PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD
|
|
- María Teresa Domínguez San Martín
- hace 5 años
- Vistas:
Transcripción
1 PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD Junio, Ejercicio 3, Opción A Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3, Opción A Reserva 1, Ejercicio 3, Opción B Reserva 2, Ejercicio 3, Opción A Reserva 2, Ejercicio 3, Opción B Reserva 3, Ejercicio 3, Opción A Reserva 3, Ejercicio 3, Opción B Reserva 4, Ejercicio 3, Opción A Reserva 4, Ejercicio 3, Opción B Septiembre, Ejercicio 3, Opción A Septiembre, Ejercicio 3, Opción B
2 a) Sean A y B dos sucesos de un mismo espacio muestral. Sabiendo que pa= ( ) 0'5, que pb ( ) = 0'4 y que pa ( B) = 0'8, determine pa ( / B. ) Sean C y D dos sucesos de un mismo espacio muestral. Sabiendo que pc ( ) = 0'3, que pd ( ) = 0'8 y que C y D son independientes, determine pc ( D). SOCIALES II JUNIO. EJERCICIO 3. PARTE I. OPCIÓN A a) pa ( B) = pa ( ) + pb ( ) pa ( B) 0'8= 0'5+ 0'4 pa ( B) pa ( B) = 0'1 pa ( B) 0'1 pa ( / B) = = = 0'25 pb ( ) 0'4 pc ( D) = pc ( ) + pd ( ) pc ( ) pd ( ) = 0'3+ 0'8 0'3 0'8= 0'86
3 Se sabe que el 30 % de los individuos de una población tiene estudios superiores; también se sabe que, de ellos, el 95 % tiene empleo. Además, de la parte de la población que no tiene estudios superiores, el 60 % tiene empleo. a) Calcule la probabilidad de que un individuo, elegido al azar, tenga empleo. Se ha elegido un individuo aleatoriamente y tiene empleo; calcule la probabilidad de que tenga estudios superiores.. SOCIALES II JUNIO. EJERCICIO 3. PARTE I. OPCIÓN B ESTUDIOS SUP. No ESTUDIOS SUP. EMPLEO No EMPLEO a) p = 0'705 a) 0' p = = = 0'404 0'705 47
4 Laura tiene en su monedero 6 monedas francesas, 2 italianas y 4 españolas. Vicente tiene 9 francesas y 3 italianas. Cada uno saca, al azar, una moneda de su monedero y observa la nacionalidad. a) Obtenga el espacio muestral asociado al experimento. Cuál es la probabilidad de que las monedas extraídas no sean de la misma nacionalidad?. c) Cuál es la probabilidad de que ninguna de las monedas extraídas sea francesa?. SOCIALES II RESERVA 1. EJERCICIO 3. PARTE I. OPCIÓN A a) E = { FF, FI, IF, II, EF, EI} c) p( FI IF EF EI) = = p( II EI) = + =
5 De los 150 coches de un concesionario, 90 tienen motor diesel y el resto de gasolina. De los coches con motor diesel, 72 son nuevos y el resto usados; mientras que de los coches con motor de gasolina hay el mismo número de coches nuevos que de usados. Se elige, al azar, un coche de dicho concesionario; calcule la probabilidad de que: a) Sea nuevo. Tenga motor diesel, sabiendo que es usado. SOCIALES II RESERVA 1. EJERCICIO 3. PARTE I. OPCIÓN B Diesel Gasolina Nuevos Usados a) pnuevo ( ) = = p( Diesel / Usado ) = = 48 8
6 En una población, donde el 45% son hombres y el resto mujeres, se sabe que el 10% de los hombres y el 8% de las mujeres son inmigrantes. a) Qué porcentaje de inmigrantes hay en esta población? Si se elige, al azar, un inmigrante de esta población, cuál es la probabilidad de que sea hombre? SOCIALES II RESERVA 2. EJERCICIO 3. PARTE I. OPCIÓN A Hacemos un diagrama de árbol 0 1 Inmigrante 0 45 Hombre 0 9 No Inmigrante 0 55 Mujer 0 08 Inmigrante 0 92 No Inmigrante a) p ( Inmigrante ) = 0'45 0'1+ 0'55 0'08= 0'089= 8'9% 0'45 0'1 p ( Hombre / Inmigrante ) = = 0'5056 0'45 0'1+ 0'55 0'08
7 Una caja contiene 12 bombillas, de las cuales 4 están fundidas. Se eligen, al azar y sin reemplazamiento, tres bombillas de esa caja. a) Calcule la probabilidad de que ninguna de las tres bombillas esté fundida. Calcule la probabilidad de que las tres bombillas estén fundidas. SOCIALES II RESERVA 2. EJERCICIO 3. PARTE I. OPCIÓN B a) p = = p = =
8 En un aula de informática hay 20 puestos de ordenador. De ellos, 10 son compartidos y otros 10 son individuales. De los puestos compartidos, hay 3 en los que el ordenador no funciona, de los individuales hay 2 en los que el ordenador no funciona. a) Seleccionado al azar un puesto en el aula, cuál es la probabilidad de que no funcione el ordenador?. Si se elige al azar un puesto en el que funciona el ordenador, cuál es la probabilidad de que sea compartido?. SOCIALES II RESERVA 3. EJERCICIO 3. PARTE I. OPCIÓN A Hacemos un diagrama de árbol 0 2 No funciona 0 5 Individual 0 8 Funciona 0 5 Compartido 0 3 No funciona 0 7 Funciona a) p ( No funciona ) = 0'5 0'2+ 0'5 0'3= 0'25 0'5 0'7 7 p ( Compartido / Funciona ) = = 0'5 0'8+ 0'5 0'7 15
