duv = udv + vdu udv = uv vdu

Tamaño: px
Comenzar la demostración a partir de la página:

Download "duv = udv + vdu udv = uv vdu"

Transcripción

1 I. INTEGRACIÓN POR PARTES. Si la integración de una función no es posible encontrarla por alguna de las fórmulas conocidas, es posible que se pueda integrar utilizando el método conocido como integración por partes. Este método tiene como base la integración de la fórmula para la derivada de un producto de dos funciones. Sean u=u() y v=v(). Entonces duv = udv + vdu o udv = uv vdu Al integrar ambos miembros de esta ecuación obtenemos udv = uv vdu (.) Como se puede ver la Integración por partes es la contraparte de la regla del producto de la diferenciación, ya que el integrando en cuestión es el producto de dos funciones (por lo general). En resumen éste es el procedimiento: Para aplicar la fórmula (.) en la práctica, se separa el integrando en dos partes; una de ellas se iguala a u y la otra, junto con d a dv. Por eso se llama integración por partes. Es conveniente considerar los dos criterios siguientes. (a) La parte que se iguala a dv debe ser fácilmente integrable. (b) La vdu no debe de ser más complicada que udv Luego se aplica la fórmula de integración por partes. Este proceso convierte el integrando original - que no se puede integrar - en un integrando que si se puede integrar. Tan claro como el agua, verdad? Vas a aprender la técnica muy rápido si utilizas el acrónimo LIATE y el método del ejemplo de abajo: Para seleccionar la función u, sólo tienes que ir hacia abajo en la lista del acrónimo, la primera función de la lista que coincida con una de tu integrando es la función u. El acrónimo que te ayudará a escoger tu función u es el siguiente: Logarítmica (como Ln) Inversa trigonométrica (como arcsen) Algebraica (como, o +0 ) Trigonométrica (como sen) Eponencial (como 7, o e ) Calcular la integral ln d Tu primer reto en la integración por partes es decidir cuál es la función, (de tu integrando original), que desempeñará el papel de la u en la fórmula. He aquí cómo se hace

2 El integrando contiene una función logarítmica (la primera en LIATE) así que ln es tu función u, el resto d automáticamente es dv. Así pues tienes los términos son: u = ln, dv = d Pero la integral por partes contiene cuatro términos, te faltan los siguientes: du, y v. Estos los encuentras diferenciando u, e integrando dv, es decir: Si u = ln entonces du = d Si dv = d entonces v = dv = d = Esto significa que v se encuentra integrando dv. Ahora, ya tenemos los cuatro elementos que aparecen en la fórmula de integración por partes (.), sustituyendo estos valores ella entonces ln (ln ) ln = d ln ln ln 9 d = uv vdu = d d = + C Problemas resueltos. Ejemplo. Calcular = + C, de donde e d Primero reescribimos la integral así: e d. Por LIATE hacemos u =, y dv = e ; de donde du =, y v = dv = e d = e ( d) = e Bueno ya tenemos los elementos de la integral por partes. u = dv = e d du = d v = e Por tanto aplicando la fórmula (.) se tiene pero la última integral e d = e e d = = e e + C ya se calculó es (v) Ejemplo. Calcular ( sen) d

3 Usando LIATE hacemos u =, y dv = ( sen) d ; de donde du = d, y v = dv = ( sen) d = cos Aplicando la integración por partes obtenemos ( sen) d = ( cos ) ( cos ) d = cos + (cos ) d = cos + se + C Ejemplo. Calcular ln( + 4) d Hacemos u = ln( + 4), y dv = d ; por tanto diferenciado e integrando tenemos u, y d v. du = d( + 4) = , v = d = Por tanto d d + = + = + ln( 4) d ln( 4) ( ) ln( 4) Ahora calculamos la integral d + 4 du u. Recordar que = arctan u + a a a 6 6 d = = = 6 6 arctan d d d = = De donde + d= + + C = C ln( 4) ln( 4) ( 6 arctan ) ln( 4) arctan Ejemplo 4. + d Haciendo u =, y dv = + d ; tendremos du = d, para obtener v hacemos lo siguiente: + ( + ). Por lo tanto v = + d = ( + ) d = = ( + ) ( ) + d = ( + ) ( + ) d = ( + ) + C +. De donde d = ( + ) ( + ) + C 6 Ejemplo 5. Calcular e d

4 Haciendo u =, y dv = e, encontramos u =, du = d du du =, y v = e d = du = e = e du = e d = fórmula de integral por partes obtenemos u u. Aplicando la e e e e e e e e d = d = e d = + C = + C 4 Ejemplo 6. veces. Hacemos cosd. En este ejemplo se aplica la integral por partes dos u =, y dv = cosd, por tanto u =, du = d du du = d, y v = cosd = du = cosu = cosudu = sen d = integral por partes tenemos, sen cos d = sen sen ( d) send = (.). Por la Observa que en la integral send, ha bajado el eponente de la (de a ), lo cual sugiere volver a integrar por partes así que, hacemos aquí u =, y dv = send, y en consecuencia u = du = d du cos du = d, y v= sen d = du = senu = senudu = ( cos ) = d = de donde cos cos cos send = d = cosd cos cos = ( sen) = + sen 9 Sustituyendo este último resultado en (.) tenemos se se cos d = sen d = + sen cos 9 Ejemplo 7. Calcular sen sen cos = + + C 9 7 e d

