El Jacobiano y el grupo de Picard de una curva

Tamaño: px
Comenzar la demostración a partir de la página:

Download "El Jacobiano y el grupo de Picard de una curva"

Transcripción

1 El Jacobiano y el grupo de Picard de una curva 1. Definición del Jacobiano Sea X una superficie de Riemann compacta de género g, y Ω 1 X el espacio vectorial de las formas diferenciales holomorfas. Se puede demostrar que dim C Ω 1 X = g; yo lo he visto de dos formas: 1. Se construye una base del espacio de las formas armónicas H X, y mediante un isomorfismo con C g se ve que dim C H X = g. Además, H X = Ω 1 X Ω1 X, y entonces como Ω1 X y Ω1 X son R-isomorfos, se tiene que dim C Ω 1 X = g.. Usando Riemann-Roch: Tenemos que para todo divisor D Div(X) y todo divisor canónico K KDiv(X) dim L(D) dim L(K D) = deg D + 1 g. Si ponemos D = K, obtenemos que dim L(K) = dim L (1) (0) = dim Ω 1 X = 1 + deg K + 1 g = g + g = g. Sea H 1 (X, Z) el primer grupo de homología de X (que es isomorfo al grupo fundamental abelianizado de X, π 1 (X)/[π 1 (X), π 1 (X)]). Ponemos H 1 (X, Z) = a 1,..., a g, b 1,..., b g Z. Podemos ver que H 1 (X, Z) (Ω 1 X ) de la siguiente forma: ponemos [γ] : Ω 1 X C donde ω γ ω. Se tiene que esto es efectivamente una inclusión. H 1 (X, Z) se llama el subgrupo de periodos. Definición Definimos el Jacobiano de X como JacX := (Ω 1 X ) /H 1 (X, Z). Sea {ω 1,..., ω g } una base de Ω 1 X. Vemos que JacX es un toro compleo, via la identificación λ + H 1 (X, Z) (λ(ω 1 ),..., λ(ω g )) + Λ, donde Λ = {( γ ω 1,..., γ ω g) : [γ] H 1 (X, Z)}. Entonces JacX C g /Λ. Eemplo JacP 1 = {0} (ya que Ω 1 P 1 = 0). Eemplo Sea X = C/L. Entonces Ω 1 X = dz C. Consideremos la aplicación X JacX tal que z + L z 0 dz + Λ = z + Λ. Tenemos que Λ = { γ dz : [γ] H 1(X, Z)} = L, y luego C/L JacX. Notamos que si una curva es isomorfa a su Jacobiano entonces necesariamente debe tener género igual a 1. Eemplo Consideremos la curva hiperelíptica X : y = x 6 1, y sea π : X Ĉ la función meromorfa tal que (x, y) x. Los puntos rama de esta función son precisamente las raíces de x 6 1; es decir, el conunto {1, e πi/3,..., e 5πi/3 }. Se tiene que dx Ω 1 X = y, xdx dy = y x 5, dy x 4. 1

2 Además, tenemos que el conunto {[γ] [η] H 1 (X, Z) : π γ = π η y unen puntos rama} genera H 1 (X, Z). Calculé entonces las integrales dy x 5, para ciertas curvas γ y η, y me dio que si JacX = C /L, entonces ( 1 L = ib 6, 1 ) ( 1 (e πi/3 e πik/3 ), ib 3, 1 ) (e πi/3 e πik/3 ) :, k 6 γ η γ η donde B(x, y) = 1 0 tx 1 (1 t) y 1 dt es la función beta. Moralea: No es fácil calcular Jacobianos!. El Jacobiano como variedad abeliana Recordamos que una variedad abeliana es un toro compleo C g /L unto a una forma Hermitiana no degenerada H : C g C g C tal que IH(L L) Z. dy x 4, Z Proposición.1 JacX es una variedad abeliana. Para demostrar esta proposición, basta encontrar la forma Hermitiana. Se pueden definir números de intersección en H 1 (X, Z) tales que a a k = 0 b b k = 0 a b k = δ k parra todo, k. Toda base que cumple esto se llama una base simpléctica. Para tal base existe una base de Ω 1 X (llamada base dual), digamos {ω 1,..., ω g }, tal que a ω k = δ k. La matriz periodo de JacX es Π = (I g τ), donde τ es una matriz simétrica con parte imaginaria Hermitiana positiva definida. Se tiene que una matriz J es la matriz de IH para alguna forma Hermitiana H que cumple lo buscado (y además principalmente polarizada) si y solamente si ΠJ 1 Π t = 0 y iπj 1 Π t es Hermitiana positiva definida. Si tomamos ( ) 0 Ig J = = (ℵ I g 0 ℵ k ) k (donde {ℵ 1,..., ℵ g } = {a 1,..., a g, b 1,..., b g }), entonces J cumple las propiedades anteriores: ΠJ 1 Π t = τ τ = 0 iπj 1 Π t = Iτ > 0. Por lo tanto, JacX es una variedad abeliana, y además obtuvimos que es principalmente polarizada.