9 Se dispone de los siguientes datos sobre el equipamiento de los hogares de una ciudad: En el 60% de los hogares se puede ver la TDT (Televisión Digital Terrestre) y el 70% de los hogares dispone de ordenador. De entre los hogares que disponen de ordenador, el 80% puede ver la TDT. a) Son sucesos independientes disponer de ordenador y poder ver la TDT?. Qué porcentaje de hogares no disponen de ordenador ni pueden ver la TDT? SOCIALES II RESERVA 3. EJERCICIO 3. PARTE I. OPCIÓN B Hacemos un diagrama de árbol 0 8 TDT 0 7 Ordenador 0 2 No TDT 0 3 No ordenador x TDT 1 - x No TDT 2 0'7 0'8+ 0'3 x= 0'6 x = 15 a) po ( ) = 0'7 ; ptdt ( ) = 0'6 ; po ( TDT ) = 0'56 po ( TDT) = 0'56 po ( ) ptdt ( ) Dependientes 2 p( NO TDT ) = 0'3 1 = 0'26= 26% 15
10 Ana y Blas deciden jugar con un dado de la siguiente forma: Ana lanza el dado y, si saca un 6, gana y se acaba el juego. En caso contrario lanza Blas, que gana si saca un 2 o un 3, y también se acaba el juego. De no ocurrir esto, la partida se acaba sin ganador. Halle la probabilidad de los siguientes sucesos: gana Ana, gana Blas, ninguno gana. SOCIALES II RESERVA 4. EJERCICIO 3. PARTE I. OPCIÓN A Hacemos un diagrama de árbol 1/6 Gana Ana 5/6 No gana Ana 2/6 Gana Blas 4/6 No gana Blas 1 Gana Ana = Gana Blas = = No gana nadie = = 6 6 9
11 En una industria de calzado se producen botas y sandalias. De cada 12 pares producidos, 7 pares son botas y 5 de sandalias. La probabilidad de que un par de botas sea defectuoso es 0 08 y de que lo sea un par de sandalias es Se escoge al azar un par y resulta ser no defectuoso. a) Cuál es la probabilidad de que se haya escogido un par de botas? Cuál es la probabilidad de que se haya escogido un par de sandalias? SOCIALES II RESERVA 4. EJERCICIO 3. PARTE I. OPCIÓN B Hacemos un diagrama de árbol 0 08 Defectuoso 7/12 Botas 0 92 No defectuoso 5/12 Sandalias 0 03 Defectuoso 0 97 No defectuoso a) 7 0'92 p ( Botas / No defectuoso ) = 12 = 0' '92+ 0' '97 p ( Sandalias / No defectuoso ) = 12 = 0' '92+ 0'
12 El examen de Matemáticas de un alumno consta de dos ejercicios. La probabilidad de que resuelva el primero es del 30%, la de que resuelva ambos es del 10%, y la de que no resuelva ninguno es del 35%. Calcule las probabilidades de los siguientes sucesos: a) Que el alumno resuelva el segundo ejercicio. Que resuelva el segundo ejercicio, sabiendo que no ha resuelto el primero. SOCIALES II SEPTIEMBRE. EJERCICIO 3. PARTE I. OPCIÓN A Datos: pa ( ) = 0'3; pa ( B) = 0'1; pa ( B ) = 0'35 pa ( B) = 0'35 = pa ( B) = 1 pa ( B) pa ( B ) = 1 0'35= 0'65 a) Aplicamos la fórmula: p( A B) = p( A) + p( B) p( A B ) p( B/ A) 0'65= 0'3 + pb ( ) 0'1 pb ( ) = 0'45 pb ( A) pb ( ) pa ( B) 0'45 0'1 1 = = = = pa ( ) pa ( ) 0'7 2
13 Se consideran los sucesos A y B. a) Exprese, utilizando las operaciones con sucesos, los siguientes sucesos: 1. Que no ocurra ninguno de los dos. 2. Que ocurra al menos uno de los dos. 3. Que ocurra B, pero que no ocurra A. Sabiendo que pa= ( ) 0'5, pb ( ) = 0'5 y pa ( / B ) = 0'3 halle pa ( B). SOCIALES II SEPTIEMBRE. EJERCICIO 3. PARTE I. OPCIÓN B a) 1) p( A B ) 2) p( A B ) 3) p( B A ) pa ( B) pa ( B) p( A/ B) = 0'3 = = p( A B) = 0'15 pb ( ) 0'5 Aplicamos la fórmula: p( A B) = pa ( ) + pb ( ) pa ( B ) pa ( B ) = 0'5+ 0'5 0'15= 0'85
Soluciones de los ejercicios de Selectividad sobre Probabilidad de Matemáticas Aplicadas a las Ciencias Sociales II
Soluciones de los ejercicios de Selectividad sobre Probabilidad de Antonio Francisco Roldán López de Hierro * Convocatoria de 2008 Las siguientes páginas contienen las soluciones de los ejercicios propuestos
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A
a) (1 punto) Dada la matriz a 1 A, calcule el valor de a para que A a 0 sea la matriz nula. 1 1 t b) ( puntos) Dada la matriz M, calcule la matriz M M. 1 1 x 1 Sea la función f definida mediante f ( x).
