Probabilidad Selectividad CCSS MasMates.com Colecciones de actividades

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Probabilidad Selectividad CCSS 2012. MasMates.com Colecciones de actividades"

Transcripción

1 1. [ANDA] [SEP-B] Sean A y B dos sucesos de un espacio muestral, de los que se conocen las probabilidades P(A) = 0.60 y P(B) = Determine las probabilidades que deben asignarse a los sucesos A B y A B en cada uno de los siguientes sucesos: a) Si A y B fuesen incompatibles. b) Si A y B fuesen independientes. c) Si P(A/B) = [ANDA] [SEP-A] Un pescador tiene tres tipos de carnada de las cuales solo una es adecuada para pescar salmón. Si utiliza la carnada correcta, la probabilidad de que pesque un salmón es 1/3, mientras que si usa una de las inadecuadas esa probabilidad se reduca a 1/5. a) Si elige aleatoriamente la carnada, cuál es la probabilidad de que pesque un salmón? b) Si ha pescado un salmón, cuál es la probabilidad de que lo haya hecho con la carnada adecuada? 3. [ANDA] [JUN-B] En una ciudad hay solamente dos supermercados A y B. El 58% de los habitantes compra en el A, el 35% en el B y el 12% compra en ambos. Si se elige un ciudadano al azar, calcule la probabilidad de que: a) Compre en algún supermercado. b) No compre en ningún supermercado. c) Compre solamente en un supermercado. d) Compre en el supermercado A, sabiendo que no compra en el B. 4. [ANDA] [JUN-A] Una compañía de seguros ha hecho un seguimiento durante un año a coches de la marca A, a de la marca B y a de la C, que tenía asegurados, obteniendo que, de ellos, habían tenido accidente 650 coches de la marca A, 200 de la B y 150 de la C. A la vista de estos datos: a) Cuál de las tres marcas de coches tiene menos proporción de accidentes? b) Si, elegido al azar uno de los coches observados, ha tenido un accidente, cuál es la probabilidad de que sea de la marca C? 5. [ARAG] [SEP-A] Luis y Ramón son jugadores de baloncesto. Luis encesta 3 de cada 5 tiros y Ramón 5 de cada 8. Si ambos tiran a canasta una sola vez, calcular la probabilidad de los siguientes sucesos: a) Únicamente Luis ha encestado. b) Ambos han encestado. c) Al menos uno ha encestado. 6. [ARAG] [JUN-B] Tres forofos del Real Zaragoza van al fútbol y desean hacerlo con la bufanda de su equipo, pero solamente tienen una. La ponen en una bolsa junto con otras dos bufandas negras y los tres van sacando, por orden, la bufanda que han de llevar. a) Alguno de los tres amigos tiene ventaja?: El que saca la bufanda en primer lugar, el que la saca en segundo lugar o el último. Razonar la respuesta. b) Si se meten tres bufandas negras en la bolsa en lugar de dos, además de la bufanda del equipo, calcular la probabilidad de que ninguno saque la de su equipo. 7. [ASTU] [SEP-B] Se sabe que un 40% de los graduados en una carrera son mujeres, de las cuales el 25% ha repetido algún curso. Además se sabe que un 30% de los hombres graduados ha repetido algún curso. a) Qué porcentaje son mujeres y ha repetido algún curso? b) Qué porcentaje de las personas graduadas ha repetido algún curso? 8. [ASTU] [JUN-B] Una compañía de seguros tiene un 75% de sus clientes en la zona norte y el 25% restante en la zona sur. Por estudios anteriores considera que el 4% de los clientes de la zona norte no pagan su póliza, mientras que en la zona sur este porcentaje se eleva hasta un 8 %. Si se eligió un cliente al azar, a) Cuál es la probabilidad de que sea de la zona norte y no haya pagado su póliza de seguros? b) Si se comprueba que no ha pagado su póliza, cuál es la probabilidad de que sea de la zona norte? 9. [ASTU] [JUN-A] En una empresa, la máquina A produce el 60% de las piezas y otra máquina B el 40% restante. Además se sabe que son defectuosas el 5% de las piezas producidas por A y el 30% de las producidas por B. Si se elige una pieza al azar, Página 1 de 5

2 a) Cuál es la probabilidad de que sea defectuosa? b) Si es defectuosa, cu al es la probabilidad de que haya sido producida por la máquina A? 10. [C-LE] [SEP-B] Un examen de oposición consiste en desarrollar por escrito un tema de un total de 50. El tribunal elige al azar 2 temas y cada candidato debe escoger uno de ellos. Halla la probabilidad de que un candidato suspenda el examen si tan sólo ha estudiado 35 temas. 11. [C-LE] [SEP-A] Un envío de frutas a un supermercado consta de naranjas y manzanas que se agrupan en cajones de 500 piezas: 300 naranjas y 200 manzanas. Por experiencias anteriores se sabe que en cada envío están estropeadas un 15% de las naranjas y un 5% de las manzanas. Se extrae una pieza al azar de un cajón cualquiera. a) Cuál es la probabilidad de que esté estropeada? b) Si la pieza elegida está en buenas condiciones, qué es más probable, que sea naranja o que sea manzana? 12. [C-LE] [SEP-A] El 75% de los alumnos de un instituto practican algún deporte, el 30% tocan un instrumento musical y el 15% realica ambas actividades. Calcula la probabilidad de que un alumno del instituto elegido al azar no realice ninguna de las dos actividades. 13. [C-LE] [JUN-B] La probabilidad de romper una galleta al ser envasada es el 1%. Si en un envase hay 10 galletas, cuál es la probabilidad de que al menos una galleta esté rota debido a la operación de envasado? 14. [C-LE] [JUN-A] Un moderno edificio tiene dos ascensores para uso de los vecinos. El primero de los ascensores es usado el 45% de las ocasiones, mientras que el segundo es usado el resto de las ocasiones. El uso continuado de los ascensores provoca un 5% de fallos en el primero de los ascensores y un 8% en el segundo. Un día suena la alarma de uno de los ascensores porque ha fallado. Calcula la probabilidad de que haya sido el primero de los ascensores. 15. [C-LE] [JUN-A] Calcula P A/B sabiendo que P(A) = 1 3, P(B) = 1 4 y P(A B) = [C-MA] [SEP-B] Una empresa tiene dos líneas de producción. La línea 1 produce el 60% de los artículos y el resto los produce la línea 2. Sabemos que el 0.5% de los artículos producidos por la línea 1 tienen algún defecto y así mismo el 2% de los artículos producidos por la línea 2 son defectuosos. a) Elegido un artículo al azar, calcula la probabilidad de que sea defectuoso. b) Sabiendo que un artículo tiene defectos, cuál es la probabilidad de que haya sido producido por la línea 2? 17. [C-MA] [SEP-A] Según un estudio, el 30% de las familias españolas van al cine regularmente, el 25% leen regularmente y el 15% hacen las dos cosas. a) Si elegimos una familia al azar y va al cine regularmente, cuál es la probabilidad de que esa familia lea regularmente? b) Se selecciona una familia al azar. Cuál es la probabilidad de que esa familia vaya al cine o lea regularmente? 18. [C-MA] [JUN-B] En una empresa se producen dos tipos de muebles: A y B, en una proporción de 2 a 3, respectivamente. La probabilidad de que un mueble de tipo A sea defectuoso es 0.05 y de que un mueble de tipo B sea defectuoso es 0.1. a) Elegido un mueble al azar, cuál es la probabilidad de que sea defectuoso? b) Se escoge al azar un mueble y resulta no defectuoso. Cuál es la probabilidad de que sea del tipo B? 19. [C-MA] [JUN-A] En un instituto el 30% de los alumnos juegan al baloncesto, el 25% juegan al fútbol, y el 50% juegan al fútbol o al baloncesto o a ambos deportes. a) Se elige un alumno al azar, cuál es la probabilidad de que juegue al fútbol y juegue al baloncesto? b) Si elgimos un alumno al azar y juega al baloncesto, cuál es la probabilidad de que juegue al fútbol? 20. [CANA] [SEP-B] El 65% de los jóvenes tiene una cuenta en alguna red social de internet. Se eligen al azar 80 jóvenes. Página 2 de 5

