EJERCICIOS DE ESTADÍSTICA I.T.O.P.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "EJERCICIOS DE ESTADÍSTICA I.T.O.P."

Transcripción

1 EJERCICIOS DE ESTADÍSTICA I.T.O.P. Alberto Luceño Fco. Javier González Universidad de Cantabria

2 1. ESTADÍSTICA DESCRIPTIVA 1. Estadística descriptiva 1. En un estudio entre 145 familias, se ha observado que el número de hijos se distribuye de la siguiente manera: hijos frecuencia Se pide: a) Hacer un diagrama de barras. b) Calcular, la media, la moda, la mediana y la desviación típica. x = 2,41, M o = 2, M e = 2, S x = 2,11 2. En diferentes días se ha observado el número de veces que ha sonado la alarma en un servicio de bomberos, obteniéndose los siguientes datos: {5,3,1,5,3,6,4,2,5,6,3,6,5,2,6,7,3} Se pide: a) Obtener la moda, la mediana, Q 1, Q 3 y el cuantil 0,40. b) Obtener la media y la desviación típica. c) Efectuar un diagrama apropiado. a) M o = 3, 5, 6, Me = 5, Q 1 = 3, Q 3 = 6, c 0,40 = 3 b) x = 4,235, S x = 1, El porcentaje de algodón en una tela utilizada para elaborar camisas para hombre se presenta en la siguiente tabla. Calcular los estadísticos más importantes y construir el histograma de frecuencias. porcentaje de algodón 32,1 32,5 32,6 32,7 32,8 32,9 33,1 33,1 33,4 33,5 33,6 33,6 33,6 33,6 33,6 33,8 33, ,1 34,1 34,1 34,2 34,3 34,3 34,4 34,5 34,5 34,6 34,6 34,6 34,6 34,6 34,7 34,7 34,7 34,7 34,7 34,7 34, ,1 35,1 35,1 35,2 35,3 35,4 35,4 35,5 35,6 35,7 35,8 35,9 36,2 36,4 36,6 36,8 36,8 36,8 37,1 37,3 37,6 37,8 37,9 a) Diseñar la distribución de frecuencias con un cambio de variable. b) Calcular los estadísticos: media, moda, mediana, Q 1, Q 3, c 0,6, varianza y desviación típica. c) Representar el diagrama de tallo y hojas. d) A partir del diagrama anterior determinar la mediana, el primer cuartil y el tercer cuartil y compárese los resultados con los obtenidos a partir de la distribución de frecuencias. e) Representar los histogramas de frecuencias absolutas y acumuladas. Universidad de Cantabria. Alberto Luceño y Fco. Javier González 2

3 1. ESTADÍSTICA DESCRIPTIVA f ) Representar el diagrama de caja y determinar los valores extremos. b) S 2 x = 1,82, Mo = 34,8, Q1 = 33,8, Q3 = 35,475, c0,60 = 34,9 4. Un ingeniero se plantea la elección entre dos fabricantes distintos para el suministro de cierto aditivo para el hormigón. El ingeniero recibe las muestras de los suministradores A y B. Realiza las medidas para 15 bolsas de cada tipo del suministro. Los resultados se recogen en la tabla: Laboratorio A 2,769 2,813 2,863 2,875 2,924 2,955 2,962 2,98 3,007 3,028 3,051 3,076 3,123 3,161 3,216 Laboratorio B 2,865 2,901 2,923 2,940 2,945 2,969 2,984 2,981 2,996 3,002 3,017 3,039 3,044 3,057 3,14 Se pide: a) Diseñar una distribución de frecuencias para cada tipo de aditivo. b) Realizar los histogramas adecuados para comparar gráficamente ambos aditivos. c) Determinar los principales estadísticos. d) Justificar el aditivo elegido. Descriptive Statistics Variable N Mean Median TrMean StDev SE Mean LabA 15 2,9869 2,9800 2,9860 0,1273 0,0329 % LabB 15 2,9869 2,9840 2,9845 0,0688 0,0178 % Variable Minimum Maximum Q1 Q3 % LabA 2,7690 3,2160 2,8750 3,0760 % LabB 2,8650 3,1400 2,9400 3, Las puntuaciones obtenidas por un grupo de alumnos en un test de habilidad psicomotriz han sido las siguientes: Puntuaciones x i f i x i f i F i [5, 10) [10, 15) [15, 20) [20, 25) [25, 30) a) Calcular los principales estadísticos centrales. b) Rango intercuartil. a) x = 17,34, M e = 17,5, Q 1 = 13,96, Q 3 = 20,9 b) RIQ = 16,94 6. En la siguiente tabla de frecuencias, se registran los pesos en gramos de ciertas tornillos. Universidad de Cantabria. Alberto Luceño y Fco. Javier González 3

4 1. ESTADÍSTICA DESCRIPTIVA intervalo marca de clase frecuencia 1 x < x < x < x < 9 9 x < 11 2 a) Dar las marcas de clase y calcular la frecuencia correspondiente al cuarto intervalo, sabiendo que la media x es igual a 6 gramos. b) Hallar el tercer cuartil Q 3. a) f 4 = 13 b) Q 3 = 7, Distribución conjunta de dos variables 7. La siguiente tabla registra en diferentes horas la temperatura (T) del agua de un río y su contenido en oxígeno disuelto (DO): T DO T DO T DO T DO T DO 29,57 9,88 29,48 6,67 28,43 2,90 31,68 13,80 28,51 2,58 29,99 12,14 29,06 5,29 28,64 3,94 31,34 12,32 28,30 2,41 30,58 13,66 28,81 4,23 29,02 5,52 31,00 11,00 28,09 2,51 31,00 14,19 28,60 3,56 29,52 7,83 30,79 10,00 28,00 2,71 31,34 14,50 28,51 2,98 30,07 10,68 30,45 8,45 28,13 3,48 31,26 13,72 28,51 2,58 30,67 12,98 30,07 6,48 28,30 4,36 31,17 12,54 28,43 2,32 31,17 14,26 29,69 4,91 28,72 5,71 30,96 11,48 28,34 2,14 31,55 14,93 29,36 3,89 29,14 7,91 30,50 9,92 28,34 2,09 31,76 14,91 29,02 3,21 29,74 10,61 29,99 8,32 28,26 2,27 31,81 14,61 28,76 2,83 30,37 12,66 Se pide: a) Construir una distribución conjunta de frecuencias para las dos variables T y DO tomando 5 intervalos. b) Dibujar un diagrama de dispersión conjunto de las dos variables. c) Hacer un estudio de las distribuciones marginales. d) Calcular la matriz de varianzas-covarianzas. Véase el capítulo 1 del libro de Luceño y González(2003) 8. En cierto colectivo de personas se toma una muestra de 30 personas a las que se observa el peso, obteniéndose los siguientes datos: {57,2; 92,5; 72,8; 74,8; 60,1; 96,1; 74,3; 89,1; 69,2; 77,7; 65,0; 82,1; 66,2; 51,3; 83,9; 71,3; 84,8; 62,5; 103,2; 64,1; 73,1; 87,3; 58,9; 76,1; 45,8; 79,1; 68,9; 62,5; 81,5; 65,7} Universidad de Cantabria. Alberto Luceño y Fco. Javier González 4

5 1. ESTADÍSTICA DESCRIPTIVA Obtener los estadísticos más importantes. Variable N Mean Median TrMean StDev SE Mean % peso 30 73,24 72,95 73,10 13,26 2,42 Variable Minimum Maximum Q1 Q3 % peso 45,80 103,20 63,70 82,55 9. La duración en horas de una serie de bombillas viene dada por la siguiente Obtener los estadísticos más importantes. 7,24,31,34,26,19,88,76,81,44,43,40,54,55, 61,58,59,29,37,36,47,49,66,70,39,50,68 Variable N Mean Median TrMean StDev SE Mean % horas 27 47,81 47,00 47,84 19,65 3,78 Variable Minimum Maximum Q1 Q3 % horas 7,00 88,00 34,00 61, Se han obtenido las siguientes medidas en milímetros de una serie de 30 tornillos cogidos al azar. 124,116,144,133,109,120,146,114,112,110,123,115,123,138,127, 111,125,137,132,140,121,139,126,130,139,131,125,142,124,122 Obtener los estadísticos más importantes. Universidad de Cantabria. Alberto Luceño y Fco. Javier González 5

6 2. PROBABILIDAD 2. Probabilidad 11. (Espacio muestral). Describir el espacio muestral de las siguientes experiencias aleatorias: a) E 1 = {Lanzamiento de un dado y anotamos el resultado}. b) E 2 = {Lanzamiento tres dados y sumamos las puntuaciones}. c) E 3 = {La duración de una lámpara hasta que se funde}. d) E 4 = {La resistencia a rotura de unos tubos de aluminio}. e) E 5 = {Número de piezas defectuosas de un lote de 5000}. f ) E 6 = {Lanzamiento de dos monedas}. 12. Sean A y B sucesos con P(A) = a, P(B) = b y P(A B) = c. Expresar las probabilidades siguientes en función de a,b y c. P(A B) P(A B) P(A B) P(A B) a) P(A B) = 1 c b) P(A B) = b c c) P(A B) = 1 a + c d) P(A B) = 1 a b + c 13. Sabiendo que P(A) = 0,2, P(B) = P(C) = 0,2 y P(A B) = P(A C) = P(B C) = 0,1 y P(A B C) = 0,05. Calcular la probabilidad de P(A B C). P(A B C) = 0, El problema de Galileo. Un príncipe italiano preguntó en una ocasión al famoso físico Galileo, por qué cuando se lanzan tres dados, se obtiene con más frecuencia la suma 10 que la suma 9, aunque se puedan obtener de seis maneras distintas cada una? a) P(suman 9) = = 0,116 b) P(suman 10) = = 0, Una urna contiene dos bolas blancas y tres bolas rojas. Efectuadas dos extracciones sucesivas, determinar la probabilidad de extraer una bola blanca y, a continuación, una bola roja: a) Cuando habiendo extraído la primera bola ésta es devuelta a la urna para realizar la segunda extracción. b) Cuando habiendo extraído la primera bola ésta no es devuelta a la urna para realizar la segunda extracción. a) P(BR) = 6 25 b) P(BR) = Se extrae una carta de una baraja de 40 cartas. Comprobar cuales de los siguientes pares de sucesos son independientes: a) A = {rey} B = {espadas} b) A = {figuras} B = {espadas} c) A = {rey} B = {figuras} Universidad de Cantabria. Alberto Luceño y Fco. Javier González 6