IES PADRE SUÁREZ MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II. Probabilidad 2008
Probabilidad 2008 EJERCICIO A Laura tiene en su monedero 6 monedas francesas, 2 italianas y 4 españolas. Vicente tiene 9 francesas y 3 italianas. Cada uno saca, al azar, una moneda de su monedero y observa
IES SALVADOR SERRANO: Dto. de Matemáticas. Curso 2 009 / 10 Relación de Ejercicios: Cálculo de Probabilidades Modelos 2 008 y 2 009
IES SALVADOR SERRANO: Dto. de Matemátias. Relaión de Ejeriios: Cálulo de Probabilidades Modelos 2 008 y 2 009 EJERCICIO 1: Lena y Adrián son afiionados al tiro on aro. Lena da en el blano on probabilidad
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD Junio, Ejercicio 3, Opción A Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3, Opción
IES PADRE SUÁREZ MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II. Probabilidad 2008
Probabilidad 2008 EJERCICIO 1A Laura tiene en su monedero 6 monedas francesas, 2 italianas y 4 españolas. Vicente tiene 9 francesas y 3 italianas. Cada uno saca, al azar, una moneda de su monedero y observa
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD Junio, Ejercicio 3, Opción A Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3, Opción
Ejercicios y problemas resueltos de probabilidad condicionada
Ejercicios y problemas resueltos de probabilidad condicionada 1.- Sean A y B dos sucesos aleatorios con p(a) = 1/2, p(b) = 1/3, p(a B)= 1/4. Determinar: 1 2 3 4 5 2.- Sean A y B dos sucesos aleatorios
TEMA 14 CÁLCULO DE PROBABILIDADES
Tema 14 Cálculo de probabilidades Matemáticas I 1º Bachillerato 1 TEMA 14 CÁLCULO DE PROBABILIDADES ESPACIO MUESTRAL. SUCESOS EJERCICIO 1 : En una urna hay 15 bolas numeradas de 2 al 16. Extraemos una
EJERCICIOS DE PROBABILIDAD
EJERCICIOS DE PROBABILIDAD 1. Se extrae una carta de una baraja española, calcula la probabilidad de que: a) Sea un rey; b) Sea un oro; c) Sea el rey de oros; d) Sea un rey o un oros; e) Sea un rey o una
Probabilidad. Relación de problemas 5
Relación de problemas 5 Probabilidad 1. Una asociación consta de 14 miembros, de los cuales 6 son varones y 8 son mujeres. Se desea seleccionar un comité de tres hombres y tres mujeres. Determinar de cuántas
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD Junio, Ejercicio 3, Parte I, Opción A Junio, Ejercicio 3, Parte I, Opción B Reserva 1,
Probabilidad Colección C.2. MasMates.com Colecciones de ejercicios
1. En un examen teórico para la obtención del permiso de conducir hay 14 preguntas sobre normas, 12 sobre señales y 8 sobre educación vial. Si se eligen dos preguntas al azar. a) Cuál es la probabilidad
EJERCICIOS DE PROBABILIDAD (1ºA)
EJERCICIOS DE PROBABILIDAD (1ºA) 5) 6) Una bolsa contiene bolas negras y rojas. Se extraen sucesivamente tres bolas. Obtener: a) El espacio muestral. b) El suceso A = extraer tres bolas del mismo color.
PROBABILIDAD. Pruebas de Acceso a la Universidad. Bachillerato de Ciencias Sociales. Departamento de Matemáticas del IES Andalán.
