IEM-315-T Ingeniería Eléctrica

Tamaño: px
Comenzar la demostración a partir de la página:

Download "IEM-315-T Ingeniería Eléctrica"

Transcripción

1 IEM-315-T Ingeniería Eléctrica Circuitos en el Régimen Senoidal Permanente.

2 Introducción. En la ingeniería eléctrica, las funciones de excitación senoidales tienen gran importancia, puesto que las señales de fuentes de alimentación y comunicación se transmiten generalmente en forma de sinusoides o sinusoides modificadas. Se considera una fuente de voltaje: v(t) = V M sen wt O en el caso de una fuente de corriente: i(t) = I M sen wt VM sen wt + - IM sen wt Fuente de Voltaje senoidal Fuente de Corriente senoidal

3 El Generador de una onda senoidal. El generador eléctrico es una máquina que se utiliza para convertir la energía mecánica en eléctrica, con medios electromagnéticos. El funcionamiento de los generadores se basa en el principio físico de la inducción, descubierto por el científico e inventor británico Michael Faraday en Este principio establece que si un conductor se mueve a través de un campo magnético, o si está situado en las proximidades de un circuito de conducción fijo cuya intensidad puede variar, se establece o se induce una corriente en el conductor.

4 Propiedades de la onda senoidal: Amplitud, Periodo, Frecuencia, Angulo de Fase, Valor Eficaz. Consideremos el siguiente voltaje variable senoidalmente: la gráfica de este voltaje es: v(t) = V M sen wt v(t) VM 3π 2 π 2 π 2π t -VM

5 Amplitud. La amplitud (o valor máximo) de la onda senoidal es V M, y el argumento es wt. La frecuencia en radianes, o frecuencia angular, corresponde a w. Periodo. En la figura anterior, V M sen wt se grafica en función del argumento wt, de donde resulta evidente la naturaleza periódica de la onda senoidal. La función se repite cada 2π radianes y su periodo T es en consecuencia 2π radianes.

6 Frecuencia. La forma de onda se grafica como una función del tiempo. v(t) VM 3T 4 T 4 T 2 T t -VM Notemos que esta función recorre un periodo cada T segundos: en otras palabras, en 1 segundo recorre 1/T periodos o ciclos. El número de ciclos por segundo, es la frecuencia f, donde

7 La frecuencia f está en ciclos por segundo, más comúnmente llamados hertz (Hz) en honor al científico Heinrich Hertz. Ahora, como wt = 2π como se muestra en la figura anterior, tenemos que Que es la relación general entre el periodo en segundos, la frecuencia en hertz y frecuencia angular en radianes.

8 Angulo de Fase. Consideremos ahora la siguiente expresión general para una función senoidal: v(t) = V M sen (wt + Ɵ) En este caso, (wt + Ɵ) es el argumento de la función seno, y Ɵ se llama ángulo de fase. La gráfica de esta función sería: v(t) VM VM sen wt Θ -VM π 2 VM sen (wt + Θ) π 3π 2 2π t

9 De la gráfica anterior, debido a la presencia del ángulo de fase, cualquier punto de la forma de onda v 2 (t) ocurre Ɵ radianes antes que el punto correspondiente en la forma de onda v 1 (t). Por lo tanto, decimos que v 1 (t) se retrasa en Ɵ radianes de v 2 (t). También es correcto decir que v 2 (t) se adelanta en Ɵ radianes de v 1 (t). En cualquier caso, adelantada o retrasada, decimos que las sinusoides están fuera de fase. Si los ángulos de fase son iguales, se dice que las sinusoides están en fase.

10 Valor Medio Eficaz o RMS de una onda senoidal. El valor medio eficaz es una medida de la eficacia de una fuente al suministrar potencia a una carga. Supongamos que tenemos la siguiente corriente i(t) = I M sen wt. El valor RMS de una onda sinusoidal el igual al valor máximo dividido entre 2. De aquí que una corriente senoidal con un valor máximo de I M entrega la misma potencia promedio a una resistencia R que una corriente dc con un valor de I M / 2.

11 Fasores. Un fasor es un número complejo que representa la amplitud y la fase de una senoide. Los fasores brindan un medio sencillo para analizar circuitos lineales excitados por fuentes senoidales; las soluciones de tales circuitos serían impracticables de otra manera. Un número complejo A puede escribirse en forma rectangular como donde j = -1; X es la parte real de A; Y es la parte imaginaria de A. A = X + jy

12 Transformación Fasorial. Relaciones fasoriales para R, L y C. El Resistor. Para la figura anterior tenemos que v(t) = R.i(t). Por lo tanto, V M e j(wt + Ɵ) = R.I M ej(wt + φ) Si dividimos por e jwt, tenemos: V M e jɵ = R.I M e jφ Por lo tanto, V = R.I

13 El Inductor. Por lo tanto, V = jwl.i

14 El Capacitor. Por lo tanto, I = jwc.v

15 Impedancia. Las relaciones de corriente voltaje para los tres elementos pasivos en el dominio de la frecuencia son: Se define la impedancia Z de un elemento como la razón del voltaje fasorial a la corriente fasorial. Por tanto: Esta se llama ley de Ohm en notación fasorial.

16 Puesto que la impedancia es un numero complejo, se puede expresar en las siguientes formas: donde R es la parte real de la impedancia, y suele llamarse parte resistiva; mientras que X es la parte imaginaria de la impedancia, y suele llamarse la parte reactiva. La magnitud de la impedancia es: Y el ángulo de fase es:

17 La validez de las dos leyes de Kirchhoff en el dominio de la frecuencia conduce al hecho de que se pueden combinar las impedancias en serie y paralelo mediante las mismas reglas ya establecidas por las resistencias. Es decir, si hay n impedancias conectadas en serie, la impedancia equivalente será: Si hay n impedancias conectadas en paralelo, la impedancia equivalente será:

18 Admitancia. El reciproco de la impedancia se llama admitancia, y se representa por Y. La admitancia es análoga a la conductancia en los circuitos resistivos. Sus unidades son siemens, que se abrevia S. Si utilizamos la forma Y = R + jx, se obtiene La parte real de la admitancia (G) se llama conductancia, y la parte imaginaria (B) se llama susceptancia. Las unidades de G y B son siemens.

