EJERCICIOS DE ESTADÍSTICA I.T.O.P.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "EJERCICIOS DE ESTADÍSTICA I.T.O.P."

Transcripción

1 EJERCICIOS DE ESTADÍSTICA I.T.O.P. Alberto Luceño Fco. Javier González Universidad de Cantabria

2 1. ESTADÍSTICA DESCRIPTIVA 1. Estadística descriptiva 1. En un estudio entre 145 familias, se ha observado que el número de hijos se distribuye de la siguiente manera: hijos frecuencia Se pide: a) Hacer un diagrama de barras. b) Calcular, la media, la moda, la mediana y la desviación típica. x = 2,41, M o = 2, M e = 2, S x = 2,11 2. En diferentes días se ha observado el número de veces que ha sonado la alarma en un servicio de bomberos, obteniéndose los siguientes datos: {5,3,1,5,3,6,4,2,5,6,3,6,5,2,6,7,3} Se pide: a) Obtener la moda, la mediana, Q 1, Q 3 y el cuantil 0,40. b) Obtener la media y la desviación típica. c) Efectuar un diagrama apropiado. a) M o = 3, 5, 6, Me = 5, Q 1 = 3, Q 3 = 6, c 0,40 = 3 b) x = 4,235, S x = 1, El porcentaje de algodón en una tela utilizada para elaborar camisas para hombre se presenta en la siguiente tabla. Calcular los estadísticos más importantes y construir el histograma de frecuencias. porcentaje de algodón 32,1 32,5 32,6 32,7 32,8 32,9 33,1 33,1 33,4 33,5 33,6 33,6 33,6 33,6 33,6 33,8 33, ,1 34,1 34,1 34,2 34,3 34,3 34,4 34,5 34,5 34,6 34,6 34,6 34,6 34,6 34,7 34,7 34,7 34,7 34,7 34,7 34, ,1 35,1 35,1 35,2 35,3 35,4 35,4 35,5 35,6 35,7 35,8 35,9 36,2 36,4 36,6 36,8 36,8 36,8 37,1 37,3 37,6 37,8 37,9 a) Diseñar la distribución de frecuencias con un cambio de variable. b) Calcular los estadísticos: media, moda, mediana, Q 1, Q 3, c 0,6, varianza y desviación típica. c) Representar el diagrama de tallo y hojas. d) A partir del diagrama anterior determinar la mediana, el primer cuartil y el tercer cuartil y compárese los resultados con los obtenidos a partir de la distribución de frecuencias. e) Representar los histogramas de frecuencias absolutas y acumuladas. Universidad de Cantabria. Alberto Luceño y Fco. Javier González 2

3 1. ESTADÍSTICA DESCRIPTIVA f ) Representar el diagrama de caja y determinar los valores extremos. b) S 2 x = 1,82, Mo = 34,8, Q1 = 33,8, Q3 = 35,475, c0,60 = 34,9 4. Un ingeniero se plantea la elección entre dos fabricantes distintos para el suministro de cierto aditivo para el hormigón. El ingeniero recibe las muestras de los suministradores A y B. Realiza las medidas para 15 bolsas de cada tipo del suministro. Los resultados se recogen en la tabla: Laboratorio A 2,769 2,813 2,863 2,875 2,924 2,955 2,962 2,98 3,007 3,028 3,051 3,076 3,123 3,161 3,216 Laboratorio B 2,865 2,901 2,923 2,940 2,945 2,969 2,984 2,981 2,996 3,002 3,017 3,039 3,044 3,057 3,14 Se pide: a) Diseñar una distribución de frecuencias para cada tipo de aditivo. b) Realizar los histogramas adecuados para comparar gráficamente ambos aditivos. c) Determinar los principales estadísticos. d) Justificar el aditivo elegido. Descriptive Statistics Variable N Mean Median TrMean StDev SE Mean LabA 15 2,9869 2,9800 2,9860 0,1273 0,0329 % LabB 15 2,9869 2,9840 2,9845 0,0688 0,0178 % Variable Minimum Maximum Q1 Q3 % LabA 2,7690 3,2160 2,8750 3,0760 % LabB 2,8650 3,1400 2,9400 3, Las puntuaciones obtenidas por un grupo de alumnos en un test de habilidad psicomotriz han sido las siguientes: Puntuaciones x i f i x i f i F i [5, 10) [10, 15) [15, 20) [20, 25) [25, 30) a) Calcular los principales estadísticos centrales. b) Rango intercuartil. a) x = 17,34, M e = 17,5, Q 1 = 13,96, Q 3 = 20,9 b) RIQ = 16,94 6. En la siguiente tabla de frecuencias, se registran los pesos en gramos de ciertas tornillos. Universidad de Cantabria. Alberto Luceño y Fco. Javier González 3

4 1. ESTADÍSTICA DESCRIPTIVA intervalo marca de clase frecuencia 1 x < x < x < x < 9 9 x < 11 2 a) Dar las marcas de clase y calcular la frecuencia correspondiente al cuarto intervalo, sabiendo que la media x es igual a 6 gramos. b) Hallar el tercer cuartil Q 3. a) f 4 = 13 b) Q 3 = 7, Distribución conjunta de dos variables 7. La siguiente tabla registra en diferentes horas la temperatura (T) del agua de un río y su contenido en oxígeno disuelto (DO): T DO T DO T DO T DO T DO 29,57 9,88 29,48 6,67 28,43 2,90 31,68 13,80 28,51 2,58 29,99 12,14 29,06 5,29 28,64 3,94 31,34 12,32 28,30 2,41 30,58 13,66 28,81 4,23 29,02 5,52 31,00 11,00 28,09 2,51 31,00 14,19 28,60 3,56 29,52 7,83 30,79 10,00 28,00 2,71 31,34 14,50 28,51 2,98 30,07 10,68 30,45 8,45 28,13 3,48 31,26 13,72 28,51 2,58 30,67 12,98 30,07 6,48 28,30 4,36 31,17 12,54 28,43 2,32 31,17 14,26 29,69 4,91 28,72 5,71 30,96 11,48 28,34 2,14 31,55 14,93 29,36 3,89 29,14 7,91 30,50 9,92 28,34 2,09 31,76 14,91 29,02 3,21 29,74 10,61 29,99 8,32 28,26 2,27 31,81 14,61 28,76 2,83 30,37 12,66 Se pide: a) Construir una distribución conjunta de frecuencias para las dos variables T y DO tomando 5 intervalos. b) Dibujar un diagrama de dispersión conjunto de las dos variables. c) Hacer un estudio de las distribuciones marginales. d) Calcular la matriz de varianzas-covarianzas. Véase el capítulo 1 del libro de Luceño y González(2003) 8. En cierto colectivo de personas se toma una muestra de 30 personas a las que se observa el peso, obteniéndose los siguientes datos: {57,2; 92,5; 72,8; 74,8; 60,1; 96,1; 74,3; 89,1; 69,2; 77,7; 65,0; 82,1; 66,2; 51,3; 83,9; 71,3; 84,8; 62,5; 103,2; 64,1; 73,1; 87,3; 58,9; 76,1; 45,8; 79,1; 68,9; 62,5; 81,5; 65,7} Universidad de Cantabria. Alberto Luceño y Fco. Javier González 4

5 1. ESTADÍSTICA DESCRIPTIVA Obtener los estadísticos más importantes. Variable N Mean Median TrMean StDev SE Mean % peso 30 73,24 72,95 73,10 13,26 2,42 Variable Minimum Maximum Q1 Q3 % peso 45,80 103,20 63,70 82,55 9. La duración en horas de una serie de bombillas viene dada por la siguiente Obtener los estadísticos más importantes. 7,24,31,34,26,19,88,76,81,44,43,40,54,55, 61,58,59,29,37,36,47,49,66,70,39,50,68 Variable N Mean Median TrMean StDev SE Mean % horas 27 47,81 47,00 47,84 19,65 3,78 Variable Minimum Maximum Q1 Q3 % horas 7,00 88,00 34,00 61, Se han obtenido las siguientes medidas en milímetros de una serie de 30 tornillos cogidos al azar. 124,116,144,133,109,120,146,114,112,110,123,115,123,138,127, 111,125,137,132,140,121,139,126,130,139,131,125,142,124,122 Obtener los estadísticos más importantes. Universidad de Cantabria. Alberto Luceño y Fco. Javier González 5

6 2. PROBABILIDAD 2. Probabilidad 11. (Espacio muestral). Describir el espacio muestral de las siguientes experiencias aleatorias: a) E 1 = {Lanzamiento de un dado y anotamos el resultado}. b) E 2 = {Lanzamiento tres dados y sumamos las puntuaciones}. c) E 3 = {La duración de una lámpara hasta que se funde}. d) E 4 = {La resistencia a rotura de unos tubos de aluminio}. e) E 5 = {Número de piezas defectuosas de un lote de 5000}. f ) E 6 = {Lanzamiento de dos monedas}. 12. Sean A y B sucesos con P(A) = a, P(B) = b y P(A B) = c. Expresar las probabilidades siguientes en función de a,b y c. P(A B) P(A B) P(A B) P(A B) a) P(A B) = 1 c b) P(A B) = b c c) P(A B) = 1 a + c d) P(A B) = 1 a b + c 13. Sabiendo que P(A) = 0,2, P(B) = P(C) = 0,2 y P(A B) = P(A C) = P(B C) = 0,1 y P(A B C) = 0,05. Calcular la probabilidad de P(A B C). P(A B C) = 0, El problema de Galileo. Un príncipe italiano preguntó en una ocasión al famoso físico Galileo, por qué cuando se lanzan tres dados, se obtiene con más frecuencia la suma 10 que la suma 9, aunque se puedan obtener de seis maneras distintas cada una? a) P(suman 9) = = 0,116 b) P(suman 10) = = 0, Una urna contiene dos bolas blancas y tres bolas rojas. Efectuadas dos extracciones sucesivas, determinar la probabilidad de extraer una bola blanca y, a continuación, una bola roja: a) Cuando habiendo extraído la primera bola ésta es devuelta a la urna para realizar la segunda extracción. b) Cuando habiendo extraído la primera bola ésta no es devuelta a la urna para realizar la segunda extracción. a) P(BR) = 6 25 b) P(BR) = Se extrae una carta de una baraja de 40 cartas. Comprobar cuales de los siguientes pares de sucesos son independientes: a) A = {rey} B = {espadas} b) A = {figuras} B = {espadas} c) A = {rey} B = {figuras} Universidad de Cantabria. Alberto Luceño y Fco. Javier González 6