7 2. PROBABILIDAD a) si b) si c) no De una baraja de 40 cartas se extrae una al azar y se mira. Se repite esta operación 4 veces. Tenemos que apostar a que la 1 a es copa, la 2 a es oro, la 3 a es bastos y la 1 a es espadas. Si nos dejan elegir entre reponer o no la carta extraída, qué elegiremos? ( ) a) con reposición b) sin reposición El problema del caballero de la Meré. Se considera generalmente 1654 como el año del nacimiento de la teoría de probabilidades: el caballero de la Meré, filósofo y hombre de letras en la corte de Luis XIV, propuso dos problemas al célebre matemático Blaise Pascal; a) Qué es más probable, obtener al menos un seis en cuatro lanzamientos de un dado, u obtener al menos un doble seis al lanzar 24 veces dos dados? b) Se lanza una moneda varias veces. Por cada 1 obtenido, A recibe un punto, y por cada 0, se adjudica un punto B. Gana la apuesta el primero que obtenga 5 puntos. Al cabo de siete jugadas, A tiene 4 puntos y B tiene 3. En este momento se interrumpe el juego. Cómo repartir la apuesta de la manera más equitativa? Las propuestas de Meré dieron lugar a un intercambio de correspondencia entre Pascal y Fermat, del que nacieron los fundamentos de la teoría de probabilidades. (Engel, Probabilidad y Estadística, Mestral, 1988). a) P(S) = 0, 51775, P(T) = 0, 4914 b) deben repartir lo apostado en razón de 3 a El problema de las uvas pasas. Cuántas uvas pasas se deben mezclar con 500 gramos de harina para tener una certeza del 99 % de que un bollo de 50 gramos contenga al menos una pasa? (Engel, Probabilidad y Estadística, Mestral, 1988). n En una habitación hay una reunión de n personas. Cuál es la probabilidad de que el cumpleaños de al menos dos personas sea el mismo día? (365 n + 1) p = n 2.1. Probabilidad condicionada 21. Demostrar que si dos sucesos A y B son independientes, también lo son los sucesos complementarios de A y B. 22. Demostrar: P(A B) > P(A) = P(B A) > P(B) 23. Sean dos sucesos A y B, donde P(A) = 0,5 y P(A B) = 0,8. Asignar el valor de P(B) para que: a) A y B sean incompatibles. b) A y B sean independientes. a) P(B) = 0,3 b) P(B) = 0,6 Universidad de Cantabria. Alberto Luceño y Fco. Javier González 7

8 2. PROBABILIDAD 24. Indicar en cada caso si los sucesos A y B son incompatibles o independientes: a) P(A) = 0,2, P(B) = 0,4 y P(A B) = 0,6. b) P(A) = 0,3, P(B) = 0,5 y P(A B) = 0,65. c) P(A) = 0,4, P(B) = 0,5 y P(A B) = 0, Una urna contiene 5 bolas blancas y 3 negras. Tres jugadores A, B y C extraen una bola sin devolución en este mismo orden. Gana el primer jugador que saca una blanca. Calcular la probabilidad de que gane C. P(G A) = ; P(GB) = ; P(GC) = 5 56 Supongamos que tenemos 10 urnas: 5 de ellas son de tipo U 1 y contienen 3 blancas y 3 negras, 3 de ellas son de tipo U 2 y contienen 4 blancas y 2 negras, y el resto son de tipo U 3 y contienen 1 blanca y 5 negras. Se pide: a) Probabilidad de que una bola extraída al azar de una de las 10 urnas sea blanca. b) Probabilidad de que habiendo salido una bola negra, proceda de una urna del tipo U 2. c) Sabiendo que ha salido una bola negra, de qué tipo de urna es más probable que haya salido? a) b) 6 31 c) U Alarma Falsa. En cierto lugar se ha instalado un dispositivo de alarma. Si hay peligro, el dispositivo se pone en funcionamiento el 99 % de las ocasiones. Por otra parte, la probabilidad de que se dispare la alarma espontáneamente es del 0,5 %, y la probabilidad de que una noche haya un intento de robo es 0,1 %. Si una noche determinada se oye la alarma, cuál es la probabilidad de que sea falsa (no haya peligro)? 0, Una persona tiene dos negocios en funcionamiento, A y B. El primer negocio tiene pérdidas en el 25% de los balances, mientras que el 2 o, donde la perspectiva de beneficio es menor, tiene pérdidas sólo en el 5% de los casos. Se supone que el conjunto de operaciones es análogo en ambos negocios. Si, analizando el resultado económico de una de las operaciones, se observan pérdidas, cuál es la probabilidad de que dicha operación correspondiese al negocio B? 1/6 29. Para la elección de las personas de un jurado se disponen de dos urnas. En la 1 a hay 10 papeletas con nombres de 6 hombres y 4 de mujeres, en la 2 a hay 5 papeletas con nombres de 2 hombres y 3 de mujeres. Alguien cambia una papeleta de la 1 a urna a la 2 a e inmediatamente después se extrae al azar una papeleta de la 2 a urna que resulta ser nombre de mujer. Cuál es la probabilidad de que la papeleta cambiada contenga un nombre de mujer? 16/ Considérese tres cartas: una con las dos caras negras, otra con ambas caras blancas y la tercera con una blanca y la otra negra. Se elige una carta al azar y se coloca sobre la mesa. La cara superior resulta negra, cuál es la probabilidad de que la cara oculta sea blanca? Universidad de Cantabria. Alberto Luceño y Fco. Javier González 8

9 2. PROBABILIDAD A B C 1/3 31. Una fábrica de ladrillos suministra estos a buen precio pero el 10 % de ellos son defectuosos. Con objeto de mejorar la calidad del producto se someten los ladrillos a un ensayo no destructivo antes de su venta. Este ensayo da como buenos el 99 % de los que son buenos y da por malos el 98 % de los que son malos. a) Determinar la probabilidad de que un ladrillo en mal estado supere el proceso de control de calidad. b) Determinar la probabilidad de aceptar como bueno un ladrillo cualquiera. c) Determinar la probabilidad de que un ladrillo, que ha sido aceptado, esté en malas condiciones d) Si el coste estimado por cada ladrillo fabricado en malas condiciones es C euros. Determinar el precio máximo que debe pagarse por ensayo no destructivo para que este sea rentable. a) 0,02 b) 0,893 c) 0, 0022 d) 0,098 C Los almacenes A, B y C, que están dirigidos por la misma persona, tienen 50, 75 y 100 empleados, y, respectivamente, el 50 %, 60 % y 70 % de ellos son mujeres. El hecho de que una persona sea despedida del trabajo es igualmente probable entre todos los empleados, independientemente del sexo. Se despide un empleado, que resulta ser mujer. Cuál es la probabilidad de que trabajara en el almacén C? 0,5 Dos proveedores A y B entregan la misma mercancía a un fabricante, que guarda todas las existencias de esta mercancía en un mismo lugar. Los antecedentes demuestran que el 5 % de la mercancía entregada por A es defectuosa y que el 9 % lo es de B. A entrega 4 veces más que B. Si se saca una pieza y no es defectuosa, cuál es la probabilidad de que la haya fabricado A? 0,806 Se diseña un dispositivo de frenado para evitar que un automóvil patine en el que incluye un sistema electrónico e hidraúlico. El sistema completo puede descomponerse en tres subsistemas en serie que operan de manera independiente: un sistema electrónico, un sistema hidraúlico y un sistema mecánico. En un frenado particular, las probabilidades de estas unidades funcionen son aproximadamente 0,995, 0,993 y 0,994, respectivamente. Calcular la probabilidad de que sistema frene. 0,98 Universidad de Cantabria. Alberto Luceño y Fco. Javier González 9

10 2. PROBABILIDAD 35. El volumen de producción diario en tres plantas diferentes de una fábrica es de 500 unidades en la 1 a, 1000 en la 2 a y 2000 en la 3 a planta. Sabiendo que el porcentaje de unidades defectuosas producidas en las plantas es de 1%, 0,8% y 2%, respectivamente, determinar la probabilidad de que: a) Extraída una unidad al azar, resulte no defectuosa. b) Habiendo sido extraída una unidad defectuosa, haya sido producida en la primera planta. a) 0,985 b) 0, Tres imprentas realizan trabajos para la oficina de publicaciones de la Universidad de Cantabria. La oficina de publicaciones no negocia una multa contractual por trabajos atrasados, y los datos siguientes reflejan una gran experiencia con estas imprentas. imprenta fracción fracción de tiempo i de contratos con retraso 1 0,2 0,2 2 0,3 0,5 3 0,5 0,3 Un departamento observa que un pedido tiene más de un mes de retraso. Cuál es la probabilidad de que el contrato se haya otorgado a la imprenta 3? 15/ Una compañia de aviones dispone de 20 pilotos y 15 auxiliares de vuelo. Si en cada vuelo viajan como equipo responsable, dos pilotos y tres auxiliares. Se pide: a) De cuántos equipos distintos dispone la compañia para los vuelos? b) El piloto RX34 tiene a su mujer como auxiliar de vuelo. Si tomamos un vuelo al azar, cuál es la probabilidad de que vaya el matrimonio en el personal de vuelo? c) Si elegimos un vuelo al azar, cuál es la probabilidad de que vaya RX34 o su mujer en el personal de vuelo? a) 86,450 b) 0,14 c) 0, Una fábrica dispone de 20 transportistas, 45 empleados de mantenimiento y 5 ingenieros supervisores. La contratación de todo el personal se divide en fija y temporal. De los transportistas 8 son fijos; de los empleados de mantenimiento 35 son fijos y de los ingenieros 3 son fijos. Si elegimos una persona al azar: a) Cuál es la probabilidad de que tenga un contrato temporal? b) Cuál es la probabilidad de que tenga un contrato temporal y no sea ingeniero? c) Si elegimos una persona que tiene contrato fijo, cuál es la probabilidad de que sea un transportista? a) b) c) 8 46 Universidad de Cantabria. Alberto Luceño y Fco. Javier González 10

