Solución del Certamen 1 de Ecuaciones diferenciales. Jueves 23 de Abril de Prof: Roberto Cabrales. Ayudante: Iván Martinez.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Solución del Certamen 1 de Ecuaciones diferenciales. Jueves 23 de Abril de Prof: Roberto Cabrales. Ayudante: Iván Martinez."

Transcripción

1 Solución del Certamen 1 de Ecuaciones diferenciales. Jueves 3 de Abril de 016. Prof: Roberto Cabrales. Ayudante: Iván Martinez. Ejercicio 1 (1 puntos). Diga si las siguientes ecuaciones son de variables separables, lineales, eactas u homogéneas, justificando su respuesta en cada caso. No resuelva la ecuación. 1. (3 puntos) r(1 θ ) 1/ dθ = 0.. (3 puntos) cos(s) + sen(s)tds ds = (3 puntos) dd + ln() + ln()d + yd = (3 puntos) 3tdu t + udu 3u = 0. La primera ecuación es de variables separables, ya que, al sumar a ambos lados dθ y luego dividir por (1 θ) 1/, obtenemos rdr = dθ (1 θ ) 1/. La segunda ecuación es lineal, ya que al sumar a ambos lados ds y luego dividir por el cos(s)ds, se obtiene luego de simplificar que es una ecuación lineal en su forma normal. ds + sen(s) cos(s) t = 1 cos(s), Para la tercera ecuación, juntamos primero todos los términos con d y todos aquellos con, obteniendo 0 = ( + ln() + y)d + ( ln() ) = ( + ln() + y)d + (ln() 1) = (1 + ln())d + yd + (ln() 1). Ahora, sumamos a ambos lados el término (1 + ln())d y luego dividimos por (ln() 1)d para, después de simplificar, obtener que d + 1 (1 + ln()) y = (ln() 1) (ln() 1) ecuación que corresponde a una ecuación lineal. = 1 + ln() 1 ln(), Para la cuarta, agrupamos todos los términos que tienen du y todos los que tienen : (3t + u)du + ( t 3u) = 0. Al tomar M(u, t) = 3t+u y N(u, t) = t 3u, notamos que la ecuación es de la forma M(u, t)du+ N(u, t) = 0. Además M(αu, αt) = 3αt + αu = α(3t + u) = αm(u, t), N(αu, αt) = αt α3u = α( t 3u) = αn(u, t),

2 lo que prueba que las funciones M y N son homogéneas de grado 1. De esta forma la ecuación diferencial dada es homogénea. Ejercicio (1 puntos). Resuelva las siguientes ecuaciones diferenciales: 1. (1 puntos) + yd y ln()d = 0.. (1 puntos) tan ( + y)d = 0. En el caso de la primera ecuación, tenemos que, al dividir por d y luego sumar a ambos lados y ln(), obtenemos d + 1 y = y ln(), que es una ecuación de Bernoulli con n =. Realizamos entonces la sustitución z = y 1. Entonces, derivando a ambos lados tenemos que d = y d. Entonces, al multiplicar la ecuación original por y nos queda ln() ( = y y ln() ) = y d 1 y y = d 1 y 1 = d 1 z, es decir, [ d + 1 z = ln(). Hemos obtenido una ecuación lineal con factor integrante ( µ() = ep 1 ) d = ep( ln()) = 1. De acuerdo a la epresión que define la solución de la ecuación lineal, tenemos z = 1 1 ln() ln() 1 d = d. Para calcular esta integral, tomamos m = ln(). Entonces dm = 1 d y = e m, por lo que ln() d = e m mdm = e m (m + 1) + C = ln() C, donde hemos usado integración por partes con u = m y dv = e m dm, lo que nos lleva a du = dm y v = e m. La solución de la ecuación original es [ ln() y 1 = z = d = ln() C. Para la segunda ecuación, tomamos z = + y, de donde = d +. Entonces = d y al sustituir en la ecuación tenemos 0 = tan ( + y)d = d tan (z)d = (1 + tan (z))d = sec (z)d.

3 Al sumar sec (z)d a ambos lados de la igualdad obtenida y luego dividir por sec (z) obtenemos una ecuación de variables separables que podemos integrar. De hecho, 1 + C = d = sec (z) = cos (z) = [1 + cos(z) = 1 [ s + cos(z) = 1 [ z + sen(z). Entonces, la solución de la ecuación original es + C = 1 [ + y + sen( + y) Ejercicio 3 (1 puntos). Considere la siguientes ecuación diferencial 1. (4 puntos) Muestre que esta ecuación no es eacta. y( + y + 1)d + ( + y) = 0. (1). (8 puntos) Use las fórmulas deducidas en clases para encontrar un factor integrante µ, tal que la ecuación que se obtiene al multiplicar (??) por µ sea eacta. Resuelva dicha ecuación. En el caso del primer item, tomamos M(, y) = y( + y + 1) = y + y + y, y N(, y) = + y. Entonces µ() = ep M = ( y + y + y ) = + y = N ( + y) =, es decir, M N, probando que la ecuación no es eacta. Veamos ahora el segundo item. En este caso y de acuerdo a los cálculos realizados antes, tenemos [ M N d N [ [ + y = ep d = ep + y d = e, que es un factor integrante que depende solo de. Al multiplicar la ecuación original por µ(), obtenemos la ecuación siguiente e y( + y + 1)d + e ( + y) = 0. En este caso, tenemos M(, y) = e y + y e + ye, y N(, y) = e + ye. Entonces M = ( e y + y e + ye ) = e + ye + e = (e + ye ) = N, es decir, M = N, probando que la ecuación es eacta. Vamos a resolverla. Para ello, calculamos la función f(, y) que representa la solución implicita de la ecuación. Se debe resolver entonces el