3 a) Cuál es el número medio esperado de jóvenes con una cuenta en alguna red social de internet? b) Cuál es la probabilidad de que más de 60 jóvenes tengan una cuenta en alguna red social de internet? c) Cuál es la probabilidad de que el número de jóvenes que tienen una cuenta en alguna red social de internet esté entre 45 y 55? 21. [CANA] [SEP-A] En una agencia de viajes los clientes viajan a España y Portugal (48%), a otros países europeos (35%) y al resto del mundo (17%). De ellos, respectivamente, el 20%, el 45% y el 60% contratan algún seguro de viaje. a) Cuál es el porcentaje de clientes de la agencia que no contratan seguro de viaje? b) Si se elige un cliente que ha contratado un seguro de viaje, cuál es la probabilidad de que viaje a España y Portugal? 22. [CANA] [JUN-B] Entre los alérgicos, un 40% tiene alergia a los animales, un 45% tiene alergia a las plantas y un 15% tiene alergia a algunas comidas. Son hombres el 40% de los alérgicos a los animales, el 50% de los alérgicos a las plantas y el 35% de los alérgicos a algunas comidas. a) Hacer el árbol de probabilidades. b) Calcular la proporción de hombres en los alérgicos. c) Se elije una mujer alérgica. Cuál es la probabilidad de que lo sea a las plantas? 23. [CANA] [JUN-A] El tiempo de atención a un paciente, en una consulta médica, sigue una normal de media 10 minutos y desviación típica igual a 3 minutos. a) Si hay citados 5 pacientes, cuál es la probabilidad de que el tiempo medio sea más de 8 minutos? b) Si hay citados 8 pacientes, cuál es la probabilidad de que sean atendidos en menos de 72 minutos? c) Si hay citados 300 pacientes, cuál es la estimación del número de pacientes cuya consulta durará más de 12 minutos? 24. [EXTR] [SEP-B] En un proceso de fabricación se sabe que la probabilidad de que un producto sea defectuoso es 0.1. Si se selecciona una muestra aleatoira de 3 productos: a) Cuál es la probabilidad de que solo el segundo sea defectuoso? b) Cuál es la probabilidad de al menos uno de los tres sea defectuoso? c) Cuál es la probabilidad de que haya exactamente uno defectuoso? Justificar las respuestas. 25. [EXTR] [JUN-A] En un centro comercial, las compras son pagadas con trajetas de crédito, tarjetas de débito o en metálico. Se comprobó que en una semana hubo 400 compras con tarjetas de crédito, 500 con tarjetas de débito y 1100 en metálico. Un 60% de las compras con trajetas de crédito fue superior a 200 euros, mientras que para las compras con tarjetas de débito el porcentaje de compras superiores a 200 euros fue el 40%. Además, 300 de las compras en metálico también fueron superiores a 200 euros. Si se extrae al azar un comprobante de compra: a) Cuál es la probabilidad de que corresponda a una compra superior a 200 euros? b) Si la compra es inferior a 200 euros, cuál es la probabilidad de que haya sido pagada en metálico? Justificar las respuestas. 26. [MADR] [SEP-B] Se consideran dos sucesos A y B tales que: P(A) = 1 3 ; P(B A) = 1 4 ; P(A B) = 1. Calcúlese razonadamente: 2 a) P(A B). b) P(B). c) P(B A). d) P(A B). Nota: S denota el suceso complementario del suceso S. P(S T) denota la probabilidad del suceso S condicionada al suceso T. 27. [MADR] [SEP-A] Se dispone de cinco cajas opacas. Una contiene una bola blanca, dos contienen una bola negra y las otras dos están vacías. Un juego consiste en ir seleccionando al azar y secuencialmente una caja no seleccionada previamente hasta obtener una que contenga una bola. Si la bola de la caja seleccionada es blanca, el jugador gana; si es negra, el jugador pierde. a) Calcúlese la probabilidad de que el jugador gane. b) Si el jugador ha perdido, cuál es la probabilidad de que haya seleccionado una sola caja? Página 3 de 5

4 28. [MADR] [JUN-B] Sean A y B dos sucesos de un experimento aleatorio tales que: P(A B) = 0,1, P A B = 0,6; P(A B) = 0,5. Calcúlense: a) P(B). b) P(A B). c) P(A). d) P(B A). Nota: S denota el suceso complementario del suceso S. P(S T) denota la probabilidad del suceso S condicionada al suceso T. 29. [MADR] [JUN-A] En un tribunal de la prueba de acceso a las enseñanzas universitarias oficiales de grado se han examinado 80 alumnos del colegio A, 70 alumnos del colegio B y 50 alumnos del colegio C. La prueba ha sido superada por el 80% de los alumnos del colegio A, el 90% de los del colegio B y por el 82% de los del colegio C. a) Cuál es la probabilidad de que un alumno elegido al azar haya superado la prueba? b) Un alumno elegido al azar no ha superado la prueba, cuál es la probabilidad de que pertenezca al colegio B? 30. [MURC] [SEP-B] El 60% de los dependientes de un centro comercial tienen 35 años o más, y de ellos el 75% tienen contrato indefinido. Por otra parte, de los dependientes con menos de 35 años el 30% tienen contrato indefinido. a) Seleccionado un dependiente al azar, cuál es la probabilidad de que no tenga contrato indefinido? b) Elegido al azar un dependiente que tiene contrato indefinido, cuál es la probabilidad de que tenga menos de 35 años? 31. [MURC] [SEP-A] Según una encuesta de opinión, el 30% de una determinada población aprueba la gestión del político A, mientras que el 70% restante la desaprueba. En cambio, el político B es aprobado por la mitad y no por la otra mitad. Un 25% de la población no aprueba a ninguno de los dos. Si se elige un individuo de la población al azar: a) Cuál es la probabilidad de que apruebe a alguno de los dos? b) Cuál es la probabilidad de que apruebe a los dos políticos? c) Cuál es la probabilidad de que no apruebe a alguno de los dos? 32. [MURC] [JUN-B] La probabilidad de que un alumno apruebe la asignatura A es 1 2, la de que apruebe la asignatura B es 3 y la de 8 que no apruebe ninguna de las dos es 1 4. a) Calcular la probabilidad de que apruebe al menos una de las dos asignaturas. b) Calcular la probabilidad de que apruebe las dos asignaturas. c) Hallar la probabilidad de que apruebe la asignatura A, sabiendo que ha aprobado la B. 33. [MURC] [JUN-A] La probabilidad de que cuando un autobús llegue a un determinado semáforo lo encuentre en rojo es 0,2. Si pasa tres veces a lo largo de un día por el semáforo, calcular la probabilidad de que: a) Las tres veces lo encuentre en rojo. b) Lo encuentre en rojo solo la segunda vez. c) Esté en rojo dos de las veces. d) Lo encuentre en rojo al menos una vez. 34. [RIOJ] [SEP] Cuántos números de tres cifras podemos formar con los dígitos 3, 4, 5 y 6? Se elge al azar uno de dichos números de tres cifras. Calcula la probabilidad de que ese número cumpla: "es par y comienza por 3". 35. [RIOJ] [SEP] Los datos de una asociación de aficionados al frontón nos indican que el 70% de sus afiliados son españoles, el 20% franceses y el resto se distribuye entre diferentes nacionalidades. Son jugadores profesionales de frontón el 5% de los socios españoles, el 10% de los socios franceses y el 25% de socios del resto de países. Se pide: de que un socio sea jugador profesional y español. de que un socio sea jugador profesional. De un socio se sabe que es profesional del frontón, probabilidad de que no sea ni español ni francés. Página 4 de 5