11 3. VARIABLES ALEATORIAS 3. Variables aleatorias 3.1. Variables aleatorias discretas 39. En algunos casinos se realiza el siguiente juego: se elige uno de los números 1, 2, 3, 4, 5, 6. A continuación se lanzan tres dados. Si el número elegido aparece 1, 2, 3 veces, se recibe 1, 2, 3 veces lo apostado, y se recupera éste. Si no aparece el número elegido, se pierde lo apostado. Sea X la variable aleatoria que proporciona la ganancia. Obtener E(X). E[X] = 0, Una variable aleatoria tiene la siguiente función de probabilidad, x P(x) 0,05 0,20 0,05 0,45 0,25 a) Comprobar que es una función de probabilidad. b) Calcular P(x 3). c) Calcular P(x > 3). d) Calcular P(x = 1 x = 3 x = 5). e) Calcular E(X). f ) Representar la función de distribución F X (x). b) 0,3 c) 0,7 d) 0,35 e) 3, Fiabilidad de un componente. Para una componente de un sistema, sea A el suceso la componente funciona. Se define la función indicatriz del suceso A como aquella función I A tal que I A = 1 si A es cierto e I A = 0 si A es falso. Qué indica E(I A )? A partir la figura 3.1 a) Determinar la función indicatriz de los sistemas. b) Determinar la fiabilidad de los sistemas. c) Suponiendo p 1 = p 2 = p 3 = 0,90, determinar la fiabilidad de los sistemas y compararlos (a) Circuito1 (b) Circuito2 Figura 3.1: Función indicatriz y fiabilidad 3 (c) Circuito3 a) 1 (1 I 1)(1 I 2)(1 I 3), I 1I 2, 1 (1 I 1I 2)(1 I 3) b) 1 q 1q 2q 3, p 1p 2, 1 (1 p 1p 2)q 3 Universidad de Cantabria. Alberto Luceño y Fco. Javier González 11

12 3. VARIABLES ALEATORIAS (a) Circuito4 2 (b) Circuito5 2 Figura 3.2: Función indicatriz y fiabilidad Determinar la función indicatriz y la fiabilidad de cada uno de los sistemas de la figura 3.2 a) I = 1 (1 I 1I 2)(1 I 3I 4), R = 1 (1 p 1 p 2)(1 p 3 p 4) b) I = [1 (1 I 1)(1 I 2)][1 (1 I 3)(1 I 4)], R = (1 q 1 q 2)(1 q 3 q 4) Determinar la función indicatriz y la fiabilidad de cada uno de los sistemas de la figura (a) Circuito (b) Circuito7 Figura 3.3: Función indicatriz y fiabilidad a) I = 1 (1 I 1I 2)(1 I 3)(1 I 4I 5), R = 1 (1 p 1 p 2)(1 p 3)(1 p 4 p 5) b) I = I 1 + I 2(1 I 1)(I 3 + I 4 I 3 I 4), R = p 1 + p 2(1 p 1)(p 3 + p 4 p 3 p 4) 45. Sea una variable aleatoria definida por su función de distribución: 0 x < 2 0,4 2 x < 0,5 F(x) = 0,8 0,5 x < 3 1 x 3 a) Representar F(x) y calcular la función de probabilidad de esta variable. b) Calcular E(X). a) P( 2) = 0,4, P(0,5) = 0,4, P(3) = 0,2 b) E(X) = Se lanza una moneda tres veces; sea X el número de caras obtenidas. Hallar la función de probabilidad y de distribución de X. P(0) = 1/8, P(1) = 3/8, P(2) = 3/8, P(3) = 1/8 ; F(0) = 1/8, F(1) = 4/8, F(2) = 7/8, F(3) = El número medio de personas que acuden a un local es de 1000 con una desviación típica σ = 20. Cuál es el número de sillas necesarias para asegurar que todos los asistentes puedan sentarse, con una probabilidad de 0,75? (Usar la desigualdad de Chebyschev.) n 1090 Universidad de Cantabria. Alberto Luceño y Fco. Javier González 12

13 3. VARIABLES ALEATORIAS 48. Sea X variable aleatoria cuya distribución de probabilidad viene dada por P(X = r) = r! (4 r)! P(X = r) = 0 r = 0,1,2,3,4 para otros valores Hallar P(X = 3); P(1 X 2,5) y P(X 2,5). P(3) = 1/4, P(1 X 2,5) = 5/8, P(X 2,5) = 11/ Los artículos en venta en unos grandes almacenes se someten al control diario ( y se estima que la probabilidad de que en un día sean vendidos r artículos defectuosos es 2 1 ) r. 3 3 Determinar la probabilidad de que en un día elegido al azar, de los artículos vendidos: a) Dos o más sean defectuosos. b) Cinco sean defectuosos. c) Tres ó menos sean defectuosos. d) Determinar la esperanza del número de artículos defectuosos vendidos en el día. ( ) 1 5 ( ) 1 4 c) 1 d) E[X] = 3 a) 1/9 b) Variables aleatorias continuas 50. De las siguientes afirmaciones sobre la función de distribución de una variable aleatoria, marcar con las que sean correctas. a) F( ) = 0, F( ) = 1. b) F es monótona no decreciente. c) F es monótona creciente. d) F es continua por la derecha, es decir, F(x) = lím a x + F(a). e) P(X = x) = F(x) F(x ). f ) P(X = x) = F(x) F(x ). g) P(x < X y) = F(y) F(x). h) P(x < X < y) = F(y) F(x). i) P(X x) = 1 F(x). 51. Sea X una variable aleatoria que tiene como función de densidad de probabilidad f(x) = a(1 + x 2 ) si x (0,3) y f(x) = 0 en los demás casos. Se pide: a) Hallar a y la función de distribución de X. b) Hallar la probabilidad de que X esté comprendido entre 1 y 2. c) P(X < 1). d) P(X < 2 X > 1). Universidad de Cantabria. Alberto Luceño y Fco. Javier González 13

14 3. VARIABLES ALEATORIAS e) Calcular P( X µ k σ), con k = 2. a) a = 1/12, F(x) = 1 ( ) x3 + x b) 5 18 c) P(X < 1) = 1 9 d) P(X < 2 X > 1) = e) 0, Sea Y una variable aleatoria con función de densidad dada por: 0,2 1 y 0 p Y (y) = 0,2 + k y 0 < y 1 0 en el resto a) Determinar el valor de k. b) Determinar la función de distribución, F Y (y). c) Calcular P(0 Y 0,5). d) P(Y > 0,5 Y > 0,1). a) k = 1,2 b) F Y (y) = 0,2y + 0,2 1 < y < 0 F Y (y) = 0,6y 2 + 0,2y + 0,2 0 y < 1 c) 0,25 d) 0, La cantidad aleatoria de dinero ahorrado por una persona en un mes sigue una ley de probabilidad dada por: 0 x < 0 x 2 0 x < 1 1 F(x) = 2 1 x < 2 x 4 2 x < x donde x viene expresado en cientos de euros. Determinar la probabilidad de que, en un mes la cantidad de dinero ahorrado: a) Sea superior a 200 euros. b) Sea inferior a 450 euros. c) Sea superior a 50 euros y menor ó igual a 250 euros. d) Calcular el ahorro mensual medio. a) 0,5 b) 1 c) 3/8 d) 175 euros 54. Con objeto de establecer un plan de producción, una empresa ha estimado que la demanda aleatoria de sus potenciales clientes se comportará semanalmente con arreglo a la ley de probabilidad definida por la función de densidad p X (x) = { 3 8 (4x 2x2 ), 0 x 2 0, en el resto donde x viene expresada en millones de unidades. Qué cantidad C deberá tener dispuesta a la venta, al comienzo de cada semana, para poder satisfacer la demanda en dicho periodo con una probabilidad de 0,5? C = 1 Universidad de Cantabria. Alberto Luceño y Fco. Javier González 14