4 sistema = M(, y) = e y( + y + 1), = N(, y) = e ( + y). Integrando la segunda ecuación en relación a y, tenemos f(, y) = = e ( + y) = e (y + y ) + h(). Para determinar la función h(), usamos la primera ecuación. Entonces ye + y e + ye = M(, y) = = (e (y + y) + h()) = e y + ye + e y + h (). Al simplificar, obtenemos h () = 0, suya solución es h() = C, C R. Entonces, la solución de la ecuación es e (y + y ) = C. Ejercicio 4 (1 puntos). Un tanque contiene 1000 kg de sal disuelta en 1000 litros de agua pura. Una solución de salmuera (mezcla de agua y sal) empieza a fluir hacia el interior del tanque, a una velocidad de 6 litros por minuto. La solución dentro del tanque se mantiene bien agitada y fluye hacia el eterior a una velocidad de 5 litros por minuto. Si la concentración de sal en la salmuera que entra en el tanque es de 1 kilogramos por litro, se pide determinar la cantidad de sal S(t) en el tanque para todo tiempo. Sea S(t) la cantidad de kilogramos de sal que hay en el tanque en un determinado instante de tiempo t. Recordemos que ds(t) = R int R out, donde R int es el producto de la concentración de sal que entra al tanque por la tasa de entrada del fluido y R out es el producto de la concentración de sal que sale del tanque por la tasa de salida del fluido. En este caso R int = 1 ( ) ( ) kg lt 6, R out = lt min S(t) y(t) ( ) ( ) kg lt 5, lt min Donde y(t) es el volumen (medido en litros) de fluido que se añade al tanque en un instante de tiempo t (note que el volumen de agua en el tanque no es constante, ya que la velocidad de entrada y salida del fluido no es la misma, pues entra más agua que aquella que sale). Debido a que entran

5 6 lt/min y salen 5 lt/min, tenemos que cada minuto se añade 1 litro de agua al tanque, por tanto y(t) = t. Se tiene entonces la siguiente ecuación diferencial: ds(t) = R int R out = 6 5S(t) t con la condición inicial S(0) = 0, pues en el instante inicial el agua en el tanque no tiene sal. La ecuación anterior se escribe como: da + 5S t = 6, que corresponde a una ecuación lineal, con factor integrante dado por ( ) 5 µ(t) = ep t = ( t) 5. Se obtiene entonces la siguiente la solución: S(t) = t + C ( t) 5. Usando la condición inicial S(0) = 0, obtenemos que C = , y de esta forma S(t) = t ( t) 5 es la cantidad de sal en el tanque en el tiempo t.

LECCIÓN 10: ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN LINEALES

LECCIÓN 10: ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN LINEALES 58 LECCIÓN 0: ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN LINEALES JUSTIFICACIÓN: Las ecuaciones diferenciales ordinarias de primer orden lineales comprenden una clase especial de las ecuaciones

Más detalles

Unidad 2. Las Ecuaciones Diferenciales de Primer Orden y Sus Soluciones. Definición. Se dice que una ecuación diferencial de primer orden de la forma

Unidad 2. Las Ecuaciones Diferenciales de Primer Orden y Sus Soluciones. Definición. Se dice que una ecuación diferencial de primer orden de la forma Unidad. Las Ecuaciones Diferenciales de Primer Orden Sus Soluciones.1 Ecuaciones Diferenciales de Variables Separables 1 Definición. Se dice que una ecuación diferencial de primer orden de la forma p(

Más detalles

TEMA 4.- ECUACIONES DIFERENCIALES DE PRIMER ORDEN

TEMA 4.- ECUACIONES DIFERENCIALES DE PRIMER ORDEN e-mail: imozas@el.uned.es https://www.innova.uned.es/webpages/ilde/web/inde.htm TEMA 4.- ECUACIONES DIFERENCIALES DE PRIMER ORDEN Ecuación diferencial ordinaria de orden n.- Es una relación entre la variable,

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-114-5-V-2-00-2013 CURSO: Matemática Intermedia III SEMESTRE: Segundo CÓDIGO DEL CURSO: 114 TIPO DE EXAMEN:

Más detalles

Lista de ejercicios # 4

Lista de ejercicios # 4 UNIVERSIDAD DE COSTA RICA MA-5 FACULTAD DE CIENCIAS Ecuaciones Diferenciales para Ingeniería ESCUELA DE MATEMÁTICA Primer Ciclo del 5 Lista de ejercicios # 4 Sistemas de ecuaciones diferenciales. EPII-II-

Más detalles

ECUACIONES LINEALES DE PRIMER ORDEN

ECUACIONES LINEALES DE PRIMER ORDEN ECUACIONES LINEALES DE PRIMER ORDEN Un tanque de 500 litros contiene inicialmente 2 libras de sal disueltas en 20 litros de agua. Suponga que cada minuto entran al tanque 3 litros de agua salada, que contienen

Más detalles

TEMA 2 ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN

TEMA 2 ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN TEMA ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN 8 INTRODUCCIÓN: Eisten algunos tipos elementales de ecuaciones diferenciales para los cuales se cuenta con procedimientos canónicos que permiten

Más detalles

Ecuaciones diferenciales de primer orden

Ecuaciones diferenciales de primer orden Tema 8 Ecuaciones diferenciales de primer orden Las ecuaciones diferenciales tuvieron un origen de carácter puramente matemático, pues nacieron con el cálculo infinitesimal. El destino inmediato de esta

Más detalles

yf(xy)dx + xg(xy)dy = 0 x(f(xy) g(xy)) (b) Use la parte anterior para encontrar la solución general implícita de

yf(xy)dx + xg(xy)dy = 0 x(f(xy) g(xy)) (b) Use la parte anterior para encontrar la solución general implícita de jueves, 26 de abril de 202 Semestre Otoño SOLEMNE N ECUACIONES DIFERENCIALES. Para f() g() considere la ecuación diferencial (a) Demuestre que µ(, y) = diferencial anterior. yf(y)d + g(y)dy = 0 y(f(y)