CIRCUITOS DE CORRIENTE ALTERNA

CIRCUITOS DE CORRIENTE ALTERNA Departamento de Ingeniería Eléctrica Universidad Nacional de Mar del Plata Área Electrotecnia Electrotecnia (para la Carrera Ingeniería Mecánica) CIRCUITOS DE CORRIENTE ALTERNA Profesor Adjunto: Ingeniero

Más detalles

FISICA GENERAL III 2012 Guía de Trabajo Practico No 9 ANÁLISIS DE CIRCUITOS RL, RC Y RCL SERIE Y PARALELO. R. Comes y R. Bürgesser

FISICA GENERAL III 2012 Guía de Trabajo Practico No 9 ANÁLISIS DE CIRCUITOS RL, RC Y RCL SERIE Y PARALELO. R. Comes y R. Bürgesser FISICA GENERAL III 2012 Guía de Trabajo Practico No 9 ANÁLISIS DE CIRCUITOS RL, RC Y RCL SERIE Y PARALELO. R. Comes y R. Bürgesser Objetivos: Estudiar el comportamiento de distintos elementos (resistores,

Más detalles

PROGRAMA IEM-212 Unidad I: Circuitos AC en el Estado Senoidal Estable.

PROGRAMA IEM-212 Unidad I: Circuitos AC en el Estado Senoidal Estable. PROGRAMA IEM-212 1.1 Introducción. En el curso anterior consideramos la Respuesta Natural y Forzada de una red. Encontramos que la respuesta natural era una característica de la red, e independiente de

Más detalles

TRABAJO PRÁCTICO DE LABORATORIO 6. Física General III 2013 CIRCUITOS RC, RL Y RLC EN ALTERNA.

TRABAJO PRÁCTICO DE LABORATORIO 6. Física General III 2013 CIRCUITOS RC, RL Y RLC EN ALTERNA. TRABAJO PRÁCTICO DE LABORATORIO 6 Física General III 2013 CIRCUITOS RC, RL Y RLC EN ALTERNA. OBJETIVO: Analizar el comportamiento de circuitos RC, RL y RLC cuando son alimentados con corriente alterna.

Más detalles

TENSIONES Y CORRIENTES SINUSOIDALES: REPRESENTACIÓN GRÁFICA

TENSIONES Y CORRIENTES SINUSOIDALES: REPRESENTACIÓN GRÁFICA TENSIONES Y CORRIENTES SINUSOIDALES: REPRESENTACIÓN GRÁFICA Como ya se dicho, manejaremos, en lo sucesivo, expresiones del tipo: v = V o sen (wt + ϕ) (12.1) i = I o sen (wt + ϕ) (12.2) siendo, v = v(t):valor

Más detalles

ELECTROTECNIA Análisis Fasorial de Circuitos de Corriente Alterna

ELECTROTECNIA Análisis Fasorial de Circuitos de Corriente Alterna ELECTROTECNIA Análisis Fasorial de Circuitos de Corriente Alterna Juan Guillermo Valenzuela Hernández (jgvalenzuela@utp.edu.co) Universidad Tecnológica de Pereira Segundo Semestre de 2014 Juan Valenzuela

Más detalles

IEM-315-T Ingeniería Eléctrica

IEM-315-T Ingeniería Eléctrica IEM-315-T Ingeniería Eléctrica Potencia en el Estado Estable. Potencia Instantánea y Potencia Promedio. Potencia Instantánea. La potencia instantánea suministrada a cualquier dispositivo está dada por

Más detalles

Módulo 2 CIRCUITOS DE CORRIENTE ALTERNA

Módulo 2 CIRCUITOS DE CORRIENTE ALTERNA 2016 Módulo 2 CIRCUITOS DE CORRIENTE ALTERNA Concepto de corriente alterna Generación de c.a. ondas sinusoidales valores característicos magnitudes fasoriales Ing. Rodríguez, Diego 01/01/2016 INTRODUCCIO

Más detalles

Aplicación de funciones de variable compleja en circuitos eléctricos: fasores

Aplicación de funciones de variable compleja en circuitos eléctricos: fasores Aplicación de funciones de variable compleja en circuitos eléctricos: fasores Ocampo Matias Estudiante de Ingeniería Eléctrica Universidad Nacional del Sur, Avda. Alem 1253, B8000CPB Bahía Blanca, Argentina

Más detalles

VOLTAJE Y CORRIENTE ALTERNA CA

VOLTAJE Y CORRIENTE ALTERNA CA LECCIÓN Nº 05 VOLTAJE Y CORRIENTE ALTERNA CA 1. GENERALIDADES Hasta ahora se ha considerado que la corriente eléctrica se desplaza desde el polo positivo del generador al negativo (la corriente electrónica

Más detalles

Tema 3. Régimen Permanente Parte II. Régimen Permanente Senoidal

Tema 3. Régimen Permanente Parte II. Régimen Permanente Senoidal Tema 3. Régimen Permanente Parte. Régimen Permanente Senoidal Sistemas y Circuitos Los equipos de comunicaciones trabajan con señales sinusoidales Amplitud [] Fase [rad] Sinusoides: Acos( 2π fct θ ) Amplitud,

Más detalles

ELECTROTECNIA Circuitos de Corriente Alterna

ELECTROTECNIA Circuitos de Corriente Alterna ELECTROTECNIA Circuitos de Corriente Alterna Juan Guillermo Valenzuela Hernández (jgvalenzuela@utp.edu.co) Universidad Tecnológica de Pereira Segundo Semestre de 2014 Juan Valenzuela 1 Elementos de circuitos

Más detalles

CURSO VIII CICLO SISTEMAS ELECTRICOS DE POTENCIA SEMANA 2

CURSO VIII CICLO SISTEMAS ELECTRICOS DE POTENCIA SEMANA 2 UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA CURSO VIII CICLO SISTEMAS ELECTRICOS DE POTENCIA SEMANA 2 OBJETIVO Representar y analizar un SEP monofásico BIBLIOGRAFIA Duncan-Sarma.2003.

Más detalles

ANÁLISIS DE CIRCUITOS DE CORRIENTE ALTERNA

ANÁLISIS DE CIRCUITOS DE CORRIENTE ALTERNA Universidad Católica del Maule Escuela de Ingeniería en Construcción Asignatura : Circuitos Eléctricos ANÁLISIS DE CIRCUITOS DE CORRIENTE ALTERNA Profesor: Francisco Valdebenito A. ELECTRICIDAD ETAPA DEL

Más detalles

Universidad de la República Facultad de Ingeniería. Electrotécnica 1. Clase 3 - Generalidades de Circuitos AC. Curso 2018

Universidad de la República Facultad de Ingeniería. Electrotécnica 1. Clase 3 - Generalidades de Circuitos AC. Curso 2018 Universidad de la República Facultad de Ingeniería Electrotécnica 1 Clase 3 - Generalidades de Circuitos AC Curso 2018 Contenido de la presentación Bibliografía de referencia Régimen sinusoidal Fasores

Más detalles

Circuitos de corriente alterna

Circuitos de corriente alterna Circuitos de corriente alterna Área Física Resultados de aprendizaje Calcular la corriente, frecuencia y otras magnitudes en circuitos de corriente alterna, como el RLC. Contenidos. Introducción teórica.