5 36. [RIOJ] [JUN] Una décima parte de los niños españoles padeca algún tipo de intolerancia alimentaria. De este grupo, la cuarta parte tiene intolerancia a la lactosa. i) de que un niño español no tolere la lactosa. ii) de que en un grupo de tres niños españoles, al menos uno de ellos tenga algún tipo de intolerancia alimentaria. 37. [RIOJ] [JUN] La flota de vehículos de una empresa de alquiler consta de 150 unidades de la marca A, 300 unidades de la marca B y 750 unidades de la marca C. El porcentaje de avería de un vehículo es del 10% para la marca A y del 5% para la marca B, pero este dato se desconoce para la marca C. Además, se sabe que la probabilidad de avería de un vehículo de la empresa es de i) Calcula la probabilidad de avería para los vehículos de la marca C. ii) Se sabe que un vehículo está averiado. de que pertenezca a la marca C. 38. [VALE] [SEP-B] Una urna A contiene cinco bolas rojas y dos azules. Otra urna B contiene cuatro bolas rojas y una azul. Tomamos al azar una bola de la urna A y, sin mirarla, la pasamos a la urna B. A continuación extraemos con reemplazamiento dos bolas de la urna B. Halla la probabilidad de que: a) Ambas bolas sean de color rojo. b) Ambas bolas sean de distinto color. c) Si la primera bola extraída es roja, cuál es la probabilidad de que la bola que hemos pasado de la urna A a la urna B haya sido azul? 39. [VALE] [SEP-A] Se ha hecho un estudio de un nuevo tratamiento en un colectivo de 120 personas aquejadas de cierta enfermedad, 30 de las cuales ya habían padecido la enfermedad con anterioridad. Entre las que habían padecido la enfermedad con anterioridad, el 80% ha reaccionado positivamente al nuevo tratamiento. Entre las que no la habían padecido, ha sido el 90% el que reaccionó positivamente. a) Si elegimos un paciente al azar, cuál es la probabilidad de que no reaccione positivamente al nuevo tratamiento? b) Si un paciente ha reaccionado positivamente al tratamiento, cuál es la probabilidad de que no haya padecido la enfermedad con anterioridad? c) Si elegimos dos pacientes al azar, cuál es la probabilidad de que los dos hayan padecido la enfermedad con anterioridad? 40. [VALE] [JUN-B] Tenemos tres urnas: la primera contiene 3 bolas azules, la segunda 2 bolas azules y 2 rojas y la tercera, 1 bola azul y 3 rojas. Elegimos una urna al azar y extraemos una bola. Calcula: a) La probabilidad de que la bola extraída sea roja. b) La probabilidad de que se haya elegido la segunda urna si la bola extraída ha sido roja. 41. [VALE] [JUN-A] El 15% de los habitantes de cierta población son socios de un club de futbol y el 3% son pelirrojos. Si los sucesos ser socio de un club de futbol y ser pelirrojo son independientes, calcula las probabilidades de que al elegir al azar un habitante de esa población, dicho habitante: a) Sea pelirrojo y no sea socio de un club de futbol. b) Sea pelirrojo o sea socio de un club de futbol. c) Sea socio de un club de futbol si sabemos que no es pelirrojo. Soluciones 1. a) 0.85, 0 b) 0.7, 0.15 c) 0.75, , '81, 0'19, 0'69, 0' C; 0' , 3 8, a) todos igual b) %, 28% 8. 0'03, 0'6 9. 0'15, 0' ' '11; naranja 12. 0' ' ' '011; 0' '5; 0' '08; 0' '05; 0' ; 0'0307; 0' '45%; 0' b) 43'75% c) 0' '9319; 0'1736; '081; 0'271; 0' '37; 0' ; 1 4 ; 3 4 ; ; '2; 0'4; 0'3; 0' '84; 0' '43; 0' '75; 0'05; 0' , 1 8, '008; 0'384; 0'096; 0' ; '035; 0'08; 0' '025; 0' '04; 0' '623; 0'325; 0' '125; 0'77; 0' , '0225; 0'1755; 0'15 Página 5 de 5

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD Junio, Ejercicio 3, Opción A Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3, Opción

Más detalles

PROBLEMAS DE SELECTIVIDAD. BLOQUE PROBABILIDAD

PROBLEMAS DE SELECTIVIDAD. BLOQUE PROBABILIDAD PROBLEMAS DE SELECTIVIDAD. BLOQUE PROBABILIDAD 1. Una empresa de telefonía móvil ofrece 3 tipos diferentes de tarifas, A, B y C, cifrándose en un 45%, 30% y 25% el porcentaje de clientes abonados a cada

Más detalles

TEMA 10 CÁLCULO DE PROBABILIDADES

TEMA 10 CÁLCULO DE PROBABILIDADES Ejercicios Selectividad Tema 10 Cálculo de probabilidades Matemáticas CCSSII 2º Bachillerato 1 TEMA 10 CÁLCULO DE PROBABILIDADES COMBINATORIA EJERCICIO 1 : Septiembre 03-04. Obligatoria (1 pto) Un fabricante

Más detalles

PROBABILIDAD. Pruebas de Acceso a la Universidad. Bachillerato de Ciencias Sociales. Departamento de Matemáticas del IES Andalán.

PROBABILIDAD. Pruebas de Acceso a la Universidad. Bachillerato de Ciencias Sociales. Departamento de Matemáticas del IES Andalán. Pruebas de Acceso a la Universidad. Bachillerato de Ciencias Sociales. Departamento de Matemáticas del IES Andalán. PROBABILIDAD Junio 1994. El año pasado el 60% de los veraneantes de una cierta localidad

Más detalles

IES PADRE SUÁREZ MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II. Probabilidad 2008

IES PADRE SUÁREZ MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II. Probabilidad 2008 Probabilidad 2008 EJERCICIO A Laura tiene en su monedero 6 monedas francesas, 2 italianas y 4 españolas. Vicente tiene 9 francesas y 3 italianas. Cada uno saca, al azar, una moneda de su monedero y observa

Más detalles

10. [2012] [EXT-B] Una empresa tiene dos líneas de producción. La línea 1 produce el 60% de los artículos y el resto los produce la

10. [2012] [EXT-B] Una empresa tiene dos líneas de producción. La línea 1 produce el 60% de los artículos y el resto los produce la 1. [2014] [EXT-A] Se piensa que un estudiante de bachillerato que estudie normal, sobre 10 horas semanales aparte de las clases, tiene una probabilidad de 0.9 de aprobar una asignatura. Suponiendo que

Más detalles

TEMA 14 CÁLCULO DE PROBABILIDADES

TEMA 14 CÁLCULO DE PROBABILIDADES Tema 14 Cálculo de probabilidades Matemáticas I 1º Bachillerato 1 TEMA 14 CÁLCULO DE PROBABILIDADES ESPACIO MUESTRAL. SUCESOS EJERCICIO 1 : En una urna hay 15 bolas numeradas de 2 al 16. Extraemos una

Más detalles

IES PADRE SUÁREZ MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II. Probabilidad 2008