3 3. La aplicación de Abel-Jacobi Sea X. Consideremos la aplicación A : X (Ω 1 X ) /H 1 (X, Z) tal que p p +H 1 (X, Z). Equivalentemente, podemos definir A : X C g /Λ donde p ( p ω 1,..., p ω g ) + Λ. Se llama la aplicación de Abel-Jacobi. Podemos extender esta aplicación a Div(X) mediante A( p X n p p) = p X n pa(p) (recordamos que un toro compleo es un grupo abeliano). Así obtenemos un homomorfismo A : Div(X) JacX. Es importante notar que A no depende del punto base. Consideremos la restricción A 0 : Div 0 (X) = ker(deg) JacX. Llegamos entonces al Teorema de Abel: Teorema 3.1 PDiv(X) = ker A 0. Esto implica entonces que sabemos exactamente cuándo un divisor de grado cero es principal. Es sorprendente el resultado aún en género 1: D = p X n p p es principal si y solamente si p X n p = 0 y p X n pp = 0 (en el toro). Otro teorema sorprendente: Teorema 3. A 0 es sobreyectiva. Como corolario, obtenemos que Div 0 (X)/PDiv(X) JacX. Sea g 1. En este caso vemos que A restringida a X es una inmersión, ya que si A(p) = A(q), obtenemos que como divisor A(p q) = 0, y luego p q es principal. Esto implica que existe f : X Ĉ meromorfa con un cero simple en p y un polo simple en q, y luego sería un isomorfismo. Esto contradice el hecho de que el género es mayor o igual que 1. Un corolario importante de esto es el siguiente: Corolario 3.3 Toda curva de género 1 es un toro compleo. Demostración Tenemos A : X JacX, y además en este caso JacX es una curva de género 1. Se ve que A es holomorfa e inyectiva, y por lo tanto es un isomorfismo. 4. El grupo de Picard Definimos PicX := Div(X)/PDiv(X) y Pic 0 X = Div 0 (X)/PDiv(X) (oo que sobre una variedad y un cuerpo cualquiera la definición es un poco distinta, pero coincide en el caso que la variedad sea suave). Muchas veces el Teorema de Abel se escribe como JacX Pic 0 X. Tenemos la secuencia exacta 0 Div 0 (X)/PDiv(X) inc PicX deg Z 0. Por la parte anterior, esto es simplemente 0 JacX PicX Z 0. 3

4 Consideremos ahora p X y ϕ : PicX Div 0 (X)/PDiv(X) tal que [D] D deg D p+pdiv(x). ϕ es un homomorfismo y ϕ inc = id. Esto implica que la secuencia exacta escinde, y luego PicX JacX Z. Sea f : X Y una aplicación holomorfa entre superficies de Riemann compactas. Notamos que f induce un homomorfismo f : Div(Y ) Div(X) (mediante pullback): f ( q Y n q q) = p X n f(p) (mult p f) p. Además, si D = (g) es principal, tenemos que f ((g)) = (g f), y también para un divisor D cualquiera se tiene deg f (D) = (deg f)(deg D). Por lo tanto, f define un homomorfismo PicY PicX y también un homomorfismo JacY JacX. Vemos entonces que Pic y Jac son functores contravariantes de la categoría de superficies de Riemann compactas con las aplicaciones holomorfas a la categoría de los grupos abelianos. 5. El grupo de Picard visto como fibrados en líneas Sea X una superficie de Riemann compacta; en toda esta sección veremos a X como un espacio topológico con la topología de Zariski (a menos que se diga otra cosa. Recuerde que la topología de Zariski es la topología cofinita, donde los abiertos son complementos de conuntos finitos). Sea E un conunto (que muchas veces en distintos contextos se pide que sea espacio topológico, variedad complea, variedad algebraica, etc.) y π : E X una función tal que: 1. Existe un cubrimiento por abiertos {U i } i I de X tal que para cada i existe una biyección (que en otros contextos va a ser una función continua, holomorfa, un morfismo, etc.) φ i : π 1 (U i ) U i C que cumple que pr φ = π.. Dados i,, φ i φ 1 : (U i I ) C (U i U ) C tiene la forma (x, v) (x, r x v) para algún r x C\{0} donde x r x es regular. Diremos que E es un fibrado en líneas de X. Los r x que corresponden a cada i, se denotarán por t i y se llaman funciones de transición. Eemplo El fibrado en líneas trivial es E = X C donde π : E X es la primera proyección. Notamos de la definición de un fibrado en líneas que cada fibrado en líneas se obtiene pegando fibrados triviales sobre cada U i a través de las funciones de transición. Definición Una función α : E E entre dos fibrados en líneas π : E X y π : E X es un homomorfismo si π α = π y si para todo par de funciones descritas antes φ 1 : π 1 (U i ) U i C y φ : (π ) 1 (U ) U C, se tiene que φ i α φ 1 : (U i U ) C (U i U ) C es de la forma (x, v) (x, f(x)v) para alguna función f regular en U i U. La definición de isomorfismo es obvia. Denotamos por LB(X) el conunto de todas las clases de isomorfismo de fibrados en líneas. Observamos que LB(X) tiene un producto natural (que llamaremos producto tensorial), donde si E y E corresponden a cubrimientos {U i } i I y {V m } m M con funciones de transición {t i } i, I y {s mn } m,n M, respectivamente, entonces E E se define por el cubrimiento {U i V m } (i,m) I M y por las funciones de transición {t i s mn } (i,,m,n) I M. Se tiene que LB(X) con forma un grupo abeliano. Definición Una sección racional sobre un fibrado en líneas π : E X es una función s : U E para algún abierto (Zariski) U X tal que 4

5 1. π s U = id U. para toda biyección descrita antes φ : π 1 (V ) V C (para algún abierto V X) se tiene que pr φ s V es racional (meromorfa). Definición Si s es una sección racional del fibrado en líneas π : E X (y este fibrado está definido por abiertos U i y funciones φ i : π 1 (U i ) U i C), definimos el orden de s en p U i como ord p s := ord p pr φ i s. Usando las funciones de transición, es fácil ver que esta definición no depende del cubrimiento. Con esto, definimos el divisor (s) := p X (ord ps) p. Proposición 5.1 Si s y s son dos secciones racionales del fibrado en líneas π : E C, entonces (s) (s ) (son linealmente equivalentes). En particular, observamos que podemos definir una aplicación H L : LB(X) PicX tal que E (s), donde s es cualquier sección racional de E. La siguiente proposición es interesante: Proposición 5. H L es un isomorfismo de grupos. Así obtenemos que PicX LB(X). De esta forma, podemos analizar y estudiar el grupo de Picard desde otro punto de vista. De hecho, tenemos los siguientes isomorfismos de grupos: PicX JacX Z LB(X) {haces invertibles sobre X} H 1 (X, O X). Eemplo Sea X una superficie de Riemann compacta, y sea {U i, φ i } un atlas para la estructura complea de X. Ponemos el fibrado en líneas trivial sobre cada U i (es decir, U i C). Sea T i = φ i φ 1 ; definimos las funciones de transición t i = T i φ i Ui U. Este fibrado en líneas se llama el fibrado tangente de X, y se denota por T. El nombre viene del hecho de que el haz de las secciones regulares de T (que denotaremos por O{T}) es isomorfo al haz invertible de campos de vectores tangentes regulares. en X (derivaciones que varían de una forma regular con la coordenada local). Eemplo Poniendo t i = T i φ i Ui U = (1/T i ) φ i Ui U, obtenemos otro fibrado en líneas llamado el fibrado canónico de X; se denota por K. El haz de secciones regulares de K (que denotaremos por O{K}) es isomorfo a Ω 1 X. Es bonito observar que T K es el fibrado trivial; es decir, como elementos de PicX son inversos el uno del otro. Además, como haces invertibles se tiene que O{T} O{K} = O X. 5