5 El acrónimo LIATE nos sugiere tomar du = d, y v = e d = e obtenemos e d = e e ( d ) = e e d (.) u =, y dv = e, y por lo tanto, así que aplicando la formula de integral por partes Observa que hemos mejorado nuestra situación, el eponente de la bajó de a, lo cual nos sugiere aplicar de nuevo la integral por partes a la última integral, así que hagámoslo u =, dv = e e d = = e e ( d) = e e d du = d, v = e d = e Si reemplazamos éste último resultado en la ecuación (.) tenemos { } e d = e e d = e e + 6 e d (.4) e d = e e ( d) = e e d) = e e e d Observa que en la última integral de la derecha el eponente de la ahora bajó de a, así que aplicamos de nuevo la integración por partes. u =, dv = e e d = = e e d = e e du = d, v = e d = e Bueno parece que ya terminamos, observa que en la última integral ya no apareció la. Solo falta reemplazar el último resultado en la ecuación (.4) y finalizamos. ed = e e + 6 ed = e e + 6{ e e } + C. Por tanto ed= e e + 6e 6e + C Ejemplo 8. Calcular arcsend Hacemos las sustituciones u = arcsen, dv = d d y tenemos, du = d, v = d = Y ahora arcsend = arcsen d

6 u =, du = d du = = = d = d ( ) d du u Por lo tanto Ejemplo 9. Calcular u = = u = arcsend = arcsen ( ) + C = arcsen + + C arctan d. De acuerdo con el acrónimo LIATE tomamos u = arc tan, dv = d, así entonces d du = y v = d =, +. Por lo tanto la integral por partes es d arctan d d arctan = (arctan ) = + + (.5) Ahora lo único que tenemos que hacer es calcular la integral d + d = = = arctan d d = = En conclusión reemplazando el último resultado en (.5) obtenemos arctan arctan { } arctan d = arctan + C = + arctan + C Ejemplo 0. Calcular sen d sen d = = Así Para integrar separamos ( sen)( sen) d u = sen, dv = send du = cos d, v = send = cos d aplicando la integral por partes sen d = sen ( cos ) ( cos )(cos d ) = sen cos+ cos d (.6) Ahora nuestro problema es calcular la integral cos d que cos = sen, así que cos d = ( sen ) d = d sen d = sen d, es decir, sin embargo recordemos cos d = sen d, reemplacemos esta última ecuación en (.6)

7 sen d = sen cos+ cos d = se n cos + sen d, observa que el último término está restando, así que lo pasamos sumando al inicio de la ecuación y tenemos sen d + sen d = sen cos +, sumamos y sen d = sen +, de donde el pasa dividiendo cos sen cos + sen cos sen d = + C = + + C Ejemplo. Calcular sec d Como en el ejemplo anterior separamos sec = sec sec d sec sec sec =. Por tanto. La parte más complicada del integrando que resulta fácil de integrar porque conocemos una fórmula es sec, por tanto tomamos u = dv = d sec, sec du = sec tan d, v = sec d = tan Aplicando la integral por partes se tiene sec d = sec tan tan (sec tan d ) = sec tan sec tan d (.7) Así que sólo nos queda resolver la integral sec tan sec tan = tan = sec = sec (sec ) d d = (sec sec d ) = sec d sec d Este último resultado lo reemplazamos en la ecuación (.7) d. Manos a la obra { } sec d = sec tan sec tan d = sec tan sec d sec d de donde sec d = sec tan sec d + sec d = sec tan sec d + ln sec + tan, observa que término y tenemos sec d está restando, así que lo pasamos sumando al primer sec d + sec d = sec tan + ln sec + tan, sumando d y finalmente sec = sec tan + ln sec + tan sec tan + ln sec + tan sec tan ln sec + tan sec d = + C = + + C

Integración por Partes II. Integrales Cíclicas

Integración por Partes II. Integrales Cíclicas Integración por Partes II Integrales Cíclicas Para este tema utilizamos la misma fórmula de integración por partes, no hay casi nada nuevo. Para comenzar con esta sección usaré un ejemplo. Ejemplo 1: Integra

Más detalles

GUÍA: INTEGRALES. Página 1 de 27

GUÍA: INTEGRALES. Página 1 de 27 GUÍA: INTEGRALES Área de EET Página de 7 Derechos Reservados Titular del Derecho: INACAP N de inscripción en el Registro de Propiedad Intelectual #. de fecha - -. INACAP 00. Página de 7 . INTEGRALES. La

Más detalles

1. PRIMITIVA DE UNA FUNCIÓN 2. PROPIEDADES DE LA INTEGRAL INDEFINIDA 3. INTEGRALES INMEDIATAS Ejemplos de integrales inmediatas tipo potencia

1. PRIMITIVA DE UNA FUNCIÓN 2. PROPIEDADES DE LA INTEGRAL INDEFINIDA 3. INTEGRALES INMEDIATAS Ejemplos de integrales inmediatas tipo potencia Cálculo de primitivas MATEMÁTICAS II. PRIMITIVA DE UNA FUNCIÓN. PROPIEDADES DE LA INTEGRAL INDEFINIDA. INTEGRALES INMEDIATAS.. Ejemplos de integrales inmediatas tipo potencia.. Ejemplos de integrales inmediatas

Más detalles

CÁLCULO INTEGRAL INTEGRAL INDEFINIDA

CÁLCULO INTEGRAL INTEGRAL INDEFINIDA CÁLCULO INTEGRAL INTEGRAL INDEFINIDA Función primitiva : Una función F( se dice que es primitiva de otra función f( cuando F'( f( Por ejemplo F( es primitiva de f( Otra primitiva de f( podría ser F( +

Más detalles

UNIVERSIDAD DE SEVILLA CALCULO DE PRIMITIVAS. PRIMER CURSO

UNIVERSIDAD DE SEVILLA CALCULO DE PRIMITIVAS. PRIMER CURSO UNIVERSIDD DE SEVILL DEPRTMENTO DE ECONOMÍ PLICD I CLCULO DE PRIMITIVS. PRIMER CURSO CLCULO DE PRIMITIVS Conceptos generales. Definición. Dada f : D IR IR decimos que F : D IR IR es una primitiva de f

Más detalles

Tema 3. Cálculo de primitivas Conceptos generales.