Más detalles

Universidad Diego Portales Segundo Semestre 2007 Facultad de Ingeniería

Universidad Diego Portales Segundo Semestre 2007 Facultad de Ingeniería Universidad Diego Portales Segundo Semestre 007 Facultad de Ingeniería Instituto de Ciencias Básicas Asignatura: Ecuaciones Diferenciales Laboratorio Nº Ecuaciones Diferenciales Eactas, Lineales de Primer

Más detalles

Problema de Valor Inicial (PVI):

Problema de Valor Inicial (PVI): Problema de Valor Inicial (PVI): Con frecuencia nos interesan problemas en los que se busca la solución y () de una ecuación diferencial de modo que y () satifaga condiciones adicionales impuestas a la

Más detalles

1.9 Sustituciones diversas 49

1.9 Sustituciones diversas 49 1.9 Sustituciones diversas 49 1.9 Sustituciones diversas En ocasiones tenemos ecuaciones diferenciales que no corresponden a ninguna forma de ecuación conocida, donde, para resolverlas fácilmente recurrimos

Más detalles

LECCIÓN 11: ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN REDUCIBLES A LINEAL

LECCIÓN 11: ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN REDUCIBLES A LINEAL 86 LECCIÓN : ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN REDUCIBLES A LINEAL JUSTIFICACIÓN: Muchas ecuaciones diferenciales pueden ser reducidas a ecuaciones diferenciales lineales mediante un

Más detalles

Integración por fracciones parciales

Integración por fracciones parciales Integración por fracciones parciales El cociente de dos polinomios se denomina función racional. La derivación de una función racional conduce a una nueva función racional que puede obtenerse por la regla

Más detalles

2 Métodos de solución de ED de primer orden

2 Métodos de solución de ED de primer orden CAPÍTULO 2 Métodos de solución de E de primer orden 2.8 Miscelánea En este apartado queremos responder a la pregunta cómo proceder cuando se nos pide resolver una ecuación diferencial ordinaria de primer

Más detalles

Escuela de Matemáticas 6 de Mayo de Examen Parcial # 1. Instrucciones

Escuela de Matemáticas 6 de Mayo de Examen Parcial # 1. Instrucciones Universidad de Costa Rica MA005 Ecuaciones Diferenciales Escuela de Matemáticas 6 de Mao de 07. Examen Parcial # Instrucciones Cuenta con 3 horas para realizar el examen. El examen cuenta de 7 preguntas

Más detalles

Ecuaciones Diferenciales

Ecuaciones Diferenciales UNIVERSIDAD DIEGO PORTALES Ecuaciones Diferenciales 1 ECUACIONES DIFERENCIALES Una ecuación diferencial contiene una función desconocida y algunas de sus derivadas. He aquí algunos ejemplos: (1) y ' =

Más detalles

1 Repaso. Cálculo I. 1 o Matemáticas. Curso 2002/2003. Cálculo de Primitivas. (5x 6) f(x) 1 2 f (x) dx, que es inmediata: + 1 x 1

1 Repaso. Cálculo I. 1 o Matemáticas. Curso 2002/2003. Cálculo de Primitivas. (5x 6) f(x) 1 2 f (x) dx, que es inmediata: + 1 x 1 Cálculo I. o Matemáticas. Curso /. Cálculo de Primitivas Repaso (5 6) d = 5 (5 6) 5 d = 5 (5 6) + C. Nota: Si f() = 5 6 su derivada es 5. En la primera igualdad multiplicamos y dividimos por 5. Así tenemos

Más detalles

Fundamentos de Matemáticas

Fundamentos de Matemáticas Fundamentos de Matemáticas Ecuaciones diferenciales Solución: Tarea 4 (Total: 18 puntos) II.2. Ecuaciones diferenciales de primer orden La ecuación de Ricatti es una ecuación no-lineal = P (x) + Q(x)y

Más detalles

2 Unidad II: Ecuaciones Diferenciales de Orden Superior

2 Unidad II: Ecuaciones Diferenciales de Orden Superior ITESM, Campus Monterrey Departamento de Matemáticas MA-41: Ecuaciones Diferenciales Lectura # Profesor: Victor Segura Flores Unidad II: Ecuaciones Diferenciales de Orden Superior.1 Ecuaciones Diferenciales

Más detalles

ECUACIONES DIFERENCIALES DE PRIMER ORDEN

ECUACIONES DIFERENCIALES DE PRIMER ORDEN FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERÍA ELECTRÓNICA Y TELECOMUNICACIONES ECUACIONES DIFERENCIALES DE PRIMER ORDEN Solución Taller preparativo para el parcial 1 Ecuaciones diferenciales de primer

Más detalles

EJERCICIOS UNIDADES 1, 2 Y 3

EJERCICIOS UNIDADES 1, 2 Y 3 EJERCICIOS UNIDADES 1, Y 3 Nota: En adelante utilizaremos la abreviación ED para ecuación diferencial. TEMAS A EVALUAR Unidad 1 o Clasificación de las ecuaciones diferenciales o Problemas de valor inicial

Más detalles

xy si corresponde a la diferencial de alguna función f ( x, y ). Una ecuación diferencial de primer orden de la forma

xy si corresponde a la diferencial de alguna función f ( x, y ). Una ecuación diferencial de primer orden de la forma E.D.O para Ingenieros CAPITULO ECUACIONES EXACTAS La sencilla ecuación d + d 0 es separable, pero también equivale a la diferencial del producto de por ; esto es, d + d d( ) 0 Al integrar obtenemos de

Más detalles

Matemática IV Taller, Ecuaciones de orden 1. dy dx = y xy2 2. Determine la solución general de la ecuación. (y 4x)dx + (y x)dy = 0.