IES PADRE SUÁREZ MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II. Probabilidad 2008 Probabilidad 2008 EJERCICIO 1A Laura tiene en su monedero 6 monedas francesas, 2 italianas y 4 españolas. Vicente tiene 9 francesas y 3 italianas. Cada uno saca, al azar, una moneda de su monedero y observa

Más detalles

Probabilidad Colección C.2. MasMates.com Colecciones de ejercicios

Probabilidad Colección C.2. MasMates.com Colecciones de ejercicios 1. En un examen teórico para la obtención del permiso de conducir hay 14 preguntas sobre normas, 12 sobre señales y 8 sobre educación vial. Si se eligen dos preguntas al azar. a) Cuál es la probabilidad

Más detalles

a) No curse la opción Científico-Tecnológica. b) Si es chico, curse la opción de Humanidades y C. Sociales

a) No curse la opción Científico-Tecnológica. b) Si es chico, curse la opción de Humanidades y C. Sociales 1 PROBABILIDAD 1.(97).- Para realizar un control de calidad de un producto se examinan tres unidades del producto, extraídas al azar (y sin reemplazamiento) de un lote de 100 unidades. Las unidades pueden

Más detalles

Probabilidad Selectividad CCSS Madrid. MasMates.com Colecciones de ejercicios

Probabilidad Selectividad CCSS Madrid. MasMates.com Colecciones de ejercicios 1. [2014] [EXT-A] En la representación de navidad de los almnos de 3º de primaria de un colegio hay tres tipos de papeles: 7 son de animales, 3 de personas y 12 de árboles. Los papelese se asignan al azar,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD Junio, Ejercicio 3, Opción A Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3, Opción

Más detalles

PROBABILIDAD. 1. a) Operaciones con sucesos. Propiedades. Sucesos compatibles.

PROBABILIDAD. 1. a) Operaciones con sucesos. Propiedades. Sucesos compatibles. OPCION A: 1. a) Operaciones con sucesos. Propiedades. Sucesos compatibles. k t si t [0,2] b) Sea f(t)= 0 en el resto Calcular k para que f sea de densidad, calcular la función de distribución. 2. a) De

Más detalles

2 3 independientes? y mutuamente excluyentes? Halla )

2 3 independientes? y mutuamente excluyentes? Halla ) EJERCICIOS DE PROBABILIDAD para hacer en casa IES Jovellanos 1º BI-NS Probabilidad 1. a) Demuestre mediante un diagrama de Venn que ( A B) \ ( A C) = A ( B \ C) b) Demuestre con propiedades Booleanas que

Más detalles

Problemas de Probabilidad(Selectividad) Ciencias Sociales

Problemas de Probabilidad(Selectividad) Ciencias Sociales Problemas de Probabilidad(Selectividad) Ciencias Sociales Problema 1 En un instituto se ofertan tres modalidades excluyetes, A, B y C, y dos idiomas excluyentes, inglés y francés. La modalidad A es elegida

Más detalles

Ejercicios y problemas resueltos de probabilidad condicionada

Ejercicios y problemas resueltos de probabilidad condicionada Ejercicios y problemas resueltos de probabilidad condicionada 1.- Sean A y B dos sucesos aleatorios con p(a) = 1/2, p(b) = 1/3, p(a B)= 1/4. Determinar: 1 2 3 4 5 2.- Sean A y B dos sucesos aleatorios

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD Junio, Ejercicio 3, Parte I, Opción A Junio, Ejercicio 3, Parte I, Opción B Reserva 1,

Más detalles

PROBABILIDAD. 2. Un dado está cargado de forma que la probabilidad de obtener 6 puntos es 1 2

PROBABILIDAD. 2. Un dado está cargado de forma que la probabilidad de obtener 6 puntos es 1 2 PROBABILIDAD 1. Blanca y Alfredo escriben, al azar, una vocal cada uno en papeles distintos. Determine el espacio muestral asociado al experimento. Calcule la probabilidad de que no escriban la misma vocal.

Más detalles

Probabilidad. Relación de problemas 5

Probabilidad. Relación de problemas 5 Relación de problemas 5 Probabilidad 1. Una asociación consta de 14 miembros, de los cuales 6 son varones y 8 son mujeres. Se desea seleccionar un comité de tres hombres y tres mujeres. Determinar de cuántas

Más detalles

Cálculo de Probabilidades

Cálculo de Probabilidades 1 1.- Una compañía de seguros ha hecho un seguimiento durante un año a 50.000 coches de la marca A, a 20.000 de la marca B y a 30.000 de la C, que tenía asegurados, obteniendo que, de ellos, habían tenido

Más detalles

EJERCICIOS DE PROBABILIDAD (1ºA)

EJERCICIOS DE PROBABILIDAD (1ºA) EJERCICIOS DE PROBABILIDAD (1ºA) 5) 6) Una bolsa contiene bolas negras y rojas. Se extraen sucesivamente tres bolas. Obtener: a) El espacio muestral. b) El suceso A = extraer tres bolas del mismo color.

Más detalles

ejerciciosyexamenes.com PROBABILIDAD

ejerciciosyexamenes.com PROBABILIDAD PROBABILIDAD 1. Lanzamos dos monedas al aire (primero una y luego la otra). Calcular la probabilidad de obtener: a) Una sola cara b) Al menos una cara c) Dos caras Sol: a) 1/2; b) 3/4; c) 1/4 2. Un lote

Más detalles

PROBLEMAS SOBRE CÁLCULO DE PROBABILIDADES.

PROBLEMAS SOBRE CÁLCULO DE PROBABILIDADES. ANDALUCIA: º) (Andalucía, junio, 98) Ana, Juan y Raúl, que están esperando para realizar una consulta médica, sortean, al azar, el orden en que van a entrar. a) Calcule la probabilidad de que los dos últimos

Más detalles

EJERCICIOS DE PROBABILIDAD

EJERCICIOS DE PROBABILIDAD EJERCICIOS DE PROBABILIDAD 1. Se extrae una carta de una baraja española, calcula la probabilidad de que: a) Sea un rey; b) Sea un oro; c) Sea el rey de oros; d) Sea un rey o un oros; e) Sea un rey o una

Más detalles

12 Las distribuciones binomial y normal

12 Las distribuciones binomial y normal Las distribuciones binomial y normal ACTIVIDADES INICIALES.I. Calcula la media, la varianza y la desviación típica de la variable X, cuya distribución de frecuencias viene dada por la siguiente tabla:

Más detalles

Tema 7: Estadística y probabilidad

Tema 7: Estadística y probabilidad Tema 7: Estadística y probabilidad En este tema revisaremos: 1. Representación de datos e interpretación de gráficas. 2. Estadística descriptiva. 3. Probabilidad elemental. Representaciones de datos Cuatro

Más detalles

Práctico 4. Probabilidad

Práctico 4. Probabilidad Práctico 4. Probabilidad Problema Calcular la probabilidad que si se lanzan dos dados la suma de los resultados obtenidos sea inferior a 9. Problema 2 Las posibilidades de apostar a pleno en la ruleta

Más detalles

Se pide: 1. Calcular las principales medidas de posición y dispersión para los datos anteriores.