Tema 3. Cálculo de primitivas Conceptos generales. Tema Cálculo de primitivas... Conceptos generales. Una primitiva de una función es otra función que la tiene como derivada y la operación que permite obtener esta primitiva a partir de la función original

Más detalles

INTEGRACION POR PARTES

INTEGRACION POR PARTES INTEGRACION POR PARTES Se basa en la regla de derivación del producto de dos funciones derivables en un dominio común. Sean u(x)y v(x) común. Entonces: dos funciones derivables en un dominio udv = uv vdu

Más detalles

FACULTAD de INGENIERÍA Análisis Matemático A

FACULTAD de INGENIERÍA Análisis Matemático A FAULTAD de INGENIERÍA Análisis Matemático A TRABAJO PRÁTIO N : Integral Indefinida Definición de antiderivada Se llama a una función F antiderivada(o primitiva) de una función f, si para todo en el dominio

Más detalles

Un i d a d 7. Objetivos. Al inalizar la unidad, el alumno:

Un i d a d 7. Objetivos. Al inalizar la unidad, el alumno: Un i d a d 7 métodos de integraión Objetivos Al inalizar la unidad, el alumno: Utilizará los métodos de sustitución directa en la resolución de integrales. Resolverá integrales de funciones trigonométricas,

Más detalles

Integral. F es primitiva de f F (x) = f(x)

Integral. F es primitiva de f F (x) = f(x) o Bachillerato, Matemáticas II. Integración. Integrales indefinidas. Métodos de integración. Primitiva de una función. Integral indefinida. Sean f y F dos funciones reales definidas en un mismo dominio.

Más detalles

Tema 3. Cálculo de primitivas Conceptos generales.

Tema 3. Cálculo de primitivas Conceptos generales. Tema Cálculo de primitivas... Conceptos generales. Una primitiva de una función es otra función que la tiene como derivada y la operación que permite obtener esta primitiva a partir de la función original

Más detalles

UNIVERSIDAD ARTURO PRAT IQUIQUE CHILE DEPARTAMENTO DE CIENCIAS FISICAS Y MATEMATICAS INTEGRALES

UNIVERSIDAD ARTURO PRAT IQUIQUE CHILE DEPARTAMENTO DE CIENCIAS FISICAS Y MATEMATICAS INTEGRALES DEPARTAMENTO DE CIENCIAS FISICAS Y MATEMATICAS INTEGRALES MARIA ELISA VODNIZZA LIRA e-mail : mvodnizz@cec.unap.cl url : www.unap.cl/~mvodnizz SEPTIEMBRE - 00 INTEGRALES Uno de los problemas importantes

Más detalles

Técnicas de Integración, preparado por: Gil Sandro Gómez

Técnicas de Integración, preparado por: Gil Sandro Gómez Tema II. Técnicas de Integración. Integración por partes. La integración por partes surge del producto de una función trascendente y una algebraica, una inversa trigonométrica y una algébrica, una trigonométrica

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 8. Introducción a la integración INTEGRAL INDEFINIDA

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 8. Introducción a la integración INTEGRAL INDEFINIDA INTEGRAL INDEFINIDA CONCEPTOS BÁSICOS: PRIMITIVA E INTEGRAL INDEFINIDA El cálculo de integrales indefinidas de una función es un proceso inverso del cálculo de derivadas ya que se trata de encontrar una

Más detalles

Repaso de integración

Repaso de integración TABLA DE INTEGRALES INMEDIATAS Repaso de integración. Tabla de integrales inmediatas n d = n+ + C, si n n + f() n f () d = f()n+ n + + C, si n d = ln + C f() f () d = ln f() + C e d = e + C e f() f ()

Más detalles

Ejercicios de Integrales resueltos

Ejercicios de Integrales resueltos Ejercicios de Integrales resueltos. Resuelve la integral: Ln Ln Llamemos I Ln u du Aplicamos partes: dv v I Ln t t 4 t t t 4 t t 4 t 4 4 4t 4 t t t A t B t A( t) B( t) A ; B 4 t t Ln t Ln t t C Deshaciendo

Más detalles

Capítulo 5: Cálculo integral

Capítulo 5: Cálculo integral Capítulo 5: Cálculo integral 1. Lección 18. La integral indefinida 1.1. Concepto de integral indefinida En el capítulo 3 hemos visto la diferencial de una función: dada y = f(x), su diferencial es una

Más detalles

Integración por partes.

Integración por partes. 6 Integración por partes. Este método es útil cuando se requiere integrar diferenciales que contienen proctos, diferenciales que contienen logaritmos y diferenciales que contienen funciones trigonométricas

Más detalles

INTEGRACIÓN POR CAMBIO DE VARIABLE

INTEGRACIÓN POR CAMBIO DE VARIABLE INTEGRACIÓN POR CAMBIO DE VARIABLE Propósitos Identificar las operaciones algebraicas que convierten una integral a una forma inmediata (cambio de variable). Utilizar las tablas de integrales inmediatas

Más detalles

TEMA 12.- CÁLCULO DE PRIMITIVAS

TEMA 12.- CÁLCULO DE PRIMITIVAS TEMA.- CÁLCULO DE PRIMITIVAS.-.- PRIMITIVA DE UNA FUNCIÓN Definición de Función Primitiva Una función F() se dice que es primitiva de otra función f() cuando F'() f() Ejemplos: F() es primitiva de f()

Más detalles

INTEGRALES INMEDIATAS

INTEGRALES INMEDIATAS INTEGRALES INMEDIATAS Hay casos en los que la integral indeinida se calcula de orma inmediata, ya que la unción integrando es la derivada de una unción conocida. Se llaman integrales inmediatas a aquellas