Matemática IV Taller, Ecuaciones de orden 1. dy dx = y xy2 2. Determine la solución general de la ecuación. (y 4x)dx + (y x)dy = 0. Matemática IV - 2000953 Taller, Ecuaciones de orden 1 1. Resuelva R: y 2 x = ln y. dy dx = y 3, y(0) = 1. 1 2xy2 2. Determine la solución general de la ecuación (y 4x)dx + (y x)dy = 0. 3. Una persona tiene

Más detalles

ecuación quede de la forma y' + A(x) y = B(x) 2- Buscar el factor integrante, el cual depende solo de "x" y viene dado por

ecuación quede de la forma y' + A(x) y = B(x) 2- Buscar el factor integrante, el cual depende solo de x y viene dado por 76 por el factor integrante resulta donde µ () = e e dy + A () e y d = e B () d e dy + A () e y d = d ( e y) = d (µ () y) Abran sus guías en la página 6 y leamos la información que allí aparece acerca

Más detalles

UNIDAD V Ecuaciones diferenciales Exáctas

UNIDAD V Ecuaciones diferenciales Exáctas UNIDAD V Ecuaciones diferenciales Exáctas UNIDAD 5 ECUACIONES DIFERENCIALES EXACTAS Si para la ecuación diferencial Se cumple la igualdad:,, 0 La ecuación se puede escribir de la forma, 0 Y se llama ecuación

Más detalles

1. Algunas primitivas inmediatas (o casi inmediatas)

1. Algunas primitivas inmediatas (o casi inmediatas) Cálculo o del grado de Matemáticas y doble grado MAT-IngINF. Curso /. Apuntes sobre integración y cálculo de primitivas. Algunas primitivas inmediatas (o casi inmediatas) (5 6) d 5 (5 6) 5 d 5 (5 6) Nota:

Más detalles

Trayectorias ortogonales

Trayectorias ortogonales Trayectorias ortogonales En ingeniería se presenta a menudo el problema geométrico de encontrar una familia de curvas (trayectorias ortogonales) que intersequen ortogonalmente en cada punto a una familia

Más detalles

ECUACIONES DIFERENCIALES DE PRIMER ORDEN

ECUACIONES DIFERENCIALES DE PRIMER ORDEN TEMA N o ECUACIONES DIFERENCIALES DE PRIMER ORDEN En general una ecuación diferencial de primer orden se puede escribir de la siguiente manera: F (; y; y 0 ) = 0 (Forma Implicíta) Sí en está ecuación es

Más detalles

E.T.S. Minas: Métodos Matemáticos Ejercicios Tema 7 Ecuaciones diferenciales de primer orden

E.T.S. Minas: Métodos Matemáticos Ejercicios Tema 7 Ecuaciones diferenciales de primer orden E.T.S. Minas: Métodos Matemáticos Ejercicios Tema 7 Ecuaciones diferenciales de primer orden Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña

Más detalles

AMPLIACIÓN DE MATEMÁTICAS Ingeniería Técnica Industrial. Especialidad en Mecánica Boletín n o 1 (Aplicaciones).

AMPLIACIÓN DE MATEMÁTICAS Ingeniería Técnica Industrial. Especialidad en Mecánica Boletín n o 1 (Aplicaciones). AMPLIACIÓN DE MATEMÁTICAS Ingeniería Técnica Industrial. Especialidad en Mecánica Boletín n o 1 (Aplicaciones). 1. La policía descubre el cuerpo de una profesora de ecuaciones diferenciales. Para resolver

Más detalles

Pauta Examen Final - Ecuaciones Diferenciales

Pauta Examen Final - Ecuaciones Diferenciales UNIVERSIDAD DIEGO PORTALES FACULTAD DE INGENIERIA Y CIENCIAS INSTITUTO DE CIENCIAS BÁSICAS ECUACIONES DIFERENCIALES Pauta Examen Final - Ecuaciones Diferenciales P1.- Indicar el tipo de EDO de las siguientes

Más detalles

2. Métodos de resolución. ( Chema Madoz, VEGAP, Madrid 2009)

2. Métodos de resolución. ( Chema Madoz, VEGAP, Madrid 2009) . Métodos de resolución ( Chema Madoz, VEGAP, Madrid 009) 1 No eiste un método general para resolver ED s, es decir, dada una ecuación diferencial no tenemos un procedimiento para hallar su solución analítica.

Más detalles

UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN. Tema: TÉCNICAS DE INTEGRACIÓN

UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN. Tema: TÉCNICAS DE INTEGRACIÓN UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN Tema: TÉCNICAS DE INTEGRACIÓN TÉCNICAS DE INTEGRACIÓN En matemáticas, cada tipo de problema sugiere un tipo de solución. Para calcular la derivada

Más detalles

INTEGRACION POR PARTES

INTEGRACION POR PARTES INTEGRACION POR PARTES Se basa en la regla de derivación del producto de dos funciones derivables en un dominio común. Sean u(x)y v(x) común. Entonces: dos funciones derivables en un dominio udv = uv vdu

Más detalles

Soluciones de ecuaciones de primer orden

Soluciones de ecuaciones de primer orden GUIA 2 Soluciones de ecuaciones de primer orden Dada una ecuación diferencial, la primera pregunta que se presenta es cómo hallar sus soluciones? Por cerca de dos siglos (XVIII y XIX ) el esfuerzo de los

Más detalles

GUÍA: INTEGRALES. Página 1 de 27

GUÍA: INTEGRALES. Página 1 de 27 GUÍA: INTEGRALES Área de EET Página de 7 Derechos Reservados Titular del Derecho: INACAP N de inscripción en el Registro de Propiedad Intelectual #. de fecha - -. INACAP 00. Página de 7 . INTEGRALES. La

Más detalles

Un i d a d 7. Objetivos. Al inalizar la unidad, el alumno:

Un i d a d 7. Objetivos. Al inalizar la unidad, el alumno: Un i d a d 7 métodos de integraión Objetivos Al inalizar la unidad, el alumno: Utilizará los métodos de sustitución directa en la resolución de integrales. Resolverá integrales de funciones trigonométricas,

Más detalles

Ecuaciones diferenciales lineales: definición y método general de solución. Modelos de un compartimento.