Se pide: 1. Calcular las principales medidas de posición y dispersión para los datos anteriores. 2.2.- Ha sido medida la distancia de frenado (en metros) de una determinada marca de coches, según el tipo de suelo y velocidad a la que circula, los resultados en 64 pruebas aparecen en el listado siguiente:

Más detalles

Departamento de Economía Aplicada I FACULTAD DE CIENCIAS ECONÓMICAS Y EMPRESARIALES LICENCIATURA EN ADMINISTRACIÓN Y DIRECCIÓN DE EMPRESAS

Departamento de Economía Aplicada I FACULTAD DE CIENCIAS ECONÓMICAS Y EMPRESARIALES LICENCIATURA EN ADMINISTRACIÓN Y DIRECCIÓN DE EMPRESAS FACULTAD DE CIENCIAS ECONÓMICAS Y EMPRESARIALES LICENCIATURA EN ADMINISTRACIÓN Y DIRECCIÓN DE EMPRESAS ESTADÍSTICA I Relación de Ejercicios nº 4 PROBABILIDAD Curso 007-008 1) Describir el espacio muestral

Más detalles

Mª Cruz González Página 1

Mª Cruz González Página 1 SELECTIVIDAD Probabilidad. Junio 00 (Opc. Se tiene tres cajas iguales. La primera contiene bolas blancas y 4 negras; la segunda contiene 5 bolas negras y, la tercera, 4 blancas y negras. a) Si se elige

Más detalles

SUCESOS. PROBABILIDAD. BACHILLERATO. TEORÍA Y EJERCICIOS SUCESOS

SUCESOS. PROBABILIDAD. BACHILLERATO. TEORÍA Y EJERCICIOS SUCESOS 1 SUCESOS Experimento aleatorio. Es aquel que al repetirlo en análogas condiciones, da resultados diferentes, es decir, no se puede predecir el resultado que se va a obtener. Ejemplos: - Lanzar una moneda

Más detalles

Problemas de Probabilidad Soluciones

Problemas de Probabilidad Soluciones Problemas de Probabilidad Soluciones. En una carrera participan los caballos A, B, C y D. Se estima que la probabilidad de que gane A es el doble de la probabilidad de que gane cada uno de los otros tres.

Más detalles

Probabilidad condicionada

Probabilidad condicionada Probabilidad condicionada Ejercicio nº 1.- Si A y B son dos sucesos tales que: P[A] 0,4 P[B / A] 0,25 P[B'] 0,75 a Son A y B independientes? b Calcula P[A B] y P[A B]. Ejercicio nº 2.- Sabiendo que: P[A]

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A OPCIÓN A (3 puntos) Una imprenta local edita periódicos y revistas. Para cada periódico necesita un cartucho de tinta negra y otro de color, y para cada revista uno de tinta negra y dos de color. Si sólo

Más detalles

CÁLCULO DE PROBABILIDADES

CÁLCULO DE PROBABILIDADES CÁLCULO DE PROBABILIDADES Página PARA EMPEZAR, REFLEXIONA Y RESUELVE Calcula matemáticamente cuál es la probabilidad de que no toque raya en la cuadrícula de cm cm una moneda de cm de diámetro. De qué

Más detalles

MATEMÁTICAS 1º BACH CCSS - DISTRIBUCIÓN BINOMIAL = 0 3125.

MATEMÁTICAS 1º BACH CCSS - DISTRIBUCIÓN BINOMIAL = 0 3125. MATEMÁTICAS º BACH CCSS - DISTRIBUCIÓN BINOMIAL ˆ EJERCICIO En una ciudad se han elegido al azar 7 habitantes. ¾Cuál es la probabilidad de que cuatro de ellos hayan nacido el 7 de mayo? p = P (haber nacido

Más detalles

Colegio La Inmaculada Misioneras Seculares de Jesús Obrero ACTIVIDADES DE LOS TEMAS 15 Y 16

Colegio La Inmaculada Misioneras Seculares de Jesús Obrero ACTIVIDADES DE LOS TEMAS 15 Y 16 Colegio La Inmaculada Misioneras Seculares de Jesús Obrero Matemáticas 4º E.S.O. ACTIVIDADES DE LOS TEMAS 15 Y 16 1. De una urna con 7 bolas blancas y 14 negras extraemos una. Cuál es la probabilidad de

Más detalles

16 SUCESOS ALEATORIOS. PROBABILIDAD

16 SUCESOS ALEATORIOS. PROBABILIDAD EJERCICIOS PROPUESTOS 16.1 Indica si estos experimentos son aleatorios y, en caso afirmativo, forma el espacio muestral. a) Se extrae, sin mirar, una carta de una baraja española. b) Se lanza un dado tetraédrico

Más detalles

Propuesta A. b) Si A =, calcula la matriz X que cumple A X = I, donde I es la matriz identidad de orden 2. (0.75 puntos)

Propuesta A. b) Si A =, calcula la matriz X que cumple A X = I, donde I es la matriz identidad de orden 2. (0.75 puntos) Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (2012) Materia: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II El alumno deberá contestar a una de las dos opciones propuestas A o B.

Más detalles

1. Simule estas situaciones y concluya: a) Se tira una moneda equilibrada 10 veces y se observa qué proporción de veces salió cara en

1. Simule estas situaciones y concluya: a) Se tira una moneda equilibrada 10 veces y se observa qué proporción de veces salió cara en 1. Simule estas situaciones y concluya: a) Se tira una moneda equilibrada 10 veces y se observa qué proporción de veces salió cara en las sucesivas tiradas, se repite el experimento en condiciones similares

Más detalles

OBJETIVOS CONTENIDOS PROCEDIMIENTOS

OBJETIVOS CONTENIDOS PROCEDIMIENTOS 008 _ 0-048.qxd 9/7/08 9:07 Página 405 4 Probabilidad INTRODUCCIÓN En la vida cotidiana tienen lugar acontecimientos cuya realización es incierta y en los que el grado de incertidumbre es mayor o menor

Más detalles

Tema 11 Cálculo de probabilidades - Matemáticas B 4º E.S.O. 1 11.0.1. - EXPERIENCIAS ALEATORIAS, CASOS, ESPACIO MUESTRAL, SUCESOS

Tema 11 Cálculo de probabilidades - Matemáticas B 4º E.S.O. 1 11.0.1. - EXPERIENCIAS ALEATORIAS, CASOS, ESPACIO MUESTRAL, SUCESOS Tema 11 Cálculo de probabilidades - Matemáticas B 4º E.S.O. 1 TEMA 11 CÁLCULO DE PROBABILIDADES 11.0 INTRODUCCIÓN 11.0.1. - EXPERIENCIAS ALEATORIAS, CASOS, ESPACIO MUESTRAL, SUCESOS Un suceso aleatorio

Más detalles

EJ:LANZAMIENTO DE UNA MONEDA AL AIRE : S { } { } ESPACIO MUESTRAL:CONJUNTO DE TODOS LOS SUCESOS ELEMENTALES DE UN EXPERIMENTO ALEATORIO.

EJ:LANZAMIENTO DE UNA MONEDA AL AIRE : S { } { } ESPACIO MUESTRAL:CONJUNTO DE TODOS LOS SUCESOS ELEMENTALES DE UN EXPERIMENTO ALEATORIO. GUIA DE EJERCICIOS. TEMA: ESPACIO MUESTRAL-PROBABILIDADES-LEY DE LOS GRANDES NUMEROS. MONTOYA.- CONCEPTOS PREVIOS. EQUIPROBABILIDAD: CUANDO DOS O MAS EVENTOS TIENEN LA MISMA PROBABILIDAD DE OCURRIR. SUCESO

Más detalles

Sistemas Aleatorios: Probabilidad Condicional

Sistemas Aleatorios: Probabilidad Condicional MA2006 El concepto de la probabilidad condicional Imagine la probabilidad de que un hombre presente cáncer pulmonar antes de los 70 años. Imagine la probabilidad de que tal hombre presente cáncer pulmonar

Más detalles

EJERCICIOS RESUELTOS TEMA 3

EJERCICIOS RESUELTOS TEMA 3 EJERCICIOS RESUELTOS TEMA 3 Observación: En todos los ejercicios se ha puesto A, como notación de contrario de A. Ejercicio nº 1.- En una urna hay 15 bolas numeradas de 2 al 16. Extraemos una bola al azar

Más detalles

Distribuciones discretas. Distribución Binomial

Distribuciones discretas. Distribución Binomial Boletín: Distribuciones de Probabilidad IES de MOS Métodos estadísticos y numéricos Distribuciones discretas. Distribución Binomial 1. Una urna contiene 3 bolas blancas, 1 bola negra y 2 bolas azules.