Más detalles

ANÁLISIS DE CIRCUITOS SENOIDALES. Ing. Pablo M. Flores Jara

ANÁLISIS DE CIRCUITOS SENOIDALES. Ing. Pablo M. Flores Jara ANÁLISIS DE CIRCUITOS SENOIDALES Onda Senoidal (I) La corriente alterna es una corriente eléctrica cuyo valor y sentido varían continuamente, tomando valores positivos y negativos en distintos instantes

Más detalles

CIRCUITOS ELECTRICOS Y REDES

CIRCUITOS ELECTRICOS Y REDES CIRCUITOS ELECTRICOS Y REDES CORRIENTE ALTERNA: Introducción Intensidad de corriente y tensión senoidal Ángulo de fase Valores medio y eficaz Impedancia compleja y notación fasorial 4 B ELECTRÓNICA Karl

Más detalles

GUÍA 7: CORRIENTE ALTERNA Electricidad y Magnetismo

GUÍA 7: CORRIENTE ALTERNA Electricidad y Magnetismo GUÍA 7: CORRIENTE ALTERNA Primer Cuatrimestre 2013 Docentes: Dr. Alejandro Gronoskis Lic. María Inés Auliel Andrés Sabater Universidad Nacional de Tres de febrero Depto de Ingeniería Universidad de Tres

Más detalles

ANALISIS DE CIRCUITOS DE CORRIENTE ALTERNA

ANALISIS DE CIRCUITOS DE CORRIENTE ALTERNA ANALISIS DE CIRCUITOS DE CORRIENTE ALTERNA FORMAS DE ONDAS PERIÓDICAS Además de la corriente directa, existen muchas formas de onda generadas y utilizadas en fuentes de voltaje y de corriente de circuitos

Más detalles

INTRODUCCION A LA TEORIA DE LA CORRIENTE ALTERNA

INTRODUCCION A LA TEORIA DE LA CORRIENTE ALTERNA INACAP ELECTRICIDAD 2 GUIA DE APRENDIZAJE UNIDAD-1 INTRODUCCION A LA TEORIA DE LA CORRIENTE ALTERNA INTRODUCCION A LA TEORIA DE LA CORRIENTE ALTERNA El suministro de energía eléctrica a las viviendas e

Más detalles

CORRIENTE ALTERNA. Fasor tensión Vm. Por supuesto, en forma análoga podrá escribirse la expresión de la transformada de la intensidad comoi

CORRIENTE ALTERNA. Fasor tensión Vm. Por supuesto, en forma análoga podrá escribirse la expresión de la transformada de la intensidad comoi CORRENTE ALTERNA 1 1) Dominio de la frecuencia y ecuaciones transformadas Sea una tensión senoidal del tipo v( t) = V$ cos( ωt+ ϕ ). En virtud de la ecuación de Euler, la anterior expresión puede ser escrita

Más detalles

En la figura se muestra un generador alterno sinusoidal conectado a una resistencia.

En la figura se muestra un generador alterno sinusoidal conectado a una resistencia. INACAP ELECTRICIDAD 2 GUIA DE APRENDIZAJE UNIDAD-2 CIRCUITOS BASICOS EN CORRIENTE ALTERNA SINUSOIDAL En esta unidad se estudiará el comportamiento de circuitos puros ( resistivos, inductivos y capacitivos)

Más detalles

UNIVERSIDAD JOSE CARLOS MARIATEGUI LECCIÓN Nº 06 EXPRESIONES COMPLEJAS PARA LA CORRIENTE Y EL VOLTAJE 1. ELEMENTOS PASIVOS

UNIVERSIDAD JOSE CARLOS MARIATEGUI LECCIÓN Nº 06 EXPRESIONES COMPLEJAS PARA LA CORRIENTE Y EL VOLTAJE 1. ELEMENTOS PASIVOS LECCIÓN Nº 06 EXPRESIONES COMPLEJAS PARA LA CORRIENTE Y EL VOLTAJE 1. ELEMENTOS PASIVOS 61 2. FASORES Es necesario conocer las entidades de Euler y números complejos para entender favores. Sean a y b dos

Más detalles

En la figura 1 se observan los cambios de polaridad (positivo y negativo) y las variaciones en amplitud de una onda de ca.

En la figura 1 se observan los cambios de polaridad (positivo y negativo) y las variaciones en amplitud de una onda de ca. Página 1 de 7 TENSION ALTERNA En la figura 1 se observan los cambios de polaridad (positivo y negativo) y las variaciones en amplitud de una onda de ca. Puede definirse un voltaje alterno como el que varía

Más detalles

1º- CORRIENTE ALTERNA

1º- CORRIENTE ALTERNA º- CORRIENTE ALTERNA Se denomina corriente alterna a toda corriente eléctrica que cambia de polaridad periódicamente, pero en la práctica toma este nombre la corriente alterna de tipo senoidal: e Voltaje

Más detalles

Problema Nº 5: Encuentre un circuito equivalente al de la figura con una sola resistencia.

Problema Nº 5: Encuentre un circuito equivalente al de la figura con una sola resistencia. GUIA DE PROBLEMAS Nº 1 CIRCUITOS DE CORRIENTE CONTINUA. Problema Nº 1: En el circuito de la figura calcule: b) La corriente total. c) Las tensiones y corrientes en cada resistencia. Problema Nº 2: En el

Más detalles

Temas: Corresponden a la Unidad 6 y 7 del programa analítico de la asignatura Electrotecnia 1 correspondiente al plan 2003.