15 3. VARIABLES ALEATORIAS 55. Cierta aleación se forma con la mezcla fundida de dos metales. La aleación que resulta contiene cierto porcentaje de plomo X, que puede considerarse como una variable aleatoria. Suponiendo que X tiene la siguiente función de densidad de probabilidad: 5 3x(100 x) p X (x) = 10, 0 x 100, 5 y que el beneficio neto G obtenido al vender esta aleación, es una función del porcentaje de plomo: G = A + BX, se pide calcular el beneficio esperado. E[G] = A + 50 B 56. Si la duración en horas de cierto tubo de radio es una variable aleatoria continua X con función de densidad p X (x) = 100 x 2, x > 100, SE PIDE: a) Probabilidad de que un tubo dure menos de 200 horas si se sabe que el tubo funciona todavía después de 150 horas de servicio. b) Si se instalan tres de estos tubos en un conjunto, probabilidad de que exactamente uno tenga que ser sustituido después de 150 horas de servicio. c) Cuál es el número mínimo de tubos n que se pueden poner en un sistema en paralelo, de modo que haya una probabilidad 0,999 de que después de 150 horas de servicio funcione todavía el sistema? a) 1/4 b) 4/9 c) n El tiempo de vida (en cientos de horas) de un transistor es una variable aleatoria Z con función de distribución { 0 z < 0 F Z (z) = 1 e z2 0 z SE PIDE: a) Demostrar que F Z (z) es una función de distribución. b) Obtener la función de densidad de probabilidad p Z (z). c) Calcular la probabilidad de que un determinado transistor dure más de 200 horas. b) p Z(z) = 2z e z2 c) 1 e Una estructura metálica puede sufrir, debido al calor, una dilatación que (medida en cm) es una variable aleatoria X con función de densidad de probabilidad dada por: ax 0 x 3 p X (x) = b 3 < x < 5 (8 x) 5 x 8 b 3 a) Sabiendo que la función de densidad de probabilidad es una función continua de x, determinar a y b. Universidad de Cantabria. Alberto Luceño y Fco. Javier González 15

16 3. VARIABLES ALEATORIAS 59. b) Calcular e interpretar la probabilidad de que la dilatación sea inferior a 3. c) Si con un aparato se ha observado que la estructura ha dilatado más de 3 cm, con qué probabilidad la dilatación estará entre 3 y 5 cm? Sea una variable aleatoria X, que tiene como función de densidad: { x x 4 p X (x) = 50 0 resto a) a = 1 15 ; b = 1 5 b) 3 10 c) 4 7 a) Calcular la función de distribución de X. b) Hallar k, si P(k x k + 1) = 0,09. a) F(x) = 1 50 (1 2 x2 + 6x + 18) b) k = La demanda, expresada en toneladas, de un determinado producto es una variable aleatoria cuya función de densidad es: p X (x) = x 2 x 4 6 Cuales son la media, la varianza y la mediana de esta demanda? El fabricante del producto sabe que cada kilo vendido reporta un beneficio de 12 euros, y cada kilo que queda sin vender supone una pérdida de 6 euros. Es por tanto, importante para él establecer cuál es la cantidad a fabricar. Si el criterio para establecer dicha cantidad es el maximizar la ganancia esperada, determinar cuál es la fabricación óptima Cambio de variable Sea X una variable aleatoria con E(X) = 2 y V ar(x) = 0,5. Sea Y = 3X 8. Hallar E(Y ) y V ar(y ). Supongamos que una variable aleatoria X tiene función de densidad de probabilidad: p X (x) = 2x 0 < x < 1 Determinar la función de densidad de probabilidad de las variables Y = H 1 (X) = 3X + 1, Z = H 2 (X) = e X y W = H 3 (X) = X 2. a) F Y (y) = ( ) y p Y (y) = 2 3 ( ) y 1 3 b) F Z(z) = 1 ln 2 z p Z(z) = 2 ln z z c) F W (x) = w p W (w) = 1 0 < w < 1 1 < y < 4 e 3 < z < e Para medir la velocidad del aire se usa un tubo que permite medir la diferencia de presión. Esta diferencia está dada por R = 1 2 dv 2, con d la densidad del aire (supuesta constante) y V la velocidad del viento (en km/h). Si V es una función de densidad de probabilidad uniforme en (10,20), encontrar la función de densidad de probabilidad de R. 1 p R(r) = 10 2rd ; 50d < r < 200d Universidad de Cantabria. Alberto Luceño y Fco. Javier González 16

17 3. VARIABLES ALEATORIAS 64. La tabla siguiente representa la distribución de probabilidad conjunta de la variable aleatoria discreta (X,Y ). Determinar Y \X a) Calcular P(X = 2,Y = 1); P(X = 2); P(Y = 1) y P(X = 3 Y = 2). b) Calcular E(X); E(Y ) y Cov(X,Y ). 65. Dos líneas de producción fabrican cierto tipo de artículo. Supóngase que la capacidad es de 5 artículos para la línea I y de 3 artículos para la línea II, y que el número verdadero de artículos producidos por cada línea es una variable aleatoria. Sea (X, Y ) la representación de la variable aleatoria bidimensional que da el número de artículos producidos por la línea I y por la línea II: Y \X ,01 0,03 0,05 0,07 0,09 1 0,01 0,02 0,04 0,05 0,06 0,08 2 0,01 0,03 0,05 0,05 0,05 0,06 3 0,01 0,02 0,04 0,06 0,096 0,05 a) Determinar la probabilidad del suceso: la línea I produce más artículos que la línea II. b) Hallar las distribuciones marginales. c) Calcular P(X = 3) y P(Y = 1). d) Calcular E(X) y E(Y ). e) Calcular P(X = 2 Y = 2). a) 0,13 c) P(x = 3) = 0,21, P(y = 1) = 0,26 d) E[X] = 3,39, E[Y ] = 1,48 e) 1 5 Universidad de Cantabria. Alberto Luceño y Fco. Javier González 17

18 4. DISTRIBUCIONES DISCRETAS MÁS COMUNES 4. Distribuciones discretas más comunes 66. Suponiendo que cada bebé tiene una probabilidad 0,51 de ser varón, hállese la probabilidad de que una familia de 6 hijos tenga: a) Por lo menos un niño. b) Por lo menos una niña. a) 0,986 b) 0, Si la probabilidad de acertar en un blanco es 1/5 y se hacen 10 disparos de forma independiente, cuál es la probabilidad de acertar por lo menos dos veces? 1 q p q 9, con p = 1/5 y q = 4/5 68. Demostrar que si la variable aleatoria X tiene distribución binomial (X Bin(n,p)), se tiene: µ X = np ; σ 2 X = npq Se lanza una moneda 500 veces. Estimar la probabilidad de que el número de caras esté comprendido entre 240 y ,6208 En una regulación de calles por semáforos, la luz verde está encendida durante 15 segundos, la luz ámbar 5 segundos y la luz roja 55 segundos. Supongamos que las condiciones de tráfico inducen variaciones aleatorias en los tiempos de llegada de los automóviles, de forma que llegar cuando el semáforo está verde es un suceso aleatorio. Para cinco coches que lleguen en tiempos diferentes e indeterminados, calcular la probabilidad de que: a) solo tres encuentren la luz verde; b) a lo sumo cuatro encuentren la luz verde; c) más de uno encuentre la luz verde. a) 0, 0512 b) 0, c) 0, Una firma de pedidos por correo envía una carta a sus clientes. La probabilidad de que un cliente elegido al azar conteste a esa carta es de p = 0,1. Hallar: a) Distribución de probabilidad del número X de cartas que debe enviar hasta obtener exactamente 1 respuesta. b) La esperanza y varianza matemática de la variable X. c) Distribución de probabilidad del número Y de cartas que debe enviar para obtener exactamente k respuestas. d) La esperanza y varianza matemática de la variable Y. a) P(X = k) = p q k 1 b) E[X] = 1/p,V ar[x] = q/p ( ) 2 n 1 c) p k 1 k q n k d) E[Y ] = k/p,v ar[y ] = kq/p 2 Universidad de Cantabria. Alberto Luceño y Fco. Javier González 18

19 4. DISTRIBUCIONES DISCRETAS MÁS COMUNES Una caja con 12 artículos tiene 4 defectuosos. Si se toma una muestra de 3, en un caso con reemplazamiento y en otro sin reemplazamiento, cuál será la probabilidad de no incluir artículos defectuosos ( ) 8 3 en la muestra? a) b) 336 Se lanza un dado todas las veces necesarias hasta que aparece un 6. Si X mide el número del lanzamiento en que ocurre. Se pide: a) Qué función de probabilidad tiene la variable aleatoria X? b) Calcular P(X = 3). c) Calcular P(X > 4). q = 1 p a) P(X = k) = p q k 1 b) p(x = 3) = p q 2 c) p(x > 4) = q 4, siendo p la probabilidad de que salga un 6 y 74. Sea X una variable aleatoria geométrica de parámetro p. Demostrar que: para cualesquiera constantes positivas a y b. P(X > a + b X > a) = P(X > b), 75. Para controlar la natalidad, un político algo excéntrico, propone para los nuevos matrimonios la siguiente norma: únicamente podrán tener hasta un varón y como máximo 5 hijos. Sea X la variable número de hijos y V la variable número de varones de un matrimonio. Se pide: a) Probabilidad de que un matrimonio solo tenga un hijo. b) Probabilidad de que un matrimonio tenga k hijos. c) Número medio de hijos por matrimonio. d) Número medio de varones por matrimonio. e) Reduce esta norma la frecuencia de varones en la población? Tres personas A, B, y C lanzan sucesivamente en el orden A, B, C un dado. La primera persona que saque un 6 gana. Si p es la probabilidad de sacar un 6 y q = 1 p, cuáles son sus respectivas probabilidades de ganar? P(G A) = p pq pq2 ; P(GB) = ; P(GC) = 1 q3 1 q3 1 q 3 Se lanza un dado todas las veces necesarias hasta obtener dos seises y X mide el número del lanzamientos hasta que dicho suceso ocurre. Se pide: a) Qué función de probabilidad tiene la variable aleatoria X? b) P(X = 3). c) P(X > 4). Universidad de Cantabria. Alberto Luceño y Fco. Javier González 19

