Sistema de ecuaciones algebraicas. Descomposición LU.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Sistema de ecuaciones algebraicas. Descomposición LU."

Transcripción

1 Sistema de ecuaciones algebraicas. Descomposición LU. Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Correo: web: Universidad: ITESM CEM

2 Tópicos 1 Introducción 2 Descomposición LU 3 Eliminación de Gauss usando la descomposición LU 4 Programas MATLAB A=LU LU Gauss Simple LU Gauss con Pivoteo Parcial

3 Tópicos 1 Introducción 2 Descomposición LU 3 Eliminación de Gauss usando la descomposición LU 4 Programas MATLAB A=LU LU Gauss Simple LU Gauss con Pivoteo Parcial

4 Sistemas de ecuaciones algebraicos Un sistema de ecuaciones lo podemos representar en forma matricial como: A X = B, Existen problemas para los cuales se necesitan evaluar muchos vectores B para una sola matriz A, La eliminación de Gauss como ha sido presentada, sería muy ineficiente para resolver estos problemas.

5 Técnica de descomposición LU El paso de eliminación se puede formular de tal manera que involucre sólo operaciones con la matriz de los coeficiente A, A = LU, donde L es una matriz triangular inferior (Lower) y U es una matriz triangular superior (Upper), Mostraremos como se puede implementar la eliminación de Gauss como una descomposición LU.

6 Tópicos 1 Introducción 2 Descomposición LU 3 Eliminación de Gauss usando la descomposición LU 4 Programas MATLAB A=LU LU Gauss Simple LU Gauss con Pivoteo Parcial

7 Revisión de la descomposición LU Dado el sistema: se puede reordenar como: A X = B, A X B = 0. Supongamos que podemos expresarlo como un sistema triangular superior: u 11 u 12 u 13 0 u 22 u u 33 x 1 x 2 x 3 = Esto es similar a la manipulación que ocurre con la eliminación de Gauss. d 1 d 2 d 3

8 Revisión de la descomposición LU En notación matricial: U X D = 0, También se podría obtener una matriz triangular inferior con números 1 en la diagonal: L = l l 31 l 32 1 Se demuestra que si pre-multiplicamos la matriz L al miembro izquierdo de la ecuación matricial anterior llegamos a: L (U X D) = A X B L U X L D = A X B. Por tanto, L U = A, L D = B.

9 Revisión de la descomposición LU Una estrategia en dos pasos para resolver el sistema de ecuaciones es: Paso de descomposición La matriz A se descompone en las matrices triangulares inferior L y superior U, Paso de sustitución L y U se usan para determinar una solución X para una B, Primero: Se determina el vector D usando la expresión L D = B (sustitución hacia adelante), i 1 d i = b i l ij d j j=1 para i = 2,, n

10 Revisión de la descomposición LU Paso de sustitución L y U se usan para determinar una solución X para una B, Segundo: El resultado anterior se sustituye en la expresión U X D = 0 (sustitución hacia atrás), x n = d n u nn x i = d i n j=i+1 u ij x j u ii, para i = n 1,, 2, 1

11 Tópicos 1 Introducción 2 Descomposición LU 3 Eliminación de Gauss usando la descomposición LU 4 Programas MATLAB A=LU LU Gauss Simple LU Gauss con Pivoteo Parcial

12 Eliminación de Gauss Dado el sistema: a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 x 1 x 2 x 3 = La eliminación de Gauss conduce a una matriz triangular superior U: a 11 a 12 a 13 U = 0 a (1) 22 a (1) a (2) 33 En la creación de la matriz triangular superior U, también se crea la matriz triangular inferior L. b 1 b 2 b 3

13 Eliminación de Gauss a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 x 1 x 2 x 3 = Recordemos los pasos de la eliminación de Gauss para el sistema de 3 ecuaciones: 1 Multiplicar la fila 1 por el factor: a 21 a 11 b 1 b 2 b 3 = f 21 y restar el resultado a la fila 2 para eliminar a 21 2 Multiplicar la fila 1 por el factor: a 31 a 11 = f 31 y restar el resultado a la fila 3 para eliminar a 31 3 Multiplicar la fila 2 modificada por el factor: a(1) 32 a (1) 22 restar el resultado a la fila 3 para eliminar a (1) 32 = f 32 y