Temas: Corresponden a la Unidad 6 y 7 del programa analítico de la asignatura Electrotecnia 1 correspondiente al plan 2003. Temas: Corresponden a la Unidad 6 y 7 del programa analítico de la asignatura Electrotecnia 1 correspondiente al plan 2003. PROBLEMA Nº 1: Por un circuito serie formado por un elemento resistivo de resistencia

Más detalles

TEORÍA DE LOS CIRCUITOS I Araguás & Perez Paina. Guia 5. Fasores

TEORÍA DE LOS CIRCUITOS I Araguás & Perez Paina. Guia 5. Fasores Guia 5. Fasores 1. Utilizando el metodo fasorial, encontrar la respuesta de estado estable de la tensión en el capacitor v C (t) del circuito de la figura 1. i(t) = 10cos(4t)[A] 4Ω 0,25F v C (t) Figura

Más detalles

ANÁLISIS DE POTENCIA EN AC. Marcela Vallejo Valencia

ANÁLISIS DE POTENCIA EN AC. Marcela Vallejo Valencia ANÁLISIS DE POTENCIA EN AC Marcela Vallejo Valencia profemarcelavallejo@gmail.com http://tableroalparque.weebly.com Potencia instantánea la potencia instantánea p(t) absorbida por un elemento es el producto

Más detalles

TEORÍA DE LOS CIRCUITOS I Araguás & Perez Paina. Guia 5. Fasores

TEORÍA DE LOS CIRCUITOS I Araguás & Perez Paina. Guia 5. Fasores Guia 5. Fasores 1. Utilizando el metodo fasorial, encontrar la respuesta de estado estable de la tensión en el capacitor v C (t) del circuito de la figura 1. i(t) = 10cos(4t)[A] 4Ω 0,25F v C (t) Figura

Más detalles

INACAP ELECTRICIDAD 2 GUIA DE APRENDIZAJE UNIDAD-3 CIRCUITOS ALTERNOS MONOFASICOS EN REGIMEN PERMANENTE SINUSOIDAL

INACAP ELECTRICIDAD 2 GUIA DE APRENDIZAJE UNIDAD-3 CIRCUITOS ALTERNOS MONOFASICOS EN REGIMEN PERMANENTE SINUSOIDAL INACAP ELECTRICIDAD 2 GUIA DE APRENDIAJE UNIDAD-3 CIRCUITOS ALTERNOS MONOFASICOS EN REGIMEN PERMANENTE SINUSOIDAL CIRCUITOS ALTERNOS MONOFASICOS EN REGIMEN PERMANENTE SINUSOIDAL La aplicación de una tensión

Más detalles

Temas: Corresponden a la Unidad 6 y 7 del programa analítico de la asignatura Electrotecnia 1 correspondiente al plan 2003.

Temas: Corresponden a la Unidad 6 y 7 del programa analítico de la asignatura Electrotecnia 1 correspondiente al plan 2003. Temas: Corresponden a la Unidad 6 y 7 del programa analítico de la asignatura Electrotecnia 1 correspondiente al plan 2003. PROBLEMA Nº 1: Por un circuito serie formado por un elemento resistivo de resistencia

Más detalles

9 José Fco. Gómez Glez., Benjamín Glez. Díaz, María de la Peña Fabiani, Ernesto Pereda de Pablo

9 José Fco. Gómez Glez., Benjamín Glez. Díaz, María de la Peña Fabiani, Ernesto Pereda de Pablo PROBLEMAS DE CIRCUITOS EN CORRIENTE ALTERNA 25. Una fuente de voltaje senoidal, de amplitud Vm = 200 V y frecuencia f=500 Hz toma el valor v(t)=100 V para t=0. Determinar la dependencia del voltaje en

Más detalles

Circuitos de corriente alterna

Circuitos de corriente alterna Circuitos de corriente alterna Área Física Resultados de aprendizaje Calcular la corriente, frecuencia y otras magnitudes en circuitos de corriente alterna, como el RLC. Contenidos. Introducción teórica.

Más detalles

Sistemas Lineales 1 - Práctico 5

Sistemas Lineales 1 - Práctico 5 Sistemas Lineales 1 - Práctico 5 Régimen sinusoidal 1 er semestre 2018 Las principales ideas a tener en cuenta en este práctico son: La impedancia de un elemento se define por la relación V (jω 0 ) = Z(jω

Más detalles

Circuitos de Corriente. Alterna. Fundamentos Físicos y Tecnológicos de la Informática

Circuitos de Corriente. Alterna. Fundamentos Físicos y Tecnológicos de la Informática Fundamentos Físicos y Tecnológicos de la Informática ircuitos de orriente - Tensión y corriente alterna. Funciones sinusoidales. Valores medio y eficaz. - Relación tensión corriente en los elementos de

Más detalles

Electrotecnia General (Prof. Dr. José Andrés Sancho Llerandi) Tema 14 CORRIENTES ALTERNAS

Electrotecnia General (Prof. Dr. José Andrés Sancho Llerandi) Tema 14 CORRIENTES ALTERNAS TEMA 14 CORRIENTES ALTERNAS 14.1. VALORES ASOCIADOS A LAS ONDAS SENOIDALES. Sea un cuadro rectangular de lados h y l, formado por N espiras devanadas en serie, que gira a velocidad angular constante ω

Más detalles

Calidad en el Servicio Eléctrico

Calidad en el Servicio Eléctrico magnitud de -Cargas y no David Llanos Rodríguez dllanosr@eia.udg.es Girona, Febrero 18 de 2003 magnitud de -Cargas y no Introducción: Uso racional de la energía eléctrica quiere decir obtener el máximo

Más detalles

TRABAJO COLABORATIVO III (Guía de Ejercicios)

TRABAJO COLABORATIVO III (Guía de Ejercicios) TRABAJO COLABORATIVO III (Guía de Ejercicios) CIRCUITOS DE CORRIENTE ALTERNA La actividad se divide en dos partes: Evaluación Grupal y Evaluación Individual. Generalidades Evaluación Grupal: (1) La guía

Más detalles

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP U. de Santiago. Corriente alterna

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP U. de Santiago. Corriente alterna Corriente alterna A Conceptos 1 Corriente alterna y corriente directa En la corriente directa, o continua, la intensidad de la corriente puede disminuir, pero su polaridad, esto es, el sentido de circulación

Más detalles

LA CORRIENTE ALTERNA

LA CORRIENTE ALTERNA LA CORRIENTE ALTERNA Índice INTRODUCCIÓN VENTAJAS DE LA C.A. PRODUCCIÓN DE UNA C.A. VALORES CARACTERÍSTICOS DE C.A. REPRESENTACIÓN DE UNA MAGNITUD ALTERNA SENOIDAL DESFASE ENTRE MAGNITUDES ALTERNAS RECEPTORES