20 4. DISTRIBUCIONES DISCRETAS MÁS COMUNES 78. Sea X una variable aleatoria binomial negativa NB(k,p). Demostrar que: µ = k p ; σ 2 x = k q p Se conoce de estudios anteriores que el tipo de grupo sanguíneo de una población se distribuye de acuerdo a los siguientes datos. Grupo A B AB O Porcentaje 43,2 14,2 6 36,6 En determinada situación de emergencia se necesitan realizar 5 transfusiones del tipo A. Se solicitan voluntarios a la población y se realizan extracciones sucesivas. Cuál es la probabilidad de cubrir la emergencia con el décimo donante? 80. Sea X binomial Bin(n,p) y sea Y binomial negativa NB(k,p), demostrar las siguientes relaciones entre ellas: a) P(Y n) = P(X r). b) P(Y > n) = P(X < r). 81. La centralita telefónica de un hotel recibe un número de llamadas por minuto que sigue una ley de Poisson con media 0,5. Determinar la probabilidad de que en un minuto al azar: a) Se reciba una única llamada. b) Se reciban un máximo de dos llamadas. c) La centralita quede bloqueada, sabiendo que no puede realizar más de 3 conexiones por minuto. a) 0, 303 b) 0, 986 c) 0, En una gran ciudad se producen 2 incendios anuales por término medio. Cuál es la probabilidad de que el próximo año se produzcan más de cuatro? 0, Sea X una variable aleatoria de Poison de parámetro λ, Po(λ). Demostrar que: µ = λ ; σ 2 x = λ. 84. Se lanza una moneda 500 veces. Hallar la probabilidad de que la frecuencia relativa de caras esté comprendida entre 0,45 y 0,65. 0, Cuántas veces habría que lanzar una moneda regular a fin de tener al menos un 95% de seguridad de que la frecuencia relativa de caras diste a lo más 0,1 de la probabilidad teórica 0,5? 96 Universidad de Cantabria. Alberto Luceño y Fco. Javier González 20

2) Un establecimiento comercial dispone a la venta dos artículos en una de sus secciones, de precios p

2) Un establecimiento comercial dispone a la venta dos artículos en una de sus secciones, de precios p Universidad de Sevilla Facultad de Ciencias Económicas y Empresariales Licenciatura de Economía Universidad de Sevilla ESTADÍSTICA I RELACIÓN 5 MODELOS Y DATOS ESTADÍSTICOS DEPARTAMENTO DE ECONOMÍA APLICADA

Más detalles

Tema 3: Variable aleatoria 9. Tema 3: Variable aleatoria

Tema 3: Variable aleatoria 9. Tema 3: Variable aleatoria Tema 3: Variable aleatoria 9 Universidad Politécnica de Cartagena Dpto. Matemática Aplicada y Estadística Estadística Tema 3: Variable aleatoria 1. Probar si las siguientes funciones pueden definir funciones

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A OPCIÓN A (3 puntos) Una imprenta local edita periódicos y revistas. Para cada periódico necesita un cartucho de tinta negra y otro de color, y para cada revista uno de tinta negra y dos de color. Si sólo

Más detalles

SEMINARIOS. (Problemas de exámenes de años anteriores) Estadística. 1º Grado en Informática

SEMINARIOS. (Problemas de exámenes de años anteriores) Estadística. 1º Grado en Informática SEMINARIOS (Problemas de exámenes de años anteriores) Estadística. 1º Grado en Informática Seminario de Estadística Descriptiva Unidimensional y Bidimensional 1. Se ha realizado un control de calidad en

Más detalles

12 Las distribuciones binomial y normal

12 Las distribuciones binomial y normal Las distribuciones binomial y normal ACTIVIDADES INICIALES.I. Calcula la media, la varianza y la desviación típica de la variable X, cuya distribución de frecuencias viene dada por la siguiente tabla:

Más detalles

PROBABILIDAD. Pruebas de Acceso a la Universidad. Bachillerato de Ciencias Sociales. Departamento de Matemáticas del IES Andalán.

PROBABILIDAD. Pruebas de Acceso a la Universidad. Bachillerato de Ciencias Sociales. Departamento de Matemáticas del IES Andalán. Pruebas de Acceso a la Universidad. Bachillerato de Ciencias Sociales. Departamento de Matemáticas del IES Andalán. PROBABILIDAD Junio 1994. El año pasado el 60% de los veraneantes de una cierta localidad

Más detalles

1. a) Definimos X =número de personas con síntomas si examino sólo una persona, la cual sigue una distribución B(1, p), donde

1. a) Definimos X =número de personas con síntomas si examino sólo una persona, la cual sigue una distribución B(1, p), donde Soluciones de la relación del Tema 6. 1. a) Definimos X =número de personas con síntomas si examino sólo una persona, la cual sigue una distribución B1, p), donde p = P X = 1) = P la persona presente síntomas)

Más detalles

Se pide: 1. Calcular las principales medidas de posición y dispersión para los datos anteriores.

Se pide: 1. Calcular las principales medidas de posición y dispersión para los datos anteriores. 2.2.- Ha sido medida la distancia de frenado (en metros) de una determinada marca de coches, según el tipo de suelo y velocidad a la que circula, los resultados en 64 pruebas aparecen en el listado siguiente:

Más detalles

R PRÁCTICA II. Probabilidad-Variables Aleatorias. Probabilidad

R PRÁCTICA II. Probabilidad-Variables Aleatorias. Probabilidad R PRÁCTICA II Probabilidad-Variables Aleatorias Sección II.1 Probabilidad 15. En el fichero sintomas.dat se encuentran 9 columnas con los resultados de una estadística médica. Cada columna corresponde

Más detalles

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2 PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2 1. Se eligen tres autos al azar y cada uno es clasificado N si tiene motor naftero o D si tiene motor diesel (por ejemplo, un resultado posible sería NND). a)

Más detalles

6. Sea X una v.a. con distribución N(0,1). Calcular p(x=0)

6. Sea X una v.a. con distribución N(0,1). Calcular p(x=0) 1. La rueda de una ruleta se divide en 25 sectores de igual área que se enumeran del 1 al 25. Encuentra una fórmula para la distribución de probabilidades de la v.a. X que representa el número obtenido

Más detalles

Ejercicios distribuciones discretas probabilidad

Ejercicios distribuciones discretas probabilidad Ejercicios distribuciones discretas probabilidad 1. Una máquina que produce cierta clase de piezas no está bien ajustada. Un porcentaje del 4.2% de las piezas están fuera de tolerancias, por lo que resultan

Más detalles

EJERCICIOS DE PROBABILIDAD

EJERCICIOS DE PROBABILIDAD EJERCICIOS DE PROBABILIDAD 1. Se extrae una carta de una baraja española, calcula la probabilidad de que: a) Sea un rey; b) Sea un oro; c) Sea el rey de oros; d) Sea un rey o un oros; e) Sea un rey o una

Más detalles

Estadística aplicada y modelización. 10 de septiembre de 2005

Estadística aplicada y modelización. 10 de septiembre de 2005 Estadística aplicada y modelización. 10 de septiembre de 005 SOLUCIÓN MODELO A 1. Una persona se está preparando para obtener el carnet de conducir, repitiendo un test de 0 preguntas. En la siguiente tabla

Más detalles

Distribuciones discretas. Distribución Binomial

Distribuciones discretas. Distribución Binomial Boletín: Distribuciones de Probabilidad IES de MOS Métodos estadísticos y numéricos Distribuciones discretas. Distribución Binomial 1. Una urna contiene 3 bolas blancas, 1 bola negra y 2 bolas azules.

Más detalles

DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL

DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL Página 4 REFLEXIONA Y RESUELVE Recorrido de un perdigón Dibuja los recorridos correspondientes a: C + C C, + C + C, + C C C, + + + +, C+CC

Más detalles

Tema 1 con soluciones de los ejercicios. María Araceli Garín

Tema 1 con soluciones de los ejercicios. María Araceli Garín Tema 1 con soluciones de los ejercicios María Araceli Garín Capítulo 1 Introducción. Probabilidad en los modelos estocásticos actuariales Se describe a continuación la Tarea 1, en la que se enumeran un

Más detalles

PARTE 2- Matemáticas pendientes de 3º ESO 2010-11. 2. Indica, para cada representación gráfica, que tipo de sistema de ecuaciones es el representado:

PARTE 2- Matemáticas pendientes de 3º ESO 2010-11. 2. Indica, para cada representación gráfica, que tipo de sistema de ecuaciones es el representado: PARTE - Matemáticas pendientes de 3º ESO 00- NOMBRE: 4º GRUPO:. Resuelve gráficamente los siguientes sistemas de ecuaciones e indica que tipo de sistema son: x x x 3 4. Indica, para cada representación

Más detalles

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2 7 PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2 1. Se eligen tres autos al azar y cada uno es clasificado N si tiene motor naftero o D si tiene motor diesel (por ejemplo, un resultado posible sería N N D).

Más detalles

Probabilidad. Relación de problemas 5

Probabilidad. Relación de problemas 5 Relación de problemas 5 Probabilidad 1. Una asociación consta de 14 miembros, de los cuales 6 son varones y 8 son mujeres. Se desea seleccionar un comité de tres hombres y tres mujeres. Determinar de cuántas

Más detalles

En una plantación de manzanos, el peso en kg de la fruta producida anualmente por cada manzano sigue una distribución normal N(50; 10).

En una plantación de manzanos, el peso en kg de la fruta producida anualmente por cada manzano sigue una distribución normal N(50; 10). MODELOS DE PROBABILIDAD En una plantación de manzanos, el peso en kg de la fruta producida anualmente por cada manzano sigue una distribución normal N(50; 10). (a) Si tomamos dos manzanos al azar, cuál

Más detalles

REPASO CONCEPTOS BÁSICOS DE ESTADÍSTICA. DISTRIBUCIÓN NORMAL.