14 Eliminación de Gauss Finalmente, donde U = A = L U a 11 a 12 a 13 0 a (1) 22 a (1) a (2) 33 L = f f 31 f 32 1

15 Tópicos 1 Introducción 2 Descomposición LU 3 Eliminación de Gauss usando la descomposición LU 4 Programas MATLAB A=LU LU Gauss Simple LU Gauss con Pivoteo Parcial

16 A=LU Programa MATLAB function lugaussv1 (A) [m, n ] = size (A) ; i f m =n, error ( Matriz A debe ser cuadrada ) ; U = A ; for j =1:n L ( j, j ) =1.0; % Eliminacion hacia adelante for k = 1: n 1 for i = k +1:n f a c t o r = U( i, k ) /U( k, k ) ; U( i, k : n ) = U( i, k : n ) f a c t o r U( k, k : n ) ; L ( i, k ) = f a c t o r ; disp ( Matriz U ) ; U disp ( Matriz L ) ; L disp ( Matriz L U ) ; L U

17 LU Gauss Simple Programa MATLAB function lugaussv2 (A, B) [m, n ] = size (A) ; i f m =n, error ( Matriz A debe ser cuadrada ) ; U = A ; for j =1:n L ( j, j ) =1.0; % Paso 1: Descomposicion LU >Eliminacion hacia adelante for k = 1: n 1 for i = k +1:n f a c t o r = U( i, k ) /U( k, k ) ; U( i, k : n ) = U( i, k : n ) f a c t o r U( k, k : n ) ; L ( i, k ) = f a c t o r ; U L % Paso 2: Determinacion del vector D >S u s t i t u c i o n hacia adelante D = zeros ( n, 1 ) ; D( 1 ) =B( 1 ) ; Salida1 =[ D1, =, num2str (D( 1 ) ) ] ; disp ( Salida1 ) for i = 2: n D( i ) = B( i ) L ( i, 1 : i 1) D( 1 : i 1) ; Salida2 =[ D, num2str ( i ), =, num2str (D( i ) ) ] ; disp ( Salida2 ) disp ( ) ; % Paso 3: Solucion f i n a l >S u s t i t u c i o n hacia a t r a s x = zeros ( n, 1 ) ;

18 LU Gauss Simple Programa MATLAB % Paso 3: Solucion f i n a l >S u s t i t u c i o n hacia a t r a s x = zeros ( n, 1 ) ; x ( n ) = D( n ) /U( n, n ) ; Salida3 =[ x, num2str ( n ), =, num2str ( x ( n ) ) ] ; disp ( Salida3 ) for i = n 1: 1:1 x ( i ) = (D( i ) U( i, i +1:n ) x ( i +1:n ) ) /U( i, i ) ; Salida4 =[ x, num2str ( i ), =, num2str ( x ( i ) ) ] ; disp ( Salida4 )

19 LU Gauss Simple Problema 3 x x x 3 = x x x 3 = x x x 3 = 71.4

20 LU Gauss Simple Problema 2 x x 3 = 8 4 x x x 3 = 3 2 x 1 + x x 3 = 5

21 LU Gauss con Pivoteo Parcial Programa MATLAB function lugaussv3 (A, B) [m, n ] = size (A) ; i f m =n, error ( Matriz A debe ser cuadrada ) ; U = A ; L = zeros ( n, n ) ; % Paso 1: Descomposicion LU >Eliminacion hacia adelante for k = 1: n 1 % Pivoteo p a r c i a l [ mayor, i ]=max( abs (U( k : n, k ) ) ) ; i p = i +k 1; i f i p = k U ( [ k, i p ], : ) =U ( [ ip, k ], : ) ; B ( [ k, i p ] ) =B ( [ ip, k ] ) ; L ( [ k, i p ], : ) =L ( [ ip, k ], : ) ; for i = k +1:n f a c t o r = U( i, k ) /U( k, k ) ; U( i, k : n ) = U( i, k : n ) f a c t o r U( k, k : n ) ; L ( i, k ) = f a c t o r ; for j =1:n L ( j, j ) =1.0; L U % Paso 2: Determinacion del vector D >S u s t i t u c i o n hacia adelante D = zeros ( n, 1 ) ; D( 1 ) =B( 1 ) ; Salida1 =[ D1, =, num2str (D( 1 ) ) ] ;