La equivalencia entre superficies de Riemann compactas y curvas suaves sobre C

La equivalencia entre superficies de Riemann compactas y curvas suaves sobre C La equivalencia entre superficies de Riemann compactas y curvas suaves sobre C 1. Proyección Sea X una superficie de Riemann compacta de género g, tal que X P n para algún n y tal que para cada p X, existe

Más detalles

Curvas No Singulares

Curvas No Singulares Curvas No Singulares 1. Algunos preliminares algebraicos Definición Sea K un cuerpo, G un grupo abeliano totalmente ordenado, y sea K = K\{0}. Una valuación de K con valores en G es una aplicación v :

Más detalles

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados.

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. ESTRUCTURAS ALGEBRAICAS GRADO EN MATEMÁTICAS. CURSO 215/216 Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. 1.1. Grupo abeliano libre. Bases. Definición 1.1. El grupo Z n con

Más detalles

SSA SESIÓN 4: ALGUNOS TEOREMAS GENERALES PARA CALCULAR SOBRE SUPERFICIES ALGEBRAICAS (POR GIANCARLO URZÚA)

SSA SESIÓN 4: ALGUNOS TEOREMAS GENERALES PARA CALCULAR SOBRE SUPERFICIES ALGEBRAICAS (POR GIANCARLO URZÚA) SSA SESIÓN 4: ALGUNOS TEOREMAS GENERALES PARA CALCULAR SOBRE SUPERFICIES ALGEBRAICAS (POR GIANCARLO URZÚA) NOTAS ESCRITAS POR ROBERT AUFFARTH Y ANIBAL VELOZO En esta sesión partiremos viendo dos temas

Más detalles

Tema 3.- Funciones y morfismos racionales sobre variedades. Explosiones.

Tema 3.- Funciones y morfismos racionales sobre variedades. Explosiones. Tema 3.- Funciones y morfismos racionales sobre variedades. Explosiones. En lo que sigue k denotará un cuerpo algebraicamente cerrado. 3.1.- Funciones regulares sobre variedades afines. Sea V un c.a.a.

Más detalles

Tema 3.- Funciones y morfismos racionales sobre variedades. Explosiones.

Tema 3.- Funciones y morfismos racionales sobre variedades. Explosiones. Tema 3.- Funciones y morfismos racionales sobre variedades. Explosiones. En lo que sigue k denotará un cuerpo algebraicamente cerrado. 3.1.- Funciones regulares sobre variedades afines. Sea Z un conjunto

Más detalles

Estructuras algebraicas Grado en Matemáticas. Curso 2013/2014. Apuntes de teoría. Departamento de Álgebra Universidad de Sevilla

Estructuras algebraicas Grado en Matemáticas. Curso 2013/2014. Apuntes de teoría. Departamento de Álgebra Universidad de Sevilla Estructuras algebraicas Grado en Matemáticas. Curso 2013/2014 Apuntes de teoría Departamento de Álgebra Universidad de Sevilla Tema 1: Grupos y subgrupos. Teorema de estructura. 1.1. Introducción Definición

Más detalles

Capítulo V. T 2 (e, e

Capítulo V. T 2 (e, e Capítulo V Métricas En este capítulo y en los siguientes, el cuerpo base de los espacios vectoriales que se consideren será de característica distinta de 2. Empecemos recordando las nociones básicas que

Más detalles

Estructuras algebraicas

Estructuras algebraicas Semana 10[1/14] 26 de abril de 2007 Semana 10[2/14] Grupos Un grupo es un caso particular de una estructura algebraica. Veremos que esta noción rescata ampliamente las propiedades de estructuras tales

Más detalles

Departamento de Ingeniería Matemática - Universidad de Chile

Departamento de Ingeniería Matemática - Universidad de Chile Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Álgebra Lineal 8-2 4. Transformaciones lineales 4.. Introducción SEMANA 8: TRANSFORMACIONES LINEALES Sea la matriz

Más detalles

Tema 3: Localización. 3.1 Anillos locales. Definición. Ejemplos. Proposición. Demostración. Un anillo A es local si tiene un único ideal maximal.

Tema 3: Localización. 3.1 Anillos locales. Definición. Ejemplos. Proposición. Demostración. Un anillo A es local si tiene un único ideal maximal. 3.1 Anillos locales Tema 3. Localización Anillos locales Anillos de fracciones Tema 3: Localización Definición Un anillo A es local si tiene un único ideal maximal. Ejemplos i) K ii) Z/ < p n > (p es un

Más detalles

ÁLGEBRA II Primer Cuatrimestre 2014

ÁLGEBRA II Primer Cuatrimestre 2014 ÁLGEBRA II Primer Cuatrimestre 2014 Práctica 3: Grupos - Tercera Parte 1. Si un grupo G actúa sobre un conjunto finito X, el carácter de X es la aplicación χ X : G 0 dada por χ X (g) = {x X : g x = x},

Más detalles

El diferencial exterior

El diferencial exterior Capítulo 8 El diferencial exterior 1. El diferencial exterior En esta sección estudiaremos el operador diferencial entre formas. Definición 8.1. Sea ω una k-forma en R n, ω = ω dx. El diferencial dω es

Más detalles

9 Grupos abelianos libres

9 Grupos abelianos libres 42 TEORIA DE GRUPOS 9 Grupos abelianos libres En Álgebra Lineal es clásica la estructura de espacio vectorial V sobre un cuerpo K. Esta sección trata de estudiar el caso análogo de un grupo abeliano sobre

Más detalles

El grupo lineal proyectivo. Homologías. Afinidades.