Más detalles

Soluciones de los ejercicios de Selectividad sobre Probabilidad de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Probabilidad de Matemáticas Aplicadas a las Ciencias Sociales II Soluciones de los ejercicios de Selectividad sobre Probabilidad de Antonio Francisco Roldán López de Hierro * Convocatoria de 2008 Las siguientes páginas contienen las soluciones de los ejercicios propuestos

Más detalles

PROBLEMAS DE PROBABILIDAD. BOLETIN IV

PROBLEMAS DE PROBABILIDAD. BOLETIN IV PROBLEMAS DE PROBABILIDAD. BOLETIN IV 1. Se considera el experimento aleatorio de lanzar un dado al aire y anotar el número de la cara superior. Hallar: a) El espacio muestral. b) El suceso A= obtener

Más detalles

LAS PROBABILIDADES Y EL SENTIDO COMÚN

LAS PROBABILIDADES Y EL SENTIDO COMÚN LAS PROBABILIDADES Y EL SENTIDO COMÚN Existen leyes del azar? Nuestro sentido común pareciera decirnos que el azar y las leyes son conceptos contradictorios. Si algo sucede al azar, es porque no hay leyes

Más detalles

Clase 4: Probabilidades de un evento

Clase 4: Probabilidades de un evento Clase 4: Probabilidades de un evento Definiciones A continuación vamos a considerar sólo aquellos experimentos para los que el EM contiene un número finito de elementos. La probabilidad de la ocurrencia

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD POBLEMAS ESUELTOS SELECTIVIDAD ANDALUCÍA 2007 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: POBABILIDAD Junio, Ejercicio 3, Opción A Junio, Ejercicio 3, Opción B eserva 1, Ejercicio 3, Opción A

Más detalles

Práctica No. 1. Materia: Estadística II Docente: Lic.Emma Mancilla Semestre : Sexto A1. Septiembre de 2011

Práctica No. 1. Materia: Estadística II Docente: Lic.Emma Mancilla Semestre : Sexto A1. Septiembre de 2011 Práctica No. 1 Materia: Estadística II Docente: Lic.Emma Mancilla Semestre : Sexto A1 Septiembre de 2011 1. Repaso:Conjuntos - Cálculo combinatorio. 1. Dado el conjunto A = {6, 2, 8, 4, 3} encontrar todos

Más detalles

Matemáticas C.C.S.S. Repaso de Selectividad 1. Se desea obtener dos elementos químicos a partir de las sustancias A y B. Un kilo de A contiene 8

Matemáticas C.C.S.S. Repaso de Selectividad 1. Se desea obtener dos elementos químicos a partir de las sustancias A y B. Un kilo de A contiene 8 Matemáticas C.C.S.S. Repaso de Selectividad 1. Se desea obtener dos elementos químicos a partir de las sustancias A y B. Un kilo de A contiene 8 gramos del primer elemento y 1 gramo del segundo; un kilo

Más detalles

Tema 3: Variable aleatoria 9. Tema 3: Variable aleatoria

Tema 3: Variable aleatoria 9. Tema 3: Variable aleatoria Tema 3: Variable aleatoria 9 Universidad Politécnica de Cartagena Dpto. Matemática Aplicada y Estadística Estadística Tema 3: Variable aleatoria 1. Probar si las siguientes funciones pueden definir funciones

Más detalles

PROBABILIDAD CONDICIONADA

PROBABILIDAD CONDICIONADA 1 PROBABILIDAD CONDICIONADA La mayoría de estos problemas han sido propuestos en exámenes de selectividad de los distintos distritos universitarios españoles. 1. En un grupo de amigos el 80 % están casados.

Más detalles

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA PROBABILIDAD Y ESTADÍSTICA 1. Sean A y B dos sucesos y A, B sus complementarios. Si se verifica que p( B) = 2 / 3, p( A B) = 3 / 4 y p( A B) = 1/ 4, hallar: p( A), p( A B), y la probabilidad condicionada

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD Junio, Ejercicio 3, Opción A Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3, Opción

Más detalles

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2 7 PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2 1. Se eligen tres autos al azar y cada uno es clasificado N si tiene motor naftero o D si tiene motor diesel (por ejemplo, un resultado posible sería N N D).

Más detalles

14Soluciones a los ejercicios y problemas

14Soluciones a los ejercicios y problemas Soluciones a los ejercicios y problemas PÁGINA 8 Pág. P RACTICA Relaciones entre sucesos En un sorteo de lotería observamos la cifra en que termina el gordo. a) Cuál es el espacio muestral? b)escribe los

Más detalles

Soluciones a las actividades de cada epígrafe

Soluciones a las actividades de cada epígrafe 0 Soluciones a las actividades de cada epígrafe Pág. PÁGIA 08 En este juego hay que conseguir que no queden emparejadas dos bolas del mismo color. Por ejemplo: GAA PIERDE GAA PIERDE PIERDE uál es la probabilidad

Más detalles

UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDADES GUÍA 2: PROBABILIDADES Profesor: Hugo S. Salinas Segundo Semestre 2010 1. Describir el espacio muestral

Más detalles

4. Se considera la función f(x) =. Se pide:

4. Se considera la función f(x) =. Se pide: Propuesta A 1. Queremos realizar una inversión en dos tipos de acciones con las siguientes condiciones: Lo invertido en las acciones de tipo A no puede superar los 10000 euros. Lo invertido en las acciones

Más detalles

EVALUACIÓN 11 B) 150 1 C) 2 D) 15 E) 30

EVALUACIÓN 11 B) 150 1 C) 2 D) 15 E) 30 EVALUACIÓN 1. Si la probabilidad que llueva en San Pedro en verano es 1/30 y la probabilidad que caigan 100 cc es 1/40, cuál es la probabilidad que no llueva en San Pedro y que no caigan 100 cc? A) 1/1200

Más detalles

Probabilidad Colección B.1. MasMates.com Colecciones de ejercicios

Probabilidad Colección B.1. MasMates.com Colecciones de ejercicios 1. Tenemos un dado (con sus seis caras numeradas del 1 al 6), trucado en el que es dos veces mas probable que salga un número par que un número impar. a) Calcula la probabilidad de salir par y la de salir

Más detalles

Soluciones de los ejercicios de Selectividad sobre Probabilidad de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Probabilidad de Matemáticas Aplicadas a las Ciencias Sociales II Soluciones de los ejercicios de Selectividad sobre Probabilidad de ntonio Francisco Roldán López de Hierro * Convocatoria de 2007 Las siguientes páginas contienen las soluciones de los ejercicios propuestos

Más detalles

2) Un establecimiento comercial dispone a la venta dos artículos en una de sus secciones, de precios p

2) Un establecimiento comercial dispone a la venta dos artículos en una de sus secciones, de precios p Universidad de Sevilla Facultad de Ciencias Económicas y Empresariales Licenciatura de Economía Universidad de Sevilla ESTADÍSTICA I RELACIÓN 5 MODELOS Y DATOS ESTADÍSTICOS DEPARTAMENTO DE ECONOMÍA APLICADA