Pruebas de Acceso a la Universidad. Bachillerato de Ciencias Sociales. Departamento de Matemáticas del IES Andalán. PROBABILIDAD Junio 1994. El año pasado el 60% de los veraneantes de una cierta localidad
a) No curse la opción Científico-Tecnológica. b) Si es chico, curse la opción de Humanidades y C. Sociales
1 PROBABILIDAD 1.(97).- Para realizar un control de calidad de un producto se examinan tres unidades del producto, extraídas al azar (y sin reemplazamiento) de un lote de 100 unidades. Las unidades pueden
14Soluciones a los ejercicios y problemas
Soluciones a los ejercicios y problemas PÁGINA 8 Pág. P RACTICA Relaciones entre sucesos En un sorteo de lotería observamos la cifra en que termina el gordo. a) Cuál es el espacio muestral? b)escribe los
2 3 independientes? y mutuamente excluyentes? Halla )
EJERCICIOS DE PROBABILIDAD para hacer en casa IES Jovellanos 1º BI-NS Probabilidad 1. a) Demuestre mediante un diagrama de Venn que ( A B) \ ( A C) = A ( B \ C) b) Demuestre con propiedades Booleanas que
UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA
UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDADES GUÍA 2: PROBABILIDADES Profesor: Hugo S. Salinas Segundo Semestre 2010 1. Describir el espacio muestral
Mª Cruz González Página 1
SELECTIVIDAD Probabilidad. Junio 00 (Opc. Se tiene tres cajas iguales. La primera contiene bolas blancas y 4 negras; la segunda contiene 5 bolas negras y, la tercera, 4 blancas y negras. a) Si se elige
Probabilidad Colección B.1. MasMates.com Colecciones de ejercicios
1. Tenemos un dado (con sus seis caras numeradas del 1 al 6), trucado en el que es dos veces mas probable que salga un número par que un número impar. a) Calcula la probabilidad de salir par y la de salir
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A
OPCIÓN A a) (1 punto) Dada la matriz a 1 A =, calcule el valor de a para que A a 0 sea la matriz nula 1 1 t b) ( puntos) Dada la matriz M =, calcule la matriz ( M M ) 1 1 x + 1 Sea la función f definida
PROBABILIDAD ELEMENTAL
PROBABILIDAD ELEMENTAL La mayoría de estos problemas han sido propuestos en exámenes de selectividad de los distintos distritos universitarios españoles.. Una caja con una docena de huevos contiene dos
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A
OPCIÓN A (3 puntos) Una imprenta local edita periódicos y revistas. Para cada periódico necesita un cartucho de tinta negra y otro de color, y para cada revista uno de tinta negra y dos de color. Si sólo
PROBABILIDAD CONDICIONADA
1 PROBABILIDAD CONDICIONADA La mayoría de estos problemas han sido propuestos en exámenes de selectividad de los distintos distritos universitarios españoles. 1. En un grupo de amigos el 80 % están casados.
EVALUACIÓN 11 B) 150 1 C) 2 D) 15 E) 30
EVALUACIÓN 1. Si la probabilidad que llueva en San Pedro en verano es 1/30 y la probabilidad que caigan 100 cc es 1/40, cuál es la probabilidad que no llueva en San Pedro y que no caigan 100 cc? A) 1/1200
PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2
7 PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2 1. Se eligen tres autos al azar y cada uno es clasificado N si tiene motor naftero o D si tiene motor diesel (por ejemplo, un resultado posible sería N N D).
PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2
PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2 1. Se eligen tres autos al azar y cada uno es clasificado N si tiene motor naftero o D si tiene motor diesel (por ejemplo, un resultado posible sería NND). a)
Problemas de Probabilidad Soluciones
Problemas de Probabilidad Soluciones. En una carrera participan los caballos A, B, C y D. Se estima que la probabilidad de que gane A es el doble de la probabilidad de que gane cada uno de los otros tres.
SUCESOS. PROBABILIDAD. BACHILLERATO. TEORÍA Y EJERCICIOS SUCESOS
1 SUCESOS Experimento aleatorio. Es aquel que al repetirlo en análogas condiciones, da resultados diferentes, es decir, no se puede predecir el resultado que se va a obtener. Ejemplos: - Lanzar una moneda
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD
POBLEMAS ESUELTOS SELECTIVIDAD ANDALUCÍA 2007 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: POBABILIDAD Junio, Ejercicio 3, Opción A Junio, Ejercicio 3, Opción B eserva 1, Ejercicio 3, Opción A
1. Simule estas situaciones y concluya: a) Se tira una moneda equilibrada 10 veces y se observa qué proporción de veces salió cara en
1. Simule estas situaciones y concluya: a) Se tira una moneda equilibrada 10 veces y se observa qué proporción de veces salió cara en las sucesivas tiradas, se repite el experimento en condiciones similares
UNIVERSIDAD COMPLUTENSE DE MADRID
TIEMPO: INSTRUCCIONES GENERALES Y VALORACIÓN Una hora y treinta minutos. INSTRUCCIONES: El examen presenta dos opciones A y B; el alumno deberá elegir una de ellas y contestar razonadamente a los cuatro
PARTE 1 PROBLEMAS PROPUESTOS FACTORIAL. 2. 31 Calcular:
PARTE 1 FACTORIAL 2. 31 Calcular: PROBLEMAS PROPUESTOS i. 9!, (9)(8)(7)(6)(5)(4)(3)(2)(1) = 362880 ii. 10! (10)(9)(8)(7)(6)(5)(4)(3)(2)(1) = 3628800 iii. 11! (11)(10)(9)(8)(7)(6)(5)(4)(3)(2)(1) = 39916800
EJERCICIOS RESUELTOS TEMA 3
EJERCICIOS RESUELTOS TEMA 3 Observación: En todos los ejercicios se ha puesto A, como notación de contrario de A. Ejercicio nº 1.- En una urna hay 15 bolas numeradas de 2 al 16. Extraemos una bola al azar
2. Probabilidad. Estadística. Curso 2009-2010. Ingeniería Informática. Estadística (Aurora Torrente) 2. Probabilidad Curso 2009-2010 1 / 24
2. Probabilidad Estadística Ingeniería Informática Curso 2009-2010 Estadística (Aurora Torrente) 2. Probabilidad Curso 2009-2010 1 / 24 Contenidos 1 Experimentos aleatorios 2 Algebra de sucesos 3 Espacios
Diana del Pilar Cobos del Angel. Experimento: Es una prueba o ensayo. Es el proceso de obtener una observación.