REPASO CONCEPTOS BÁSICOS DE ESTADÍSTICA. DISTRIBUCIÓN NORMAL. REPASO COCEPTOS BÁSICOS DE ESTADÍSTICA. DISTRIBUCIÓ ORMAL. Éste es un breve repaso de conceptos básicos de estadística que se han visto en cursos anteriores y que son imprescindibles antes de acometer

Más detalles

PROBLEMAS DE PROBABILIDADES Y ESTADÍSTICA

PROBLEMAS DE PROBABILIDADES Y ESTADÍSTICA Problema 1 PROBLEMAS DE PROBABILIDADES Y ESTADÍSTICA Hoja 2 Una población de 20 animales insectívoros se introduce en una zona donde el 14% de los insectos que le sirven de alimento son venenosos. Cada

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A a) (1 punto) Dada la matriz a 1 A, calcule el valor de a para que A a 0 sea la matriz nula. 1 1 t b) ( puntos) Dada la matriz M, calcule la matriz M M. 1 1 x 1 Sea la función f definida mediante f ( x).

Más detalles

Relación de problemas: Variables aleatorias

Relación de problemas: Variables aleatorias Estadística y modelización. Ingeniero Técnico en Diseño Industrial. Relación de problemas: Variables aleatorias 1. Se lanza tres veces una moneda y se observa el número de caras. (a) Calcula la distribución

Más detalles

RELACIÓN DE EJERCICIOS DE ESTADÍSTICA. PROBLEMAS DE ESTADÍSTICA: PROBABILIDAD

RELACIÓN DE EJERCICIOS DE ESTADÍSTICA. PROBLEMAS DE ESTADÍSTICA: PROBABILIDAD 1 UNIVERSIDAD DE CASTILLA-LA MANCHA Facultad de Químicas. RELACIÓN DE EJERCICIOS DE ESTADÍSTICA. PROBLEMAS DE ESTADÍSTICA: PROBABILIDAD Ejercicio 1º.- Se lanzan dos monedas y un dado. Se pide: 1) Describir

Más detalles

Explicación de la tarea 3 Felipe Guerra

Explicación de la tarea 3 Felipe Guerra Explicación de la tarea 3 Felipe Guerra 1. Una ruleta legal tiene los números del 1 al 15. Este problema corresponde a una variable aleatoria discreta. La lectura de la semana menciona lo siguiente: La

Más detalles

INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA

INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 1 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA Páginas 74-75 Lanzamiento de varios dados Comprobación de que: Desviación típica de n dados = (Desv. típica para un dado) / 1,71 n = 1,1 1,71 n = 3 0,98

Más detalles

1. Simule estas situaciones y concluya: a) Se tira una moneda equilibrada 10 veces y se observa qué proporción de veces salió cara en

1. Simule estas situaciones y concluya: a) Se tira una moneda equilibrada 10 veces y se observa qué proporción de veces salió cara en 1. Simule estas situaciones y concluya: a) Se tira una moneda equilibrada 10 veces y se observa qué proporción de veces salió cara en las sucesivas tiradas, se repite el experimento en condiciones similares

Más detalles

Algunas Distribuciones de Probabilidad

Algunas Distribuciones de Probabilidad Relación de problemas 7 Algunas Distribuciones de Probabilidad 1. En un hospital se ha comprobado que la aplicación de un tratamiento en enfermos de cirrosis produce una cierta mejoría en el 80 % de los

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadística Descriptiva 1. El porcentaje de algodón en una tela utilizada para elaborar camisas para hombre se presenta en la siguiente tabla. Calcular los estadísticos más importantes y realícese el histograma

Más detalles

Tema 9 Estadística Matemáticas B 4º E.S.O. 1 TABLAS DE FRECUENCIAS Y REPRESENTACIONES GRÁFICAS EN VARIABLES DISCRETAS

Tema 9 Estadística Matemáticas B 4º E.S.O. 1 TABLAS DE FRECUENCIAS Y REPRESENTACIONES GRÁFICAS EN VARIABLES DISCRETAS Tema 9 Estadística Matemáticas B º E.S.O. TEMA 9 ESTADÍSTICA TABLAS DE FRECUENCIAS Y REPRESENTACIONES GRÁFICAS EN VARIABLES DISCRETAS EJERCICIO : En un grupo de personas hemos preguntado por el número

Más detalles

TEMA 2. FILOSOFÍA DE LOS GRÁFICOS DE CONTROL. Principios básicos de los gráficos de control. Análisis de patrones.

TEMA 2. FILOSOFÍA DE LOS GRÁFICOS DE CONTROL. Principios básicos de los gráficos de control. Análisis de patrones. TEMA 2. FILOSOFÍA DE LOS GRÁFICOS DE CONTROL. Principios básicos de los gráficos de control. Análisis de patrones. La herramienta que nos indica si el proceso está o no controlado o Estado de Control son

Más detalles

Universidad del País Vasco

Universidad del País Vasco Universidad del País Vasco eman ta zabal zazu Euskal Herriko Unibertsitatea INSTRUCCIONES. El examen consta de 50 cuestiones. Hay una única respuesta correcta para cada cuestión. Las cuestiones respondidas

Más detalles

Tema 7: Estadística y probabilidad

Tema 7: Estadística y probabilidad Tema 7: Estadística y probabilidad En este tema revisaremos: 1. Representación de datos e interpretación de gráficas. 2. Estadística descriptiva. 3. Probabilidad elemental. Representaciones de datos Cuatro

Más detalles

Tema 3: Variables aleatorias y vectores aleatorios bidimensionales

Tema 3: Variables aleatorias y vectores aleatorios bidimensionales Estadística 38 Tema 3: Variables aleatorias y vectores aleatorios bidimensionales El concepto de variable aleatoria surge de la necesidad de hacer más manejables matemáticamente los resultados de los experimentos

Más detalles

Introducción a la Estadística y a la Probabilidad Tercer examen. Capítulo 5 y 6. Viernes 5 de febrero del 2010.

Introducción a la Estadística y a la Probabilidad Tercer examen. Capítulo 5 y 6. Viernes 5 de febrero del 2010. Introducción a la Estadística y a la Probabilidad Tercer examen. Capítulo 5 y 6. Viernes 5 de febrero del 2010. Dos puntos 1. Para cada una de las siguientes variables, indica si son variables aleatorias,

Más detalles

15 PARÁMETROS ESTADÍSTICOS

15 PARÁMETROS ESTADÍSTICOS EJERCICIOS PROPUESTOS 1.1 El número de libros leídos por los miembros de un círculo de lectores en un mes se resume en esta tabla. N. o de libros leídos x i N. o de personas f i 1 1 3 18 11 7 7 1 Halla

Más detalles

Un problema sobre repetidas apuestas al azar

Un problema sobre repetidas apuestas al azar Un problema sobre repetidas apuestas al azar Eleonora Catsigeras 1 10 de marzo de 2003. Resumen En estas notas se da el enunciado y una demostración de un conocido resultado sobre la probabilidad de éxito

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDAD GUÍA DE TRABAJO 2 Profesor: Hugo S. Salinas. Primer Semestre 2010 1. La dureza Rockwell de un metal

Más detalles

Tema 5: Análisis conjunto y teoremas límite

Tema 5: Análisis conjunto y teoremas límite Facultad de Economía y Empresa 1 Tema 5: Análisis conjunto y teoremas límite COCHES Se han analizado conjuntamente las variables número de hijos de cada familia (X) y número de coches por familia (Y),

Más detalles

Problemas de Probabilidad Soluciones

Problemas de Probabilidad Soluciones Problemas de Probabilidad Soluciones. En una carrera participan los caballos A, B, C y D. Se estima que la probabilidad de que gane A es el doble de la probabilidad de que gane cada uno de los otros tres.

Más detalles

MATEMÁTICAS 1º BACH CCSS - DISTRIBUCIÓN BINOMIAL = 0 3125.

MATEMÁTICAS 1º BACH CCSS - DISTRIBUCIÓN BINOMIAL = 0 3125. MATEMÁTICAS º BACH CCSS - DISTRIBUCIÓN BINOMIAL ˆ EJERCICIO En una ciudad se han elegido al azar 7 habitantes. ¾Cuál es la probabilidad de que cuatro de ellos hayan nacido el 7 de mayo? p = P (haber nacido

Más detalles

UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDADES GUÍA 2: PROBABILIDADES Profesor: Hugo S. Salinas Segundo Semestre 2010 1. Describir el espacio muestral

Más detalles

todas especialidades Soluciones de las hojas de problemas

todas especialidades Soluciones de las hojas de problemas Universidad Politécnica de Cartagena Dpto. Matemática Aplicada y Estadística Ingeniería Técnica Industrial Métodos estadísticos de la ingeniería Métodos estadísticos de la ingeniería Ingeniería Técnica

Más detalles

Muestreo estadístico. Relación 2 Curso 2007-2008

Muestreo estadístico. Relación 2 Curso 2007-2008 Muestreo estadístico. Relación 2 Curso 2007-2008 1. Para tomar la decisión de mantener un determinado libro como texto oficial de una asignatura, se pretende tomar una muestra aleatoria simple entre los

Más detalles

Pruebas de Acceso a las Universidades de Castilla y León

Pruebas de Acceso a las Universidades de Castilla y León Pruebas de cceso a las Universidades de Castilla y León MTEMÁTICS PLICDS LS CIENCIS SOCILES EJERCICIO Nº páginas 2 Tablas OPTTIVIDD: EL LUMNO DEBERÁ ESCOGER UN DE LS DOS OPCIONES Y DESRROLLR LS PREGUNTS

Más detalles

MATEMÁTICAS A 4º ESO IES LOS CARDONES 2014-2015 PLAN DE RECUPERACIÓN. Contenidos Mínimos. I. Estrategias, habilidades, destrezas y actitudes generales

MATEMÁTICAS A 4º ESO IES LOS CARDONES 2014-2015 PLAN DE RECUPERACIÓN. Contenidos Mínimos. I. Estrategias, habilidades, destrezas y actitudes generales MATEMÁTICAS A 4º ESO IES LOS CARDONES 2014-2015 PLAN DE RECUPERACIÓN Contenidos Mínimos I. Estrategias, habilidades, destrezas y actitudes generales II. Números: Resolución de problemas utilizando toda

Más detalles

DISTRIBUCIONES DISCRETAS DE PROBABILIDAD

DISTRIBUCIONES DISCRETAS DE PROBABILIDAD www.siresistemas.com/clases Ing. Oscar Restrepo DISTRIBUCIONES DISCRETAS DE PROBABILIDAD 1. Debido a las elevadas tasas de interés, una empresa reporta que el 30% de sus cuentas por cobrar de otras empresas

Más detalles

PROBLEMAS SOBRE CÁLCULO DE PROBABILIDADES.