El grupo lineal proyectivo. Homologías. Afinidades. Tema 3- El grupo lineal proyectivo Homologías Afinidades 31 El grupo lineal proyectivo Recordamos que en el tema anterior hemos definido, para una variedad lineal proyectiva L P n no vacía, el grupo lineal

Más detalles

Notas núm dic, 2010

Notas núm dic, 2010 Mini-curso de introducción a los grupos de Lie, CIMAT, dic 2010 Notas núm. 1 6 dic, 2010 Temario del curso: Lunes, 6 dic: Definición y ejemplos de grupos de Lie y acciones de grupos de Lie. Martes, 7 dic:

Más detalles

Transformaciones Lineales

Transformaciones Lineales Transformaciones Lineales En lo que sigue denotaremos por K al conjunto R ó C Definición Sean V y W dos K-ev (espacios vectoriales sobre K Se llama transformación lineal de V en W a toda función T : V

Más detalles

Índice general. 4. Subgrupos de Lie Subgrupos de Lie Subvariedades Teorema de Cartan... 7

Índice general. 4. Subgrupos de Lie Subgrupos de Lie Subvariedades Teorema de Cartan... 7 Índice general 4. Subgrupos de Lie 3 4.1. Subgrupos de Lie.......................... 3 4.2. Subvariedades............................ 6 4.3. Teorema de Cartan......................... 7 1 2 ÍNDICE GENERAL

Más detalles

Variedades diferenciables

Variedades diferenciables Capítulo 10 Variedades diferenciables 1. Variedades diferenciables en R n A grandes rasgos, una variedad diferenciable es un conjunto que, localmente, es difeomorfo al espacio euclideano. En este capítulo

Más detalles

Estructuras algebraicas. Departamento de Álgebra. Apuntes de teoría

Estructuras algebraicas. Departamento de Álgebra.  Apuntes de teoría ESTRUCTURAS ALGEBRAICAS GRADO EN MATEMÁTICAS. CURSO 2015/2016 Apuntes de teoría Tema 1: Grupos y subgrupos. 1.1. Introducción Definición 1.1. Un grupo es un par (G, ), donde G es un conjunto no vacío,

Más detalles

Transformaciones lineales

Transformaciones lineales Semana 8 [1/62] 8 de septiembre de 27 Definiciones básicas Semana 8 [2/62] Definición Transformación lineal U, V dos espacios vectoriales sobre el mismo cuerpo Ã. T : U V es una transformación (o función)

Más detalles

TEMA 4. APLICACIONES LINEALES

TEMA 4. APLICACIONES LINEALES TEMA 4. APLICACIONES LINEALES 1.- Definición y propiedades. 2.- Aplicaciones lineales inyectivas y Suprayectivas. 3.- Núcleo, imagen, matriz asociada y rango de una aplicación lineal. 4.- Operaciones con

Más detalles

Transformaciones lineales

Transformaciones lineales CAPíTULO 4 Transformaciones lineales En este capítulo estudiamos las primeras propiedades de las transformaciones lineales entre espacios vectoriales. 1. Construcciones de transformaciones lineales Lema

Más detalles

F-ESPACIOS. 1.- Introducción

F-ESPACIOS. 1.- Introducción F-ESPACIOS 1.- Introducción Recordemos que un subconjunto A de un espacio topológico X se llama diseminado o raro (nowhere dense en ingés) si A=. Un subconjunto que se pueda escribir como unión numerable

Más detalles

Un elemento de un monoide se dice que es inversible si tiene elemento inverso.

Un elemento de un monoide se dice que es inversible si tiene elemento inverso. Tema 1: Semigrupos 1 Tema 1: Semigrupos 1. Semigrupos: Conceptos fundamentales. Recordemos que un sistema algebraico es un conjunto S con una o varias operaciones sobre él, siendo una operación ó ley de

Más detalles

Transformaciones Lineales (MAT023)

Transformaciones Lineales (MAT023) Transformaciones Lineales (MAT03 Primer semestre de 01 1 Verónica Gruenberg Stern DEFINICION Sean U, V dos espacios vectoriales sobre un cuerpo K y sea T : U V una función. Diremos que T es una transformación

Más detalles

a los anillos no conmutativos

a los anillos no conmutativos Tema 7.- Representaciones de grupos finitos. Introducción a los anillos no conmutativos 7.1 Nociones básicas En lo que sigue, k denotará un cuerpo arbitrario y los espacios vectoriales lo serán sobre k.

Más detalles

Estructuras Algebraicas

Estructuras Algebraicas Tema 1 Estructuras Algebraicas Definición 1 Sea A un conjunto no vacío Una operación binaria (u operación interna) en A es una aplicación : A A A Es decir, tenemos una regla que a cada par de elementos

Más detalles

Espacio tangente. Capítulo VIII. 1. Preliminares: funciones meseta

Espacio tangente. Capítulo VIII. 1. Preliminares: funciones meseta Capítulo VIII Espacio tangente 1. Preliminares: funciones meseta Comenzaremos probando la existencia de funciones meseta, las cuales serán muy útiles para probar a su vez la existencia de otras funciones

Más detalles

Tema 2. Grupos. 3. El conjunto de matrices de orden 2 con coeficientes enteros (o reales) con la suma es un grupo conmutativo.

Tema 2. Grupos. 3. El conjunto de matrices de orden 2 con coeficientes enteros (o reales) con la suma es un grupo conmutativo. Tema 2. Grupos. 1 Grupos Definición 1 Un grupo es una estructura algebraica (G, ) tal que la operación binaria verifica: 1. * es asociativa 2. * tiene elemento neutro 3. todo elemento de G tiene simétrico.