7 2. PROBABILIDAD a) si b) si c) no De una baraja de 40 cartas se extrae una al azar y se mira. Se repite esta operación 4 veces. Tenemos que apostar a que la 1 a es copa, la 2 a es oro, la 3 a es bastos y la 1 a es espadas. Si nos dejan elegir entre reponer o no la carta extraída, qué elegiremos? ( ) a) con reposición b) sin reposición El problema del caballero de la Meré. Se considera generalmente 1654 como el año del nacimiento de la teoría de probabilidades: el caballero de la Meré, filósofo y hombre de letras en la corte de Luis XIV, propuso dos problemas al célebre matemático Blaise Pascal; a) Qué es más probable, obtener al menos un seis en cuatro lanzamientos de un dado, u obtener al menos un doble seis al lanzar 24 veces dos dados? b) Se lanza una moneda varias veces. Por cada 1 obtenido, A recibe un punto, y por cada 0, se adjudica un punto B. Gana la apuesta el primero que obtenga 5 puntos. Al cabo de siete jugadas, A tiene 4 puntos y B tiene 3. En este momento se interrumpe el juego. Cómo repartir la apuesta de la manera más equitativa? Las propuestas de Meré dieron lugar a un intercambio de correspondencia entre Pascal y Fermat, del que nacieron los fundamentos de la teoría de probabilidades. (Engel, Probabilidad y Estadística, Mestral, 1988). a) P(S) = 0, 51775, P(T) = 0, 4914 b) deben repartir lo apostado en razón de 3 a El problema de las uvas pasas. Cuántas uvas pasas se deben mezclar con 500 gramos de harina para tener una certeza del 99 % de que un bollo de 50 gramos contenga al menos una pasa? (Engel, Probabilidad y Estadística, Mestral, 1988). n En una habitación hay una reunión de n personas. Cuál es la probabilidad de que el cumpleaños de al menos dos personas sea el mismo día? (365 n + 1) p = n 2.1. Probabilidad condicionada 21. Demostrar que si dos sucesos A y B son independientes, también lo son los sucesos complementarios de A y B. 22. Demostrar: P(A B) > P(A) = P(B A) > P(B) 23. Sean dos sucesos A y B, donde P(A) = 0,5 y P(A B) = 0,8. Asignar el valor de P(B) para que: a) A y B sean incompatibles. b) A y B sean independientes. a) P(B) = 0,3 b) P(B) = 0,6 Universidad de Cantabria. Alberto Luceño y Fco. Javier González 7

8 2. PROBABILIDAD 24. Indicar en cada caso si los sucesos A y B son incompatibles o independientes: a) P(A) = 0,2, P(B) = 0,4 y P(A B) = 0,6. b) P(A) = 0,3, P(B) = 0,5 y P(A B) = 0,65. c) P(A) = 0,4, P(B) = 0,5 y P(A B) = 0, Una urna contiene 5 bolas blancas y 3 negras. Tres jugadores A, B y C extraen una bola sin devolución en este mismo orden. Gana el primer jugador que saca una blanca. Calcular la probabilidad de que gane C. P(G A) = ; P(GB) = ; P(GC) = 5 56 Supongamos que tenemos 10 urnas: 5 de ellas son de tipo U 1 y contienen 3 blancas y 3 negras, 3 de ellas son de tipo U 2 y contienen 4 blancas y 2 negras, y el resto son de tipo U 3 y contienen 1 blanca y 5 negras. Se pide: a) Probabilidad de que una bola extraída al azar de una de las 10 urnas sea blanca. b) Probabilidad de que habiendo salido una bola negra, proceda de una urna del tipo U 2. c) Sabiendo que ha salido una bola negra, de qué tipo de urna es más probable que haya salido? a) b) 6 31 c) U Alarma Falsa. En cierto lugar se ha instalado un dispositivo de alarma. Si hay peligro, el dispositivo se pone en funcionamiento el 99 % de las ocasiones. Por otra parte, la probabilidad de que se dispare la alarma espontáneamente es del 0,5 %, y la probabilidad de que una noche haya un intento de robo es 0,1 %. Si una noche determinada se oye la alarma, cuál es la probabilidad de que sea falsa (no haya peligro)? 0, Una persona tiene dos negocios en funcionamiento, A y B. El primer negocio tiene pérdidas en el 25% de los balances, mientras que el 2 o, donde la perspectiva de beneficio es menor, tiene pérdidas sólo en el 5% de los casos. Se supone que el conjunto de operaciones es análogo en ambos negocios. Si, analizando el resultado económico de una de las operaciones, se observan pérdidas, cuál es la probabilidad de que dicha operación correspondiese al negocio B? 1/6 29. Para la elección de las personas de un jurado se disponen de dos urnas. En la 1 a hay 10 papeletas con nombres de 6 hombres y 4 de mujeres, en la 2 a hay 5 papeletas con nombres de 2 hombres y 3 de mujeres. Alguien cambia una papeleta de la 1 a urna a la 2 a e inmediatamente después se extrae al azar una papeleta de la 2 a urna que resulta ser nombre de mujer. Cuál es la probabilidad de que la papeleta cambiada contenga un nombre de mujer? 16/ Considérese tres cartas: una con las dos caras negras, otra con ambas caras blancas y la tercera con una blanca y la otra negra. Se elige una carta al azar y se coloca sobre la mesa. La cara superior resulta negra, cuál es la probabilidad de que la cara oculta sea blanca? Universidad de Cantabria. Alberto Luceño y Fco. Javier González 8

9 2. PROBABILIDAD A B C 1/3 31. Una fábrica de ladrillos suministra estos a buen precio pero el 10 % de ellos son defectuosos. Con objeto de mejorar la calidad del producto se someten los ladrillos a un ensayo no destructivo antes de su venta. Este ensayo da como buenos el 99 % de los que son buenos y da por malos el 98 % de los que son malos. a) Determinar la probabilidad de que un ladrillo en mal estado supere el proceso de control de calidad. b) Determinar la probabilidad de aceptar como bueno un ladrillo cualquiera. c) Determinar la probabilidad de que un ladrillo, que ha sido aceptado, esté en malas condiciones d) Si el coste estimado por cada ladrillo fabricado en malas condiciones es C euros. Determinar el precio máximo que debe pagarse por ensayo no destructivo para que este sea rentable. a) 0,02 b) 0,893 c) 0, 0022 d) 0,098 C Los almacenes A, B y C, que están dirigidos por la misma persona, tienen 50, 75 y 100 empleados, y, respectivamente, el 50 %, 60 % y 70 % de ellos son mujeres. El hecho de que una persona sea despedida del trabajo es igualmente probable entre todos los empleados, independientemente del sexo. Se despide un empleado, que resulta ser mujer. Cuál es la probabilidad de que trabajara en el almacén C? 0,5 Dos proveedores A y B entregan la misma mercancía a un fabricante, que guarda todas las existencias de esta mercancía en un mismo lugar. Los antecedentes demuestran que el 5 % de la mercancía entregada por A es defectuosa y que el 9 % lo es de B. A entrega 4 veces más que B. Si se saca una pieza y no es defectuosa, cuál es la probabilidad de que la haya fabricado A? 0,806 Se diseña un dispositivo de frenado para evitar que un automóvil patine en el que incluye un sistema electrónico e hidraúlico. El sistema completo puede descomponerse en tres subsistemas en serie que operan de manera independiente: un sistema electrónico, un sistema hidraúlico y un sistema mecánico. En un frenado particular, las probabilidades de estas unidades funcionen son aproximadamente 0,995, 0,993 y 0,994, respectivamente. Calcular la probabilidad de que sistema frene. 0,98 Universidad de Cantabria. Alberto Luceño y Fco. Javier González 9

10 2. PROBABILIDAD 35. El volumen de producción diario en tres plantas diferentes de una fábrica es de 500 unidades en la 1 a, 1000 en la 2 a y 2000 en la 3 a planta. Sabiendo que el porcentaje de unidades defectuosas producidas en las plantas es de 1%, 0,8% y 2%, respectivamente, determinar la probabilidad de que: a) Extraída una unidad al azar, resulte no defectuosa. b) Habiendo sido extraída una unidad defectuosa, haya sido producida en la primera planta. a) 0,985 b) 0, Tres imprentas realizan trabajos para la oficina de publicaciones de la Universidad de Cantabria. La oficina de publicaciones no negocia una multa contractual por trabajos atrasados, y los datos siguientes reflejan una gran experiencia con estas imprentas. imprenta fracción fracción de tiempo i de contratos con retraso 1 0,2 0,2 2 0,3 0,5 3 0,5 0,3 Un departamento observa que un pedido tiene más de un mes de retraso. Cuál es la probabilidad de que el contrato se haya otorgado a la imprenta 3? 15/ Una compañia de aviones dispone de 20 pilotos y 15 auxiliares de vuelo. Si en cada vuelo viajan como equipo responsable, dos pilotos y tres auxiliares. Se pide: a) De cuántos equipos distintos dispone la compañia para los vuelos? b) El piloto RX34 tiene a su mujer como auxiliar de vuelo. Si tomamos un vuelo al azar, cuál es la probabilidad de que vaya el matrimonio en el personal de vuelo? c) Si elegimos un vuelo al azar, cuál es la probabilidad de que vaya RX34 o su mujer en el personal de vuelo? a) 86,450 b) 0,14 c) 0, Una fábrica dispone de 20 transportistas, 45 empleados de mantenimiento y 5 ingenieros supervisores. La contratación de todo el personal se divide en fija y temporal. De los transportistas 8 son fijos; de los empleados de mantenimiento 35 son fijos y de los ingenieros 3 son fijos. Si elegimos una persona al azar: a) Cuál es la probabilidad de que tenga un contrato temporal? b) Cuál es la probabilidad de que tenga un contrato temporal y no sea ingeniero? c) Si elegimos una persona que tiene contrato fijo, cuál es la probabilidad de que sea un transportista? a) b) c) 8 46 Universidad de Cantabria. Alberto Luceño y Fco. Javier González 10