Más detalles

Boletín: Cadenas de Markov IES de MOS Métodos Estadísticos y Numéricos

Boletín: Cadenas de Markov IES de MOS Métodos Estadísticos y Numéricos Boletín: Cadenas de Markov IES de MOS Métodos Estadísticos y Numéricos 1. Tenemos 2 bolas blancas y 2 negras. Las repartimos en dos urnas cada una con 2. El sistema está en estado j si la urna 1 contiene

Más detalles

INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA

INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 1 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA Páginas 74-75 Lanzamiento de varios dados Comprobación de que: Desviación típica de n dados = (Desv. típica para un dado) / 1,71 n = 1,1 1,71 n = 3 0,98

Más detalles

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2 PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2 1. Se eligen tres autos al azar y cada uno es clasificado N si tiene motor naftero o D si tiene motor diesel (por ejemplo, un resultado posible sería NND). a)

Más detalles

RELACIÓN DE EJERCICIOS DE ESTADÍSTICA. PROBLEMAS DE ESTADÍSTICA: PROBABILIDAD

RELACIÓN DE EJERCICIOS DE ESTADÍSTICA. PROBLEMAS DE ESTADÍSTICA: PROBABILIDAD 1 UNIVERSIDAD DE CASTILLA-LA MANCHA Facultad de Químicas. RELACIÓN DE EJERCICIOS DE ESTADÍSTICA. PROBLEMAS DE ESTADÍSTICA: PROBABILIDAD Ejercicio 1º.- Se lanzan dos monedas y un dado. Se pide: 1) Describir

Más detalles

PROBABILIDAD ELEMENTAL

PROBABILIDAD ELEMENTAL PROBABILIDAD ELEMENTAL La mayoría de estos problemas han sido propuestos en exámenes de selectividad de los distintos distritos universitarios españoles.. Una caja con una docena de huevos contiene dos

Más detalles

En principio P( haber elegido A ) =P(A) = 0,5 y P( haber elegido B ) =P(B) = 0,5

En principio P( haber elegido A ) =P(A) = 0,5 y P( haber elegido B ) =P(B) = 0,5 1.-Una empresa de conservas puede obtener beneficios de 3, 4, ó 5 millones de u.m. al año, con probabilidades respectivas 0,4 0,5, 0,1. Se le ofrecen los servicios de dos empresas de publicidad A, y B,

Más detalles

Ejercicios distribuciones discretas probabilidad

Ejercicios distribuciones discretas probabilidad Ejercicios distribuciones discretas probabilidad 1. Una máquina que produce cierta clase de piezas no está bien ajustada. Un porcentaje del 4.2% de las piezas están fuera de tolerancias, por lo que resultan

Más detalles

CAPÍTULO 5. Probabilidad. 5.1 Álgebra de sucesos. 1. Experimento lanzar un dado y anotar la cara que sale:

CAPÍTULO 5. Probabilidad. 5.1 Álgebra de sucesos. 1. Experimento lanzar un dado y anotar la cara que sale: CAPÍTULO 5 Probabilidad 5.1 Álgebra de sucesos 5.1.1 Fenómenos determinísticos y aleatorios En la naturaleza se producen dos tipos de fenómenos: Determinísticos: Son los fenómenos que siempre que se efectúen

Más detalles

x: acciones tipo A y: acciones tipo B función a optimizar: R(x,y)= 0.01x + 0.05y x 10000 y 8000 x + y 15000 x 0 y 0 x = 10000 x + y = 15000 x = 7000

x: acciones tipo A y: acciones tipo B función a optimizar: R(x,y)= 0.01x + 0.05y x 10000 y 8000 x + y 15000 x 0 y 0 x = 10000 x + y = 15000 x = 7000 4 6 8 4 6 www.clasesalacarta.com Universidad de Castilla la Mancha PAU/LOGSE Septiembre. SEPTIEMBRE Opción A.- Queremos realizar una inversión en dos tipos de acciones con las siguientes condiciones: Lo

Más detalles

Tema 11 Probabilidad Matemáticas B 4º ESO 1

Tema 11 Probabilidad Matemáticas B 4º ESO 1 Tema 11 Probabilidad Matemáticas B 4º ESO 1 TEMA 11 PROBABILIDAD SUCESOS EJERCICIO 1 : En una bolsa hay 8 bolas numeradas del 1 al 8. Extraemos una bola al azar y anotamos su número. a Escribe el espacio

Más detalles

Relación de problemas: Variables aleatorias

Relación de problemas: Variables aleatorias Estadística y modelización. Ingeniero Técnico en Diseño Industrial. Relación de problemas: Variables aleatorias 1. Se lanza tres veces una moneda y se observa el número de caras. (a) Calcula la distribución

Más detalles

PROBABILIDAD. Ejercicio nº 1.- Qué es una experiencia aleatoria? De las siguientes experiencias cuáles son aleatorias?

PROBABILIDAD. Ejercicio nº 1.- Qué es una experiencia aleatoria? De las siguientes experiencias cuáles son aleatorias? PROBABILIDAD Ejercicio nº 1.- a Al lanzar un dado sacar puntuación par. b Lanzar un dado y sacar una puntuación mayor que 6. c Bajar a la planta baja en ascensor. Ejercicio nº 2 a En una caja hay cinco

Más detalles

DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL

DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL Página 4 REFLEXIONA Y RESUELVE Recorrido de un perdigón Dibuja los recorridos correspondientes a: C + C C, + C + C, + C C C, + + + +, C+CC

Más detalles

RELACIÓN EJERCICIOS DEL CAPÍTULO 1. Intervalos de Confianza 1. La vida media de una muestra aleatoria de 10 focos es de 4.

RELACIÓN EJERCICIOS DEL CAPÍTULO 1. Intervalos de Confianza 1. La vida media de una muestra aleatoria de 10 focos es de 4. RELACIÓN EJERCICIOS DEL CAPÍTULO 1. Intervalos de Confianza 1. La vida media de una muestra aleatoria de 10 focos es de 4.000 horas, con una cuasidesviación típica muestral de 200 horas. Se supone que

Más detalles

Probabilidad 0.9 0.9 0.8 0.9 0.95 0.75. U. D. de Matemáticas de la ETSITGC de la U.P.M. Asignatura: Cálculo y Estadística 1

Probabilidad 0.9 0.9 0.8 0.9 0.95 0.75. U. D. de Matemáticas de la ETSITGC de la U.P.M. Asignatura: Cálculo y Estadística 1 .- Obtener la probabilidad de las siguientes jugadas en una mano de 5 cartas de una baraja de 5 cartas: a) Pareja. b) Doble pareja. c) Trío. d) Escalera. e) Color. f) Full. g) Póker h) Escalera de color..-

Más detalles

MATEMÁTICAS A 4º ESO IES LOS CARDONES 2014-2015 PLAN DE RECUPERACIÓN. Contenidos Mínimos. I. Estrategias, habilidades, destrezas y actitudes generales

MATEMÁTICAS A 4º ESO IES LOS CARDONES 2014-2015 PLAN DE RECUPERACIÓN. Contenidos Mínimos. I. Estrategias, habilidades, destrezas y actitudes generales MATEMÁTICAS A 4º ESO IES LOS CARDONES 2014-2015 PLAN DE RECUPERACIÓN Contenidos Mínimos I. Estrategias, habilidades, destrezas y actitudes generales II. Números: Resolución de problemas utilizando toda

Más detalles

Problemas Resueltos del Tema 1

Problemas Resueltos del Tema 1 Tema 1. Probabilidad. 1 Problemas Resueltos del Tema 1 1- Un estudiante responde al azar a dos preguntas de verdadero o falso. Escriba el espacio muestral de este experimento aleatorio.. El espacio muestral

Más detalles

Algunas Distribuciones de Probabilidad

Algunas Distribuciones de Probabilidad Relación de problemas 7 Algunas Distribuciones de Probabilidad 1. En un hospital se ha comprobado que la aplicación de un tratamiento en enfermos de cirrosis produce una cierta mejoría en el 80 % de los

Más detalles

PROBLEMAS DE CÁLCULO DE PROBABILIDADES

PROBLEMAS DE CÁLCULO DE PROBABILIDADES PROBLEMAS DE CÁLCULO DE PROBABILIDADES Rosario Cintas del Río Escuela Universitaria de Estadística Universidad Complutense CÁLCULO DE PROBABILIDADES HOJA 1 1. Supongamos que los tiempos de los corredores

Más detalles

Definición 2.1.1. Se llama suceso aleatorio a cualquier subconjunto del espacio muestral.