Más detalles

, pero lím. 1 x3 1. (x 1) x(x + 1) = x = x 1 1 x 3 = que es una forma indeterminada. (x + 2) (1 + x + x 2 ) = 3

, pero lím. 1 x3 1. (x 1) x(x + 1) = x = x 1 1 x 3 = que es una forma indeterminada. (x + 2) (1 + x + x 2 ) = 3 Ana María Albornoz R. Ejercicios resueltos. Calcular los siguientes ites algebraicos + + 5 + + + 0 0 + pero + 0 0 0, pero 0 + + + 4 que es una forma indeterminada. Pero + + + + + + + + + + + + + + + +

Más detalles

La integración por partes

La integración por partes MB0005_M1AAL_Partes Versión: Septiembre 01 La integración por partes Por: Sandra Elvia Pérez Los métodos de integración son necesarios debido a que con frecuencia se presentan integrales que no se pueden

Más detalles

MATEMÁTICAS VI. CÁLCULO INTEGRAL UNIDAD II MÉTODOS DE INTEGRACIÓN

MATEMÁTICAS VI. CÁLCULO INTEGRAL UNIDAD II MÉTODOS DE INTEGRACIÓN MÉTODOS DE INTEGRACIÓN UNIDAD II MÉTODOS DE INTEGRACIÓN No todas las funciones en un integrando se pueden resolver mediante reglas inmediatas de integración, y requieren ser tratadas con técnicas especiales.

Más detalles

Cálculo Integral: Guía II

Cálculo Integral: Guía II 00 Cálculo Integral: Guía II Profr. Luis Alfonso Rondero García INSTITUTO POLITÉCNICO NACIONAL Departamento de Unidades de Aprendizaje del Área Básica /0/00 Integración de Potencias de Funciones Trigonométricas.

Más detalles

Integración de funciones trigonométricas

Integración de funciones trigonométricas Integración de funciones trigonométricas Ya vimos las reglas para calcular integrales de funciones trigonométricas. Ahora vamos a considerar productos de funciones trigonométricas y potencias. Para este

Más detalles

Desarrollos de Taylor y Primitivas:

Desarrollos de Taylor y Primitivas: Calculo Diferencial e Integral Profesor: Raúl Uribe Profesor Auiliar: Cristóbal Quiñinao 7 de septiembre de 007 Desarrollos de Taylor y Primitivas: Pregunta.- Sea f : R R definida por f() = e i. Determinar

Más detalles

Técnicas de Integración. Integración por Partes (I)

Técnicas de Integración. Integración por Partes (I) Técnicas de Integración Integración por Partes (I El método de integración por partes es un método que te permite separar una integral (que tiene un producto de dos funciones en una integral simple y lista

Más detalles

INTEGRAL INDEFINIDA. CÁLCULO DE PRIMITIVAS

INTEGRAL INDEFINIDA. CÁLCULO DE PRIMITIVAS urso 07-08 TEMA 0 INTEGRAL INDEFINIDA. ÁLULO DE PRIMITIVAS ÍNDIE I. INTRODUIÓN II. PRIMITIVA DE UNA FUNIÓN. INTEGRAL INDEFINIDA III. INTEGRALES INMEDIATAS IV. MÉTODOS DE INTEGRAIÓN A. MÉTODO DE SUSTITUIÓN.

Más detalles

Funciones Transcendentes

Funciones Transcendentes Funciones Transcendentes Unidad Gil Sandro Gómez Santo Domingo 04 de diciembre de 0 Contenido Introducción....0 Función logaritmo natural... 3. Propiedades de la función logaritmo natural... 3. El número

Más detalles

UNIDAD I. DIFERENCIALES E INTEGRAL INDEFINIDA. Actividad 1. DIFERENCIALES

UNIDAD I. DIFERENCIALES E INTEGRAL INDEFINIDA. Actividad 1. DIFERENCIALES CENTRO DE ESTUDIOS DE BACHILLERATO Nº 4/ LIC. JESÚS REYES HEROLES GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO ASIGNATURA PROFESOR SEMESTRE CÁLCULO INTEGRAL L. M. A. JUAN MANUEL VALDEZ CHÁVEZ 0 0 B SEXTO

Más detalles

TEMA 5: INTEGRAL INDEFINIDA.

TEMA 5: INTEGRAL INDEFINIDA. TEMA : INTEGRAL INDEFINIDA.. Primitivas: propiedades. Integral indefinida.. Integración por partes.. Integración de funciones racionales (denominador con raíces reales simples y múltiples, denominador

Más detalles

Tema 10: Integral indenida

Tema 10: Integral indenida Tema 0: Integral indenida May 9, 07 Primitiva de una función Como hemos estudiado, la derivación nos permite encontrar la derivada de una función dada. Por ejemplo, si tenemos la función F () =, su derivada

Más detalles

Unidad 5 - Trabajo Práctico 5 Parte 1 Elementos de Matemática

Unidad 5 - Trabajo Práctico 5 Parte 1 Elementos de Matemática 06 Unidad 5 - Trabajo Práctico 5 Parte Unidad 5 Integral indefinida. Primitivas inmediatas. Uso de tablas de integrales. Integración por descomposición, por sustitución y por partes. Integral definida:

Más detalles

RELACIONES Y FUNCIONES

RELACIONES Y FUNCIONES RELACIONES Y FUNCIONES Variables Independiente: Aquella que puede tomar cualquier valor. Dependiente: Depende del valor que tome la variable independiente. Pares ordenados Se representan (a,b) donde: a:

Más detalles

ene 5 12:59 Está basado en la regla de la cadena. Si F(x) y g(x) son funciones derivables, la regla de la cadena nos dice que:

ene 5 12:59 Está basado en la regla de la cadena. Si F(x) y g(x) son funciones derivables, la regla de la cadena nos dice que: Métodos de integración: 1) Método de descomposición Para calcular una integral indefinida, usamos las propiedades de las integrales y las igualdades que conozcamos para descomponer la integral en otras

Más detalles

El cálculo integral fue usado por primera vez por científicos como Arquímedes, René Descartes, Isaac Newton, Gottfried Leibniz e Isaac Barrow.