Ecuaciones diferenciales lineales: definición y método general de solución. Modelos de un compartimento. : definición y método general de solución. Modelos de un compartimento. 1 1 Departamento de Matemáticas. Universidad de Alcalá de Henares. Contenidos 1 Introducción 2 3 4 Índice 1 Introducción 2 3 4 Introducción

Más detalles

2.4 Ecuaciones diferenciales de Bernoulli

2.4 Ecuaciones diferenciales de Bernoulli .4 Ecuaciones diferenciales de Bernoulli 3 Ejercicios.3. Ecuaciones diferenciales lineales. Soluciones en la página 4 Resolver las siguientes ecuaciones diferenciales lineales.. y 0 C 00y D 0.. x 0 0x

Más detalles

ECUACIONES DIFERENCIALES CARLOS RUZ LEIVA

ECUACIONES DIFERENCIALES CARLOS RUZ LEIVA ECUACIONES DIFERENCIALES CARLOS RUZ LEIVA Definición de ecuación diferencial Una ecuación que relaciona una función desconocida y una o más de sus derivadas se llama ecuación diferencial. Instituto de

Más detalles

2 Métodos de solución de ED de primer orden

2 Métodos de solución de ED de primer orden CAPÍTULO Métodos de solución de ED de primer orden.4 Ecuaciones diferenciales de Bernoulli Una ecuación diferencial ordinaria de primer orden de la forma a 0.x/y 0 C a.x/y D f.x/y r ; con r 0; : se denomina

Más detalles

2.5 Ecuaciones diferenciales homogéneas

2.5 Ecuaciones diferenciales homogéneas .5 Ecuaciones diferenciales homogéneas 59.5 Ecuaciones diferenciales homogéneas Al tratar con polinomios de más de una variable, se define el grado de cada término como la suma de los grados de sus variables..

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-114-1-M-1-00-017 CURSO: Matemática Intermedia 3 SEMESTRE: Primero CÓDIGO DEL CURSO: 114 TIPO DE EXAMEN: Primer

Más detalles

x = t 3 (x t) 2 + x t. (1)

x = t 3 (x t) 2 + x t. (1) Problema 1 - Considera la siguiente ecuación de primer orden: x = t 3 (x t + x t (1 (a Comprueba que x(t = t es solución de la ecuación (b Demuestra que si x = x(t es la solución que pasa por el punto

Más detalles

P R I M E R B L O Q U E E C. D I F E R E N C I A L E S

P R I M E R B L O Q U E E C. D I F E R E N C I A L E S P R I M E R B L O Q U E E C. D I F E R E N C I A L E S Os proponemos una serie de ejercicios tipo examen de la asignatura Matemáticas II del Grado de Industriales. 1. y = t y t 1 + y ; y(0) = 1 2. Resolver

Más detalles

114 Fundamentos de Matemáticas. Unidad III. Ecuaciones Diferenciales Ordinarias

114 Fundamentos de Matemáticas. Unidad III. Ecuaciones Diferenciales Ordinarias 114 Fundamentos de Matemáticas Unidad III Ecuaciones Diferenciales Ordinarias 115 Fundamentos de Matemáticas : Ecuaciones Diferenciales Ordinarias Capítulo 7 Ecuaciones Diferenciales Ordinarias 7.1 Introducción,

Más detalles

4 Algunos métodos de resolución de ecuaciones diferenciales ordinarias de primer orden II

4 Algunos métodos de resolución de ecuaciones diferenciales ordinarias de primer orden II 4 Algunos métodos de resolución de ecuaciones diferenciales ordinarias de primer orden II 4.1. Ecuaciones lineales La e.d.o. de primer orden lineal es Si g(x) = 0: ecuación lineal homogénea. a 1 (x) +

Más detalles

1. Algunas primitivas inmediatas (o casi inmediatas).

1. Algunas primitivas inmediatas (o casi inmediatas). Cálculo I. o Matemáticas. Curso 00/0. Cálculo de Primitivas. Algunas primitivas inmediatas (o casi inmediatas). (5x 6) = 5 (5x 6) 5 = 5 (5x 6) + C. Nota: Si f(x) = 5x 6 su derivada es 5. En la primera

Más detalles

Métodos de solución de ED de primer orden

Métodos de solución de ED de primer orden CAPÍTULO Métodos de solución de E de primer orden.5 Ecuaciones diferenciales homogéneas Al tratar con polinomios de más de una variable, se define el grado de cada término como la suma de los grados de

Más detalles

dy y y dx x x dx. Como y = hx, derivando (notar que como y es una función de x, y también lo es): dy d h dx d x dh + = + dx dh h x xh xh h

dy y y dx x x dx. Como y = hx, derivando (notar que como y es una función de x, y también lo es): dy d h dx d x dh + = + dx dh h x xh xh h E.D.O para Ingenieros CAPITULO 5 CAMBIOS DE VARIABLES Ha algunas ecuaciones que no son eactas ni recibles a eactas mediante factores integrantes sencillos (recordemos que las ecuaciones en ariables separables

Más detalles

EJERCICIOS DE EDO, CURSO 07/08)

EJERCICIOS DE EDO, CURSO 07/08) EJERCICIOS DE EDO, CURSO 07/08) 1. Ecuaciones de primer orden 1.1. Separables y reducibles a separables 1) Inicialmente hay s 0 kilos de sal disueltos en el agua de un depósito de V litros. En t = 0 se

Más detalles

2.2 Ecuaciones diferenciales de variables separables

2.2 Ecuaciones diferenciales de variables separables 38 Ecuaciones diferenciales. Considerado a t como la variable independiente: s 0 ds dt s 3ts s 4 9ts.s/.s 3t/.s/.s3 9t/ s 3t s 3 9t ; excepto los puntos que están en la curva s 3 9t 0 en el eje t.s 0/.