22 LU Gauss con Pivoteo Parcial Programa MATLAB % Paso 2: Determinacion del vector D >S u s t i t u c i o n hacia adelante D = zeros ( n, 1 ) ; D( 1 ) =B( 1 ) ; Salida1 =[ D1, =, num2str (D( 1 ) ) ] ; disp ( Salida1 ) for i = 2: n D( i ) = B( i ) L ( i, 1 : i 1) D( 1 : i 1) ; Salida2 =[ D, num2str ( i ), =, num2str (D( i ) ) ] ; disp ( Salida2 ) disp ( ) ; % Paso 3: Solucion f i n a l >S u s t i t u c i ó n hacia a t r a s x = zeros ( n, 1 ) ; x ( n ) = D( n ) /U( n, n ) ; Salida3 =[ x, num2str ( n ), =, num2str ( x ( n ) ) ] ; disp ( Salida3 ) for i = n 1: 1:1 x ( i ) = (D( i ) U( i, i +1:n ) x ( i +1:n ) ) /U( i, i ) ; Salida4 =[ x, num2str ( i ), =, num2str ( x ( i ) ) ] ; disp ( Salida4 )

Sistema de ecuaciones algebraicas. Eliminación de Gauss.

Sistema de ecuaciones algebraicas. Eliminación de Gauss. Sistema de ecuaciones algebraicas. Eliminación de Gauss. Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Correo: j.a.otero@itesm.mx web: http://metodosnumericoscem.weebly.com

Más detalles

Sistema de ecuaciones algebraicas. Eliminación de Gauss.

Sistema de ecuaciones algebraicas. Eliminación de Gauss. Sistema de ecuaciones algebraicas. Eliminación de Gauss. Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Correo: j.a.otero@itesm.mx web: http://metodosnumericoscem.weebly.com

Más detalles

Resolución de Sistema de Ecuaciones Lineales

Resolución de Sistema de Ecuaciones Lineales Resolución de Sistema de Ecuaciones Lineales Hermes Pantoja Carhuavilca Facultad de Ingeniería Mecanica Universidad Nacional de Ingenieria Métodos Numérico Hermes Pantoja Carhuavilca 1 de 29 CONTENIDO

Más detalles

SEL - Métodos Directos

SEL - Métodos Directos Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería Métodos Numéricos Contenido 1 Métodos Directos Generalidades sobre Métodos Directos Eliminación Gaussiana Pivoteo Factorización LU Generalidades

Más detalles

Ajuste de curvas. Interpolación.

Ajuste de curvas. Interpolación. Ajuste de curvas. Interpolación. Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Correo: j.a.otero@itesm.mx web: http://metodosnumericoscem.weebly.com Universidad: ITESM CEM

Más detalles

Ajuste de curvas. Interpolación.

Ajuste de curvas. Interpolación. Ajuste de curvas. Interpolación. Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Correo: j.a.otero@itesm.mx web: http://metodosnumericoscem.weebly.com Universidad: ITESM CEM

Más detalles

SEL Métodos Directos

SEL Métodos Directos SEL Pantoja Carhuavilca Métodos Numérico Agenda métodos directos Encuentra una solución en un número finito de operaciones(en ausencia de errores de redondeo) transformando el sistema en un sistema equivalente

Más detalles

Lección 10. Eliminación Gaussiana

Lección 10. Eliminación Gaussiana Lección 10. Eliminación Gaussiana MIGUEL ANGEL UH ZAPATA 1 Análisis Numérico I Facultad de Matemáticas, UADY Septiembre 2014 1 Centro de Investigación en Matemáticas, Unidad Mérida. En esta lección analizaremos

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES APLICACIONES COMPUTACIONALES INGENIERÍA EJECUCIÓN MECÁNICA SISTEMAS DE ECUACIONES LINEALES REGLA DE CRAMER Esta regla establece que cada incógnita de un sistema de ecuaciones lineales algebraicas puede

Más detalles

Dr. Alonso Ramírez Manzanares CIMAT A.C. cimat.mx web: alram/met_num/

Dr. Alonso Ramírez Manzanares CIMAT A.C.   cimat.mx web:   alram/met_num/ Clase No. 4 (Parte 2): MAT 251 Factorización LU Dr. Alonso Ramírez Manzanares CIMAT A.C. e-mail: alram@ cimat.mx web: http://www.cimat.mx/ alram/met_num/ Dr. Joaquín Peña Acevedo CIMAT A.C. e-mail: joaquin@