Más detalles

FUNCIONES MEROMORFAS. EL TEOREMA DE LOS RESIDUOS Y ALGUNAS DE SUS CONSECUENCIAS

FUNCIONES MEROMORFAS. EL TEOREMA DE LOS RESIDUOS Y ALGUNAS DE SUS CONSECUENCIAS FUNCIONES MEROMORFAS. EL TEOREMA DE LOS RESIDUOS Y ALGUNAS DE SUS CONSECUENCIAS. FUNCIONES MEROMORFAS Definición.. Se dice que una función es meromorfa en un abierto Ω de C si f es holomorfa en Ω excepto

Más detalles

CÁLCULO II Grados en Ingeniería

CÁLCULO II Grados en Ingeniería CÁLCULO II Grados en Ingeniería Domingo Pestana Galván José Manuel Rodríguez García Figuras realizadas con Arturo de Pablo Martínez Capítulo 1. Cálculo diferencial 1.1 Funciones. Límites y continuidad

Más detalles

Con esta definición de grupo, es directo que el neutro es único, al igual que el inverso de. , donde es conmutativo, se denomina Abeliano.

Con esta definición de grupo, es directo que el neutro es único, al igual que el inverso de. , donde es conmutativo, se denomina Abeliano. Teoría de Grupos Definiciones Básicas Definición 5 (Grupo) Sea una estructura algebraica con una ley de composición interna. Decimos que es un grupo si: 1. es asociativa. 2. tiene neutro. 3. toda tiene

Más detalles

Aplicaciones lineales

Aplicaciones lineales Aplicaciones lineales María Muñoz Guillermo maria.mg@upct.es U.P.C.T. Matemáticas I M. Muñoz (U.P.C.T.) Aplicaciones lineales Matemáticas I 1 / 32 Contenidos 1 Definición y propiedades Definición de aplicación

Más detalles

Ejercicios de álgebra homológica

Ejercicios de álgebra homológica Ejercicios de álgebra homológica Alexey Beshenov cadadr@gmail.com 10 de septiembre de 2016 R-módulos 1 El R-módulo libre R X se caracteriza de modo único, salvo isomorfismo, por la propiedad universal

Más detalles

Problemas de VC para EDVC elaborados por C. Mora, Tema 4

Problemas de VC para EDVC elaborados por C. Mora, Tema 4 Problemas de VC para EDVC elaborados por C. Mora, Tema 4 Ejercicio Determinar las funciones enteras f para las que Solución f( + w) = f()f(w), w C. En primer lugar, f(0) = f(0 + 0) = f(0)f(0) = f(0) 2,

Más detalles

Anuladores. Objetivos. Definir el concepto de anuladores y estudiar sus propiedades principales.

Anuladores. Objetivos. Definir el concepto de anuladores y estudiar sus propiedades principales. Anuladores Objetivos. Definir el concepto de anuladores y estudiar sus propiedades principales. Requisitos. Espacio dual, espacio bidual, base dual.. Definición (anulador de un subconjunto de un espacio

Más detalles

58 7. ESPACIOS COCIENTE

58 7. ESPACIOS COCIENTE CAPíULO 7 Espacios cociente En esta sección estudiamos el cociente de un espacio vectorial por un subespacio W. Este cociente se define como el conjunto cociente de por una relación de equivalencia conveniente.

Más detalles

El espacio proyectivo P n (k). Sistemas de referencia. Dualidad. Departamento de Algebra Septiembre El espacio proyectivo P n (k).

El espacio proyectivo P n (k). Sistemas de referencia. Dualidad. Departamento de Algebra Septiembre El espacio proyectivo P n (k). Notas de la asignatura AMPLIACIÓN DE GEOMETRÍA de la Licenciatura de Matemáticas, Facultad de Matemáticas, Universidad de Sevilla, para el curso 2000-01 Departamento de Algebra Septiembre 2000 Tema 1-

Más detalles

ESPACIOS RECUBRIDORES FRANCISCO URBANO

ESPACIOS RECUBRIDORES FRANCISCO URBANO ESPACIOS RECUBRIDORES FRANCISCO URBANO 1. Introducción y ejemplos Definición 1. Un espacio topológico X es localmente arco-conexo si todo punto posee una base de entornos arco-conexos, esto es si para

Más detalles

Exposicion de Teoria de Galois

Exposicion de Teoria de Galois Exposicion de Teoria de Galois Fernando Sánchez Castellanos Villafuerte 14 de diciembre de 2008 1. Introduccion Definición 1. Un grupo topologico, es un grupo G juntpo con una topologia tal que satisface:

Más detalles

Espacio tangente. Capítulo VIII. 1. Preliminares: funciones meseta

Espacio tangente. Capítulo VIII. 1. Preliminares: funciones meseta Capítulo VIII Espacio tangente 1. Preliminares: funciones meseta Comenzaremos probando la existencia de funciones meseta, las cuales serán muy útiles para probar a su vez la existencia de otras funciones

Más detalles

5. Aplicaciones Lineales

5. Aplicaciones Lineales Contents 5 Aplicaciones Lineales 2 5.1 Aplicaciones lineales. Definición y propiedades........................ 2 5.2 Núcleo e Imagen.................................................... 3 5.3 Descomposición

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Aplicaciones Lineales AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Aplicaciones Lineales 1 / 47 Objetivos Al finalizar este tema tendrás que: Saber si una aplicación es

Más detalles

Tema 5: Elementos de geometría diferencial

Tema 5: Elementos de geometría diferencial Tema 5: Elementos de geometría diferencial José D. Edelstein Universidade de Santiago de Compostela FÍSICA MATEMÁTICA Santiago de Compostela, abril de 2011 Coordenadas locales y atlas. Funciones y curvas.