Más detalles

Problemas de enfriamiento

Problemas de enfriamiento Problemas de enfriamiento De acuerdo con la ley de enfriamiento de Newton, la tasa de cambio de la temperatura T de un cuerpo respecto del tiempo, en un instante t, en un medio de temperatura constante

Más detalles

Matemática Aplicada - Licenciatura de Farmacia - Curso 2005/ HOJA 5 1 SOLUCIONES DE LOS EJERCICIOS DE LA HOJA 5

Matemática Aplicada - Licenciatura de Farmacia - Curso 2005/ HOJA 5 1 SOLUCIONES DE LOS EJERCICIOS DE LA HOJA 5 Matemática Aplicada - Licenciatura de Farmacia - Curso 2005/2006 - HOJA 5 1 SOLUCIONES DE LOS EJERCICIOS DE LA HOJA 5 1) A continuación diremos de qué tipo son las ecuaciones diferenciales ordinarias (e.

Más detalles

Tema 7. Factores de integración

Tema 7. Factores de integración Tema 7. Factores de integración 7. QUÉ ES UN FACTOR DE INTEGRACIÓN? En general, la ecuación diferencial (7.) M(,)d + N(,)d 0 no es eacta. Ocasionalmente, sin embargo, es posible transformar (7.) en una

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-114-1-M-2-00-2017 CURSO: Matemática Intermedia 3 SEMESTRE: Segundo CÓDIGO DEL CURSO: 114 TIPO DE EXAMEN: Primer

Más detalles

SISTEMAS DE ECUACIONES DIFERENCIALES

SISTEMAS DE ECUACIONES DIFERENCIALES SISTEMAS DE ECUACIONES DIFERENCIALES Tanques interconectados Dos grandes tanques, cada uno de los cuales contiene 24 litros de una solución salina, están conectados entre sí mediante unos tubos. El primer

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA. CLAVE V _sN

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA. CLAVE V _sN UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-114-1-V-2-00-2017_sN CURSO: Matemática Intermedia 3 SEMESTRE: Segundo CÓDIGO DEL CURSO: 114 TIPO DE EXAMEN:

Más detalles

Ecuaciones diferenciales

Ecuaciones diferenciales Ecuaciones diferenciales 1. Hallar las isoclinas y esbozar las soluciones relativas a las siguientes ecuaciones diferenciales (a) y = x 2 + y 2. (b) y = y/x 2. (c) y = y x. (d) y = y/x. (e) y = x/y. 2.

Más detalles

Tema 5. Introducción a las ecuaciones diferenciales ordinarias. senx + C 2. x es solución de la ecuación diferencial

Tema 5. Introducción a las ecuaciones diferenciales ordinarias. senx + C 2. x es solución de la ecuación diferencial 1 Tema 5. Introducción a las ecuaciones diferenciales ordinarias 1.- Comprobar que la función y = C 1 senx + C 2 x es solución de la ecuación diferencial (1 - x cotgx) d2 y dx 2 - x dy dx + y = 0. 2.-

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-0---M-00-0 CURSO: Matemática Intermedia SEMESTRE: Primero CÓDIGO DEL CURSO: 0 TIPO DE EXAMEN: Eamen Final

Más detalles

Desigualdades o inecuaciones lineales en una variable. Prof. Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo

Desigualdades o inecuaciones lineales en una variable. Prof. Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo Desigualdades o inecuaciones lineales en una variable Prof. Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo Desigualdades Una desigualdad o inecuación usa símbolos como ,, para representar

Más detalles

3 Aplicaciones de primer orden

3 Aplicaciones de primer orden CAPÍTULO 3 Aplicaciones de primer orden 3.7.1 Traectorias ortogonales Si consideramos la familia de curvas C c; con c > 0; podemos decir que esta familia es el conjunto de las circunferencias de radio

Más detalles

1. Introducción. En (1.1) y (1.2), y es la variable dependiente y t es la variable independiente, a, c son parámetros. dy dt = aet, (1.

1. Introducción. En (1.1) y (1.2), y es la variable dependiente y t es la variable independiente, a, c son parámetros. dy dt = aet, (1. . Introducción Definición.. Una ecuación que contiene derivadas de una o más variables dependientes con respecto a una o más variables independientes se llama ecuación diferencial. En (.) y (.2), y es

Más detalles

Integración por partes.

Integración por partes. 6 Integración por partes. Este método es útil cuando se requiere integrar diferenciales que contienen proctos, diferenciales que contienen logaritmos y diferenciales que contienen funciones trigonométricas

Más detalles

Sistemas no lineales

Sistemas no lineales Tema 4 Sistemas no lineales Dpto. Matemática Aplicada I E.T.S. de Arquitectura Universidad de Sevilla Curso 2005 2006 Tema 4. Sistemas no lineales 1. Sistemas no lineales de ecuaciones diferenciales. Integrales

Más detalles

MATEMÁTICAS VI. CÁLCULO INTEGRAL UNIDAD II MÉTODOS DE INTEGRACIÓN

MATEMÁTICAS VI. CÁLCULO INTEGRAL UNIDAD II MÉTODOS DE INTEGRACIÓN MÉTODOS DE INTEGRACIÓN UNIDAD II MÉTODOS DE INTEGRACIÓN No todas las funciones en un integrando se pueden resolver mediante reglas inmediatas de integración, y requieren ser tratadas con técnicas especiales.