Más detalles

Sistema de ecuaciones algebraicas

Sistema de ecuaciones algebraicas Sistema de ecuaciones algebraicas Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Correo: j.a.otero@itesm.mx web: http://metodosnumericoscem.weebly.com Universidad: ITESM CEM

Más detalles

Introducción a Matrices y Eliminación Gaussiana

Introducción a Matrices y Eliminación Gaussiana Introducción a Matrices y Eliminación Gaussiana 1 Sistema de Ecuaciones Matricial 2 Definición Una matriz es un arreglo rectangular de valores llamados elementos, organizados por filas y columnas. Ejemplo:

Más detalles

Aplicar este algoritmo para resolver el sistema de ecuaciones: º «« º ««

Aplicar este algoritmo para resolver el sistema de ecuaciones: º «« º «« Introducción al Cálculo Numérico y Programación 1 MÓDULO 8: SISTEMA DE ECUACIONES LINEALES. A- MÉTODOS DIRECTOS 6LVWHPDVIiFLOHVGHUHVROYHU Ejercicio 1: Escribe una función MATLAB llamada =sp(a,b) que admita

Más detalles

Programación MATLAB: Programas y Funciones.

Programación MATLAB: Programas y Funciones. Programación MATLAB: Programas y Funciones. Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Correo: j.a.otero@itesm.mx web: http://metodosnumericoscem.weebly.com Universidad:

Más detalles

Programación MATLAB: Programas y Funciones.

Programación MATLAB: Programas y Funciones. Programación MATLAB: Programas y Funciones. Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Correo: j.a.otero@itesm.mx web: http://metodosnumericoscem.weebly.com Universidad:

Más detalles

RESOLUCIÓN DE SISTEMAS LINEALES

RESOLUCIÓN DE SISTEMAS LINEALES Contenido 1 Métodos de Solución Contenido Métodos de Solución 1 Métodos de Solución Desarrollamos el algoritmo de sustitución regresiva, con el que podremos resolver un sistema de ecuaciones lineales cuya

Más detalles

Programación MATLAB: Ficheros de Comandos y Gráficos.

Programación MATLAB: Ficheros de Comandos y Gráficos. Programación MATLAB: Ficheros de Comandos y Gráficos. Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Correo: j.a.otero@itesm.mx web: http://metodosnumericoscem.weebly.com

Más detalles

Programación MATLAB: Ecuaciones, polinomios, regresión e interpolación.

Programación MATLAB: Ecuaciones, polinomios, regresión e interpolación. Programación MATLAB: Ecuaciones, polinomios, regresión e interpolación. Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Correo: j.a.otero@itesm.mx web: http://metodosnumericoscem.weebly.com

Más detalles

Gustavo Rodríguez Gómez. Agosto Dicembre 2011

Gustavo Rodríguez Gómez. Agosto Dicembre 2011 Computación Científica Gustavo Rodríguez Gómez INAOE Agosto Dicembre 2011 1 / 46 Capítulo II 2 / 46 1 Introducción Métodos Directos Sistemas Triangulares Sustitución Hacia Atrás Invertibilidad de una Matriz

Más detalles

Simulacion Numerica / Metodos Numericos. Unidad III Solución de Ecuaciones Lineales. Ing. Deny González Msc.

Simulacion Numerica / Metodos Numericos. Unidad III Solución de Ecuaciones Lineales. Ing. Deny González Msc. Unidad III Solución de Ecuaciones Lineales Contenido Introducción. Métodos Alternativos para Pequeños Sistemas Método Grafico Regla de Cramer Eliminación de Incógnitas. Eliminación de Gauss Simple Descomposición

Más detalles

Curso de Métodos Numéricos. Introducción.

Curso de Métodos Numéricos. Introducción. Curso de Métodos Numéricos. Introducción. Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Correo: j.a.otero@itesm.mx web: http://metodosnumericoscem.weebly.com Universidad:

Más detalles

Lección 11. Eliminación Gaussiana con Pivoteo y Matrices de Banda

Lección 11. Eliminación Gaussiana con Pivoteo y Matrices de Banda Lección 11. Eliminación Gaussiana con Pivoteo y Matrices de Banda MIGUEL ANGEL UH ZAPATA 1 Análisis Numérico I Facultad de Matemáticas, UADY Septiembre de 2014 1 Centro de Investigación en Matemáticas,

Más detalles

Programación MATLAB: Ecuaciones, polinomios, regresión e interpolación.