11 3. VARIABLES ALEATORIAS 3. Variables aleatorias 3.1. Variables aleatorias discretas 39. En algunos casinos se realiza el siguiente juego: se elige uno de los números 1, 2, 3, 4, 5, 6. A continuación se lanzan tres dados. Si el número elegido aparece 1, 2, 3 veces, se recibe 1, 2, 3 veces lo apostado, y se recupera éste. Si no aparece el número elegido, se pierde lo apostado. Sea X la variable aleatoria que proporciona la ganancia. Obtener E(X). E[X] = 0, Una variable aleatoria tiene la siguiente función de probabilidad, x P(x) 0,05 0,20 0,05 0,45 0,25 a) Comprobar que es una función de probabilidad. b) Calcular P(x 3). c) Calcular P(x > 3). d) Calcular P(x = 1 x = 3 x = 5). e) Calcular E(X). f ) Representar la función de distribución F X (x). b) 0,3 c) 0,7 d) 0,35 e) 3, Fiabilidad de un componente. Para una componente de un sistema, sea A el suceso la componente funciona. Se define la función indicatriz del suceso A como aquella función I A tal que I A = 1 si A es cierto e I A = 0 si A es falso. Qué indica E(I A )? A partir la figura 3.1 a) Determinar la función indicatriz de los sistemas. b) Determinar la fiabilidad de los sistemas. c) Suponiendo p 1 = p 2 = p 3 = 0,90, determinar la fiabilidad de los sistemas y compararlos (a) Circuito1 (b) Circuito2 Figura 3.1: Función indicatriz y fiabilidad 3 (c) Circuito3 a) 1 (1 I 1)(1 I 2)(1 I 3), I 1I 2, 1 (1 I 1I 2)(1 I 3) b) 1 q 1q 2q 3, p 1p 2, 1 (1 p 1p 2)q 3 Universidad de Cantabria. Alberto Luceño y Fco. Javier González 11

12 3. VARIABLES ALEATORIAS (a) Circuito4 2 (b) Circuito5 2 Figura 3.2: Función indicatriz y fiabilidad Determinar la función indicatriz y la fiabilidad de cada uno de los sistemas de la figura 3.2 a) I = 1 (1 I 1I 2)(1 I 3I 4), R = 1 (1 p 1 p 2)(1 p 3 p 4) b) I = [1 (1 I 1)(1 I 2)][1 (1 I 3)(1 I 4)], R = (1 q 1 q 2)(1 q 3 q 4) Determinar la función indicatriz y la fiabilidad de cada uno de los sistemas de la figura (a) Circuito (b) Circuito7 Figura 3.3: Función indicatriz y fiabilidad a) I = 1 (1 I 1I 2)(1 I 3)(1 I 4I 5), R = 1 (1 p 1 p 2)(1 p 3)(1 p 4 p 5) b) I = I 1 + I 2(1 I 1)(I 3 + I 4 I 3 I 4), R = p 1 + p 2(1 p 1)(p 3 + p 4 p 3 p 4) 45. Sea una variable aleatoria definida por su función de distribución: 0 x < 2 0,4 2 x < 0,5 F(x) = 0,8 0,5 x < 3 1 x 3 a) Representar F(x) y calcular la función de probabilidad de esta variable. b) Calcular E(X). a) P( 2) = 0,4, P(0,5) = 0,4, P(3) = 0,2 b) E(X) = Se lanza una moneda tres veces; sea X el número de caras obtenidas. Hallar la función de probabilidad y de distribución de X. P(0) = 1/8, P(1) = 3/8, P(2) = 3/8, P(3) = 1/8 ; F(0) = 1/8, F(1) = 4/8, F(2) = 7/8, F(3) = El número medio de personas que acuden a un local es de 1000 con una desviación típica σ = 20. Cuál es el número de sillas necesarias para asegurar que todos los asistentes puedan sentarse, con una probabilidad de 0,75? (Usar la desigualdad de Chebyschev.) n 1090 Universidad de Cantabria. Alberto Luceño y Fco. Javier González 12

13 3. VARIABLES ALEATORIAS 48. Sea X variable aleatoria cuya distribución de probabilidad viene dada por P(X = r) = r! (4 r)! P(X = r) = 0 r = 0,1,2,3,4 para otros valores Hallar P(X = 3); P(1 X 2,5) y P(X 2,5). P(3) = 1/4, P(1 X 2,5) = 5/8, P(X 2,5) = 11/ Los artículos en venta en unos grandes almacenes se someten al control diario ( y se estima que la probabilidad de que en un día sean vendidos r artículos defectuosos es 2 1 ) r. 3 3 Determinar la probabilidad de que en un día elegido al azar, de los artículos vendidos: a) Dos o más sean defectuosos. b) Cinco sean defectuosos. c) Tres ó menos sean defectuosos. d) Determinar la esperanza del número de artículos defectuosos vendidos en el día. ( ) 1 5 ( ) 1 4 c) 1 d) E[X] = 3 a) 1/9 b) Variables aleatorias continuas 50. De las siguientes afirmaciones sobre la función de distribución de una variable aleatoria, marcar con las que sean correctas. a) F( ) = 0, F( ) = 1. b) F es monótona no decreciente. c) F es monótona creciente. d) F es continua por la derecha, es decir, F(x) = lím a x + F(a). e) P(X = x) = F(x) F(x ). f ) P(X = x) = F(x) F(x ). g) P(x < X y) = F(y) F(x). h) P(x < X < y) = F(y) F(x). i) P(X x) = 1 F(x). 51. Sea X una variable aleatoria que tiene como función de densidad de probabilidad f(x) = a(1 + x 2 ) si x (0,3) y f(x) = 0 en los demás casos. Se pide: a) Hallar a y la función de distribución de X. b) Hallar la probabilidad de que X esté comprendido entre 1 y 2. c) P(X < 1). d) P(X < 2 X > 1). Universidad de Cantabria. Alberto Luceño y Fco. Javier González 13

14 3. VARIABLES ALEATORIAS e) Calcular P( X µ k σ), con k = 2. a) a = 1/12, F(x) = 1 ( ) x3 + x b) 5 18 c) P(X < 1) = 1 9 d) P(X < 2 X > 1) = e) 0, Sea Y una variable aleatoria con función de densidad dada por: 0,2 1 y 0 p Y (y) = 0,2 + k y 0 < y 1 0 en el resto a) Determinar el valor de k. b) Determinar la función de distribución, F Y (y). c) Calcular P(0 Y 0,5). d) P(Y > 0,5 Y > 0,1). a) k = 1,2 b) F Y (y) = 0,2y + 0,2 1 < y < 0 F Y (y) = 0,6y 2 + 0,2y + 0,2 0 y < 1 c) 0,25 d) 0, La cantidad aleatoria de dinero ahorrado por una persona en un mes sigue una ley de probabilidad dada por: 0 x < 0 x 2 0 x < 1 1 F(x) = 2 1 x < 2 x 4 2 x < x donde x viene expresado en cientos de euros. Determinar la probabilidad de que, en un mes la cantidad de dinero ahorrado: a) Sea superior a 200 euros. b) Sea inferior a 450 euros. c) Sea superior a 50 euros y menor ó igual a 250 euros. d) Calcular el ahorro mensual medio. a) 0,5 b) 1 c) 3/8 d) 175 euros 54. Con objeto de establecer un plan de producción, una empresa ha estimado que la demanda aleatoria de sus potenciales clientes se comportará semanalmente con arreglo a la ley de probabilidad definida por la función de densidad p X (x) = { 3 8 (4x 2x2 ), 0 x 2 0, en el resto donde x viene expresada en millones de unidades. Qué cantidad C deberá tener dispuesta a la venta, al comienzo de cada semana, para poder satisfacer la demanda en dicho periodo con una probabilidad de 0,5? C = 1 Universidad de Cantabria. Alberto Luceño y Fco. Javier González 14

15 3. VARIABLES ALEATORIAS 55. Cierta aleación se forma con la mezcla fundida de dos metales. La aleación que resulta contiene cierto porcentaje de plomo X, que puede considerarse como una variable aleatoria. Suponiendo que X tiene la siguiente función de densidad de probabilidad: 5 3x(100 x) p X (x) = 10, 0 x 100, 5 y que el beneficio neto G obtenido al vender esta aleación, es una función del porcentaje de plomo: G = A + BX, se pide calcular el beneficio esperado. E[G] = A + 50 B 56. Si la duración en horas de cierto tubo de radio es una variable aleatoria continua X con función de densidad p X (x) = 100 x 2, x > 100, SE PIDE: a) Probabilidad de que un tubo dure menos de 200 horas si se sabe que el tubo funciona todavía después de 150 horas de servicio. b) Si se instalan tres de estos tubos en un conjunto, probabilidad de que exactamente uno tenga que ser sustituido después de 150 horas de servicio. c) Cuál es el número mínimo de tubos n que se pueden poner en un sistema en paralelo, de modo que haya una probabilidad 0,999 de que después de 150 horas de servicio funcione todavía el sistema? a) 1/4 b) 4/9 c) n El tiempo de vida (en cientos de horas) de un transistor es una variable aleatoria Z con función de distribución { 0 z < 0 F Z (z) = 1 e z2 0 z SE PIDE: a) Demostrar que F Z (z) es una función de distribución. b) Obtener la función de densidad de probabilidad p Z (z). c) Calcular la probabilidad de que un determinado transistor dure más de 200 horas. b) p Z(z) = 2z e z2 c) 1 e Una estructura metálica puede sufrir, debido al calor, una dilatación que (medida en cm) es una variable aleatoria X con función de densidad de probabilidad dada por: ax 0 x 3 p X (x) = b 3 < x < 5 (8 x) 5 x 8 b 3 a) Sabiendo que la función de densidad de probabilidad es una función continua de x, determinar a y b. Universidad de Cantabria. Alberto Luceño y Fco. Javier González 15