El cálculo integral fue usado por primera vez por científicos como Arquímedes, René Descartes, Isaac Newton, Gottfried Leibniz e Isaac Barrow. INTRODUCCION El cálculo integral fue usado por primera vez por científicos como Arquímedes, René Descartes, Isaac Newton, Gottfried Leibniz e Isaac Barrow. Los trabajos de este último y los aportes de

Más detalles

Calculo integral. Guía para elaborar el PORTAFOLIO DE EVIDENCIAS PARA EL EXAMEN EXTRAORDINARIO DE

Calculo integral. Guía para elaborar el PORTAFOLIO DE EVIDENCIAS PARA EL EXAMEN EXTRAORDINARIO DE 06 SUBSECRETARÍA DE EDUCACIÓN MEDIA SUPERIOR DIRECCIÓN GENERAL DEL BACHILLERATO CENTRO DE ESTUDIOS DEL BACHILLERATO / LIC. JESUS REYES HEROLES Guía para elaborar el PORTAFOLIO DE EVIDENCIAS PARA EL EXAMEN

Más detalles

Linealidad. f, para toda función f ytodoescalarα. Primitivas de tipo inmediato. n+1 [f(x)] n f 0 (x)dx = [f(x)]n+1 + K dx =log x + K.

Linealidad. f, para toda función f ytodoescalarα. Primitivas de tipo inmediato. n+1 [f(x)] n f 0 (x)dx = [f(x)]n+1 + K dx =log x + K. Tabla de primitivas Linealidad (f + g) = f + g αf = α f, para toda función f todoescalarα Primitivas de tipo inmediato Potencia Logaritmo Eponencial Trigonométricas n d = n+ n+ [f()] n f ()d = [f()]n+

Más detalles

Soluciones de la relación de ejercicios del TEMA 0

Soluciones de la relación de ejercicios del TEMA 0 Soluciones de la relación de ejercicios del TEMA 0. Indica a que conjunto o conjuntos pertenecen los siguientes números: 0, 9, 4 5, 8, i,, 7, 7, +i,, π, 4 4 56 Para este ejercicio hay que tener en cuenta

Más detalles

2 Métodos de solución de ED de primer orden

2 Métodos de solución de ED de primer orden CAPÍTULO 2 Métodos de solución de E de primer orden 2.8 Miscelánea En este apartado queremos responder a la pregunta cómo proceder cuando se nos pide resolver una ecuación diferencial ordinaria de primer

Más detalles

Universidad de Chile Integración por partes. Ingeniería Matemática SEMANA 6: PRIMITIVAS

Universidad de Chile Integración por partes. Ingeniería Matemática SEMANA 6: PRIMITIVAS FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 08- Ingeniería Matemática SEMANA 6: PRIMITIVAS 3.3. Integración por partes Proposición 3. (Fórmula de integración

Más detalles

B. Cálculo de primitivas.

B. Cálculo de primitivas. 50CAPÍTULO 5. INTEGRAL DEFINIDA. CÁLCULO DE PRIMITIVAS y y f(x) x y y F (x) x F (x) 8 >< >: x si x [0, ] x + six (, ] x si x (, ] Figura 5.5: B. Cálculo de primitivas. 5.. Integración inmediata. Definición

Más detalles

Tabla de integrales inmediatas

Tabla de integrales inmediatas OFIMEGA INTEGRALES Pág. Tabla de integrales inmediatas Inmediatas Cuasi inmediatas d = n+ n n + k f () f'()d = f n+ () n k n + d ln + k f'() d = ln f() +k f() e f() f() d = e + k e f'()d = e + k a d =

Más detalles

ECUACIÓN DE CAUCHY-EULER 2013

ECUACIÓN DE CAUCHY-EULER 2013 ECUACIÓN DE CAUCHY-EULER 3 LA ECUACIÓN DE CAUCHY-EULER Se trata de una ecuación con coeficientes variables cua solución general siempre se puede epresar en términos de potencias, senos, cosenos, funciones

Más detalles

Métodos de integración

Métodos de integración Integración por partes Métodos de integración De la derivada del producto de dos funciones obtenemos la fórmula de la derivación por partes. (uu. vv) = uu vv + uu vv que se puede escribir dd(uu. vv) =

Más detalles

Universidad Nacional José María Arguedas Carrera Profesional de Administración de Empresas

Universidad Nacional José María Arguedas Carrera Profesional de Administración de Empresas Universidad Nacional José María Arguedas Carrera Profesional de Administración de Empresas Cuaderno de ejercicios INTEGRALES Lic. F.M. José Luis Estrada Pantía Andahuaylas - Perú 0 A: Yris Stephany E.