Definición 2.1.1. Se llama suceso aleatorio a cualquier subconjunto del espacio muestral. Capítulo 2 Probabilidades 2. Definición y propiedades Al realizar un experimento aleatorio nuestro interés es obtener información sobre las leyes que rigen el fenómeno sometido a estudio. El punto de partida

Más detalles

Ejercicios. a) Justifica si A y B son independientes. b) Calcula P ( A/ B ) y P ( B / A ) ; A y B indican los contrarios de A y B.

Ejercicios. a) Justifica si A y B son independientes. b) Calcula P ( A/ B ) y P ( B / A ) ; A y B indican los contrarios de A y B. Ejercicios Ejercicio 1. En un instituto se ofertan tres modalidades excluyentes, A, B, C, y dos idiomas excluyentes, inglés y francés. La modalidad A es elegida por un 50% de los alumnos, la B por un 30%

Más detalles

6. Calcula la probabilidad de obtener un número mayor que 2 al lanzar un dado cúbico correcto con sus caras numeradas de 1 a 6.

6. Calcula la probabilidad de obtener un número mayor que 2 al lanzar un dado cúbico correcto con sus caras numeradas de 1 a 6. 1. Tenemos una urna con 3 bolas rojas y 2 bolas verdes. Si sacamos 3 bolas de la urna, sin devolución, entonces: a) Hallar el espacio muestral de este experimento b) Formar los sucesos (sacar los resultados)

Más detalles

PARTE 1 PROBLEMAS PROPUESTOS FACTORIAL. 2. 31 Calcular:

PARTE 1 PROBLEMAS PROPUESTOS FACTORIAL. 2. 31 Calcular: PARTE 1 FACTORIAL 2. 31 Calcular: PROBLEMAS PROPUESTOS i. 9!, (9)(8)(7)(6)(5)(4)(3)(2)(1) = 362880 ii. 10! (10)(9)(8)(7)(6)(5)(4)(3)(2)(1) = 3628800 iii. 11! (11)(10)(9)(8)(7)(6)(5)(4)(3)(2)(1) = 39916800

Más detalles

todas especialidades Soluciones de las hojas de problemas

todas especialidades Soluciones de las hojas de problemas Universidad Politécnica de Cartagena Dpto. Matemática Aplicada y Estadística Ingeniería Técnica Industrial Métodos estadísticos de la ingeniería Métodos estadísticos de la ingeniería Ingeniería Técnica

Más detalles

CÁLCULO DE PROBABILIDADES

CÁLCULO DE PROBABILIDADES 8 Unidad didáctica 8. Cálculo de probabilidades CÁLCULO DE PROBABILIDADES CONTENIDOS Experimentos aleatorios Espacio muestral. Sucesos Sucesos compatibles e incompatibles Sucesos contrarios Operaciones

Más detalles

Probabilidad Selectividad CCSS MasMates.com Colecciones de ejercicios

Probabilidad Selectividad CCSS MasMates.com Colecciones de ejercicios 1. [ANDA] [SEP-B] Una dado tiene seis caras, tres de ellas marcadas con un 1, dos marcadas con una X y la otra marcada con un 2. a) Cuál es la probabilidad de obtener tres veces el 1? b) Cuál es la probabilidad

Más detalles

(1) Medir el azar. ESTALMAT-Andalucía Actividades 06/07. a) Cuenta los casos en que la suma de salga múltiplo de tres y calcula la probabilidad.

(1) Medir el azar. ESTALMAT-Andalucía Actividades 06/07. a) Cuenta los casos en que la suma de salga múltiplo de tres y calcula la probabilidad. (1) Medir el azar Se lanzan dos dados y sumamos los puntos de las caras superiores a) Cuenta los casos en que la suma de salga múltiplo de tres y calcula la probabilidad. Una bolsa contiene 4 bolas rojas,

Más detalles

MATEMÁTICAS 4º DE ESO ACTIVIDADES DE VERANO

MATEMÁTICAS 4º DE ESO ACTIVIDADES DE VERANO 1 MATEMÁTICAS 4º DE ESO ACTIVIDADES DE VERANO I.- OPERACIONES CON POTENCIAS Y RADICALES 1.- - S: 77/5 2.- S: 1 3.- 4.- 5.- 6.- 7.- 8.- 9.- 10.- 2 11.- Simplifica 12.- Simplifica 13.- Expresa bajo un radical

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. Página PACTICA Se hace girar la flecha y se observa sobre qué número se detiene. Calcula las probabilidades de los siguientes sucesos: a) Obtener un número par. b) Obtener un número primo. c) Obtener

Más detalles

INTRODUCCIÓN A LA PROBABILIDAD.

INTRODUCCIÓN A LA PROBABILIDAD. INTRODUCCIÓN A LA ROBABILIDAD. Departamento de Matemáticas Se denomina experimento aleatorio a aquel en que jamás se puede predecir el resultado. El conjunto formado por todos los resultados posibles de

Más detalles

I.E.S. CUADERNO Nº 12 NOMBRE: FECHA: / / Probabilidad

I.E.S. CUADERNO Nº 12 NOMBRE: FECHA: / / Probabilidad Probabilidad Contenidos 1. Experimentos aleatorios Espacio muestral y sucesos Operaciones con sucesos Sucesos incompatibles 2. Probabilidad de un suceso La regla de Laplace Frecuencia y probabilidad Propiedades

Más detalles

PROBABILIDAD. 2.1. Experimentos aleatorios. 2.2. Definiciones básicas

PROBABILIDAD. 2.1. Experimentos aleatorios. 2.2. Definiciones básicas Capítulo 2 PROBABILIDAD La probabilidad y la estadística son, sin duda, las ramas de las Matemáticas que están en mayor auge en este siglo, y tienen una tremenda aplicabilidad en todos los aspectos y ciencias,

Más detalles

EXÁMENES DE SELECTIVIDAD DE LA COMUNIDAD VALENCIANA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II NOMBRE:

EXÁMENES DE SELECTIVIDAD DE LA COMUNIDAD VALENCIANA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II NOMBRE: EXÁMENES DE SELECTIVIDAD DE LA COMUNIDAD VALENCIANA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II NOMBRE: Junio 2007 (A) PROBLEMA 1 Dada la matriz A = 1 2, calcula A A t 5 A -1, siendo A t y A -1 las

Más detalles

Matemáticas, juego,...fortuna: Jugamos?

Matemáticas, juego,...fortuna: Jugamos? Matemáticas, juego,...fortuna: Jugamos? Blaise Pascal y Pierre de Fermat en Wikimedia Commons Una de las ramas de la matemática más novedosas es la teoría de probabilidades, que estudia las probabilidades

Más detalles