PROBLEMAS SOBRE CÁLCULO DE PROBABILIDADES. ANDALUCIA: º) (Andalucía, junio, 98) Ana, Juan y Raúl, que están esperando para realizar una consulta médica, sortean, al azar, el orden en que van a entrar. a) Calcule la probabilidad de que los dos últimos

Más detalles

Métodos Estadísticos 2.3. Distribuciones discretas de probabilidad

Métodos Estadísticos 2.3. Distribuciones discretas de probabilidad 2.3. DISTRIBUCIONES DISCRETAS DE PROBABILIDAD Parámetros de un problema Saber: Explicar el concepto de variable discreta. Explicar los conceptos y métodos de la distribución binomial, hipergeométrica,

Más detalles

Ingeniería Técnica Industrial, todas especialidades. Ingeniería Técnica Telecomunicaciones, Telemática Problemas de examenes

Ingeniería Técnica Industrial, todas especialidades. Ingeniería Técnica Telecomunicaciones, Telemática Problemas de examenes Universidad Politécnica de Cartagena Dpto. Matemática Aplicada y Estadística Métodos estadísticos de la ingeniería, Estadística Problemas de examenes: Métodos estadísticos de la ingeniería Ingeniería Técnica

Más detalles

a) No curse la opción Científico-Tecnológica. b) Si es chico, curse la opción de Humanidades y C. Sociales

a) No curse la opción Científico-Tecnológica. b) Si es chico, curse la opción de Humanidades y C. Sociales 1 PROBABILIDAD 1.(97).- Para realizar un control de calidad de un producto se examinan tres unidades del producto, extraídas al azar (y sin reemplazamiento) de un lote de 100 unidades. Las unidades pueden

Más detalles

Mª Cruz González Página 1

Mª Cruz González Página 1 SELECTIVIDAD Probabilidad. Junio 00 (Opc. Se tiene tres cajas iguales. La primera contiene bolas blancas y 4 negras; la segunda contiene 5 bolas negras y, la tercera, 4 blancas y negras. a) Si se elige

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD Junio, Ejercicio 3, Opción A Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3, Opción

Más detalles

Covarianza y coeficiente de correlación

Covarianza y coeficiente de correlación Covarianza y coeficiente de correlación Cuando analizábamos las variables unidimensionales considerábamos, entre otras medidas importantes, la media y la varianza. Ahora hemos visto que estas medidas también

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD Junio, Ejercicio 3, Opción A Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3, Opción

Más detalles

1.1. Introducción y conceptos básicos

1.1. Introducción y conceptos básicos Tema 1 Variables estadísticas Contenido 1.1. Introducción y conceptos básicos.................. 1 1.2. Tipos de variables estadísticas................... 2 1.3. Distribuciones de frecuencias....................

Más detalles

Cifras significativas e incertidumbre en las mediciones

Cifras significativas e incertidumbre en las mediciones Unidades de medición Cifras significativas e incertidumbre en las mediciones Todas las mediciones constan de una unidad que nos indica lo que fue medido y un número que indica cuántas de esas unidades

Más detalles

Modelos de distribuciones discretas y continuas

Modelos de distribuciones discretas y continuas Modelos de distribuciones discretas y continuas Discretas En la versión actual de Rcdmr podemos encontrar las distribuciones discretas estudiadas en este curso y para cada una de ellas están disponibles

Más detalles

5.4 Una flecha será ensamblada en un cojinete como se muestra a continuación.

5.4 Una flecha será ensamblada en un cojinete como se muestra a continuación. PROBLEMAS 5.1. El famoso juego 7-11, requiere que el jugador lance dos dados una v. más veces hasta tomar la decisión de que se gana o se pierde el juego. El juego se gana si en el primer lanzamiento los

Más detalles

Problemas resueltos por los alumnos

Problemas resueltos por los alumnos Problemas resueltos por los alumnos 1. Una empresa fabrica bombillas blancas de bajo consumo cuya duración media es de 10 años, pero algunas de ellas son defectuosas y tienen una vida media de 1 año. Se

Más detalles

IES Fco Ayala de Granada Junio de 2012 (General Modelo 4) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2012 (General Modelo 4) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada Junio de 01 (General Modelo 4) Soluciones Germán-Jesús Rubio Luna SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 01 MODELO 4 (COMÚN) OPCIÓN A EJERCICIO 1 (A) Sea el recinto determinado

Más detalles

El azar y la probabilidad. Un enfoque elemental

El azar y la probabilidad. Un enfoque elemental El azar y la probabilidad. Un enfoque elemental Experimentos al azar El azar puede percibirse fácilmente cuando se repite muchas veces una acción cuyo resultado no conocemos, como tirar dados, repartir

Más detalles

Medidas de tendencia central o de posición: situación de los valores alrededor

Medidas de tendencia central o de posición: situación de los valores alrededor Tema 10: Medidas de posición y dispersión Una vez agrupados los datos en distribuciones de frecuencias, se calculan unos valores que sintetizan la información. Estudiaremos dos grandes secciones: Medidas

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA PROBABILIDAD Y ESTADÍSTICA GUÍA 2: PROBABILIDAD Plan Común de Ingeniería 1. En un torneo de baloncesto vacacional participan cuatro

Más detalles

PROBLEMA 1 SOLUCIÓN. D = 12.000 x 12 = 144.000 ud. E = 250 euros. A = 0,01 euros/ud. P = 30 euros/ud. i = 7% Ts = 7 días

PROBLEMA 1 SOLUCIÓN. D = 12.000 x 12 = 144.000 ud. E = 250 euros. A = 0,01 euros/ud. P = 30 euros/ud. i = 7% Ts = 7 días PROBLEMA 1 Una empresa adquiere una determinada materia prima a un coste unitario de 30 euros a su proveedor habitual. La empresa consume mensualmente 12.000 unidades de dicha materia prima. Por cada pedido

Más detalles

Tema 1: Test de Distribuciones de Probabilidad

Tema 1: Test de Distribuciones de Probabilidad Tema 1: Test de Distribuciones de Probabilidad 1.- Una compañía de seguros tiene 1000 asegurados en el ramo de accidentes. Si la el modelo mejor para el número de siniestros en un año es: a) Normal (5;,3).

Más detalles

Clase 4: Probabilidades de un evento

Clase 4: Probabilidades de un evento Clase 4: Probabilidades de un evento Definiciones A continuación vamos a considerar sólo aquellos experimentos para los que el EM contiene un número finito de elementos. La probabilidad de la ocurrencia

Más detalles

Ejercicios de Teoría de Colas

Ejercicios de Teoría de Colas Ejercicios de Teoría de Colas Investigación Operativa Ingeniería Informática, UC3M Curso 08/09 1. Demuestra que en una cola M/M/1 se tiene: L = ρ Solución. L = = = = = ρ np n nρ n (1 ρ) nρ n n=1 ρ n ρ

Más detalles

INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA

INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 1 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA Página 75 REFLEXIONA Y RESUELVE Lanzamiento de varios dados Comprueba en la tabla anterior ue: DESV. TÍPICA PARA n DADOS n = 8 1,71 1,1 n = 3 8 1,71 3 0,98

Más detalles

OBJETIVOS CONTENIDOS PROCEDIMIENTOS

OBJETIVOS CONTENIDOS PROCEDIMIENTOS 008 _ 0-048.qxd 9/7/08 9:07 Página 405 4 Probabilidad INTRODUCCIÓN En la vida cotidiana tienen lugar acontecimientos cuya realización es incierta y en los que el grado de incertidumbre es mayor o menor

Más detalles

DISTRIBUCIONES DE VARIABLE CONTINUA

DISTRIBUCIONES DE VARIABLE CONTINUA UNIDAD 11 DISTRIBUCIONES DE VARIABLE CONTINUA Página 260 1. Los trenes de una cierta línea de cercanías pasan cada 20 minutos. Cuando llegamos a la estación, ignoramos cuándo pasó el último. La medida

Más detalles

Soluciones de los ejercicios de Selectividad sobre Probabilidad de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Probabilidad de Matemáticas Aplicadas a las Ciencias Sociales II Soluciones de los ejercicios de Selectividad sobre Probabilidad de Antonio Francisco Roldán López de Hierro * Convocatoria de 2008 Las siguientes páginas contienen las soluciones de los ejercicios propuestos

Más detalles

PROBABILIDAD Els problemes assenyalats amb un (*) se faran a classe de problemes.

PROBABILIDAD Els problemes assenyalats amb un (*) se faran a classe de problemes. PROBABILIDAD Els problemes assenyalats amb un (*) se faran a classe de problemes. 1.- (*) En una carrera en la que participan diez caballos de cuántas maneras diferentes se pueden dar los cuatro primeros

Más detalles

Unidad 14 Probabilidad

Unidad 14 Probabilidad Unidad 4 robabilidad ÁGINA 50 SOLUCIONES Calcular variaciones.! 5! 4 a) V, 6 b) 5, 60 c),4 6 ( )! V (5 )! VR Calcular permutaciones. a)! 6 b) 5 5! 0 c) 0 0! 68 800! 9 96 800 palabras diferentes. Números

Más detalles

Problemas de Probabilidad resueltos.