16 3. VARIABLES ALEATORIAS 59. b) Calcular e interpretar la probabilidad de que la dilatación sea inferior a 3. c) Si con un aparato se ha observado que la estructura ha dilatado más de 3 cm, con qué probabilidad la dilatación estará entre 3 y 5 cm? Sea una variable aleatoria X, que tiene como función de densidad: { x x 4 p X (x) = 50 0 resto a) a = 1 15 ; b = 1 5 b) 3 10 c) 4 7 a) Calcular la función de distribución de X. b) Hallar k, si P(k x k + 1) = 0,09. a) F(x) = 1 50 (1 2 x2 + 6x + 18) b) k = La demanda, expresada en toneladas, de un determinado producto es una variable aleatoria cuya función de densidad es: p X (x) = x 2 x 4 6 Cuales son la media, la varianza y la mediana de esta demanda? El fabricante del producto sabe que cada kilo vendido reporta un beneficio de 12 euros, y cada kilo que queda sin vender supone una pérdida de 6 euros. Es por tanto, importante para él establecer cuál es la cantidad a fabricar. Si el criterio para establecer dicha cantidad es el maximizar la ganancia esperada, determinar cuál es la fabricación óptima Cambio de variable Sea X una variable aleatoria con E(X) = 2 y V ar(x) = 0,5. Sea Y = 3X 8. Hallar E(Y ) y V ar(y ). Supongamos que una variable aleatoria X tiene función de densidad de probabilidad: p X (x) = 2x 0 < x < 1 Determinar la función de densidad de probabilidad de las variables Y = H 1 (X) = 3X + 1, Z = H 2 (X) = e X y W = H 3 (X) = X 2. a) F Y (y) = ( ) y p Y (y) = 2 3 ( ) y 1 3 b) F Z(z) = 1 ln 2 z p Z(z) = 2 ln z z c) F W (x) = w p W (w) = 1 0 < w < 1 1 < y < 4 e 3 < z < e Para medir la velocidad del aire se usa un tubo que permite medir la diferencia de presión. Esta diferencia está dada por R = 1 2 dv 2, con d la densidad del aire (supuesta constante) y V la velocidad del viento (en km/h). Si V es una función de densidad de probabilidad uniforme en (10,20), encontrar la función de densidad de probabilidad de R. 1 p R(r) = 10 2rd ; 50d < r < 200d Universidad de Cantabria. Alberto Luceño y Fco. Javier González 16

17 3. VARIABLES ALEATORIAS 64. La tabla siguiente representa la distribución de probabilidad conjunta de la variable aleatoria discreta (X,Y ). Determinar Y \X a) Calcular P(X = 2,Y = 1); P(X = 2); P(Y = 1) y P(X = 3 Y = 2). b) Calcular E(X); E(Y ) y Cov(X,Y ). 65. Dos líneas de producción fabrican cierto tipo de artículo. Supóngase que la capacidad es de 5 artículos para la línea I y de 3 artículos para la línea II, y que el número verdadero de artículos producidos por cada línea es una variable aleatoria. Sea (X, Y ) la representación de la variable aleatoria bidimensional que da el número de artículos producidos por la línea I y por la línea II: Y \X ,01 0,03 0,05 0,07 0,09 1 0,01 0,02 0,04 0,05 0,06 0,08 2 0,01 0,03 0,05 0,05 0,05 0,06 3 0,01 0,02 0,04 0,06 0,096 0,05 a) Determinar la probabilidad del suceso: la línea I produce más artículos que la línea II. b) Hallar las distribuciones marginales. c) Calcular P(X = 3) y P(Y = 1). d) Calcular E(X) y E(Y ). e) Calcular P(X = 2 Y = 2). a) 0,13 c) P(x = 3) = 0,21, P(y = 1) = 0,26 d) E[X] = 3,39, E[Y ] = 1,48 e) 1 5 Universidad de Cantabria. Alberto Luceño y Fco. Javier González 17

18 4. DISTRIBUCIONES DISCRETAS MÁS COMUNES 4. Distribuciones discretas más comunes 66. Suponiendo que cada bebé tiene una probabilidad 0,51 de ser varón, hállese la probabilidad de que una familia de 6 hijos tenga: a) Por lo menos un niño. b) Por lo menos una niña. a) 0,986 b) 0, Si la probabilidad de acertar en un blanco es 1/5 y se hacen 10 disparos de forma independiente, cuál es la probabilidad de acertar por lo menos dos veces? 1 q p q 9, con p = 1/5 y q = 4/5 68. Demostrar que si la variable aleatoria X tiene distribución binomial (X Bin(n,p)), se tiene: µ X = np ; σ 2 X = npq Se lanza una moneda 500 veces. Estimar la probabilidad de que el número de caras esté comprendido entre 240 y ,6208 En una regulación de calles por semáforos, la luz verde está encendida durante 15 segundos, la luz ámbar 5 segundos y la luz roja 55 segundos. Supongamos que las condiciones de tráfico inducen variaciones aleatorias en los tiempos de llegada de los automóviles, de forma que llegar cuando el semáforo está verde es un suceso aleatorio. Para cinco coches que lleguen en tiempos diferentes e indeterminados, calcular la probabilidad de que: a) solo tres encuentren la luz verde; b) a lo sumo cuatro encuentren la luz verde; c) más de uno encuentre la luz verde. a) 0, 0512 b) 0, c) 0, Una firma de pedidos por correo envía una carta a sus clientes. La probabilidad de que un cliente elegido al azar conteste a esa carta es de p = 0,1. Hallar: a) Distribución de probabilidad del número X de cartas que debe enviar hasta obtener exactamente 1 respuesta. b) La esperanza y varianza matemática de la variable X. c) Distribución de probabilidad del número Y de cartas que debe enviar para obtener exactamente k respuestas. d) La esperanza y varianza matemática de la variable Y. a) P(X = k) = p q k 1 b) E[X] = 1/p,V ar[x] = q/p ( ) 2 n 1 c) p k 1 k q n k d) E[Y ] = k/p,v ar[y ] = kq/p 2 Universidad de Cantabria. Alberto Luceño y Fco. Javier González 18

19 4. DISTRIBUCIONES DISCRETAS MÁS COMUNES Una caja con 12 artículos tiene 4 defectuosos. Si se toma una muestra de 3, en un caso con reemplazamiento y en otro sin reemplazamiento, cuál será la probabilidad de no incluir artículos defectuosos ( ) 8 3 en la muestra? a) b) 336 Se lanza un dado todas las veces necesarias hasta que aparece un 6. Si X mide el número del lanzamiento en que ocurre. Se pide: a) Qué función de probabilidad tiene la variable aleatoria X? b) Calcular P(X = 3). c) Calcular P(X > 4). q = 1 p a) P(X = k) = p q k 1 b) p(x = 3) = p q 2 c) p(x > 4) = q 4, siendo p la probabilidad de que salga un 6 y 74. Sea X una variable aleatoria geométrica de parámetro p. Demostrar que: para cualesquiera constantes positivas a y b. P(X > a + b X > a) = P(X > b), 75. Para controlar la natalidad, un político algo excéntrico, propone para los nuevos matrimonios la siguiente norma: únicamente podrán tener hasta un varón y como máximo 5 hijos. Sea X la variable número de hijos y V la variable número de varones de un matrimonio. Se pide: a) Probabilidad de que un matrimonio solo tenga un hijo. b) Probabilidad de que un matrimonio tenga k hijos. c) Número medio de hijos por matrimonio. d) Número medio de varones por matrimonio. e) Reduce esta norma la frecuencia de varones en la población? Tres personas A, B, y C lanzan sucesivamente en el orden A, B, C un dado. La primera persona que saque un 6 gana. Si p es la probabilidad de sacar un 6 y q = 1 p, cuáles son sus respectivas probabilidades de ganar? P(G A) = p pq pq2 ; P(GB) = ; P(GC) = 1 q3 1 q3 1 q 3 Se lanza un dado todas las veces necesarias hasta obtener dos seises y X mide el número del lanzamientos hasta que dicho suceso ocurre. Se pide: a) Qué función de probabilidad tiene la variable aleatoria X? b) P(X = 3). c) P(X > 4). Universidad de Cantabria. Alberto Luceño y Fco. Javier González 19

20 4. DISTRIBUCIONES DISCRETAS MÁS COMUNES 78. Sea X una variable aleatoria binomial negativa NB(k,p). Demostrar que: µ = k p ; σ 2 x = k q p Se conoce de estudios anteriores que el tipo de grupo sanguíneo de una población se distribuye de acuerdo a los siguientes datos. Grupo A B AB O Porcentaje 43,2 14,2 6 36,6 En determinada situación de emergencia se necesitan realizar 5 transfusiones del tipo A. Se solicitan voluntarios a la población y se realizan extracciones sucesivas. Cuál es la probabilidad de cubrir la emergencia con el décimo donante? 80. Sea X binomial Bin(n,p) y sea Y binomial negativa NB(k,p), demostrar las siguientes relaciones entre ellas: a) P(Y n) = P(X r). b) P(Y > n) = P(X < r). 81. La centralita telefónica de un hotel recibe un número de llamadas por minuto que sigue una ley de Poisson con media 0,5. Determinar la probabilidad de que en un minuto al azar: a) Se reciba una única llamada. b) Se reciban un máximo de dos llamadas. c) La centralita quede bloqueada, sabiendo que no puede realizar más de 3 conexiones por minuto. a) 0, 303 b) 0, 986 c) 0, En una gran ciudad se producen 2 incendios anuales por término medio. Cuál es la probabilidad de que el próximo año se produzcan más de cuatro? 0, Sea X una variable aleatoria de Poison de parámetro λ, Po(λ). Demostrar que: µ = λ ; σ 2 x = λ. 84. Se lanza una moneda 500 veces. Hallar la probabilidad de que la frecuencia relativa de caras esté comprendida entre 0,45 y 0,65. 0, Cuántas veces habría que lanzar una moneda regular a fin de tener al menos un 95% de seguridad de que la frecuencia relativa de caras diste a lo más 0,1 de la probabilidad teórica 0,5? 96 Universidad de Cantabria. Alberto Luceño y Fco. Javier González 20

Se pide: 1. Calcular las principales medidas de posición y dispersión para los datos anteriores.