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

EL CÁLCULO DESARROLLA TU MENTE TRANSFORMA TU VIVIR

EL CÁLCULO DESARROLLA TU MENTE TRANSFORMA TU VIVIR Pág. UNIVERSIDAD ALONSO DE OJEDA FACULTAD DE INGENIERIA CIUDAD OJEDA - ZULIA Guia de Cálculo II EL CÁLCULO DESARROLLA TU MENTE TRANSFORMA TU VIVIR b (Disciplina + Esfuerzo + Consagración)dv = Profesionales

Más detalles

5.1 Primitiva de una función. Reglas básicas

5.1 Primitiva de una función. Reglas básicas Tema 5 Integración Indefinida 5.1 Primitiva de una función. Reglas básicas En este tema estudiaremos lo que podríamos llamar el problema inverso de la derivación, es decir, dada una función f hallar otra

Más detalles

INTEGRAL INDEFINIDA E INTEGRAL DEFINIDA. APLICACIONES

INTEGRAL INDEFINIDA E INTEGRAL DEFINIDA. APLICACIONES INTEGRAL INDEFINIDA E INTEGRAL DEFINIDA. APLICACIONES. a) Eplicar el concepto de función primitiva. b) Sea f () = e + 8, justificar si es primitiva de alguna de las siguientes funciones: g () = e + 8 h

Más detalles

Tema 9: Cálculo integral

Tema 9: Cálculo integral Tema 9: Cálculo integral. Introducción El matemático inglés Isaac Barrow (60-677) fue el precursor del cálculo de integrales definidas, enunciando la regla que lleva su nombre y que conecta la integral

Más detalles

MA1112 Secciones 01 y 04 Universidad Simón Bolívar Depto. de Matemáticas VERANO DE 2005 Puras y Aplicadas EJERCICIOS SOBRE INTEGRAL INDEFINIDA.

MA1112 Secciones 01 y 04 Universidad Simón Bolívar Depto. de Matemáticas VERANO DE 2005 Puras y Aplicadas EJERCICIOS SOBRE INTEGRAL INDEFINIDA. MA Secciones y 4 Depto. de Matemáticas VERANO DE 5 EJERCICIOS SOBRE INTEGRAL INDEFINIDA..- Eplique que diferencia hay entre los conceptos de "integral indefinida" y "primitiva". [nota : primitiva es sinónimo

Más detalles

REPASO DE CÁLCULO I INTEGRAL. Repaso General sobre Métodos de Integración Indefinida Guía Complementaria No.03

REPASO DE CÁLCULO I INTEGRAL. Repaso General sobre Métodos de Integración Indefinida Guía Complementaria No.03 Cálculo II c/geometría Analítica (MAT0), Secc.6 er Trimestre, er Semestre 06; er Parcial Documento Elaborado por: M.Sc. Ing. Julio César López Zerón CICH6 REPASO DE CÁLCULO I INTEGRAL Repaso General sobre

Más detalles

Unidad 2. Técnica de integración, Formas Indeterminadas e Integrales Impropias

Unidad 2. Técnica de integración, Formas Indeterminadas e Integrales Impropias Unidad Técnica de integración, Formas Indeterminadas e Integrales Impropias Gil Sandro Gómez // Unidad : Técnicas de In tegració n, Formas Ind etermi nadas e In tegrale s Impropias Contenido Introducción....

Más detalles

Universidad Icesi Departamento de Matemáticas y Estadística

Universidad Icesi Departamento de Matemáticas y Estadística Universidad Icesi Departamento de Matemáticas y Estadística Solución del tercer eamen parcial del curso Cálculo una variable Grupo: Uno Período: Inicial del año Prof: Rubén D. Nieto C. PUNTO. a. Después

Más detalles

2.4 Ecuaciones diferenciales de Bernoulli

2.4 Ecuaciones diferenciales de Bernoulli .4 Ecuaciones diferenciales de Bernoulli 3 Ejercicios.3. Ecuaciones diferenciales lineales. Soluciones en la página 4 Resolver las siguientes ecuaciones diferenciales lineales.. y 0 C 00y D 0.. x 0 0x

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO INTEGRACIÓN POR SUSTITUCIÓN

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO INTEGRACIÓN POR SUSTITUCIÓN UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO COLEGIO DE CIENCIAS Y HUMANIDADES PLANTEL VALLEJO ÁREA DE MATEMÁTICAS CÁLCULO DIFERENCIAL E INTEGRAL II INTEGRACIÓN POR SUSTITUCIÓN Las formulas de integración inmediatas

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Simplificando los cuadrados con las raíces y sumando términos semejantes y elevando al cuadrado nuevamente:

Simplificando los cuadrados con las raíces y sumando términos semejantes y elevando al cuadrado nuevamente: . Resolver la siguiente ecuación irracional 6 7 0 Solución: llevando el término con signo negativo al segundo miemro de la ecuación y elevando al cuadrado: 6 7 6 6 7 7 Simplificando los cuadrados con las

Más detalles

Problema de Valor Inicial (PVI):

Problema de Valor Inicial (PVI): Problema de Valor Inicial (PVI): Con frecuencia nos interesan problemas en los que se busca la solución y () de una ecuación diferencial de modo que y () satifaga condiciones adicionales impuestas a la

Más detalles

Universidad Diego Portales Segundo Semestre 2007 Facultad de Ingeniería

Universidad Diego Portales Segundo Semestre 2007 Facultad de Ingeniería Universidad Diego Portales Segundo Semestre 007 Facultad de Ingeniería Instituto de Ciencias Básicas Asignatura: Ecuaciones Diferenciales Laboratorio Nº Ecuaciones Diferenciales Eactas, Lineales de Primer

Más detalles

INTEGRACIÓN POR PARTES

INTEGRACIÓN POR PARTES INTEGRACIÓN POR PARTES Propósitos Reconocer que el método de integración por partes amplía las posibilidades de integrar productos de funciones y saber que se desprende de la derivada de un producto. Utilizar

Más detalles

5.1. Primitiva de una función. Reglas básicas

5.1. Primitiva de una función. Reglas básicas Tema 5 Integración Indefinida 5.1. Primitiva de una función. Reglas básicas En este tema estudiaremos lo que podríamos llamar el problema inverso de la derivación, es decir, dada una función f hallar otra

Más detalles

2 Métodos de solución de ED de primer orden

2 Métodos de solución de ED de primer orden CAPÍTULO Métodos de solución de ED de primer orden.4 Ecuaciones diferenciales de Bernoulli Una ecuación diferencial ordinaria de primer orden de la forma a 0.x/y 0 C a.x/y D f.x/y r ; con r 0; : se denomina