Diana del Pilar Cobos del Angel Términos básicos Experimento: Es una prueba o ensayo. Es el proceso de obtener una observación. Eventos Simples: Cualquier resultado básico de un experimento. Un evento
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 7 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad
Selectividad Septiembre 2006 SEPTIEMBRE 2006
Bloque A SEPTIEMBRE 2006 1.- En una fábrica trabajan 22 personas entre electricistas, administrativos y directivos. El doble del número de administrativos más el triple del número de directivos, es igual
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A
a) (1 punto) Dada la matriz a 1 A =, calcule el valor de a para que A a 0 sea la matriz nula. 1 1 t b) ( puntos) Dada la matriz M =, calcule la matriz ( M M ). 1 1 x + 1 Sea la función f definida mediante
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A
a) (1 punto) Dada la matriz a 1 A =, calcule el valor de a para que A a 0 sea la matriz nula. 1 1 t b) ( puntos) Dada la matriz M =, calcule la matriz ( M M ). 1 1 x + 1 Sea la función f definida mediante
OBJETIVOS CONTENIDOS PROCEDIMIENTOS
008 _ 0-048.qxd 9/7/08 9:07 Página 405 4 Probabilidad INTRODUCCIÓN En la vida cotidiana tienen lugar acontecimientos cuya realización es incierta y en los que el grado de incertidumbre es mayor o menor
Materia: Matemática de Octavo Tema: Probabilidad de sucesos independientes
Materia: Matemática de Octavo Tema: Probabilidad de sucesos independientes Te has preguntado si pueden pasar dos cosas a la vez? Jana tiene dos mazos de cartas. Cada mazo tiene diez cartas. Hay tres figuras
Tema 7: Estadística y probabilidad
Tema 7: Estadística y probabilidad En este tema revisaremos: 1. Representación de datos e interpretación de gráficas. 2. Estadística descriptiva. 3. Probabilidad elemental. Representaciones de datos Cuatro
UNIVERSIDAD DE ATACAMA
UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA PROBABILIDAD Y ESTADÍSTICA GUÍA 2: PROBABILIDAD Plan Común de Ingeniería 1. En un torneo de baloncesto vacacional participan cuatro
CURSO DE ESTADÍSTICA DESCRIPTIVA PROBLEMAS RESUELTOS DE PROBABILIDAD
CURSO DE ESTADÍSTICA DESCRIPTIVA PROBLEMAS RESUELTOS DE PROBABILIDAD I. Encuentre los errores en cada uno de los siguientes planteamientos: a. Las probabilidades de que un vendedor de automóviles venda
PROBABILIDAD. 2. Un dado está cargado de forma que la probabilidad de obtener 6 puntos es 1 2
PROBABILIDAD 1. Blanca y Alfredo escriben, al azar, una vocal cada uno en papeles distintos. Determine el espacio muestral asociado al experimento. Calcule la probabilidad de que no escriban la misma vocal.
Tema 11 Cálculo de probabilidades - Matemáticas B 4º E.S.O. 1 11.0.1. - EXPERIENCIAS ALEATORIAS, CASOS, ESPACIO MUESTRAL, SUCESOS
Tema 11 Cálculo de probabilidades - Matemáticas B 4º E.S.O. 1 TEMA 11 CÁLCULO DE PROBABILIDADES 11.0 INTRODUCCIÓN 11.0.1. - EXPERIENCIAS ALEATORIAS, CASOS, ESPACIO MUESTRAL, SUCESOS Un suceso aleatorio
16 SUCESOS ALEATORIOS. PROBABILIDAD
EJERCICIOS PROPUESTOS 16.1 Indica si estos experimentos son aleatorios y, en caso afirmativo, forma el espacio muestral. a) Se extrae, sin mirar, una carta de una baraja española. b) Se lanza un dado tetraédrico
Clase 4: Probabilidades de un evento
Clase 4: Probabilidades de un evento Definiciones A continuación vamos a considerar sólo aquellos experimentos para los que el EM contiene un número finito de elementos. La probabilidad de la ocurrencia
INTRODUCCIÓN A LA PROBABILIDAD.