Se pide: 1. Calcular las principales medidas de posición y dispersión para los datos anteriores. 2.2.- Ha sido medida la distancia de frenado (en metros) de una determinada marca de coches, según el tipo de suelo y velocidad a la que circula, los resultados en 64 pruebas aparecen en el listado siguiente:

Más detalles

RELACIÓN DE EJERCICIOS DE ESTADÍSTICA. PROBLEMAS DE ESTADÍSTICA: PROBABILIDAD

RELACIÓN DE EJERCICIOS DE ESTADÍSTICA. PROBLEMAS DE ESTADÍSTICA: PROBABILIDAD 1 UNIVERSIDAD DE CASTILLA-LA MANCHA Facultad de Químicas. RELACIÓN DE EJERCICIOS DE ESTADÍSTICA. PROBLEMAS DE ESTADÍSTICA: PROBABILIDAD Ejercicio 1º.- Se lanzan dos monedas y un dado. Se pide: 1) Describir

Más detalles

PROBABILIDAD. 1. a) Operaciones con sucesos. Propiedades. Sucesos compatibles.

PROBABILIDAD. 1. a) Operaciones con sucesos. Propiedades. Sucesos compatibles. OPCION A: 1. a) Operaciones con sucesos. Propiedades. Sucesos compatibles. k t si t [0,2] b) Sea f(t)= 0 en el resto Calcular k para que f sea de densidad, calcular la función de distribución. 2. a) De

Más detalles

12 Las distribuciones binomial y normal

12 Las distribuciones binomial y normal Las distribuciones binomial y normal ACTIVIDADES INICIALES.I. Calcula la media, la varianza y la desviación típica de la variable X, cuya distribución de frecuencias viene dada por la siguiente tabla:

Más detalles

2) Un establecimiento comercial dispone a la venta dos artículos en una de sus secciones, de precios p

2) Un establecimiento comercial dispone a la venta dos artículos en una de sus secciones, de precios p Universidad de Sevilla Facultad de Ciencias Económicas y Empresariales Licenciatura de Economía Universidad de Sevilla ESTADÍSTICA I RELACIÓN 5 MODELOS Y DATOS ESTADÍSTICOS DEPARTAMENTO DE ECONOMÍA APLICADA

Más detalles

Estadística aplicada y modelización. 10 de septiembre de 2005

Estadística aplicada y modelización. 10 de septiembre de 2005 Estadística aplicada y modelización. 10 de septiembre de 005 SOLUCIÓN MODELO A 1. Una persona se está preparando para obtener el carnet de conducir, repitiendo un test de 0 preguntas. En la siguiente tabla

Más detalles

todas especialidades Soluciones de las hojas de problemas

todas especialidades Soluciones de las hojas de problemas Universidad Politécnica de Cartagena Dpto. Matemática Aplicada y Estadística Ingeniería Técnica Industrial Métodos estadísticos de la ingeniería Métodos estadísticos de la ingeniería Ingeniería Técnica

Más detalles

ejerciciosyexamenes.com PROBABILIDAD

ejerciciosyexamenes.com PROBABILIDAD PROBABILIDAD 1. Lanzamos dos monedas al aire (primero una y luego la otra). Calcular la probabilidad de obtener: a) Una sola cara b) Al menos una cara c) Dos caras Sol: a) 1/2; b) 3/4; c) 1/4 2. Un lote

Más detalles

L.A.D.E. ESTADISTICA EMPRESARIAL I (Segundo Curso) EJERCICIOS

L.A.D.E. ESTADISTICA EMPRESARIAL I (Segundo Curso) EJERCICIOS L.A.D.E. ESTADISTICA EMPRESARIAL I (Segundo Curso) EJERCICIOS Curso Académico 008-009 º L.A.D.E EJERCICIO Lanzamos un dado 00 veces y hemos obtenido los siguientes resultados: 5 6 3 4 5 5 4 5 3 4 6 6 5

Más detalles

a) No curse la opción Científico-Tecnológica. b) Si es chico, curse la opción de Humanidades y C. Sociales

a) No curse la opción Científico-Tecnológica. b) Si es chico, curse la opción de Humanidades y C. Sociales 1 PROBABILIDAD 1.(97).- Para realizar un control de calidad de un producto se examinan tres unidades del producto, extraídas al azar (y sin reemplazamiento) de un lote de 100 unidades. Las unidades pueden

Más detalles

15 Distribuciones continuas. La distribución normal

15 Distribuciones continuas. La distribución normal Distribuciones continuas. La distribución normal ACTIVIDADES INICIALES Solucionario.I. Representa la función valor absoluto: x si x 0 y x x si x 0 Y O X.II. Representa la función: 2x 3 si x f(x) si x 4

Más detalles

MATEMÁTICAS 1º BACH CCSS - DISTRIBUCIÓN BINOMIAL = 0 3125.

MATEMÁTICAS 1º BACH CCSS - DISTRIBUCIÓN BINOMIAL = 0 3125. MATEMÁTICAS º BACH CCSS - DISTRIBUCIÓN BINOMIAL ˆ EJERCICIO En una ciudad se han elegido al azar 7 habitantes. ¾Cuál es la probabilidad de que cuatro de ellos hayan nacido el 7 de mayo? p = P (haber nacido

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadística Descriptiva 1. El porcentaje de algodón en una tela utilizada para elaborar camisas para hombre se presenta en la siguiente tabla. Calcular los estadísticos más importantes y realícese el histograma

Más detalles

Universidad de Zaragoza

Universidad de Zaragoza Nº L.E. Nº L.A.D.E. PUBLICACIONES DE 2º CURSO SECCIÓN: L.A.D.E y L.E. ASIGNATURA: ESTADÍSTICA II TEMA: GRUPO: Problemas de muestreo TODOS DEPARTAMENTO DE MÉTODOS ESTADÍSTICOS Curso Académico 2004/2005

Más detalles

16 Distribuciones de probabilidad

16 Distribuciones de probabilidad Solucionario 1 Distribuciones de probabilidad ACTIVIDADES INICIALES 1.I. Lanza un dado 0 veces, anotando los resultados de la cara superior, y representa los resultados obtenidos en un diagrama de barras.

Más detalles

DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL

DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL Página 4 REFLEXIONA Y RESUELVE Recorrido de un perdigón Dibuja los recorridos correspondientes a: C + C C, + C + C, + C C C, + + + +, C+CC

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A OPCIÓN A (3 puntos) Una imprenta local edita periódicos y revistas. Para cada periódico necesita un cartucho de tinta negra y otro de color, y para cada revista uno de tinta negra y dos de color. Si sólo

Más detalles

Ejercicios distribuciones discretas probabilidad

Ejercicios distribuciones discretas probabilidad Ejercicios distribuciones discretas probabilidad 1. Una máquina que produce cierta clase de piezas no está bien ajustada. Un porcentaje del 4.2% de las piezas están fuera de tolerancias, por lo que resultan

Más detalles

Tema 3: Variable aleatoria 9. Tema 3: Variable aleatoria

Tema 3: Variable aleatoria 9. Tema 3: Variable aleatoria Tema 3: Variable aleatoria 9 Universidad Politécnica de Cartagena Dpto. Matemática Aplicada y Estadística Estadística Tema 3: Variable aleatoria 1. Probar si las siguientes funciones pueden definir funciones

Más detalles

2 3 independientes? y mutuamente excluyentes? Halla )

2 3 independientes? y mutuamente excluyentes? Halla ) EJERCICIOS DE PROBABILIDAD para hacer en casa IES Jovellanos 1º BI-NS Probabilidad 1. a) Demuestre mediante un diagrama de Venn que ( A B) \ ( A C) = A ( B \ C) b) Demuestre con propiedades Booleanas que

Más detalles

DISTRIBUCIONES DE VARIABLE CONTINUA

DISTRIBUCIONES DE VARIABLE CONTINUA UNIDAD 11 DISTRIBUCIONES DE VARIABLE CONTINUA Página 260 1. Los trenes de una cierta línea de cercanías pasan cada 20 minutos. Cuando llegamos a la estación, ignoramos cuándo pasó el último. La medida

Más detalles

R PRÁCTICA II. Probabilidad-Variables Aleatorias. Probabilidad

R PRÁCTICA II. Probabilidad-Variables Aleatorias. Probabilidad R PRÁCTICA II Probabilidad-Variables Aleatorias Sección II.1 Probabilidad 15. En el fichero sintomas.dat se encuentran 9 columnas con los resultados de una estadística médica. Cada columna corresponde

Más detalles

IES PADRE SUÁREZ MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II. Probabilidad 2008

IES PADRE SUÁREZ MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II. Probabilidad 2008 Probabilidad 2008 EJERCICIO 1A Laura tiene en su monedero 6 monedas francesas, 2 italianas y 4 españolas. Vicente tiene 9 francesas y 3 italianas. Cada uno saca, al azar, una moneda de su monedero y observa

Más detalles

SEMINARIOS. (Problemas de exámenes de años anteriores) Estadística. 1º Grado en Informática

SEMINARIOS. (Problemas de exámenes de años anteriores) Estadística. 1º Grado en Informática SEMINARIOS (Problemas de exámenes de años anteriores) Estadística. 1º Grado en Informática Seminario de Estadística Descriptiva Unidimensional y Bidimensional 1. Se ha realizado un control de calidad en

Más detalles

UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDADES GUÍA N o 1: Estadística y Probabilidades Profesor: Hugo S. Salinas. Primer Semestre 2011 1. Señalar

Más detalles

1 Tema 1: Estadística descriptiva

1 Tema 1: Estadística descriptiva PROBLEMAS DE MATEMÁTICAS Estadística Curso 2005-2006 Primero Licenciatura en Químicas FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas Universidad de Castilla-La Mancha 1 Tema 1: Estadística descriptiva

Más detalles

RELACIÓN EJERCICIOS DEL CAPÍTULO 1. Intervalos de Confianza 1. La vida media de una muestra aleatoria de 10 focos es de 4.