Más detalles

Prof. J. Contreras S. Prof. C. del Pino O. Método de cambio de variable. U de Talca

Prof. J. Contreras S. Prof. C. del Pino O. Método de cambio de variable. U de Talca Sesión Temas Método de sustitución o cambio de variable.. Introducción Capacidades Conocer y comprender el método de cambio de variable. Calcular integrales indefinidas que se pueden obtener aplicando

Más detalles

Tema 10: Cálculo integral

Tema 10: Cálculo integral Tema 0: Cálculo integral. Introducción El matemático inglés Isaac Barrow (60-677) fue el precursor del cálculo de integrales definidas, enunciando la regla que lleva su nombre y que conecta la integral

Más detalles

Cálculo de Primitivas

Cálculo de Primitivas . Primitivas de una función Sea I un intervalo y f : I IR. Se dice que f tiene tiene una primitiva en I si existe una función G : I IR, continua en I, derivable en el interior de I y verificando que G

Más detalles

Tema 10: Cálculo Integral

Tema 10: Cálculo Integral . Introducción Tema 0: Cálculo Integral El matemático inglés Isaac Barrow (60-677) fue el precursor del cálculo de integrales definidas, enunciando la regla que lleva su nombre y que conecta la integral

Más detalles

Métodos de integración

Métodos de integración Teóricas de Análisis Matemático (8) - Práctica 9 - Métodos de integración Práctica 9 - Parte Métodos de integración Esta parte de la materia está dedicada a estudiar distintos métodos que nos resultarán

Más detalles

Integral indefinida Matemáticas I 1 INTEGRAL INDEFINIDA. Cuando utilizamos la notación diferencial, teniendo en cuenta que

Integral indefinida Matemáticas I 1 INTEGRAL INDEFINIDA. Cuando utilizamos la notación diferencial, teniendo en cuenta que Primitiva. Integral indefinida INTEGRAL INDEFINIDA Sean f y F dos funciones reales definidas en un mismo dominio. La función F es una función primitiva de f, o simplemente primitiva de f, si F tiene por

Más detalles

CÁLCULO DE PRIMITIVAS

CÁLCULO DE PRIMITIVAS CÁLCULO DE PRIMITIVAS David Ariza-Ruiz Departamento de Análisis Matemático Seminario I 7 de noviembre de 202 (Universidad de Sevilla) David Ariza Ruiz 7 de noviembre de 202 / 42 Definición y propiedades

Más detalles

du = ln u + NOTA: En las integrales 11, 12, 17 y 18 α significa la raíz cuadrada positiva de α 2. Escribimos

du = ln u + NOTA: En las integrales 11, 12, 17 y 18 α significa la raíz cuadrada positiva de α 2. Escribimos CÁLCULO I CÁLCULO DE PRIMITIVAS: Integrales Inmediatas 3 5 7 9 3 5 7 u m du = um+ + C, m m + du = ln u + C u u du = u + C 4 a u du = au + C, a > 0, a ln a sen u du = cos u + C 6 cos u du = sen u + C cos

Más detalles

Matemáticas Empresariales I. Cálculo de Primitivas

Matemáticas Empresariales I. Cálculo de Primitivas Matemáticas Empresariales I Lección 7 Cálculo de Primitivas Manuel León Navarro Colegio Universitario Cardenal Cisneros M. León Matemáticas Empresariales I 1 / 45 Concepto de Integral Indefinida Definición

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 5 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Unidad 1 Integrales Indefinidas 1.1 Diferenciales Aproximaciones Anti derivada

Unidad 1 Integrales Indefinidas 1.1 Diferenciales Aproximaciones Anti derivada Unidad 1 Integrales Indefinidas 1.1 Diferenciales 1.1.1 Aproximaciones 1.1. Anti derivada 1. Integración 1..1 Formulas 1.. Integrales Inmediatas 1..3 Cambio de variable 1.3 Métodos de integración 1.3.1

Más detalles

1. Para la función f(x) = x sen x, halle su polinomio de Taylor de orden 2 en a = 0. x x3 3! + x5

1. Para la función f(x) = x sen x, halle su polinomio de Taylor de orden 2 en a = 0. x x3 3! + x5 Cálculo I (Grado en Ingeniería Informática Problemas resueltos, -, -4 y 4-5 (tercera parte Preparado por los profesores de la asignatura: Pablo Fernández, Dragan Vukotić, Luis Guijarro (coordinadores,

Más detalles

1 Repaso. Cálculo I. 1 o Matemáticas. Curso 2002/2003. Cálculo de Primitivas. (5x 6) f(x) 1 2 f (x) dx, que es inmediata: + 1 x 1

1 Repaso. Cálculo I. 1 o Matemáticas. Curso 2002/2003. Cálculo de Primitivas. (5x 6) f(x) 1 2 f (x) dx, que es inmediata: + 1 x 1 Cálculo I. o Matemáticas. Curso /. Cálculo de Primitivas Repaso (5 6) d = 5 (5 6) 5 d = 5 (5 6) + C. Nota: Si f() = 5 6 su derivada es 5. En la primera igualdad multiplicamos y dividimos por 5. Así tenemos

Más detalles

Ejercicios Departamental de marzo del 2016

Ejercicios Departamental de marzo del 2016 Ejercicios Departamental 06 Ciro Fabián Bermúez Márquez 7 de marzo del 06 El siguiente documento tiene la finalidad de revisar los ejercicios del eamen departamental de cálculo integral que se llevo acabo

Más detalles

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN EJERCICIOS RESUELTOS Calcula una función real f : que cumple las condiciones siguientes: f (0) = 5, f (0) =, f (0) = 0 y f () = + Como f () = +, integremos esta

Más detalles

Cálculo de primitivas

Cálculo de primitivas 73 Fundamentos de Matemáticas : Cálculo integral en R 4. Primitiva de una función Capítulo 4 Cálculo de primitivas Definición 6.- Diremos ue la función F continua en [a, b], es una primitiva de la función

Más detalles

Cálculo Diferencial e Integral - Integración por partes. Prof. Farith J. Briceño N.