Más detalles

ASIGNATURA: ANÁLISIS DE CIRCUITOS (2º Curso Grado Ingeniero Tecnologías Industriales) Test de conocimientos 2013/2014

ASIGNATURA: ANÁLISIS DE CIRCUITOS (2º Curso Grado Ingeniero Tecnologías Industriales) Test de conocimientos 2013/2014 ASIGNATURA: ANÁLISIS DE CIRCUITOS (2º Curso Grado Ingeniero Tecnologías Industriales) Test de conocimientos 2013/2014 SUGERENCIA: Intenta contestar a cada cuestión y analizar el porqué de cada respuesta

Más detalles

Tema 5. Régimen Permanente Senoidal. Sistemas y Circuitos

Tema 5. Régimen Permanente Senoidal. Sistemas y Circuitos Tema 5. Régimen Permanente Senoidal Sistemas y Circuitos 5. Respuesta SLT a exponenciales complejas Analicemos la respuesta de los SLT ante exponenciales complejas Tiempo continuo: xt () e st s σ + jω

Más detalles

Unidad Académica de Ingeniería Eléctrica

Unidad Académica de Ingeniería Eléctrica Universidad Autónoma de Zacatecas Unidad Académica de Ingeniería Eléctrica Programa del curso Circuitos Eléctricos y Laboratorio Carácter Semestre recomendado Obligatorio 4o. Sesiones Créditos Antecedentes

Más detalles

La respuesta en frecuencia proporciona información tomando en cuenta el impacto del circuito en senoides de frecuencias específicas.

La respuesta en frecuencia proporciona información tomando en cuenta el impacto del circuito en senoides de frecuencias específicas. . Resonancia. RESPUESTA EN FRECUENCIA. La respuesta en frecuencia de un circuito es la relación dependiente de la frecuencia tanto de la magnitud como de la fase, entre una entrada senoidal de estado estable

Más detalles

ELSP14 Electricidad Aplicada II. ELSP14 Electricidad Aplicada II

ELSP14 Electricidad Aplicada II. ELSP14 Electricidad Aplicada II Guía de ÁREA Ejercicios ELECTRICIDAD-ELECTRÓNICA en Aula N 1 Tema: Relación de grafica de función seno con onda sinusoidal Docente: Milton Sepúlveda P. Unidad de Aprendizaje N 1: Origen y teoría de la

Más detalles

CIRCUITOS ELÉCTRICOS EN CORRIENTE ALTERNA

CIRCUITOS ELÉCTRICOS EN CORRIENTE ALTERNA CIRCUITOS ELÉCTRICOS EN CORRIENTE ALTERNA Alicia Mª. Esponda Cascajares 4 de may de 008 Alicia Ma. Esponda Cascajares 1 CORRIENTE ALTERNA Se habla de corriente ALTERNA cuando la dirección de la corriente

Más detalles

ELECTROTECNIA Circuitos de Corriente Alterna

ELECTROTECNIA Circuitos de Corriente Alterna ELECTROTECNIA Circuitos de Corriente Alterna Juan Guillermo alenzuela Hernández (jgvalenzuela@utp.edu.co) Universidad Tecnológica de Pereira Segundo Semestre de 2014 Juan alenzuela 1 alores Eficaces de

Más detalles

GUÍA DE PROBLEMAS Nº 1 Guía de ejercicios correspondiente a la Unidad Temática Nº1 de la asignatura.

GUÍA DE PROBLEMAS Nº 1 Guía de ejercicios correspondiente a la Unidad Temática Nº1 de la asignatura. GUÍ DE PROLEMS Nº 1 Guía de ejercicios correspondiente a la Unidad Temática Nº1 de la asignatura. CIRCUITOS DE CORRIENTE CONTINU Problema Nº 1: Para cada uno de los circuitos hallar la el valor de la corriente

Más detalles

2. Circuito resistivo. Los valores eficaces y la potencia. 3. Circuito inductivo. Los valores eficaces y la potencia.

2. Circuito resistivo. Los valores eficaces y la potencia. 3. Circuito inductivo. Los valores eficaces y la potencia. CIDEAD. º BACHILLERATO. ELECTROTECNIA. Desarrollo del tema.. Concepto de elementos. Excitación sinusoidal.. Circuito resistivo. Los valores eficaces y la potencia. 3. Circuito inductivo. Los valores eficaces

Más detalles

INDICE 1 Introducción 2 Circuitos resistivos 3 Fuentes dependientes y amplificadores operacionales (OP AMPS) 4 Métodos de análisis

INDICE 1 Introducción 2 Circuitos resistivos 3 Fuentes dependientes y amplificadores operacionales (OP AMPS) 4 Métodos de análisis INDICE 1 Introducción 1 1.1. Definiciones y unidades 2 1.2. Carga y corriente 5 1.3. Voltaje, energía y potencia 9 1.4. Elementos activos y pasivos 12 1.5. Análisis de circuitos y diseño 15 16 Problemas

Más detalles

PRÁCTICA NÚMERO 6. ESTUDIO DE UN CIRCUITO RLC EN CORRIENTE ALTERNA.

PRÁCTICA NÚMERO 6. ESTUDIO DE UN CIRCUITO RLC EN CORRIENTE ALTERNA. PRÁCTCA NÚMERO 6. ESTUDO DE UN CRCUTO RLC EN CORRENTE ALTERNA. 6.. Análisis Teórico del Circuito. En las prácticas anteriores se ha analizado el comportamiento del circuito RLC cuando este es alimentado

Más detalles

Universidad de la República Facultad de Ingeniería. Electrotécnica 1. Clase 8 - Circuitos Magnéticos y Transformadores. Curso 2018

Universidad de la República Facultad de Ingeniería. Electrotécnica 1. Clase 8 - Circuitos Magnéticos y Transformadores. Curso 2018 Universidad de la República Facultad de Ingeniería Electrotécnica 1 Clase 8 - Circuitos Magnéticos y Transformadores Curso 2018 Contenido de la presentación Bibliografía de referencia Transformador ideal

Más detalles

1-C Circuitos en régimen senoidal permanente

1-C Circuitos en régimen senoidal permanente -C Circuitos en régimen senoidal permanente C- Calcular las potencias complejas en todos los elementos, y hacer un balance de las potencias activas y reactivas. V = 00 Vef V = 50 Vef (-j) j0 j0 V 0 V Figura

Más detalles

CIDEAD. 2º BACHILLERATO. ELECTROTECNIA. Tema 11.- La potencia en los circuitos de corriente alterna