RELACIÓN EJERCICIOS DEL CAPÍTULO 1. Intervalos de Confianza 1. La vida media de una muestra aleatoria de 10 focos es de 4. RELACIÓN EJERCICIOS DEL CAPÍTULO 1. Intervalos de Confianza 1. La vida media de una muestra aleatoria de 10 focos es de 4.000 horas, con una cuasidesviación típica muestral de 200 horas. Se supone que

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A a) (1 punto) Dada la matriz a 1 A, calcule el valor de a para que A a 0 sea la matriz nula. 1 1 t b) ( puntos) Dada la matriz M, calcule la matriz M M. 1 1 x 1 Sea la función f definida mediante f ( x).

Más detalles

Estadística. 1. Cuántos números impares hay de cinco cifras? (Respuesta: 45000)

Estadística. 1. Cuántos números impares hay de cinco cifras? (Respuesta: 45000) 1. Cuántos números impares hay de cinco cifras? (Respuesta: 45000) 2. De cuántas maneras distintas se pueden ordenar en fila 8 personas? (Respuesta: 40320) 3. De cuántas maneras distintas se pueden repartir

Más detalles

Relación de problemas: Variables aleatorias

Relación de problemas: Variables aleatorias Estadística y modelización. Ingeniero Técnico en Diseño Industrial. Relación de problemas: Variables aleatorias 1. Se lanza tres veces una moneda y se observa el número de caras. (a) Calcula la distribución

Más detalles

PROBABILIDAD. Pruebas de Acceso a la Universidad. Bachillerato de Ciencias Sociales. Departamento de Matemáticas del IES Andalán.

PROBABILIDAD. Pruebas de Acceso a la Universidad. Bachillerato de Ciencias Sociales. Departamento de Matemáticas del IES Andalán. Pruebas de Acceso a la Universidad. Bachillerato de Ciencias Sociales. Departamento de Matemáticas del IES Andalán. PROBABILIDAD Junio 1994. El año pasado el 60% de los veraneantes de una cierta localidad

Más detalles

6. Sea X una v.a. con distribución N(0,1). Calcular p(x=0)

6. Sea X una v.a. con distribución N(0,1). Calcular p(x=0) 1. La rueda de una ruleta se divide en 25 sectores de igual área que se enumeran del 1 al 25. Encuentra una fórmula para la distribución de probabilidades de la v.a. X que representa el número obtenido

Más detalles

Relación de ejercicios sobrantes de Matemáticas aplicadas a las Ciencias Sociales II (Segundo de Bachillerato L.O.G.S.E.)

Relación de ejercicios sobrantes de Matemáticas aplicadas a las Ciencias Sociales II (Segundo de Bachillerato L.O.G.S.E.) Relación de ejercicios sobrantes de Matemáticas aplicadas a las Ciencias Sociales II (Segundo de Bachillerato L.O.G.S.E.) 1 Nota: Esta relación de ejercicios la ha elaborado la Ponencia de Matemáticas

Más detalles

Distribuciones discretas. Distribución Binomial

Distribuciones discretas. Distribución Binomial Boletín: Distribuciones de Probabilidad IES de MOS Métodos estadísticos y numéricos Distribuciones discretas. Distribución Binomial 1. Una urna contiene 3 bolas blancas, 1 bola negra y 2 bolas azules.

Más detalles

16 SUCESOS ALEATORIOS. PROBABILIDAD

16 SUCESOS ALEATORIOS. PROBABILIDAD EJERCICIOS PROPUESTOS 16.1 Indica si estos experimentos son aleatorios y, en caso afirmativo, forma el espacio muestral. a) Se extrae, sin mirar, una carta de una baraja española. b) Se lanza un dado tetraédrico

Más detalles

Tema 7: Estadística y probabilidad

Tema 7: Estadística y probabilidad Tema 7: Estadística y probabilidad En este tema revisaremos: 1. Representación de datos e interpretación de gráficas. 2. Estadística descriptiva. 3. Probabilidad elemental. Representaciones de datos Cuatro

Más detalles

DISTRIBUCIONES DISCRETAS CON EXCEL Y WINSTATS

DISTRIBUCIONES DISCRETAS CON EXCEL Y WINSTATS DISTRIBUCIONES DISCRETAS CON EXCEL Y WINSTATS A) INTRODUCCIÓN Una distribución de probabilidad es una representación de todos los resultados posibles de algún experimento y de la probabilidad relacionada

Más detalles

Ingeniería Técnica Industrial, todas especialidades. Ingeniería Técnica Telecomunicaciones, Telemática Problemas de examenes

Ingeniería Técnica Industrial, todas especialidades. Ingeniería Técnica Telecomunicaciones, Telemática Problemas de examenes Universidad Politécnica de Cartagena Dpto. Matemática Aplicada y Estadística Métodos estadísticos de la ingeniería, Estadística Problemas de examenes: Métodos estadísticos de la ingeniería Ingeniería Técnica

Más detalles

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA PROBABILIDAD Y ESTADÍSTICA 1. Sean A y B dos sucesos y A, B sus complementarios. Si se verifica que p( B) = 2 / 3, p( A B) = 3 / 4 y p( A B) = 1/ 4, hallar: p( A), p( A B), y la probabilidad condicionada

Más detalles

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES ALUMNO: CONTENIDOS PARA LA RECUPERACION DE ÁREA EN SEPTIEMBRE

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES ALUMNO: CONTENIDOS PARA LA RECUPERACION DE ÁREA EN SEPTIEMBRE TRABAJO DE VERANO 2014 1º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES ALUMNO: ARITMÉTICA Y ÁLGEBRA CONTENIDOS PARA LA RECUPERACION DE ÁREA EN SEPTIEMBRE Números: reales, irracionales, racionales.

Más detalles

DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL

DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL 0 DISTRIUIONES DE PROILIDD DE VRILE DISRET. L INOMIL Página PR EMPEZR, REFLEXION Y RESUELVE Problema Dibuja los recorridos correspondientes a: +, + +, +, + + + +, + + + + + + + + + + Problema Observa que

Más detalles

Probabilidad Selectividad CCSS 2012. MasMates.com Colecciones de actividades

Probabilidad Selectividad CCSS 2012. MasMates.com Colecciones de actividades 1. [ANDA] [SEP-B] Sean A y B dos sucesos de un espacio muestral, de los que se conocen las probabilidades P(A) = 0.60 y P(B) = 0.25. Determine las probabilidades que deben asignarse a los sucesos A B y

Más detalles

2. Probabilidad y. variable aleatoria. Curso 2011-2012 Estadística. 2. 1 Probabilidad. Probabilidad y variable aleatoria

2. Probabilidad y. variable aleatoria. Curso 2011-2012 Estadística. 2. 1 Probabilidad. Probabilidad y variable aleatoria 2. Probabilidad y variable aleatoria Curso 2011-2012 Estadística 2. 1 Probabilidad 2 Experimento Aleatorio EL término experimento aleatorio se utiliza en la teoría de la probabilidad para referirse a un

Más detalles

IES PADRE SUÁREZ MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II. Probabilidad 2008

IES PADRE SUÁREZ MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II. Probabilidad 2008 Probabilidad 2008 EJERCICIO A Laura tiene en su monedero 6 monedas francesas, 2 italianas y 4 españolas. Vicente tiene 9 francesas y 3 italianas. Cada uno saca, al azar, una moneda de su monedero y observa

Más detalles

MATEMÁTICAS A 4º ESO IES LOS CARDONES 2014-2015 PLAN DE RECUPERACIÓN. Contenidos Mínimos. I. Estrategias, habilidades, destrezas y actitudes generales

MATEMÁTICAS A 4º ESO IES LOS CARDONES 2014-2015 PLAN DE RECUPERACIÓN. Contenidos Mínimos. I. Estrategias, habilidades, destrezas y actitudes generales MATEMÁTICAS A 4º ESO IES LOS CARDONES 2014-2015 PLAN DE RECUPERACIÓN Contenidos Mínimos I. Estrategias, habilidades, destrezas y actitudes generales II. Números: Resolución de problemas utilizando toda

Más detalles

EJERCICIOS DE PROBABILIDAD

EJERCICIOS DE PROBABILIDAD EJERCICIOS DE PROBABILIDAD 1. Se extrae una carta de una baraja española, calcula la probabilidad de que: a) Sea un rey; b) Sea un oro; c) Sea el rey de oros; d) Sea un rey o un oros; e) Sea un rey o una

Más detalles

TEMA 10 CÁLCULO DE PROBABILIDADES

TEMA 10 CÁLCULO DE PROBABILIDADES Ejercicios Selectividad Tema 10 Cálculo de probabilidades Matemáticas CCSSII 2º Bachillerato 1 TEMA 10 CÁLCULO DE PROBABILIDADES COMBINATORIA EJERCICIO 1 : Septiembre 03-04. Obligatoria (1 pto) Un fabricante

Más detalles

DISTRIBUCIONES DE PROBABILIDAD. VARIABLE DISCRETA

DISTRIBUCIONES DE PROBABILIDAD. VARIABLE DISCRETA UNIDD 0 DISTRIUIONES DE PROILIDD. VRILE DISRET Página 28. Imita el recorrido de un perdigón lanzando una moneda veces y haciendo la asignación: R derecha RUZ izquierda Por ejemplo, si obtienes + el itinerario

Más detalles

PROBLEMAS DE CÁLCULO DE PROBABILIDADES

PROBLEMAS DE CÁLCULO DE PROBABILIDADES PROBLEMAS DE CÁLCULO DE PROBABILIDADES Rosario Cintas del Río Escuela Universitaria de Estadística Universidad Complutense CÁLCULO DE PROBABILIDADES HOJA 1 1. Supongamos que los tiempos de los corredores

Más detalles

PROBLEMAS DE PROBABILIDAD. BOLETIN IV

PROBLEMAS DE PROBABILIDAD. BOLETIN IV PROBLEMAS DE PROBABILIDAD. BOLETIN IV 1. Se considera el experimento aleatorio de lanzar un dado al aire y anotar el número de la cara superior. Hallar: a) El espacio muestral. b) El suceso A= obtener

Más detalles

SUCESOS. PROBABILIDAD. BACHILLERATO. TEORÍA Y EJERCICIOS SUCESOS

SUCESOS. PROBABILIDAD. BACHILLERATO. TEORÍA Y EJERCICIOS SUCESOS 1 SUCESOS Experimento aleatorio. Es aquel que al repetirlo en análogas condiciones, da resultados diferentes, es decir, no se puede predecir el resultado que se va a obtener. Ejemplos: - Lanzar una moneda

Más detalles

Variables aleatorias. Función de distribución y características asociadas

Variables aleatorias. Función de distribución y características asociadas Índice 3 Variables aleatorias. Función de distribución y características asociadas 3.1 3.1 Introducción.......................................... 3.1 3.2 Concepto de variable aleatoria................................