Más detalles

Álgebras de Boole. Definición 1 Un álgebra de Boole es un conjunto parcialmente ordenado (B, ) que verifica las siguientes condiciones:

Álgebras de Boole. Definición 1 Un álgebra de Boole es un conjunto parcialmente ordenado (B, ) que verifica las siguientes condiciones: Álgebras de Boole Sea (P, ) un conjunto parcialmente ordenado y sea S un subconjunto de P. Una cota superior de S es un elemento c P tal que s c para todo s S. Una cota inferior de S es un elemento d P

Más detalles

Métodos Matemáticos: Análisis Funcional

Métodos Matemáticos: Análisis Funcional Licenciatura en Ciencias y Técnicas Estadísticas Universidad de Sevilla http://euler.us.es/ renato/clases.html Espacios eucĺıdeos Definición Se dice que un espacio vectorial E es un espacio eucĺıdeo si

Más detalles

Espacios vectoriales con producto interno

Espacios vectoriales con producto interno Espacios vectoriales con producto interno Problemas teóricos En todos los problemas relacionados con el caso complejo se supone que el producto interno es lineal con respecto al segundo argumento. Definición

Más detalles

UNIVERSIDAD DE CONCEPCION FACULTAD DE CIENCIAS FISICAS Y MATEMATICAS DEPARTAMENTO DE INGENIERIA MATEMATICA

UNIVERSIDAD DE CONCEPCION FACULTAD DE CIENCIAS FISICAS Y MATEMATICAS DEPARTAMENTO DE INGENIERIA MATEMATICA AL GEBRA III UNIVERSIDAD DE CONCEPCION FACULTAD DE CIENCIAS FISICAS Y MATEMATICAS DEPARTAMENTO DE INGENIERIA MATEMATICA ALGEBRA III DEFINICION : Sea L : V V un operador lineal sobre el espacio vectorial

Más detalles

1 Los números complejos, operaciones y propiedades

1 Los números complejos, operaciones y propiedades TEMA 1 LOS NÚMEROS COMPLEJOS, ESTRUCTURA ALGEBRAICA TOPOLOGÍA 1 Los números complejos, operaciones y propiedades 11 El cuerpo C de los números complejos 1 El espacio vectorial normado de los números complejos

Más detalles

Polaridad. Tangentes. Estudio geométrico de cónicas y cuádricas

Polaridad. Tangentes. Estudio geométrico de cónicas y cuádricas Tema 6- Polaridad Tangentes Estudio geométrico de cónicas y cuádricas En este tema pretendemos estudiar propiedades de V(Q), especialmente en los casos real y complejo, con n =2,3 Para ello, necesitamos

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Capítulo 5 Aplicaciones Lineales 51 Definición y Propiedades Sean V y W dos espacios vectoriales sobre el mismo cuerpo K Definición 511 Se dice que una aplicación f : V W es una aplicación lineal o un

Más detalles

EL TEOREMA DE SEIFERT-VAN KAMPEN. 1. Preliminares sobre grupos

EL TEOREMA DE SEIFERT-VAN KAMPEN. 1. Preliminares sobre grupos EL TEOREMA DE SEIFERT-VAN KAMPEN 1. Preliminares sobre grupos Sea G un grupo. Denotaremos de forma multiplicativa la operación en G. Así, el producto de x, y G es x y, y el inverso de x G es x 1. Para

Más detalles

Tema 8.- Anillos y cuerpos

Tema 8.- Anillos y cuerpos Tema 8.- Anillos y cuerpos Definición.- Un anillo es una terna (A, +, ) formada por un conjunto A y dos operaciones internas y binarias +, verificando: 1. El par (A, +) es un grupo abeliano, cuyo elemento

Más detalles

Clases características

Clases características Clases características FACULTAD DE CIENCIAS, UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA (30 de Noviembre 5 de Diciembre 2009) José Luis Cisneros Molina 1 Prefacio Las presentes notas cubren el contenido del

Más detalles

Espacios vectoriales

Espacios vectoriales CAPíTULO 2 Espacios vectoriales 1. Definición de espacio vectorial Es frecuente representar ciertas magnitudes físicas (velocidad, fuerza,...) mediante segmentos orientados o vectores. Dados dos de tales

Más detalles

Teoría de anillos. Dominios, cuerpos y cuerpos de fracciones.

Teoría de anillos. Dominios, cuerpos y cuerpos de fracciones. Tema 5.-. Teoría de anillos. Dominios, cuerpos y cuerpos de fracciones. 5.1. Anillos y cuerpos Definición 5.1.1. Un anillo es una terna (A, +, ) formada por un conjunto A y dos operaciones binarias +,

Más detalles

Campos finitos y teoría de Galois

Campos finitos y teoría de Galois Campos finitos y teoría de Galois José Ibrahim Villanueva Gutiérrez 1. Campos finitos 1.0.1. Campos finitos Recordemos la siguiente definición. Definición 1. Un campo K es un conjunto con dos operaciones

Más detalles

Introducción a la Teoría de Códigos

Introducción a la Teoría de Códigos Introducción a la Teoría de Códigos M.A.García, L. Martínez, T.Ramírez Facultad de Ciencia y Tecnología. UPV/EHU Resumen Teórico Tema 1: PRELIMINARES SOBRE ÁLGEBRA LINEAL Mayo de 2017 Tema 1 Preliminares

Más detalles

Segundo Cuatrimestre 2005 Práctica 4

Segundo Cuatrimestre 2005 Práctica 4 Topología Segundo Cuatrimestre 2005 Práctica 4 Compacidad. 1) Sea X un espacio topológico. Probar que son equivalentes: a) X es cuasi-compacto. b) Para todo espacio topológico Y, y para todo abierto W

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Capítulo 7 Aplicaciones Lineales 7.1 Definición y Propiedades Sean V y W dos espacios vectoriales sobre el mismo cuerpo K. Definición 7.1.1 Se dice que una aplicación f : V W es una aplicación lineal o

Más detalles

El teorema de Stokes. 1. Integración de formas en variedades

El teorema de Stokes. 1. Integración de formas en variedades Capítulo 12 El teorema de Stokes 1. Integración de formas en variedades En esta sección definimos la integral de una k-forma diferencial ω definida en una variedad diferenciable en R n de dimensión k,

Más detalles

Descomposición de dos Anillos de Funciones Continuas

Descomposición de dos Anillos de Funciones Continuas Miscelánea Matemática 38 (2003) 65 75 SMM Descomposición de dos Anillos de Funciones Continuas Rogelio Fernández-Alonso Departamento de Matemáticas Universidad Autónoma Metropolitana-I 09340 México, D.F.