Programación MATLAB: Ecuaciones, polinomios, regresión e interpolación. Programación MATLAB: Ecuaciones, polinomios, regresión e interpolación. Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Correo: j.a.otero@itesm.mx web: http://metodosnumericoscem.weebly.com

Más detalles

Sistemas de Ecuaciones Lineales

Sistemas de Ecuaciones Lineales Sistemas de Ecuaciones Lineales José Vicente Romero Bauset ETSIT-curso 2009/200 José Vicente Romero Bauset Tema 2.- Sistemas de Ecuaciones Lineales Sistema de ecuaciones lineales Un sistema de ecuaciones

Más detalles

Programación: Sistemas unitriangulares inferiores

Programación: Sistemas unitriangulares inferiores Programación: Sistemas unitriangulares inferiores Objetivos. Programar en el lenguaje de MATLAB el método de la sustitución hacia adelante para resolver sistemas de ecuaciones lineales con matrices unitriangulares

Más detalles

Dr. Alonso Ramírez Manzanares CIMAT A.C. cimat.mx web: alram/met_num/

Dr. Alonso Ramírez Manzanares CIMAT A.C.   cimat.mx web:  alram/met_num/ Clase No 4: MAT 251 Factorización LU Dr Alonso Ramírez Manzanares CIMAT AC e-mail: alram@ cimatmx web: http://wwwcimatmx/ alram/met_num/ Dr Joaquín Peña Acevedo CIMAT AC e-mail: joaquin@ cimatmx Joaquín

Más detalles

Curso de Métodos Numéricos. Introducción.

Curso de Métodos Numéricos. Introducción. Curso de Métodos Numéricos. Introducción. Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Correo: j.a.otero@itesm.mx Universidad: ITESM CEM Tópicos 1 Bienvenidos 2 Web del

Más detalles

Cap 3: Álgebra lineal

Cap 3: Álgebra lineal Universidad Nacional de Ingeniería Facultad de Ciencias Cálculo Numérico 1 IF321 Cap 3: Álgebra lineal Prof: J. Solano 2018-I INTRODUCCION Aqui trabjaremos con operaciones basicas con matrices, tales como

Más detalles

Solución de sistemas de ecuaciones lineales: Descomposición LU

Solución de sistemas de ecuaciones lineales: Descomposición LU Solución de sistemas de ecuaciones lineales: Descomposición LU Ing. Jesús Javier Cortés Rosas M. en A. Miguel Eduardo González Cárdenas M. en A. Víctor D. Pinilla Morán Facultad de Ingeniería, UNAM * 2006

Más detalles

Clase. 1. Resolución de sistemas de ecuaciones lineales: preliminares

Clase. 1. Resolución de sistemas de ecuaciones lineales: preliminares Clase 1. Resolución de sistemas de ecuaciones lineales: preliminares 2. Método directo y exacto: Gauss 3. Método directo y exacto (II): descomposición LU 4. Métodos indirectos: Jacobi, Gauss-Seidel 2 Sistemas

Más detalles

Programa EUROPA Ayuda a la Mejora en el Aprendizaje Matemáticas Cuarta sesión

Programa EUROPA Ayuda a la Mejora en el Aprendizaje Matemáticas Cuarta sesión 1/26 Programa EUROPA Ayuda a la Mejora en el Aprendizaje Matemáticas Cuarta sesión Ramón Esteban y Antonio Pastor Índice 1 Álgebra 3 Sistemas de ecuaciones lineales................ 3 Métodos conocidos...................

Más detalles

Raíces de ecuaciones no lineales

Raíces de ecuaciones no lineales Raíces de ecuaciones no lineales Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Correo: j.a.otero@itesm.mx web: http://metodosnumericoscem.weebly.com Universidad: ITESM CEM

Más detalles

ICI3140 Métodos Numéricos. Profesor : Dr. Héctor Allende-Cid

ICI3140 Métodos Numéricos. Profesor : Dr. Héctor Allende-Cid ICI3140 Métodos Numéricos Profesor : Dr. Héctor Allende-Cid e-mail : hector.allende@ucv.cl Proyecto (Recordatorio) Tópicos: Numerical Optimization Mínimos Cuadrados Numerical Linear Algebra: SVD QR NMF

Más detalles

Curso de Métodos Numéricos. Introducción.