INTRODUCCIÓN A LA ROBABILIDAD. Departamento de Matemáticas Se denomina experimento aleatorio a aquel en que jamás se puede predecir el resultado. El conjunto formado por todos los resultados posibles de
Teoría de muestras. En cada una de las siguientes situaciones, explica la necesidad, o coveniencia, de recurrir a una muestra:
Teoría de muestras Ejercicio nº 1.- En cada una de las siguientes situaciones, explica la necesidad, o coveniencia, de recurrir a una muestra: a) Edad media de los asistentes a una importante final de
CÁLCULO DE PROBABILIDADES
8 Unidad didáctica 8. Cálculo de probabilidades CÁLCULO DE PROBABILIDADES CONTENIDOS Experimentos aleatorios Espacio muestral. Sucesos Sucesos compatibles e incompatibles Sucesos contrarios Operaciones
UCLM - Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG)
PAEG Junio 0 Propuesta A Matemáticas aplicadas a las CCSS II º Bachillerato UCLM - Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales
Sistemas Aleatorios: Probabilidad Condicional
MA2006 El concepto de la probabilidad condicional Imagine la probabilidad de que un hombre presente cáncer pulmonar antes de los 70 años. Imagine la probabilidad de que tal hombre presente cáncer pulmonar
6. Calcula la probabilidad de obtener un número mayor que 2 al lanzar un dado cúbico correcto con sus caras numeradas de 1 a 6.
1. Tenemos una urna con 3 bolas rojas y 2 bolas verdes. Si sacamos 3 bolas de la urna, sin devolución, entonces: a) Hallar el espacio muestral de este experimento b) Formar los sucesos (sacar los resultados)
Soluciones de los ejercicios de Selectividad sobre Probabilidad de Matemáticas Aplicadas a las Ciencias Sociales II
Soluciones de los ejercicios de Selectividad sobre Probabilidad de ntonio Francisco Roldán López de Hierro * Convocatoria de 2007 Las siguientes páginas contienen las soluciones de los ejercicios propuestos
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 003 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Junio, Ejercicio 3, Opción A Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3,
Problemas de Probabilidad(Selectividad) Ciencias Sociales
Problemas de Probabilidad(Selectividad) Ciencias Sociales Problema 1 En un instituto se ofertan tres modalidades excluyetes, A, B y C, y dos idiomas excluyentes, inglés y francés. La modalidad A es elegida
Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2012 - Propuesta B
Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2012 - Propuesta B 1. Una empresa tiene 3000 bolsas de ajo morado de Las
10. [2012] [EXT-B] Una empresa tiene dos líneas de producción. La línea 1 produce el 60% de los artículos y el resto los produce la
1. [2014] [EXT-A] Se piensa que un estudiante de bachillerato que estudie normal, sobre 10 horas semanales aparte de las clases, tiene una probabilidad de 0.9 de aprobar una asignatura. Suponiendo que
ANÁLISIS DE UN JUEGO DE CARTAS: LAS SIETE Y MEDIA
ANÁLISIS DE UN JUEGO DE CARTAS: LAS SIETE Y MEDIA MaMaEuSch (Management Mathematics for European School) http://www.mathematik.uni-kl.de/~mamaeusch/ Modelos matemáticos orientados a la educación Clases
Práctica No. 1. Materia: Estadística II Docente: Lic.Emma Mancilla Semestre : Sexto A1. Septiembre de 2011
Práctica No. 1 Materia: Estadística II Docente: Lic.Emma Mancilla Semestre : Sexto A1 Septiembre de 2011 1. Repaso:Conjuntos - Cálculo combinatorio. 1. Dado el conjunto A = {6, 2, 8, 4, 3} encontrar todos
PROBLEMAS SOBRE CÁLCULO DE PROBABILIDADES.
ANDALUCIA: º) (Andalucía, junio, 98) Ana, Juan y Raúl, que están esperando para realizar una consulta médica, sortean, al azar, el orden en que van a entrar. a) Calcule la probabilidad de que los dos últimos
La área en A o B es igual a la suma de las dos áreas. Entonces, interpretando probabilidad como área, concluimos que P (A o B) =P (A)+P (B).
La probabilidad P (A o B) Si A y B son sucesos incompatibles, tenemos el siguiente diagrama de Venn. Ω A B La área en A o B es igual a la suma de las dos áreas. Entonces, interpretando probabilidad como
IES Fco Ayala de Granada Junio de 2012 (General Modelo 4) Soluciones Germán-Jesús Rubio Luna
IES Fco Ayala de Granada Junio de 01 (General Modelo 4) Soluciones Germán-Jesús Rubio Luna SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 01 MODELO 4 (COMÚN) OPCIÓN A EJERCICIO 1 (A) Sea el recinto determinado
ANALISIS COMBINATORIO.