CIDEAD. 2º BACHILLERATO. ELECTROTECNIA. Tema 11.- La potencia en los circuitos de corriente alterna Desarrollo del tema.- 1. Los dipolos. 2. Las relaciones de potencia en los dipolos. 3. Concepto de potencia aparente y reactiva. 4. La notación compleja de la potencia. 5. El teorema de Boucherot. 6. El

Más detalles

MAGNITUDES ELÉCTRICAS

MAGNITUDES ELÉCTRICAS MAGNITUDES ELÉCTRICAS Intensidad de corriente eléctrica: Cantidad de carga que atraviesa un conductor por unidad de tiempo. Unidades: Amperio (A) Diferencia de potencial: (entre dos puntos) Causa origen

Más detalles

Unidad Académica de Ingeniería Eléctrica. Programa del curso: CIRCUITOS ELÉCTRICOS Clave:

Unidad Académica de Ingeniería Eléctrica. Programa del curso: CIRCUITOS ELÉCTRICOS Clave: Universidad Autónoma de Zacatecas Unidad Académica de Ingeniería Eléctrica Programa del curso: CIRCUITOS ELÉCTRICOS Clave: Carácter Semestre recomendado Obligatoria 4º Carreras: ICE Sesiones Créditos Antecedentes

Más detalles

Función senoidal. U m. Figura 1.1 Forma de onda senoidal. Se define como frecuencia (f) a la cantidad de períodos por segundo ó sea:

Función senoidal. U m. Figura 1.1 Forma de onda senoidal. Se define como frecuencia (f) a la cantidad de períodos por segundo ó sea: GENEAON DE TENSONES ATENAS SENODAES. Funciones senoidales os sistemas actuales de generación de energía eléctrica, presentan una característica senoidal, cuya forma genérica para una fuente de tensión

Más detalles

Departamento de Electrónica y Sistemas PARTE III) CIRCUITOS CON SEÑALES VARIANTES EN EL TIEMPO

Departamento de Electrónica y Sistemas PARTE III) CIRCUITOS CON SEÑALES VARIANTES EN EL TIEMPO Departamento de Electrónica y Sistemas PARTE III) CIRCUITOS CON SEÑALES VARIANTES EN EL TIEMPO 1) Señales y sistemas 2) Tipos de señales 3) Función de transferencia de los elementos pasivos de un circuito

Más detalles

Contenido Capítulo 1 Diseño de circuitos impresos PCB...1

Contenido Capítulo 1 Diseño de circuitos impresos PCB...1 Contenido Introducción... XVII Material de apoyo en la web... XVIII Capítulo 1 Diseño de circuitos impresos PCB...1 1.1. Introducción... 2 1.2. Qué es una PCB?... 3 1.3. Proceso de implementación en PCB

Más detalles

Guía de Problemas Nº 4 - Electrotecnia 2 Corrientes No Senoidales

Guía de Problemas Nº 4 - Electrotecnia 2 Corrientes No Senoidales FACULTAD DE INGENIERIA - U.N.M.D.P. DEPARTAMENTO DE INGENIERIA ELECTRICA. ASIGNATURA : Electrotecnia 2 (Plan 2004) CARRERA : Ingeniería Eléctrica y Electromecánica. PROBLEMA Nº 1: Encuentre la serie trigonométrica

Más detalles

Unidad Didáctica 2. Corriente Alterna Monofásica. Instalaciones y Servicios Parte II. Corriente Alterna Monofásica

Unidad Didáctica 2. Corriente Alterna Monofásica. Instalaciones y Servicios Parte II. Corriente Alterna Monofásica Instalaciones y Servicios Parte II Corriente Alterna Monofásica Unidad Didáctica 2 Corriente Alterna Monofásica Instalaciones y Servicios Parte II- UD2 CONTENIDO DE LA UNIDAD Introducción a la corriente

Más detalles

CURSO: Circuitos Eléctricos UNIDAD IV: CORRIENTE ALTERNA - TEORÍA

CURSO: Circuitos Eléctricos UNIDAD IV: CORRIENTE ALTERNA - TEORÍA www.ceduvirt.com CURSO: Circuitos Eléctricos UNIDAD IV: CORRIENTE ALTERNA - TEORÍA EJEMPLO 1: Cinco ciclos de una señal ocurren en un tiempo de 25 msg. Hallar el periodo y la frecuencia. Solución Si

Más detalles

RÉGIMEN PERMANENTE DE CORRIENTE ALTERNA SINUSOIDAL

RÉGIMEN PERMANENTE DE CORRIENTE ALTERNA SINUSOIDAL CPÍTULO 3 RÉGIMEN PERMNENTE DE CORRIENTE LTERN SINUSOIDL PR1. TEÓRICO-PRÁCTICO FSORES... 2 PR2. TEÓRICO-PRÁCTICO FSORES... 2 PR3. MÉTODOS SISTEMÁTICOS... 3 PR4. POTENCIS... 3 PR5. POTENCIS... 4 PR6. POTENCIS...

Más detalles

GUIA DE PROBLEMAS CIRCUITOA ELECTRICOS MODULO CORRIENTE ALTERNA

GUIA DE PROBLEMAS CIRCUITOA ELECTRICOS MODULO CORRIENTE ALTERNA GUIA DE PROBLEMAS CIRCUITOA ELECTRICOS MODULO CORRIENTE ALTERNA 1. Un circuito serie de corriente alterna consta de una resistencia R de 200 una autoinducción de 0,3 H y un condensador de 10 F. Si el generador

Más detalles

Electrotecnia M I C H A E L F A R A D A Y C H A R L E S P R O T E U S S T E I N M E T Z

Electrotecnia M I C H A E L F A R A D A Y C H A R L E S P R O T E U S S T E I N M E T Z Electrotecnia Prof. Ing. G. Belliski GENERADOR DE CORRIENTE ALTERNA VALORES TÍPICOS REPRESENTACIÓN TEMPORAL Y FASORIAL RESISTENCIAS Y REACTANCIAS CIRCUITOS DE ALTERNA M I C H A E L F A R A D A Y C H A

Más detalles

1) En el sistema trifásico de la figura se tiene el siguientes señales de voltaje medidas entre cada fase y neutro. Calcule:

1) En el sistema trifásico de la figura se tiene el siguientes señales de voltaje medidas entre cada fase y neutro. Calcule: UNIVERSIDAD TECNOLOGICA DE PEREIRA Taller Nº 1- Circuitos Eléctricos II. 1) En el sistema trifásico de la figura se tiene el siguientes señales de voltaje medidas entre cada fase y neutro. v an = 2 13200

Más detalles

Manual de Prácticas LABORATORIO DE CIRCUITOS ELÉCTRICOS Práctica # 9 CORRIENTE ALTERNA

Manual de Prácticas LABORATORIO DE CIRCUITOS ELÉCTRICOS Práctica # 9 CORRIENTE ALTERNA OBJETIVOS: 1. Conocer las ondas senoidales de corriente alterna. 2. Comprender el concepto de frecuencia, ciclo y período. 3. Comparar los valores efectivos y máximos de corriente y voltaje de C.A. 4.