Curso de Métodos Numéricos. Introducción. Curso de Métodos Numéricos. Introducción. Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Correo: j.a.otero@itesm.mx Universidad: ITESM CEM Tópicos 1 Bienvenidos 2 Web del

Más detalles

Universidad Nacional de Ingeniería Facultad de Ciencias. Física Computacional CC063. Algebra Lineal. Prof: J. Solano 2012-I

Universidad Nacional de Ingeniería Facultad de Ciencias. Física Computacional CC063. Algebra Lineal. Prof: J. Solano 2012-I Universidad Nacional de Ingeniería Facultad de Ciencias Física Computacional CC063 Algebra Lineal Prof: J. Solano 2012-I Introduccion Aqui trabjaremos con operaciones basicas con matrices, tales como solucion

Más detalles

Curso de Métodos Numéricos. Errores

Curso de Métodos Numéricos. Errores Curso de Métodos Numéricos. Errores Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Correo: j.a.otero@itesm.mx web: http://metodosnumericoscem.weebly.com Universidad: ITESM

Más detalles

Matrices. Primeras definiciones

Matrices. Primeras definiciones Primeras definiciones Una matriz es un conjunto de elementos números ordenado en filas y columnas. En general una matriz se nombra con una letra mayúscula y a sus elementos con letras minúsculas indicando

Más detalles

Curso de Métodos Numéricos. Errores

Curso de Métodos Numéricos. Errores Curso de Métodos Numéricos. Errores Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Correo: j.a.otero@itesm.mx web: http://metodosnumericoscem.weebly.com Universidad: ITESM

Más detalles

Raíces de ecuaciones no lineales

Raíces de ecuaciones no lineales Raíces de ecuaciones no lineales Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Correo: j.a.otero@itesm.mx web: http://metodosnumericoscem.weebly.com Universidad: ITESM CEM

Más detalles

Matemática Superior Aplicada Descomposición PLU

Matemática Superior Aplicada Descomposición PLU Matemática Superior Aplicada Descomposición PLU Prof.: Dr. Alejandro S. M. Santa Cruz J.T.P.: Ing. Juan Ignacio Manassaldi Aux. 1 ra : Ing. Juan Pablo Camponovo Aux. 2 ra : Sr. Alejandro Jesús Ladreyt

Más detalles

Primero se triangulariza la matriz: Multiplicando la primera fila por (-1/3) y sumando a la segunda fila: ( ) ( )=( ) ( ) ( )

Primero se triangulariza la matriz: Multiplicando la primera fila por (-1/3) y sumando a la segunda fila: ( ) ( )=( ) ( ) ( ) MAT 115 B EJERCICIOS RESUELTOS Resolver el siguiente sistema de ecuaciones: a) Por el método de eliminación de Gauss La matriz aumentada del sistema es: 3 2 6 1 5 Primero se triangulariza la matriz: Multiplicando

Más detalles

Matrices y Sistemas Lineales

Matrices y Sistemas Lineales Matrices y Sistemas Lineales Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza Matrices sobre IR ó C. Definición Dado un conjunto K (IR ó C) y dos conjuntos finitos de índices I = {,, m} J

Más detalles

Departamento de Ecuaciones Diferenciales y Análisis Numérico. CÁLCULO NUMÉRICO I (Tema 3 - Relación 2)

Departamento de Ecuaciones Diferenciales y Análisis Numérico. CÁLCULO NUMÉRICO I (Tema 3 - Relación 2) CÁLCULO NUMÉRICO I (Tema - Relación 2) 5 Resolver mediante el método de Gauss los siguientes sistemas de ecuaciones. 2x 2 + x = 0 2x + 2x 2 + x + 2x = 2 x x 2 + x = 7 6x + x 2 6x 5x = 6. x + x 2 x = x

Más detalles

Ecuaciones diferenciales ordinarias

Ecuaciones diferenciales ordinarias Ecuaciones diferenciales ordinarias Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Correo: j.a.otero@itesm.mx web: http://metodosnumericoscem.weebly.com Universidad: ITESM

