido 1 Matrices 2 11 Matrices cuadradas 3 12 Matriz transpuesta 4 13 Matriz identidad

Más detalles

Optimización de la distribución del personal de juegos de un casino través de la Programación Lineal

Optimización de la distribución del personal de juegos de un casino través de la Programación Lineal Optimización de la distribución del personal de juegos de un casino través de la Programación Lineal Juan Pablo Bulbulian, Jonathan Gastrell, Exequiel Iván Tagni, y Santiago Manopella Universidad Tecnológica

Más detalles

Un algoritmo evolutivo simple para el problema de asignación de tareas a procesadores

Un algoritmo evolutivo simple para el problema de asignación de tareas a procesadores Un algoritmo evolutivo simple para el problema de asignación de tareas a procesadores Pablo Ezzatti CeCal, Facultad de Ingeniería Universidad de la República, Uruguay pezzatti@fing.edu.uy Sergio Nesmachnow

Más detalles

Fascículo 2. Álgebra Lineal. Cursos de grado. Gabriela Jeronimo Juan Sabia Susana Tesauri. Universidad de Buenos Aires

Fascículo 2. Álgebra Lineal. Cursos de grado. Gabriela Jeronimo Juan Sabia Susana Tesauri. Universidad de Buenos Aires Fascículo 2 Cursos de grado ISSN 1851-1317 Gabriela Jeronimo Juan Sabia Susana Tesauri Álgebra Lineal Departamento de Matemática Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires 2008

Más detalles

Sistemas, modelos y simulación

Sistemas, modelos y simulación Sistemas, modelos y simulación Introducción I Un SISTEMA es una colección de entidades (seres o máquinas) que actúan y se relacionan hacia un fin lógico. Ejemplo: Un banco con: Cajeros [comerciales] [cajas

Más detalles

Uso de una Colonia de Hormigas. para resolver Problemas de Programación. de Horarios

Uso de una Colonia de Hormigas. para resolver Problemas de Programación. de Horarios LABORATORIO NACIONAL DE INFORMÁTICA AVANZADA A. C. Centro de Enseñanza LANIA Uso de una Colonia de Hormigas para resolver Problemas de Programación de Horarios Tesis que presenta: Emanuel Téllez Enríquez

Más detalles

Un algoritmo evolutivo simple para el problema de asignación de tareas a procesadores

Un algoritmo evolutivo simple para el problema de asignación de tareas a procesadores Un algoritmo evolutivo simple para el problema de asignación de tareas a procesadores Pablo Ezzatti CeCal, Facultad de Ingeniería Universidad de la República, Uruguay pezzatti@fing.edu.uy Sergio Nesmachnow

Más detalles

Algoritmos de planificación basados en restricciones para la sustitución de componentes defectuosos Irene Barba Rodríguez, 48861238S irenebr@us.

Algoritmos de planificación basados en restricciones para la sustitución de componentes defectuosos Irene Barba Rodríguez, 48861238S irenebr@us. Algoritmos de planificación basados en restricciones para la sustitución de componentes defectuosos Irene Barba Rodríguez, 48861238S irenebr@us.es Supervised by Prof. Dr. Carmelo del Valle Sevillano Thesis

Más detalles

Cinemática Inversa del Robot. CI-2657 Robótica M.Sc. Kryscia Ramírez Benavides

Cinemática Inversa del Robot. CI-2657 Robótica M.Sc. Kryscia Ramírez Benavides Cinemática Inversa del Robot M.Sc. Kryscia Ramírez Benavides Introducción Resuelve la configuración que debe adoptar el robot para una posición y orientación del extremo conocidas. 2 Introducción (cont.)

Más detalles