Más detalles

C.A. : Circuito con Resistencia R

C.A. : Circuito con Resistencia R Teoría sobre c.a obtenida de la página web - 1 - C.A. : Circuito con Resistencia R Intensidad Instantánea i(t) e Intensidad Eficaz I v(t) = V sen t) V I = ----- R V = R I i(t) = I sen t) V R = ----- I

Más detalles

CIRCUITOS DE CORRIENTE ALTERNA CON NUMEROS COMPLEJOS

CIRCUITOS DE CORRIENTE ALTERNA CON NUMEROS COMPLEJOS CIRCUITOS DE CORRIENTE ALTERNA CON NUMEROS COMPLEJOS CIRCUITO R-L-C CONECTADO EN SERIE. Debido a que la impedancia (Z) es un termino general que se puede referir a una resistencia, una reactancia o combinación

Más detalles

INDICE Capitulo 1. Variables y Leyes de Circuitos 1.1. Corriente, Voltaje y Potencia 1.2. Fuentes y Cargas (1.1) 1.3. Ley de Ohm y Resistores (1.

INDICE Capitulo 1. Variables y Leyes de Circuitos 1.1. Corriente, Voltaje y Potencia 1.2. Fuentes y Cargas (1.1) 1.3. Ley de Ohm y Resistores (1. INDICE Capitulo 1. Variables y Leyes de Circuitos 1 1.1. Corriente, Voltaje y Potencia 3 Carga y corriente * Energía y voltaje * Potencia eléctrica * Prefijos de magnitud 1.2. Fuentes y Cargas (1.1) 11

Más detalles

Tema 0. Cálculos de potencia

Tema 0. Cálculos de potencia ema Cálculos de potencia emario Potencia y Energía Potencia Instantánea Energía t W = t 1 p t =v t.i t Watios p t dt Julios p =potencia absorbida p =potencia entregada t Potencia media (activa) P media

Más detalles

UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE INGENIERIA MECANICA DEPARTAMENTO ACADEMICO DE CIENCIAS DE INGENIERIA SILABO P.A.

UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE INGENIERIA MECANICA DEPARTAMENTO ACADEMICO DE CIENCIAS DE INGENIERIA SILABO P.A. UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE INGENIERIA MECANICA DEPARTAMENTO ACADEMICO DE CIENCIAS DE INGENIERIA 1. INFORMACION GENERAL SILABO P.A. 2011-II Nombre del curso : Circuitos Eléctricos Código

Más detalles

Boletín Tema 6. FFI. Ingeniería Informática (Software). Grupo 2. curso

Boletín Tema 6. FFI. Ingeniería Informática (Software). Grupo 2. curso oletín Tema 6 Generador de corriente alterna 1. Un generador sencillo de corriente alterna consiste en una bobina girando en un campo magnético uniforme. La variación temporal del flujo que atraviesa a

Más detalles

CURSO: CIRCUITOS Y MAQUINAS ELECTRICAS Profesor del Curso : Ms.Sc. César L. López Aguilar Ingeniero Mecánico Electricista CIP 67424

CURSO: CIRCUITOS Y MAQUINAS ELECTRICAS Profesor del Curso : Ms.Sc. César L. López Aguilar Ingeniero Mecánico Electricista CIP 67424 21/11/2013 UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA AGROINDUSTRIAL MODULO SEMANA 8 CURSO: CIRCUITOS Y MAQUINAS ELECTRICAS Profesor del Curso : Ms.Sc. César L. López Aguilar Ingeniero Mecánico

Más detalles

ELECTROTECNIA 2º B.S. PROF. DIEGO C. GIMÉNEZ INST. SAN PABLO - LUJAN -

ELECTROTECNIA 2º B.S. PROF. DIEGO C. GIMÉNEZ INST. SAN PABLO - LUJAN - ELECTROTECNIA º B.S. PROF. DIEGO C. GIMÉNE PAG. MODULO Nº 3 CIRCUITOS R-L EN CORRIENTE ALTERNA Conexión en serie Sean dos bobinas con las resistencias R y R y los coeficiente de autoinducción L y L conectadas

Más detalles

1. Las funciones periódicas. Ondas sinusoidales. 3. La representación vectorial de una onda.

1. Las funciones periódicas. Ondas sinusoidales. 3. La representación vectorial de una onda. DESARROLLO DEL AMA: 1. Las funciones periódicas. Ondas sinusoidales.. Características de una onda. 3. La representación vectorial de una onda. 4. Ondas sinusoidales simultáneas con la misma frecuencia:

Más detalles

Electrotecnia General Tema 15 TEMA 15 CORRIENTES ALTERNAS II 15.1 LEYES DE KIRCHHOFF EN REGÍMENES SENOIDALES. (15.1)

Electrotecnia General Tema 15 TEMA 15 CORRIENTES ALTERNAS II 15.1 LEYES DE KIRCHHOFF EN REGÍMENES SENOIDALES. (15.1) TEMA 5 COIENTES ALTENAS II 5. LEYES DE KICHHOFF EN EGÍMENES SENOIDALES. El primer lema de Kirchhoff, o ley de los nudos 2, establece, que la suma de las corrientes que confluyen en un nudo es nula 3. Supongamos

Más detalles

Corriente alterna monofásica y trifásica TEMA 1. CORRIENTE ALTERNA. GENERALIDADES Valores asociados a una onda alterna senoidal...

Corriente alterna monofásica y trifásica TEMA 1. CORRIENTE ALTERNA. GENERALIDADES Valores asociados a una onda alterna senoidal... TEMA 1. CORRIENTE ALTERNA. GENERALIDADES... 9 1.1 Introducción... 9 1.2 Justificación del empleo de la corriente alterna... 9 1.3 Transporte de energía eléctrica. Red eléctrica... 13 1.3.1 La red eléctrica...