Más detalles

Operaciones matemáticas con arreglos

Operaciones matemáticas con arreglos Operaciones matemáticas con arreglos Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Correo: j.a.otero@itesm.mx web: http://metodosnumericoscem.weebly.com Universidad: ITESM

Más detalles

Agosto-Diciembre 2017 Dr. Servando López Aguayo

Agosto-Diciembre 2017 Dr. Servando López Aguayo Agosto-Diciembre 2017 Dr. Servando López Aguayo En este capítulo Tema simple : resolución de sistemas de ecuaciones lineales. Alguien valiente: Cuál es la diferencia entre sistemas lineales y sistemas

Más detalles

Procedimiento para encontrar la inversa de una matriz cuadrada (Método de Gauss-Jordan).

Procedimiento para encontrar la inversa de una matriz cuadrada (Método de Gauss-Jordan). Ejemplo 19: Demuestre que la matriz A es invertible y escríbala como un producto de matrices elementales. Solución: Para resolver el problema, se reduce A a I y se registran las operaciones elementales

Más detalles

Matrices y sistemas lineales

Matrices y sistemas lineales Matrices y sistemas lineales Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza Matrices elementales En esta sección vamos a crear funciones en MATLAB que nos permitan construir matrices elementales.

Más detalles

OCW-V.Muto Eliminación Gaussiana y sustitución hacia atrás Cap. XIV CAPITULO XIV. ELIMINACION GAUSSIANA Y SUSTITUCION HACIA ATRAS

OCW-V.Muto Eliminación Gaussiana y sustitución hacia atrás Cap. XIV CAPITULO XIV. ELIMINACION GAUSSIANA Y SUSTITUCION HACIA ATRAS CAPITULO XIV ELIMINACION GAUSSIANA Y SUSTITUCION HACIA ATRAS 1 INTRODUCCION Y METODO El procedimiento general de eliminación Gaussiana aplicado al sistema E 1 : a 11 x 1 + a 1 x + + a 1n x n = b 1 E :

Más detalles

Vectores en el plano UNIDAD I: MATRICES. Dirección de un vector. Sentido de un vector

Vectores en el plano UNIDAD I: MATRICES. Dirección de un vector. Sentido de un vector UNIDAD I: MATRICES Vectores en el plano Un vector,, es un segmento con una dirección que va del punto A (origen) al punto B (etremo).un vector es un segmento orientado que va del punto A (origen) al punto

Más detalles

Profesor Francisco R. Villatoro 13 de Diciembre de 1999 SOLUCIONES. 1. Una matriz A de n n es diagonalmente dominante (estrictamente) por filas si

Profesor Francisco R. Villatoro 13 de Diciembre de 1999 SOLUCIONES. 1. Una matriz A de n n es diagonalmente dominante (estrictamente) por filas si Cuarta relación de problemas Técnicas Numéricas Profesor Francisco R. Villatoro 13 de Diciembre de 1999 SOLUCIONES 1. Una matriz A de n n es diagonalmente dominante estrictamente por filas si a ii > a

Más detalles

Algebra de Matrices 1

Algebra de Matrices 1 Algebra de Matrices Definición Una matriz es un arreglo rectangular de valores llamados elementos, organizados por filas y columnas. Ejemplo: Notas: A 6. Las matrices son denotadas con letras mayúsculas..

Más detalles

Una ecuación lineal de n-incógnitas es una igualdad de la forma:

Una ecuación lineal de n-incógnitas es una igualdad de la forma: página 1/13 Teoría Tema 6 Ecuación lineal Una ecuación lineal de n-incógnitas es una igualdad de la forma: a 1 x 1 +a 2 x 2 +a 3 x 3 +...+a n x n =c página 2/13 Sistema de ecuaciones lineales Un sistema

Más detalles

Método de eliminación de Gauss Utilidad del método. Transformaciones elementales. Teorema Rouché-Frobenius

Método de eliminación de Gauss Utilidad del método. Transformaciones elementales. Teorema Rouché-Frobenius Método de eliminación de Gauss Utilidad del método. Transformaciones elementales. Teorema Rouché-Frobenius c Jana Rodriguez Hertz p. 1/2 Método de eliminación de Gauss La clase pasada presentamos el método

Más detalles

Tema 6.- Sistemas de ecuaciones lineales Resolución por el método de Gauss.