Más detalles

Apuntes de Grupos de Lie

Apuntes de Grupos de Lie Apuntes de Grupos de Lie Badajoz, 30 de diciembre de 2017 Volumen 3 Fig. La Variedad de los triángulos Dpto. de Matemáticas Univ. de Extremadura Apuntes de Grupos de Lie Dpto. de Matemáticas Univ. de

Más detalles

La Diferencial de Fréchet

La Diferencial de Fréchet Capítulo 6 La Diferencial de Fréchet Es bien conocido que una función de una variable f es derivable en un punto a si y sólo si su gráfica admite una recta tangente (no vertical) en el punto (a, f(a)).

Más detalles

Cohomología de grupos, día 1

Cohomología de grupos, día 1 Cohomología de grupos, día 1 Alexey Beshenov (cadadr@gmail.com) 30 de agosto de 2016 Hay varios modos de definir la cohomología y homología de grupos. Ya hemos estudiado la teoría general de funtores derivados,

Más detalles

Teorema de Lagrange. En esta sección demostramos algunos hechos básicos sobre grupos, que se pueden deducir de la definición

Teorema de Lagrange. En esta sección demostramos algunos hechos básicos sobre grupos, que se pueden deducir de la definición Teorema de Lagrange Capítulo 3 3.1 Introducción En este capítulo estudiaremos uno de los teoremas más importantes de toda la teoría de grupos como lo es el Teorema de Lagrange. Daremos en primer lugar

Más detalles

1 Introducción al Álgebra conmutativa

1 Introducción al Álgebra conmutativa 1 Introducción al Álgebra conmutativa Escrito por: Patrizio Guagliardo y Miguel Monsalve. A continuación, daremos algunas definiciones básicas de estructuras algebraicas para empezar a trabajar rápidamente

Más detalles

Departamento de Ingeniería Matemática - Universidad de Chile

Departamento de Ingeniería Matemática - Universidad de Chile Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Álgebra Lineal 08-2 SEMANA 7: ESPACIOS VECTORIALES 3.5. Generadores de un espacio vectorial Sea V un espacio vectorial

Más detalles

Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados

Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados Capítulo 5 Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados En este tema iniciamos el estudio de los conceptos geométricos de distancia y perpendicularidad en K n. Empezaremos con las definiciones

Más detalles

Aplicaciones Lineales (Curso )

Aplicaciones Lineales (Curso ) ÁLGEBRA Práctica 6 Aplicaciones Lineales (Curso 2009 2010) 1. De las siguientes aplicaciones definidas entre espacios vectoriales reales determinar cuáles son homomorfismos monomorfismos epimorfismos o

Más detalles

Definición 1 Un semigrupo es un conjunto E provisto de una operación binaria asociativa sobre E, se denota por (E, ).

Definición 1 Un semigrupo es un conjunto E provisto de una operación binaria asociativa sobre E, se denota por (E, ). ALGEBRA La primera parte del presente libro está dedicada a las estructuras algebraicas. En esta parte vamos a iniciar agregándole a los conjuntos operaciones. Cuando las operaciones tienen determinadas

Más detalles

Transformaciones lineales

Transformaciones lineales Transformaciones lineales. Determine si las siguientes aplicaciones son o no lineales. Justifique su respuesta: a) T : R R; T( x) = x b) T : R R ; T(x, y) = (x y, x) c) T : R R ; T(x, y, z) = ( y, z x

Más detalles

ELEMENTOS DE ANÁLISIS FUNCIONAL

ELEMENTOS DE ANÁLISIS FUNCIONAL ELEMENTOS DE ANÁLISIS FUNCIONAL Guillermo Ames Universidad Tecnológica Nacional - Facultad Regional Córdoba 2011 TEMA 1: NOCIONES BÁSICAS DE ESPACIOS MÉTRICOS Espacios métricos: definición y ejemplos Definición

Más detalles

1. La topología inducida.

1. La topología inducida. PRACTICO 4. ESPACIOS METRICOS. 1. La topología inducida. Sea (M, d) un espacio métrico. La bola abierta de centro x y radio r es el conjunto B(x; r) = {y M : d(x, y) < r}. La bola cerrada de centro x y

Más detalles

Podemos pues formular los dos problemas anteriores en términos de matrices.

Podemos pues formular los dos problemas anteriores en términos de matrices. Tema 5 Diagonalización 51 Introducción Valores y vectores propios 511 Planteamiento del problema Problema general de diagonalización Dado un operador lineal f sobre un espacio vectorial V de dimensión

Más detalles

Ecuaciones de Estructura de Cartan

Ecuaciones de Estructura de Cartan Ecuaciones de Estructura de Cartan 1. Formas asociadas a referenciales Sea M una superficie orientada con forma de área d a. Notaremos por Ω k M al conjunto de las k-formas diferenciales de M, y por X

Más detalles

Teoría de la Dimensión

Teoría de la Dimensión Capítulo II Teoría de la Dimensión En este capítulo introduciremos una de las propiedades más importantes que tienen los espacios vectoriales: la dimensión. Dos son los modos posibles de llegar a la noción

Más detalles

Funciones Racionales en Variedades Algebraicas

Funciones Racionales en Variedades Algebraicas Funciones Racionales en Variedades Algebraicas Sea U un abierto denso en una variedad algebraica V afín o proyectiva y sea r O(U). Una extensión de r es una función r O(U ) donde U es un abierto que contiene

Más detalles

Tema 1. Espacios Vectoriales Definición de Espacio Vectorial

Tema 1. Espacios Vectoriales Definición de Espacio Vectorial Tema 1 Espacios Vectoriales. 1.1. Definición de Espacio Vectorial Notas 1.1.1. Denotaremos por N, Z, Q, R, C, a los conjuntos de los números Naturales, Enteros, Racionales, Reales y Complejos, respectivamente.