Más detalles

Ecuaciones Diferenciales Ordinarias I

Ecuaciones Diferenciales Ordinarias I UG Aplicaciones de las ecuaciones diferenciales Universidad de Guanajuato Sesión 47 APLICACIONES BIOLÓGICAS Crecimiento Biológico: Un problema fundamental en la biología es el crecimiento, sea este el

Más detalles

Bloque IV. Ecuaciones Diferenciales de primer orden Tema 2 Clasificación de E. D. de primer orden Ejercicios resueltos

Bloque IV. Ecuaciones Diferenciales de primer orden Tema 2 Clasificación de E. D. de primer orden Ejercicios resueltos Bloque IV. Ecuaciones Diferenciales de primer orden Tema Clasificación de E. D. de primer orden Ejercicios resueltos IV.-1 Resolver las siguientes ecuaciones diferenciales separables: d 1 d d d d d 1 1

Más detalles

UNIDAD I. DIFERENCIALES E INTEGRAL INDEFINIDA. Actividad 1. DIFERENCIALES

UNIDAD I. DIFERENCIALES E INTEGRAL INDEFINIDA. Actividad 1. DIFERENCIALES CENTRO DE ESTUDIOS DE BACHILLERATO Nº 4/ LIC. JESÚS REYES HEROLES GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO ASIGNATURA PROFESOR SEMESTRE CÁLCULO INTEGRAL L. M. A. JUAN MANUEL VALDEZ CHÁVEZ 0 0 B SEXTO

Más detalles

1.25. Modelando y resolviendo problemas.

1.25. Modelando y resolviendo problemas. 8.5. Modelando y resolviendo problemas. 3. a) Determine sobre la exactitud de la ecuación diferencial + 4 x y x 0. b) En caso de que no sea exacta la ecuación diferencial en el inciso anterior, busque

Más detalles

Unidad 5 - Trabajo Práctico 5 Parte 1 Elementos de Matemática

Unidad 5 - Trabajo Práctico 5 Parte 1 Elementos de Matemática 06 Unidad 5 - Trabajo Práctico 5 Parte Unidad 5 Integral indefinida. Primitivas inmediatas. Uso de tablas de integrales. Integración por descomposición, por sustitución y por partes. Integral definida:

Más detalles

Tema 8 Ecuaciones diferenciales

Tema 8 Ecuaciones diferenciales Tema 8 Ecuaciones diferenciales 1. ECUACIONES DIFERENCIALES ORDINARIAS Definición 1.1: Ecuación diferencial Se llama ecuación diferencial de orden n a una ecuación que relaciona la variable independiente

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M _SC

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M _SC UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-114-2-M-1-00-2018_SC CURSO: SEMESTRE: Primero CÓDIGO DEL CURSO: 114 TIPO DE EXAMEN: Segundo Parcial FECHA

Más detalles

E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 9: Sistemas de EDOs lineales

E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 9: Sistemas de EDOs lineales ETS Minas: Métodos Matemáticos Resumen y ejemplos Tema 9: Sistemas de EDOs lineales Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Noviembre

Más detalles

TERCER EXAMEN EJERCICIOS RESUELTOS

TERCER EXAMEN EJERCICIOS RESUELTOS MATEMÁTICAS II G. I. T. I.) TERCER EXAMEN 4 EJERCICIOS RESUELTOS EJERCICIO. ) Dibuja la región limitada por la circunferencia de ecuación r = r θ) = senθ) y la lemniscata de ecuación r = r θ) = cosθ).

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V _sN. CURSO: Matemática Intermedia 3

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V _sN. CURSO: Matemática Intermedia 3 UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-114-2-V-2-00-2017_sN CURSO: Matemática Intermedia 3 SEMESTRE: Segundo CÓDIGO DEL CURSO: 114 TIPO DE EXAMEN:

Más detalles

2 + ( ) + ( ) = ( ) (1.242) de otra forma se le llama no lineal. La solución deestetipodeecuacionesestádadopor: = (1.

2 + ( ) + ( ) = ( ) (1.242) de otra forma se le llama no lineal. La solución deestetipodeecuacionesestádadopor: = (1. 1.3. Ecuaciones diferenciales de 2do orden 1.3.1. Ecuaciones lineales homogéneas Una ED de segundo orden se le llama lineal si se escribe como: + ( ) + ( ) = ( ) (1.242) 2 de otra forma se le llama no

Más detalles

ene 5 12:59 Está basado en la regla de la cadena. Si F(x) y g(x) son funciones derivables, la regla de la cadena nos dice que:

ene 5 12:59 Está basado en la regla de la cadena. Si F(x) y g(x) son funciones derivables, la regla de la cadena nos dice que: Métodos de integración: 1) Método de descomposición Para calcular una integral indefinida, usamos las propiedades de las integrales y las igualdades que conozcamos para descomponer la integral en otras

Más detalles

CÁLCULO 40 ECUACIONES DIFERENCIALES. ECUACIONES DIFERENCIALES DE 1er ORDEN A. ECUACIONES DEFERENCIALES DE VARIABLES SEPARADAS

CÁLCULO 40 ECUACIONES DIFERENCIALES. ECUACIONES DIFERENCIALES DE 1er ORDEN A. ECUACIONES DEFERENCIALES DE VARIABLES SEPARADAS CÁLCULO 40 ECUACIONES DIFERENCIALES ECUACIONES DIFERENCIALES DE er ORDEN A. ECUACIONES DEFERENCIALES DE VARIABLES SEPARADAS Resolver las siguientes Ecuaciones Diferenciales:. c = - + Ln = + +. = e -e -

Más detalles

Taller No. 6: Sustituciones y transformaciones. Ecuación de Bernoulli

Taller No. 6: Sustituciones y transformaciones. Ecuación de Bernoulli Taller No. 6: Sustituciones y transformaciones Ecuaciones de la forma y Ecuación de Bernoulli Objetivo Aplicar los procedimientos de sustitución en las ecuaciones diferenciales y distinguir una ecuación

Más detalles

+ = 0, siendo z=f(x,y).

+ = 0, siendo z=f(x,y). Ecuaciones diferenciales de primer orden ECUACIONES DIFERENCIALES Definición. Se llama ecuación diferencial a toda ecuación que inclua una función, que es la incógnita, alguna de sus derivadas o diferenciales.