Más detalles

Tema 3: Variables aleatorias y vectores aleatorios bidimensionales

Tema 3: Variables aleatorias y vectores aleatorios bidimensionales Estadística 38 Tema 3: Variables aleatorias y vectores aleatorios bidimensionales El concepto de variable aleatoria surge de la necesidad de hacer más manejables matemáticamente los resultados de los experimentos

Más detalles

Clase 5: Variables Aleatorias y Distribuciones de Probabilidad

Clase 5: Variables Aleatorias y Distribuciones de Probabilidad Clase 5: Variables Aleatorias y Distribuciones de Probabilidad Variables Aleatorias Una variable aleatoria es una función que asocia un número real con cada elemento del EM. Ejemplo 1: El EM que da una

Más detalles

Unidad 6. Distribuciones de probabilidad continua, muestreo y distribución de muestras

Unidad 6. Distribuciones de probabilidad continua, muestreo y distribución de muestras Unidad 6 Distribuciones de probabilidad continua, muestreo y distribución de muestras Introducción La unidad 5 se enfocó en el estudio de las distribuciones de probabilidad discreta, entre las cuales

Más detalles

Modelos de distribuciones discretas y continuas

Modelos de distribuciones discretas y continuas Modelos de distribuciones discretas y continuas Discretas En la versión actual de Rcdmr podemos encontrar las distribuciones discretas estudiadas en este curso y para cada una de ellas están disponibles

Más detalles

Universidad del País Vasco

Universidad del País Vasco Universidad del País Vasco eman ta zabal zazu Euskal Herriko Unibertsitatea INSTRUCCIONES. El examen consta de 50 cuestiones. Hay una única respuesta correcta para cada cuestión. Las cuestiones respondidas

Más detalles

Problemas. Variables Aleatorias. Modelos de Probabilidad

Problemas. Variables Aleatorias. Modelos de Probabilidad Problemas. Variables Aleatorias. Modelos de Probabilidad Ejemplos resueltos y propuestos Variables Aleatorias Discretas Una variable aleatoria discreta X de valores x 1, x 2,..., x k con función de probabilidad

Más detalles

En una plantación de manzanos, el peso en kg de la fruta producida anualmente por cada manzano sigue una distribución normal N(50; 10).

En una plantación de manzanos, el peso en kg de la fruta producida anualmente por cada manzano sigue una distribución normal N(50; 10). MODELOS DE PROBABILIDAD En una plantación de manzanos, el peso en kg de la fruta producida anualmente por cada manzano sigue una distribución normal N(50; 10). (a) Si tomamos dos manzanos al azar, cuál

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDADES PAUTA DE CORRECCIÓN: PRUEBA PARCIAL N o Profesor: Hugo S. Salinas. Segundo Semestre. RESOLVER. 3

Más detalles

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II JUNIO 2004

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II JUNIO 2004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II JUNIO 2004 Problema 1. Dadas las matrices: 4 A = 1 0 1 1 B = 2 2 0 y 2 C = 1 0 2 Calcular la matriz X que verifica la ecuación AXB =2C Problema 2. Un banco

Más detalles

Facultad de Economía y Empresa Departamento de Economía e Historia Económica. Listado de ejercicios. Estadística II

Facultad de Economía y Empresa Departamento de Economía e Historia Económica. Listado de ejercicios. Estadística II Facultad de Economía y Empresa Departamento de Economía e Historia Económica Listado de ejercicios Estadística II Curso 2011-2012 ii Probabilidad Variables aleatorias unidimesionales 1. Se lanza dos veces

Más detalles

Probabilidad Colección C.2. MasMates.com Colecciones de ejercicios

Probabilidad Colección C.2. MasMates.com Colecciones de ejercicios 1. En un examen teórico para la obtención del permiso de conducir hay 14 preguntas sobre normas, 12 sobre señales y 8 sobre educación vial. Si se eligen dos preguntas al azar. a) Cuál es la probabilidad

Más detalles

LAS PROBABILIDADES Y EL SENTIDO COMÚN

LAS PROBABILIDADES Y EL SENTIDO COMÚN LAS PROBABILIDADES Y EL SENTIDO COMÚN Existen leyes del azar? Nuestro sentido común pareciera decirnos que el azar y las leyes son conceptos contradictorios. Si algo sucede al azar, es porque no hay leyes

Más detalles

Modelos univariantes

Modelos univariantes Modelos univariantes 1.- 10.000 personas de la misma edad y grupo social tienen suscritas pólizas de seguros de vida con una compañía. Se estima que la probabilidad de que cada asegurado muera durante

Más detalles

PARTE COMÚN: MATEMÁTICAS

PARTE COMÚN: MATEMÁTICAS Consejería de Educación y Cultura e Innovación Educativa DATOS DEL ASPIRANTE Apellidos:..... Nombre:.... D.N.I./N.I.E./Pasaporte nº:...... DEL EJERCICIO DE MATEMÁTICAS Calificación numérica 1.- En las

Más detalles

CÁLCULO DE PROBABILIDADES

CÁLCULO DE PROBABILIDADES CÁLCULO DE PROBABILIDADES Página PARA EMPEZAR, REFLEXIONA Y RESUELVE Calcula matemáticamente cuál es la probabilidad de que no toque raya en la cuadrícula de cm cm una moneda de cm de diámetro. De qué

Más detalles

Algunas Distribuciones de Probabilidad

Algunas Distribuciones de Probabilidad Relación de problemas 7 Algunas Distribuciones de Probabilidad 1. En un hospital se ha comprobado que la aplicación de un tratamiento en enfermos de cirrosis produce una cierta mejoría en el 80 % de los

Más detalles

1. a) Definimos X =número de personas con síntomas si examino sólo una persona, la cual sigue una distribución B(1, p), donde

1. a) Definimos X =número de personas con síntomas si examino sólo una persona, la cual sigue una distribución B(1, p), donde Soluciones de la relación del Tema 6. 1. a) Definimos X =número de personas con síntomas si examino sólo una persona, la cual sigue una distribución B1, p), donde p = P X = 1) = P la persona presente síntomas)

Más detalles

PROBLEMAS SOBRE CÁLCULO DE PROBABILIDADES.

PROBLEMAS SOBRE CÁLCULO DE PROBABILIDADES. ANDALUCIA: º) (Andalucía, junio, 98) Ana, Juan y Raúl, que están esperando para realizar una consulta médica, sortean, al azar, el orden en que van a entrar. a) Calcule la probabilidad de que los dos últimos

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDAD EJERCICIOS 5 Profesor: Hugo S. Salinas. Primer Semestre 2009 1. Una compañía de seguros utiliza la

Más detalles

INFERENCIA ESTADÍSTICA

INFERENCIA ESTADÍSTICA Capítulo 4 INFERENCIA ESTADÍSTICA 4.1. Introducción Inferir: Sacar una consecuencia de una cosa. Sacar consecuencia o deducir una cosa de otra. La estadística, ciencia o rama de las Matemáticas que se

Más detalles

Teoría de la Decisión Estadística Ejercicios

Teoría de la Decisión Estadística Ejercicios Teoría de la Decisión Estadística Ejercicios 1. Una librería debe decidir cuántas revistas pedir. Las compra a 20 euros y las vende a 25. Las revistas que no vende al final del día no tienen valor. La

Más detalles

Colegio La Inmaculada Misioneras Seculares de Jesús Obrero ACTIVIDADES DE LOS TEMAS 15 Y 16

Colegio La Inmaculada Misioneras Seculares de Jesús Obrero ACTIVIDADES DE LOS TEMAS 15 Y 16 Colegio La Inmaculada Misioneras Seculares de Jesús Obrero Matemáticas 4º E.S.O. ACTIVIDADES DE LOS TEMAS 15 Y 16 1. De una urna con 7 bolas blancas y 14 negras extraemos una. Cuál es la probabilidad de

Más detalles

Probabilidad. Relación de problemas 5

Probabilidad. Relación de problemas 5 Relación de problemas 5 Probabilidad 1. Una asociación consta de 14 miembros, de los cuales 6 son varones y 8 son mujeres. Se desea seleccionar un comité de tres hombres y tres mujeres. Determinar de cuántas

Más detalles

Probabilidad 0.9 0.9 0.8 0.9 0.95 0.75. U. D. de Matemáticas de la ETSITGC de la U.P.M. Asignatura: Cálculo y Estadística 1

Probabilidad 0.9 0.9 0.8 0.9 0.95 0.75. U. D. de Matemáticas de la ETSITGC de la U.P.M. Asignatura: Cálculo y Estadística 1 .- Obtener la probabilidad de las siguientes jugadas en una mano de 5 cartas de una baraja de 5 cartas: a) Pareja. b) Doble pareja. c) Trío. d) Escalera. e) Color. f) Full. g) Póker h) Escalera de color..-