Problemas de Probabilidad resueltos. Problemas de Probabilidad resueltos. Problema 1 El profesor Pérez olvida poner su despertador 3 de cada 10 dias. Además, ha comprobado que uno de cada 10 dias en los que pone el despertador acaba no levandandose

Más detalles

5. DISTRIBUCIONES DE PROBABILIDADES

5. DISTRIBUCIONES DE PROBABILIDADES 5. DISTRIBUCIONES DE PROBABILIDADES Dr. http://academic.uprm.edu/eacunaf UNIVERSIDAD DE PUERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ DISTRIBUCIONES DE PROBABILIDADES Se introducirá el concepto de variable

Más detalles

Se podría entender como una matriz de filas y columnas. Cada combinación de fila y columna se denomina celda. Por ejemplo la celda A1, B33, Z68.

Se podría entender como una matriz de filas y columnas. Cada combinación de fila y columna se denomina celda. Por ejemplo la celda A1, B33, Z68. Departamento de Economía Aplicada: UDI de Estadística. Universidad Autónoma de Madrid Notas sobre el manejo de Excel para el análisis descriptivo y exploratorio de datos. (Descriptiva) 1 1 Introducción

Más detalles

ANÁLISIS ESTADÍSTICO Calculadora Gráfica TI 83 Plus José Carlos Vega Vilca, Ph.D.

ANÁLISIS ESTADÍSTICO Calculadora Gráfica TI 83 Plus José Carlos Vega Vilca, Ph.D. UNIVERSIDAD DE PUERTO RICO FACULTAD DE ADMINISTRACION DE EMPRESAS INSTITUTO DE ESTADISTICA ANÁLISIS ESTADÍSTICO Calculadora Gráfica TI 83 Plus, Ph.D. Presentación Este curso ofrece al estudiante, la posibilidad

Más detalles

IES PADRE SUÁREZ MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II. Probabilidad 2008

IES PADRE SUÁREZ MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II. Probabilidad 2008 Probabilidad 2008 EJERCICIO A Laura tiene en su monedero 6 monedas francesas, 2 italianas y 4 españolas. Vicente tiene 9 francesas y 3 italianas. Cada uno saca, al azar, una moneda de su monedero y observa

Más detalles

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA PROBABILIDAD Y ESTADÍSTICA 1. Sean A y B dos sucesos y A, B sus complementarios. Si se verifica que p( B) = 2 / 3, p( A B) = 3 / 4 y p( A B) = 1/ 4, hallar: p( A), p( A B), y la probabilidad condicionada

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDAD EJERCICIOS 5 Profesor: Hugo S. Salinas. Primer Semestre 2009 1. Una compañía de seguros utiliza la

Más detalles

SUCESOS. PROBABILIDAD. BACHILLERATO. TEORÍA Y EJERCICIOS SUCESOS

SUCESOS. PROBABILIDAD. BACHILLERATO. TEORÍA Y EJERCICIOS SUCESOS 1 SUCESOS Experimento aleatorio. Es aquel que al repetirlo en análogas condiciones, da resultados diferentes, es decir, no se puede predecir el resultado que se va a obtener. Ejemplos: - Lanzar una moneda

Más detalles

14Soluciones a los ejercicios y problemas

14Soluciones a los ejercicios y problemas Soluciones a los ejercicios y problemas PÁGINA 8 Pág. P RACTICA Relaciones entre sucesos En un sorteo de lotería observamos la cifra en que termina el gordo. a) Cuál es el espacio muestral? b)escribe los

Más detalles

ejerciciosyexamenes.com PROBABILIDAD

ejerciciosyexamenes.com PROBABILIDAD PROBABILIDAD 1. Lanzamos dos monedas al aire (primero una y luego la otra). Calcular la probabilidad de obtener: a) Una sola cara b) Al menos una cara c) Dos caras Sol: a) 1/2; b) 3/4; c) 1/4 2. Un lote

Más detalles

(1) Medir el azar. ESTALMAT-Andalucía Actividades 06/07. a) Cuenta los casos en que la suma de salga múltiplo de tres y calcula la probabilidad.

(1) Medir el azar. ESTALMAT-Andalucía Actividades 06/07. a) Cuenta los casos en que la suma de salga múltiplo de tres y calcula la probabilidad. (1) Medir el azar Se lanzan dos dados y sumamos los puntos de las caras superiores a) Cuenta los casos en que la suma de salga múltiplo de tres y calcula la probabilidad. Una bolsa contiene 4 bolas rojas,

Más detalles

ESTIMACIÓN. puntual y por intervalo

ESTIMACIÓN. puntual y por intervalo ESTIMACIÓN puntual y por intervalo ( ) Podemos conocer el comportamiento del ser humano? Podemos usar la información contenida en la muestra para tratar de adivinar algún aspecto de la población bajo estudio

Más detalles

Matemáticas C.C.S.S. Repaso de Selectividad 1. Se desea obtener dos elementos químicos a partir de las sustancias A y B. Un kilo de A contiene 8

Matemáticas C.C.S.S. Repaso de Selectividad 1. Se desea obtener dos elementos químicos a partir de las sustancias A y B. Un kilo de A contiene 8 Matemáticas C.C.S.S. Repaso de Selectividad 1. Se desea obtener dos elementos químicos a partir de las sustancias A y B. Un kilo de A contiene 8 gramos del primer elemento y 1 gramo del segundo; un kilo

Más detalles

Relación de Problemas. Modelos de Probabilidad

Relación de Problemas. Modelos de Probabilidad Relación de Problemas. Modelos de Probabilidad 1. Sabemos que en una ciudad, de cada 50000 personas, 1500 están viendo un cierto programa de TV. Cuál es la probabilidad de que de 100 personas elegidas

Más detalles

IES ARROYO HONDO ACTIVIDADES REPASO MATEMÁTICAS 3º ESO. Segunda parte. Curso 15/16. Fecha de entrega: 11/2/16

IES ARROYO HONDO ACTIVIDADES REPASO MATEMÁTICAS 3º ESO. Segunda parte. Curso 15/16. Fecha de entrega: 11/2/16 IES ARROYO HONDO ACTIVIDADES REPASO MATEMÁTICAS 3º ESO Segunda parte Curso 15/16 Fecha de entrega: 11/2/16 Nombre: Grupo: FUNCIONES Y GRÁFICAS: 1. Ricardo ha quedado con sus amigos para dar una vuelta

Más detalles

PROBABILIDAD. 1. a) Operaciones con sucesos. Propiedades. Sucesos compatibles.

PROBABILIDAD. 1. a) Operaciones con sucesos. Propiedades. Sucesos compatibles. OPCION A: 1. a) Operaciones con sucesos. Propiedades. Sucesos compatibles. k t si t [0,2] b) Sea f(t)= 0 en el resto Calcular k para que f sea de densidad, calcular la función de distribución. 2. a) De

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 003 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Junio, Ejercicio 3, Opción A Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3,

Más detalles

Tema 11 Probabilidad Matemáticas B 4º ESO 1

Tema 11 Probabilidad Matemáticas B 4º ESO 1 Tema 11 Probabilidad Matemáticas B 4º ESO 1 TEMA 11 PROBABILIDAD SUCESOS EJERCICIO 1 : En una bolsa hay 8 bolas numeradas del 1 al 8. Extraemos una bola al azar y anotamos su número. a Escribe el espacio

Más detalles

DETERMINACIÓN DEL VOLUMEN DE PEDIDO.

DETERMINACIÓN DEL VOLUMEN DE PEDIDO. Lote económico de compra o Lote Optimo DETERMINACIÓN DEL VOLUMEN DE PEDIDO. Concepto que vemos en casi todos libros de aprovisionamiento, habitualmente la decisión de la cantidad a reaprovisionar en las

Más detalles

Media vs mediana vs moda Cual medida de tendencia central es mas adecuada? MEDIA conveniencias:

Media vs mediana vs moda Cual medida de tendencia central es mas adecuada? MEDIA conveniencias: Iniciar con las interpretaciones de las medidas MEDIA VS MEDIANA VS MODA CUAL ES LA MEDIDA ADECUADA TAREA MEDIA PONDERADA Actividad de Medidas de Localización Problema 1. El problema de las tasas de delito.

Más detalles

EJERCICIOS SOBRE : NÚMEROS ENTEROS

EJERCICIOS SOBRE : NÚMEROS ENTEROS 1.- Magnitudes Absolutas y Relativas: Se denomina magnitud a todo lo que se puede medir cuantitativamente. Ejemplo: peso de un cuerpo, longitud de una cuerda, capacidad de un recipiente, el tiempo que

Más detalles

Estadística con Excel Informática 4º ESO ESTADÍSTICA CON EXCEL

Estadística con Excel Informática 4º ESO ESTADÍSTICA CON EXCEL 1. Introducción ESTADÍSTICA CO EXCEL La estadística es la rama de las matemáticas que se dedica al análisis e interpretación de series de datos, generando unos resultados que se utilizan básicamente en

Más detalles

x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas.

x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas. Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Septiembre 2012 - Propuesta A 1. Queremos realizar una inversión en dos tipos

Más detalles

Síntesis Numérica de una Variable

Síntesis Numérica de una Variable Relación de problemas 2 Síntesis Numérica de una Variable Estadística 1. En siete momentos del día se observa el número de clientes que hay en un negocio, anotando: 2, 5, 2, 7, 3, 4, 9. Calcular e interpretar

Más detalles