ANALISIS COMBINATORIO. TEOREMA FUNDAMENTAL: Si un suceso puede tener lugar de m maneras distintas y cuando ocurre una de ellas se puede realizar otro suceso inmediatamente de n formas diferentes, ambos
Colegio La Inmaculada Misioneras Seculares de Jesús Obrero ACTIVIDADES DE LOS TEMAS 15 Y 16
Colegio La Inmaculada Misioneras Seculares de Jesús Obrero Matemáticas 4º E.S.O. ACTIVIDADES DE LOS TEMAS 15 Y 16 1. De una urna con 7 bolas blancas y 14 negras extraemos una. Cuál es la probabilidad de
PROBLEMAS DE SELECTIVIDAD. BLOQUE PROBABILIDAD
PROBLEMAS DE SELECTIVIDAD. BLOQUE PROBABILIDAD 1. Una empresa de telefonía móvil ofrece 3 tipos diferentes de tarifas, A, B y C, cifrándose en un 45%, 30% y 25% el porcentaje de clientes abonados a cada
Selectividad Junio 2008 JUNIO 2008 PRUEBA A
Selectividad Junio 008 JUNIO 008 PRUEBA A 3 a x + a y =.- Sea el sistema: x + a y = 0 a) En función del número de soluciones, clasifica el sistema para los distintos valores del parámetro a. b) Resuélvelo
GUÍA DE APRENDIZAJE N 14 FECHA DE EDICIÓN 05/12/11
LICEO CARMELA CARVAJAL DE PRAT PROVIDENCIA DPTO. DE MATEMATICA GUÍA DE APRENDIZAJE N 14 FECHA DE EDICIÓN 05/12/11 SECTOR: M A T E M A T I C A PROFESORA: BLANCA E. RAMÍREZ N. MAIL DE PROFESORES: b.e.r.n.matematica@gmail.com,
EJERCICIOS DE PROBABILIDAD
TITULO: AUTOR: EJERCICIOS DE PROBABILIDAD EJERCICIOS RESUELTOS Y PROPUESTOS. Ejercicios Resueltos de Probabilidad. JUAN VICENTE GONZALEZ OVANDO ENUNCIADO 1 : En una empresa se producen dos tipos de bombillas
TEMA 2 EXPERIMENTOS ALEATORIOS Y CÁLCULO DE PROBABILIDADES
TEMA 2 EXPERIMENTOS ALEATORIOS Y CÁLCULO DE PROBABILIDADES EXPERIMENTOS: EJEMPLOS Deterministas Calentar agua a 100ºC vapor Soltar objeto cae Aleatorios Lanzar un dado puntos Resultado fútbol quiniela
Probabilidad Selectividad CCSS 2012. MasMates.com Colecciones de actividades
1. [ANDA] [SEP-B] Sean A y B dos sucesos de un espacio muestral, de los que se conocen las probabilidades P(A) = 0.60 y P(B) = 0.25. Determine las probabilidades que deben asignarse a los sucesos A B y
REPASO CONCEPTOS BÁSICOS DE ESTADÍSTICA. DISTRIBUCIÓN NORMAL.
REPASO COCEPTOS BÁSICOS DE ESTADÍSTICA. DISTRIBUCIÓ ORMAL. Éste es un breve repaso de conceptos básicos de estadística que se han visto en cursos anteriores y que son imprescindibles antes de acometer
EJ:LANZAMIENTO DE UNA MONEDA AL AIRE : S { } { } ESPACIO MUESTRAL:CONJUNTO DE TODOS LOS SUCESOS ELEMENTALES DE UN EXPERIMENTO ALEATORIO.
GUIA DE EJERCICIOS. TEMA: ESPACIO MUESTRAL-PROBABILIDADES-LEY DE LOS GRANDES NUMEROS. MONTOYA.- CONCEPTOS PREVIOS. EQUIPROBABILIDAD: CUANDO DOS O MAS EVENTOS TIENEN LA MISMA PROBABILIDAD DE OCURRIR. SUCESO
Tema 11 Probabilidad Matemáticas B 4º ESO 1
Tema 11 Probabilidad Matemáticas B 4º ESO 1 TEMA 11 PROBABILIDAD SUCESOS EJERCICIO 1 : En una bolsa hay 8 bolas numeradas del 1 al 8. Extraemos una bola al azar y anotamos su número. a Escribe el espacio
Inglés. Francés. B) Calcula la probabilidad de que el alumno elegido sea una chica que estudia francés.
Ej 1. En un centro escolar los alumnos pueden optar por estudiar inglés o francés. En un determinado curso, el 90% de los alumnos estudia inglés y el resto, francés. El 30% de los que estudian inglés son
Soluciones a las actividades de cada epígrafe
0 Soluciones a las actividades de cada epígrafe Pág. PÁGIA 08 En este juego hay que conseguir que no queden emparejadas dos bolas del mismo color. Por ejemplo: GAA PIERDE GAA PIERDE PIERDE uál es la probabilidad
LAS PROBABILIDADES Y EL SENTIDO COMÚN
LAS PROBABILIDADES Y EL SENTIDO COMÚN Existen leyes del azar? Nuestro sentido común pareciera decirnos que el azar y las leyes son conceptos contradictorios. Si algo sucede al azar, es porque no hay leyes
Práctico 4. Probabilidad
Práctico 4. Probabilidad Problema Calcular la probabilidad que si se lanzan dos dados la suma de los resultados obtenidos sea inferior a 9. Problema 2 Las posibilidades de apostar a pleno en la ruleta
MATEMÁTICAS 1º BACH CCSS - DISTRIBUCIÓN BINOMIAL = 0 3125.
MATEMÁTICAS º BACH CCSS - DISTRIBUCIÓN BINOMIAL ˆ EJERCICIO En una ciudad se han elegido al azar 7 habitantes. ¾Cuál es la probabilidad de que cuatro de ellos hayan nacido el 7 de mayo? p = P (haber nacido
13. II) Que salga una pinta del trébol es más probable que salga una pinta de diamante. III) La probabilidad de que salga un AS de trébol es 1/13.