Más detalles

0 en el resto. P 2 X 4 c) Obtener x tal que P( X x)=0.3. Se pide: a) La variable aleatoria es discreta o x si 0 x 4

0 en el resto. P 2 X 4 c) Obtener x tal que P( X x)=0.3. Se pide: a) La variable aleatoria es discreta o x si 0 x 4 .- Sea la función de probabilidad de una variable aleatoria: i 4 5 Probabilidad k P X. Se pide. A) La función de distribución. B) Primer cuartil. C) k si,. Si la función de densidad de una v. a. continua

Más detalles

Problemas de Probabilidad(Selectividad) Ciencias Sociales

Problemas de Probabilidad(Selectividad) Ciencias Sociales Problemas de Probabilidad(Selectividad) Ciencias Sociales Problema 1 En un instituto se ofertan tres modalidades excluyetes, A, B y C, y dos idiomas excluyentes, inglés y francés. La modalidad A es elegida

Más detalles

5. DISTRIBUCIONES DE PROBABILIDADES

5. DISTRIBUCIONES DE PROBABILIDADES 5. DISTRIBUCIONES DE PROBABILIDADES Dr. http://academic.uprm.edu/eacunaf UNIVERSIDAD DE PUERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ DISTRIBUCIONES DE PROBABILIDADES Se introducirá el concepto de variable

Más detalles

1. Simule estas situaciones y concluya: a) Se tira una moneda equilibrada 10 veces y se observa qué proporción de veces salió cara en

1. Simule estas situaciones y concluya: a) Se tira una moneda equilibrada 10 veces y se observa qué proporción de veces salió cara en 1. Simule estas situaciones y concluya: a) Se tira una moneda equilibrada 10 veces y se observa qué proporción de veces salió cara en las sucesivas tiradas, se repite el experimento en condiciones similares

Más detalles

Unidad 4: Variables aleatorias

Unidad 4: Variables aleatorias Unidad 4: Variables aleatorias Logro de la unidad 4 Al finalizar la unidad 4, el alumno aplica el concepto de variable aleatoria, valor esperado y probabilidad para la toma de decisiones en un trabajo

Más detalles

Probabilidad Selectividad CCSS Madrid. MasMates.com Colecciones de ejercicios

Probabilidad Selectividad CCSS Madrid. MasMates.com Colecciones de ejercicios 1. [2014] [EXT-A] En la representación de navidad de los almnos de 3º de primaria de un colegio hay tres tipos de papeles: 7 son de animales, 3 de personas y 12 de árboles. Los papelese se asignan al azar,

Más detalles

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2 PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2 1. Se eligen tres autos al azar y cada uno es clasificado N si tiene motor naftero o D si tiene motor diesel (por ejemplo, un resultado posible sería NND). a)

Más detalles

TEMA 6: VARIABLES ALEATORIAS. DISTRIBUCIONES DE PROBABILIDAD 1. VARIABLES ALEATORIAS

TEMA 6: VARIABLES ALEATORIAS. DISTRIBUCIONES DE PROBABILIDAD 1. VARIABLES ALEATORIAS TEMA 6: VARIABLES ALEATORIAS. DISTRIBUCIONES DE PROBABILIDAD 1. VARIABLES ALEATORIAS 1.1 Variables aleatorias Considera el experimento aleatorio consistente en lanzar dos monedas. El espacio muestral de

Más detalles

Cálculo de probabilidades

Cálculo de probabilidades Cálculo de probabilidades 1. Sean A y B dos sucesos de un espacio muestral, con probabilidades P(A)=0.3, P(B)=0.7. Indica si son verdaderas o falsas las siguientes afirmaciones: a) Los sucesos A y B son

Más detalles

Matemáticas aplicadas a las Ciencias Sociales II Variables Aleatorias. Distribuciones Binomial y Normal. Índice. 1. Variables aleatorias 2

Matemáticas aplicadas a las Ciencias Sociales II Variables Aleatorias. Distribuciones Binomial y Normal. Índice. 1. Variables aleatorias 2 Matemáticas aplicadas a las Ciencias Sociales II Variables Aleatorias. Distribuciones Binomial y Normal Índice 1. Variables aleatorias 2 2. Distribución de probabilidad para variables aleatorias discretas

Más detalles

Métodos Estadísticos 2.3. Distribuciones discretas de probabilidad

Métodos Estadísticos 2.3. Distribuciones discretas de probabilidad 2.3. DISTRIBUCIONES DISCRETAS DE PROBABILIDAD Parámetros de un problema Saber: Explicar el concepto de variable discreta. Explicar los conceptos y métodos de la distribución binomial, hipergeométrica,

Más detalles

Probabilidad. Distribución binomial y normal

Probabilidad. Distribución binomial y normal 3 Probabilidad. Distribución binomial y normal. Probabilidad condicionada Piensa y calcula alcula mentalmente: a) la probabilidad de que al sacar una bola, sea roja. b) la probabilidad de que al sacar

Más detalles

PROBLEMAS DE ESTADISTICA ECONOMICA PROBABILIDAD

PROBLEMAS DE ESTADISTICA ECONOMICA PROBABILIDAD 1 PROBLEMAS DE ESTADISTICA ECONOMICA PROBABILIDAD 1. Un experimento consiste en preguntarle a 3 personas elegidas al azar si lavan sus platos con el detergente marca X. a) Enumerar los elementos del espacio

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD Junio, Ejercicio 3, Opción A Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3, Opción

Más detalles

Tema 9 Estadística Matemáticas B 4º E.S.O. 1 TABLAS DE FRECUENCIAS Y REPRESENTACIONES GRÁFICAS EN VARIABLES DISCRETAS

Tema 9 Estadística Matemáticas B 4º E.S.O. 1 TABLAS DE FRECUENCIAS Y REPRESENTACIONES GRÁFICAS EN VARIABLES DISCRETAS Tema 9 Estadística Matemáticas B º E.S.O. TEMA 9 ESTADÍSTICA TABLAS DE FRECUENCIAS Y REPRESENTACIONES GRÁFICAS EN VARIABLES DISCRETAS EJERCICIO : En un grupo de personas hemos preguntado por el número

Más detalles

Unidad 4: Distribuciones de Probabilidad (Discretas y Continuas)

Unidad 4: Distribuciones de Probabilidad (Discretas y Continuas) Unidad 4: Distribuciones de Probabilidad (Discretas y Continuas) Ejercicio 4 1 Una persona vende automóviles nuevos para una empresa. Generalmente negocia el mayor número de autos los sábados. Ha establecido

Más detalles

CURSO HERRAMIENTAS ESTADISTICAS PARA IMPLEMENTACION DE SIX SIGMA EN EMPRESAS DE PRODUCCION, LOGISTICA Y SERVICIOS

CURSO HERRAMIENTAS ESTADISTICAS PARA IMPLEMENTACION DE SIX SIGMA EN EMPRESAS DE PRODUCCION, LOGISTICA Y SERVICIOS CURSO HERRAMIENTAS ESTADISTICAS PARA IMPLEMENTACION DE SIX SIGMA EN EMPRESAS DE PRODUCCION, LOGISTICA Y SERVICIOS Cnel. R.L. Falcón 1435 C1406GNC 35 Buenos Aires, Argentina Tel.: 054-15-4492-6252 Fax:

Más detalles

GOBIERNO DE EXTREMADURA

GOBIERNO DE EXTREMADURA GOBIERNO DE EXTREMADURA y Cultura Dirección General de Formación Profesional y Educación de Adultos. Gr.Superior: FUNDAMENTOS DE MATEMÁTICAS PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR. Orden

Más detalles

Relación de Problemas. Modelos de Probabilidad

Relación de Problemas. Modelos de Probabilidad Relación de Problemas. Modelos de Probabilidad 1. Sabemos que en una ciudad, de cada 50000 personas, 1500 están viendo un cierto programa de TV. Cuál es la probabilidad de que de 100 personas elegidas

Más detalles

Universidad Simón Bolívar CO3121. Probabilidades para Ingenieros. Enero-Marzo 2010 Problemario I

Universidad Simón Bolívar CO3121. Probabilidades para Ingenieros. Enero-Marzo 2010 Problemario I Universidad Simón Bolívar CO3121. Probabilidades para Ingenieros. Enero-Marzo 2010 Problemario I 1. Supongamos que Ω = A B y P (A B) = 0.2. Hallar: (a) El máximo valor posible para P (B), de tal manera

Más detalles

PROBLEMAS DE SIMULACIÓN PARA RESOLVER POR EL MÉTODO DE MONTECARLO.

PROBLEMAS DE SIMULACIÓN PARA RESOLVER POR EL MÉTODO DE MONTECARLO. PROBLEMAS DE SIMULACIÓN PARA RESOLVER POR EL MÉTODO DE MONTECARLO. PROBLEMA 1 A un puerto de carga y descarga de material, llegan durante la noche los barcos, que serán descargados durante el día siguiente.

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD Junio, Ejercicio 3, Opción A Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3, Opción

Más detalles

IES ARROYO HONDO ACTIVIDADES REPASO MATEMÁTICAS 3º ESO. Segunda parte. Curso 15/16. Fecha de entrega: 11/2/16

IES ARROYO HONDO ACTIVIDADES REPASO MATEMÁTICAS 3º ESO. Segunda parte. Curso 15/16. Fecha de entrega: 11/2/16 IES ARROYO HONDO ACTIVIDADES REPASO MATEMÁTICAS 3º ESO Segunda parte Curso 15/16 Fecha de entrega: 11/2/16 Nombre: Grupo: FUNCIONES Y GRÁFICAS: 1. Ricardo ha quedado con sus amigos para dar una vuelta

Más detalles

todas especialidades Soluciones de las hojas de problemas

todas especialidades Soluciones de las hojas de problemas Universidad Politécnica de Cartagena Dpto. Matemática Aplicada y Estadística Ingeniería Técnica Industrial Métodos estadísticos de la ingeniería Métodos estadísticos de la ingeniería Ingeniería Técnica

Más detalles