Más detalles

Variable Compleja I. Maite Fernández Unzieta Universidad de Guanajuato Enero Junio Eugenio Daniel Flores Alatorre

Variable Compleja I. Maite Fernández Unzieta Universidad de Guanajuato Enero Junio Eugenio Daniel Flores Alatorre Variable Compleja I Maite Fernández Unzieta Universidad de Guanajuato Enero Junio 2012 Eugenio Daniel Flores Alatorre Bibliografía Complex Analysis 3rd ed. Ahlfors Basic Complex Analysis Functions of one

Más detalles

4. Espacios vectoriales

4. Espacios vectoriales Contents 4 Espacios vectoriales 2 4.1 Dependencia e independencia lineal.................................. 4 4.2 Subespacios vectoriales.............................................. 7 4.3 Bases y dimensión..................................................

Más detalles

1. Campos vectoriales y formas diferenciales

1. Campos vectoriales y formas diferenciales Capítulo Orientación. Campos vectoriales formas diferenciales En este capítulo introduciremos el concepto de orientación, mu importante en el análisis de variedades, en particular la teoriá de integración.

Más detalles

Homomorfismos de cuerpos. Extensiones normales. Teorema fundamental de la teoría de Galois.

Homomorfismos de cuerpos. Extensiones normales. Teorema fundamental de la teoría de Galois. 1 Tema 9.-. Homomorfismos de cuerpos. Extensiones normales. Teorema fundamental de la teoría de Galois. 9.1. Caracteres de un grupo. A la hora de resolver una ecuación f(x) = 0 con f(x) k[x], tomamos un

Más detalles

Álgebra Lineal. Tema 11. El Teorema Espectral en R. Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas

Álgebra Lineal. Tema 11. El Teorema Espectral en R. Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas Álgebra Lineal Tema. El Teorema Espectral en R Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas AUTORES: J. S ALAS, A. T ORRENTE Y E.J.S. V ILLASEÑOR Índice

Más detalles

Dualidad. 1. Dual de una transformación lineal

Dualidad. 1. Dual de una transformación lineal CAPíTULO 8 Dualidad 1. Dual de una transformación lineal En este capítulo volveremos a considerar el tema de la dualidad de espacios vectoriales. Se recuerda que si V es un espacio vectorial, definimos

Más detalles

Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos.

Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos. Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada

Más detalles

k, k 0, H G subgrupo X H

k, k 0, H G subgrupo X H Capítulo 6 Generadores En este capítulo veremos más ejemplos concretos de grupos y subgrupos Un caso muy importante es el subgrupo generado por una colección de elementos Cuando un grupo puede ser generado

Más detalles

Grupos libres. Presentaciones.

Grupos libres. Presentaciones. S _ Tema 12.- Grupos libres. Presentaciones. 12.1 Grupos libres. En el grupo Z de los enteros vimos una propiedad (cf. ejemplos.5), que lo caracteriza como grupo libre. Lo enunciamos al modo de una Propiedad

Más detalles

TOPOLOGÍA Segundo Cuatrimestre 2009

TOPOLOGÍA Segundo Cuatrimestre 2009 TOPOLOGÍA Segundo Cuatrimestre 2009 Práctica 4: Topologías iniciales y finales Subespacios 1.1. Sea X un espacio topológico y sean Y X y Z Y subconjuntos. Muestre que la topología de Z como subespacio

Más detalles

9. DIFERENCIACIÓN DE FUNCIONES DE VARIAS VARIABLES.

9. DIFERENCIACIÓN DE FUNCIONES DE VARIAS VARIABLES. 9 DIFERENCIACIÓN DE FUNCIONES DE VARIAS VARIABLES 91 Derivadas parciales y direccionales de un campo escalar La noción de derivada intenta describir cómo resulta afectada una función y = f(x) por un cambio

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales Espacios Vectoriales Verónica Briceño V. noviembre 2013 Verónica Briceño V. () Espacios Vectoriales noviembre 2013 1 / 47 En esta Presentación... En esta Presentación veremos: Espacios

Más detalles

Topología en R n. Continuidad de funciones de varias variables

Topología en R n. Continuidad de funciones de varias variables . Continuidad de funciones de varias variables María Muñoz Guillermo maria.mg@upct.es U.P.C.T. Matemáticas I (1 o Grado en Ingeniería Electrónica Industrial y Automática) M. Muñoz (U.P.C.T.) Continuidad

Más detalles

Espacios topológicos. 3.1 Espacio topológico

Espacios topológicos. 3.1 Espacio topológico Capítulo 3 Espacios topológicos 3.1 Espacio topológico Definición 3.1.1. Un espacio topológico es un par (X, τ), donde X es un conjunto, y τ es una familia de subconjuntos de X que verifica las siguientes

Más detalles

Tema 1: Nociones básicas del Álgebra Lineal.

Tema 1: Nociones básicas del Álgebra Lineal. Nociones básicas del Álgebra Lineal 1 Tema 1: Nociones básicas del Álgebra Lineal 1 Conceptos fundamentales sobre espacios vectoriales y bases Definición Sea (K + ) un cuerpo y (V +) un grupo abeliano

Más detalles

Grupos de Lie. Tema Definiciones y primeros ejemplos

Grupos de Lie. Tema Definiciones y primeros ejemplos Índice general 1. Grupos de Lie 3 1.1. Definiciones y primeros ejemplos................. 3 1.1.1. Diferenciablidad de la inversión.............. 5 1.1.2. Morfismos.......................... 6 1.1.3. Nuevos

Más detalles

FUNCIONES THETA DE RIEMANN. 1. Introducción

FUNCIONES THETA DE RIEMANN. 1. Introducción FUNCIONES THETA DE RIEMANN ESTEBAN GÓMEZ GONZÁLEZ JOSÉ M. MUÑOZ PORRAS 1. Introducción El objetivo de este artículo es presentar al lector no especializado una introducción al tema de las funciones theta

Más detalles