GUIA UNO P.S.U. PROBABILIDADES ) Al lanzar un dado común (seis caras), cuál es la probabilidad de obtener un número que no sea primo? A) 2 5) Al lanzar dos dados no cargados, cuál es la probabilidad de
COMBINATORIA VARIACIONES. Las variaciones son aquellas formas de agrupar los elementos de un conjunto teniendo en cuenta que:
COMBINATORIA La Combinatoria es la parte de las Matemáticas que estudia las diversas formas de realizar agrupaciones con los elementos de un conjunto, formándolas y calculando su número. Existen distintas
TEMA 10 CÁLCULO DE PROBABILIDADES
Ejercicios Selectividad Tema 10 Cálculo de probabilidades Matemáticas CCSSII 2º Bachillerato 1 TEMA 10 CÁLCULO DE PROBABILIDADES COMBINATORIA EJERCICIO 1 : Septiembre 03-04. Obligatoria (1 pto) Un fabricante
PROBABILIDAD Els problemes assenyalats amb un (*) se faran a classe de problemes.
PROBABILIDAD Els problemes assenyalats amb un (*) se faran a classe de problemes. 1.- (*) En una carrera en la que participan diez caballos de cuántas maneras diferentes se pueden dar los cuatro primeros
La ruleta Plan de clase (1/3) Escuela: Fecha: Profr. (a):
La ruleta Plan de clase (1/3) Escuela: Fecha: Profr. (a): Curso: Matemáticas 3 Secundaria Eje temático: MI Contenido: 9.2.6 Cálculo de la probabilidad de ocurrencia de dos eventos mutuamente excluyentes
Tema 3: Variable aleatoria 9. Tema 3: Variable aleatoria
Tema 3: Variable aleatoria 9 Universidad Politécnica de Cartagena Dpto. Matemática Aplicada y Estadística Estadística Tema 3: Variable aleatoria 1. Probar si las siguientes funciones pueden definir funciones
CAPÍTULO 5. Probabilidad. 5.1 Álgebra de sucesos. 1. Experimento lanzar un dado y anotar la cara que sale:
CAPÍTULO 5 Probabilidad 5.1 Álgebra de sucesos 5.1.1 Fenómenos determinísticos y aleatorios En la naturaleza se producen dos tipos de fenómenos: Determinísticos: Son los fenómenos que siempre que se efectúen
Tema 3 Probabilidades
Probabilidades 1 Introducción Tal vez estemos acostumbrados con algunas ideas de probabilidad, ya que esta forma parte de la cultura cotidiana. Con frecuencia escuchamos a personas que hacen afirmaciones
El azar y la probabilidad. Un enfoque elemental
El azar y la probabilidad. Un enfoque elemental Experimentos al azar El azar puede percibirse fácilmente cuando se repite muchas veces una acción cuyo resultado no conocemos, como tirar dados, repartir
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
Pág. Página PACTICA Se hace girar la flecha y se observa sobre qué número se detiene. Calcula las probabilidades de los siguientes sucesos: a) Obtener un número par. b) Obtener un número primo. c) Obtener
Tema 1 con soluciones de los ejercicios. María Araceli Garín
Tema 1 con soluciones de los ejercicios María Araceli Garín Capítulo 1 Introducción. Probabilidad en los modelos estocásticos actuariales Se describe a continuación la Tarea 1, en la que se enumeran un
Probabilidad condicionada
Probabilidad condicionada Ejercicio nº 1.- Si A y B son dos sucesos tales que: P[A] 0,4 P[B / A] 0,25 P[B'] 0,75 a Son A y B independientes? b Calcula P[A B] y P[A B]. Ejercicio nº 2.- Sabiendo que: P[A]
Actividad A ganar, a ganar!
Nivel: 2.º Medio Subsector: Matemática Unidad temática: Estadística y probabilidad Ficha 13: Actividad A ganar, a ganar! Cada vez que en un juego de azar se acumula el pozo de dinero para repartir, miles
x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas.
Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Septiembre 2012 - Propuesta A 1. Queremos realizar una inversión en dos tipos
Lección 22: Probabilidad (definición clásica)
LECCIÓN 22 Lección 22: Probabilidad (definición clásica) Empezaremos esta lección haciendo un breve resumen de la lección 2 del libro de primer grado. Los fenómenos determinísticos son aquellos en los
Para resolver estos problemas podemos seguir tres pasos:
RESOLUCIÓN DE PROBLEMAS Algunos problemas pueden resolverse empleando sistemas de dos ecuaciones de primer grado con dos incógnitas. Muchas veces se pueden resolver utilizando una sola ecuación con una
Probabilidad Selectividad CCSS Madrid. MasMates.com Colecciones de ejercicios
1. [2014] [EXT-A] En la representación de navidad de los almnos de 3º de primaria de un colegio hay tres tipos de papeles: 7 son de animales, 3 de personas y 12 de árboles. Los papelese se asignan al azar,