Cálculo Diferencial e Integral - Integración por partes. Prof. Farith J. Briceño N. Cálculo Diferencial e Integral - Integración por partes. Prof. Farith J. Briceño N. Objetivos a cubrir Integración : Integración por partes. Ejemplo : Integre ln d Código : MAT-CDI.6 Ejercicios resueltos

Más detalles

1. Para la función f(x) = x sen x, halle su polinomio de Taylor de orden 2 en a = 0. x x3 3!, x x3

1. Para la función f(x) = x sen x, halle su polinomio de Taylor de orden 2 en a = 0. x x3 3!, x x3 Cálculo I (Grado en Ingeniería Informática) Problemas resueltos, - y -4 (tercera parte) Preparado por los profesores de la asignatura: Pablo Fernández, Dragan Vukotić (coordinadores), Luis Guijarro, Kazaros

Más detalles

tiene por límite L cuando la variable independiente x tiende a x , y se nota por L, cuando al acercarnos todo lo que queramos a x lím( x

tiene por límite L cuando la variable independiente x tiende a x , y se nota por L, cuando al acercarnos todo lo que queramos a x lím( x UNIDAD 8: LÍMITES DE FUNCIONES. CONTINUIDAD. LÍMITE DE UNA FUNCIÓN Diremos que una función y f () tiene por ite L cuando la variable independiente tiende a, y se nota por f ( ) L, cuando al acercarnos

Más detalles

UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN. Tema: TÉCNICAS DE INTEGRACIÓN

UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN. Tema: TÉCNICAS DE INTEGRACIÓN UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN Tema: TÉCNICAS DE INTEGRACIÓN TÉCNICAS DE INTEGRACIÓN En matemáticas, cada tipo de problema sugiere un tipo de solución. Para calcular la derivada

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Septiembre 2013 MATEMÁTICAS II. CÓDIGO 158

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Septiembre 2013 MATEMÁTICAS II. CÓDIGO 158 PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Septiembre 2013 MATEMÁTICAS II. CÓDIGO 158 OBSERVACIONES IMPORTANTES: El alumno deberá responder a todas las cuestiones de una de las

Más detalles

4.2 Reducción de orden

4.2 Reducción de orden 4. educción de orden 87 Un conjunto de funciones f y ; y g que cumple con la condición anterior se llama un conjunto fundamental de soluciones. Es decir, un conjunto f y ; y g será un conjunto fundamental

Más detalles

CÁLCULO DE PRIMITIVAS

CÁLCULO DE PRIMITIVAS 2 CÁLCULO DE PRIMITIVAS REFLEXIONA Y RESUELVE Concepto de primitiva NÚMEROS Y POTENCIAS SENCILLAS a) b) 2 c) 2 a) 2x b) x c) 3x 3 a) 7x b) c) x 4 a) 3x2 b) x2 c) 2x2 5 a) 6x 5 b) x5 c) 3x5 x 3 2 2 POTENCIAS

Más detalles

SISTEMAS DE ECUACIONES. Un sistema de ecuaciones no lineal es aquel en el que al menos una de las dos ecuaciones no es de primer grado.

SISTEMAS DE ECUACIONES. Un sistema de ecuaciones no lineal es aquel en el que al menos una de las dos ecuaciones no es de primer grado. 1. SISTEMAS NO LINEALES Un sistema de ecuaciones no lineal es aquel en el que al menos una de las dos ecuaciones no es de primer grado. 3 + = 5 = 3 = + 1 = 3 = 1 + = 5 Resolución: Para resolver un sistema

Más detalles

Integración por fracciones parciales

Integración por fracciones parciales Integración por fracciones parciales El cociente de dos polinomios se denomina función racional. La derivación de una función racional conduce a una nueva función racional que puede obtenerse por la regla

Más detalles

Problemas resueltos del Boletín 4

Problemas resueltos del Boletín 4 Boletines de problemas de Matemáticas II Problemas resueltos del Boletín 4 Problema 1. Resolver el siguiente sistema de ecuaciones diferenciales: { y = 1 z, z = 1 } y Solución: Lo transformamos como sigue:

Más detalles

INTEGRACIÓN POR PARTES Y POR DESCOMPOSICIÓN EN FRACCIONES SIMPLES

INTEGRACIÓN POR PARTES Y POR DESCOMPOSICIÓN EN FRACCIONES SIMPLES INTEGRACIÓN POR PARTES Y POR DESCOMPOSICIÓN EN FRACCIONES SIMPLES INTEGRACIÓN POR PARTES Este método permite resolver un gran número de integrales no inmediatas. 1. Sean u y v dos funciones dependientes

Más detalles

Técnicas de Integración

Técnicas de Integración Técnicas de Integración Índice Capítulo único: Técnicas de Integración. Integración Directa....................................... Integración por Sustitución.................................. Integración

Más detalles

Guía de Ejercicios: Métodos de Integración

Guía de Ejercicios: Métodos de Integración Guía de Ejercicios: Métodos de Integración Área Matemática Resultados de aprendizaje Resolver integrales usando diferentes métodos de integración Contenidos 1. Método de sustitución simple 2. Método de

Más detalles

Antiderivada o Primitiva

Antiderivada o Primitiva Octubre 2013 En esta Presentación... En esta Presentación veremos: Definición de Antiderivada En esta Presentación... En esta Presentación veremos: Definición de Antiderivada Ejemplos En esta Presentación...

Más detalles