Más detalles

CORRIENTE ALTERNA DEFINICION.

CORRIENTE ALTERNA DEFINICION. DEFINICION. CORRIENTE ALTERNA La forma de oscilación de la corriente alterna más comúnmente utilizada es la de una oscilación sinusoidal, puesto que se consigue una transmisión más eficiente de la energía.

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS MATERIA: ELECTROTECNIA OFICIALES DE GRADO (MODELO DE EXAMEN) Curso 2013-2014 INSTRUCCIONES GENERALES Y

Más detalles

es e valor máximo de la fem

es e valor máximo de la fem U Tópicos apítulo de : Electricidad orriente Alterna y Magnetismo J. Pozo, J. Pozo, A. A. eón eón y.m. y.m. horbadjian. APÍTUO OENTE ATENA (A.. ntroducción Para generar corriente alterna, se puede considerar

Más detalles

V cos(wt) = V + V. = L. Sustituyendo, se obtiene la ecuación del dt circuito RL: di L + Ri = Vmcos(wt) dt

V cos(wt) = V + V. = L. Sustituyendo, se obtiene la ecuación del dt circuito RL: di L + Ri = Vmcos(wt) dt ircuitos y en estado estable ircuito Supongamos un circuito como el mostrado en la figura. Suponga que se desea calcular la corriente i(t) que circula por el circuito. De acuerdo con la ey de Kirchoff

Más detalles

ANÁLISIS DE CIRCUITOS POR SERIES DE FOURIER

ANÁLISIS DE CIRCUITOS POR SERIES DE FOURIER Series de Fourier. eoría de Circuitos. 1º de Ingeniería écnica Industrial. 1/8 ANÁLISIS DE CIRCUIOS POR SERIES DE FOURIER Si en un sistema lineal todas la excitaciones (fuentes) son señales senoidales

Más detalles

1.11, independientemente del valor pico. La frecuencia se refiere al número de ciclos que se repiten en un segundo y se denota con el símbolo

1.11, independientemente del valor pico. La frecuencia se refiere al número de ciclos que se repiten en un segundo y se denota con el símbolo Circuitos AC Un circuito es de corriente alterna (AC) cuando está alimentado por una fuente de voltaje o de corriente que cambia alternativamente con el tiempo tanto en magnitud como en polaridad. Los

Más detalles

CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO

CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO PROBLEMAS PROPUESTOS 1:.Se coloca una bobina de 200 vueltas y 0,1 m de radio perpendicular a un campo magnético uniforme de 0,2 T. Encontrar la fem inducida

Más detalles

Electrotecnia 1 3E1 (Plan 2003) PRESENTACIÓN

Electrotecnia 1 3E1 (Plan 2003) PRESENTACIÓN Electrotecnia 1 3E1 (Plan 2003) PRESENTACIÓN PROGRAMA ANALITICO Unidad Temática 1: Introducción al estudio de los Circuitos Eléctricos Unidad Temática 2: Ecuaciones de Redes Unidad Temática 3: Transitorios

Más detalles

1. Corriente alterna senoidal

1. Corriente alterna senoidal BLOQUE 3-. CCUTOS ELÉCTCOS EN COENTE AL TENA 1. Corriente alterna senoidal 1-Tipos de corrientes: La corriente eléctrica puede clasificarse con el modo en que varía medida que transcurre el tiempo como:

Más detalles

1. Las funciones periódicas. Ondas sinusoidales. 3. La representación vectorial de una onda.

1. Las funciones periódicas. Ondas sinusoidales. 3. La representación vectorial de una onda. CIDEAD. º BACHILLERAO. ELECROECNIA. DESARROLLO DEL AMA: 1. Las funciones periódicas. Ondas sinusoidales.. Características de una onda. 3. La representación vectorial de una onda. 4. Ondas sinusoidales

Más detalles

CORRIENTE ALTERNA. Onda senoidal:

CORRIENTE ALTERNA. Onda senoidal: CORRIENTE ALTERNA Onda senoidal: En corriente alterna, la tensión varía continuamente en el tiempo, tomando valores positivos y negativos. La forma más común de corriente alterna es la senoidal. Se debe

Más detalles

CORRIENTE ALTERNA ÍNDICE

CORRIENTE ALTERNA ÍNDICE CORRIENTE ALTERNA ÍNDICE 1. Introducción 2. Generadores de corriente alterna 3. Circuito de CA con una resistencia 4. Circuito de CA con un inductor 5. Circuito de CA con un condensador 6. Valores eficaces

Más detalles

TCI - Teoría de Circuitos

TCI - Teoría de Circuitos Unidad responsable: 330 - EPSEM - Escuela Politécnica Superior de Ingeniería de Manresa Unidad que imparte: 750 - EMIT - Departamento de Ingeniería Minera, Industrial y TIC Curso: 2016 Titulación: Créditos

Más detalles

Ejercicios Tipo Examen:

Ejercicios Tipo Examen: Universidad Autónoma Metropolitana, Unidad Azcapotzalco Departamento de Energía Área de Ingeniería Energética y Electromagnética 2 Ejercicios Tipo Examen: Circuitos Eléctricos en Corriente Alterna (1131071)

Más detalles

d) (2 + 3i)(3 4i) e) (1 + i)(1 2i) f ) i 5 + i (1 + i)(1 i 8 ) k) 1 c)

d) (2 + 3i)(3 4i) e) (1 + i)(1 2i) f ) i 5 + i (1 + i)(1 i 8 ) k) 1 c) Universidad de la República Cálculo Facultad de Ingeniería - IMERL Primer Semestre 07. Aritmética y representaciones. Determinar los valores de i k para todo k Z. Práctico 3 - Número Complejo. Expresar

Más detalles

1. CONCEPTOS GENERALES

1. CONCEPTOS GENERALES ITEM DETALLE GUÍA N 1 Conceptos Generales ASIGNATURA Circuitos de Corriente Alterna CÓDIGO 51133254 DOCENTE William López Salgado CÓDIGO 34167 1. CONCEPTOS GENERALES 1.1 OBJETIVO DE LA UNIDAD Que el estudiante

Más detalles

Sílabo de Análisis de Circuitos Eléctricos

Sílabo de Análisis de Circuitos Eléctricos Sílabo de Análisis de Circuitos Eléctricos I. Datos Generales Código Carácter A0560 Obligatorio Créditos 6 Periodo Académico 2017 Prerrequisito Teoría Electromagnética Horas Teóricas: 3 Prácticas: 3 II.

Más detalles