Más detalles

Materia: Matemática de Octavo Tema: Operaciones en Q Adición de fracciones con diferente denominador

Materia: Matemática de Octavo Tema: Operaciones en Q Adición de fracciones con diferente denominador Materia: Matemática de Octavo Tema: Operaciones en Q Adición de fracciones con diferente denominador La adición de fracciones con diferente denominador la podemos definir como: Sean, entonces, donde es

Más detalles

Lista de ejercicios # 1. Ecuaciones diferenciales ordinarias de orden 1

Lista de ejercicios # 1. Ecuaciones diferenciales ordinarias de orden 1 UNIVERSIDAD DE COSTA RICA FCULTAD DE CIENCIAS MA-1005 Ecuaciones Diferenciales ESCUELA DE MATEMÁTICA II Ciclo del 2017 Lista de ejercicios # 1 Ecuaciones diferenciales ordinarias de orden 1 Soluciones

Más detalles

Universidad de Costa Rica. Proyecto MATEM SEGUNDO EXAMEN PARCIAL CÁLCULO

Universidad de Costa Rica. Proyecto MATEM SEGUNDO EXAMEN PARCIAL CÁLCULO Universidad de Costa Rica Proyecto MATEM SEGUNDO EXAMEN PARCIAL CÁLCULO 7 de junio de 207 INSTRUCCIONES GENERALES: Lea cuidadosamente, cada instrucción y pregunta, antes de contestar. Utilice únicamente

Más detalles

duv = udv + vdu udv = uv vdu

duv = udv + vdu udv = uv vdu I. INTEGRACIÓN POR PARTES. Si la integración de una función no es posible encontrarla por alguna de las fórmulas conocidas, es posible que se pueda integrar utilizando el método conocido como integración

Más detalles

Universidad Nacional Autónoma de Honduras (UNAH) Facultad de Ciencias Escuela de Matemática Guía de Estudio Primer Parcial

Universidad Nacional Autónoma de Honduras (UNAH) Facultad de Ciencias Escuela de Matemática Guía de Estudio Primer Parcial Universidad Nacional Autónoma de Honduras (UNAH) Facultad de Ciencias Escuela de Matemática Guía de Estudio Primer Parcial Determine la solución de las siguientes ecuaciones diferenciales (1 al 60): 3

Más detalles

Problemas Resueltos. 1. La distribución de la temperatura en una placa metálica, viene dada por la función: 70 =

Problemas Resueltos. 1. La distribución de la temperatura en una placa metálica, viene dada por la función: 70 = Problemas Resueltos 1. La distribución de la temperatura en una placa metálica, viene dada por la función: 70 T (, ) =, donde T está medida en grados centígrados,,z en metros. 1+ + + z En qué dirección

Más detalles

EJERCICIOS SUGERIDOS PARA LA PRACTICA DE ECUACIONES DIFERENCIALES

EJERCICIOS SUGERIDOS PARA LA PRACTICA DE ECUACIONES DIFERENCIALES Universidad Simón Bolívar Departamento de Matemáticas Puras Aplicadas Enero-Abril 4 EJERCICIOS SUGERIDOS PARA LA PRACTICA DE ECUACIONES DIFERENCIALES.- Compruebe que la función indicada sea una solución

Más detalles

Ecuaciones diferenciales no lineales. 1. Ecuaciones diferenciales no lineales y el factor integrador

Ecuaciones diferenciales no lineales. 1. Ecuaciones diferenciales no lineales y el factor integrador Ecuaciones diferenciales no lineales 1. Ecuaciones diferenciales no lineales y el factor integrador Del mismo modo y con la misma idea podemos incorporar el factor integrador µ y para etender la idea a

Más detalles

Universidad Nacional de Colombia Departamento de Matemáticas Ecuaciones diferenciales - Grupos 12 y 18 Taller n 2

Universidad Nacional de Colombia Departamento de Matemáticas Ecuaciones diferenciales - Grupos 12 y 18 Taller n 2 Universidad Nacional de Colombia Departamento de Matemáticas 1000007 Ecuaciones diferenciales - Grupos 1 y 18 Taller n (i) Si c > 0, demuestre que la función φ(x) = (c x ) 1 es una solución del problema

Más detalles

Contenido. 2. Ecuaciones diferenciales de primer orden. 1 / Omar De la Peña-Seaman IFUAP Ecuaciones Diferenciales Facultad de Ingeniería 1/29 29

Contenido. 2. Ecuaciones diferenciales de primer orden. 1 / Omar De la Peña-Seaman IFUAP Ecuaciones Diferenciales Facultad de Ingeniería 1/29 29 Contenido 2. Ecuaciones diferenciales de primer orden 1 / Omar De la Peña-Seaman IFUAP Ecuaciones Diferenciales Facultad de Ingeniería 1/29 29 Contenido: Tema 02 2. Ecuaciones diferenciales de primer orden

Más detalles

Errores frecuentes en las ecuaciones diferenciales

Errores frecuentes en las ecuaciones diferenciales Errores frecuentes en las ecuaciones diferenciales 1 Preliminares 1. Propiedades elementales de la exponencial el logaritmo. Ejemplos: log(x) = log(x) log(), log(x + ) = log(x) + log(), log(x + ) = log(x)

Más detalles

5.2. El teorema de Fubini. TEMA 5. INTEGRALES DE FUNCIONES DE DOS VARIABLES.

5.2. El teorema de Fubini. TEMA 5. INTEGRALES DE FUNCIONES DE DOS VARIABLES. Tema 5 Integrales de funciones de dos variables. 5.. La integral doble como volumen. La integral de una función de dos variables está relacionada con zf H,L el cálculo del volumen encerrado entre el plano

Más detalles

f(x) tiene una discontinuidad removible en x =0; f(x) = 2;

f(x) tiene una discontinuidad removible en x =0; f(x) = 2; CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E0800 (1) Dibujar una función f() que cumpla las condiciones siguientes: lím f() =+ ; lím f() = ; 2 3 f() tiene una discontinuidad removible

Más detalles