Tema 6.- Sistemas de ecuaciones lineales Resolución por el método de Gauss. Sistemas de ecuaciones equivalentes. Tema 6.- Sistemas de ecuaciones lineales. 6.1.- Resolución por el método de Gauss. Son los que tienen las mismas soluciones Hay dos operaciones básicas que transforman

Más detalles

Curso de Métodos Numéricos. Derivada Numérica

Curso de Métodos Numéricos. Derivada Numérica Curso de Métodos Numéricos. Derivada Numérica Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Universidad: ITESM CEM Fecha: Jueves, 01 de octubre de 2014 Tópicos 1 Definición

Más detalles

Desigualdades o inecuaciones lineales en una variable

Desigualdades o inecuaciones lineales en una variable Desigualdades o inecuaciones lineales en una variable Sec 3.5 3.6 Prof. Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo Desigualdades Una desigualdad o inecuación usa símbolos como ,,

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Chapter 2 Sistemas de ecuaciones lineales 2.1 Resolución de sistemas de ecuaciones lineales El problema que se pretende resolver en este capítulo es el de un sistema de m ecuaciones lineales con n incógnitas

Más detalles

ÁLGEBRA LINEAL I NOTAS DE CLASE UNIDAD 2

ÁLGEBRA LINEAL I NOTAS DE CLASE UNIDAD 2 ÁLGEBRA LINEAL I NOTAS DE CLASE UNIDAD 2 Abstract Estas notas conciernen al álgebra de matrices y serán actualizadas conforme el material se cubre Las notas no son substituto de la clase pues solo contienen

Más detalles

Estrategias de pivoteo

Estrategias de pivoteo Estrategias de pivoteo Objetivos. Resolver sistemas de ecuaciones lineales aplicando varias técnicas de pivoteo; programar estos algoritmos. Requisitos. Operaciones elementales, experiencia de resolver

Más detalles

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS.

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. 1. MATRICES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. DEFINICIÓN: Las matrices son tablas numéricas rectangulares

Más detalles

PROGRAMACION DE METODOS NUMERICOS

PROGRAMACION DE METODOS NUMERICOS PROGRAMACION DE METODOS NUMERICOS UNIDAD 3 M.E. ADA PAULINA MORA GONZALEZ UNIDAD 3 SISTEMAS DE ECUACIONES LINEALES En la unidad anterior se determinaba el valor de x que satisface a una sola ecuación f(x)=0.

Más detalles

Desigualdades o inecuaciones lineales en una variable. Prof. Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo

Desigualdades o inecuaciones lineales en una variable. Prof. Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo Desigualdades o inecuaciones lineales en una variable Prof. Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo Desigualdades Una desigualdad o inecuación usa símbolos como ,, para representar

Más detalles

METODOS ITERATIVOS. Hermes Pantoja Carhuavilca. Facultad de Ingeniería Mecanica Universidad Nacional de Ingenieria

METODOS ITERATIVOS. Hermes Pantoja Carhuavilca. Facultad de Ingeniería Mecanica Universidad Nacional de Ingenieria Facultad de Ingeniería Mecanica Universidad Nacional de Ingenieria Métodos Numéricos Contenido 1 Métodos Iterativos Introducción Definición Métodos Iterativos Método de Jacobi Convergencia Método de Gauss

Más detalles

Eliminacion Gaussiana Metodo de cofactores

Eliminacion Gaussiana Metodo de cofactores Universidad de Puerto Rico Departamento de Matematicas Humacao, Puerto Rico 00791 MATE 4061 Analisis Numerico Prof. Pablo Negron Laboratorio 4: Eliminacion Gaussiana sin Pivoteo En este laboratorio vamos

Más detalles

Instituto Tecnológico Autónomo de México. 1. At =..

Instituto Tecnológico Autónomo de México. 1. At =.. Instituto Tecnológico Autónomo de México TRANSPUESTA DE UNA MATRIZ DEFINICION : Transpuesta Sea A = (a ij ) una matriz de mxn Entonces la transpuesta de A, que se escribe A t, es la matriz de nxm obtenida

Más detalles

Sistemas de Ecuaciones. Lineales II

Sistemas de Ecuaciones. Lineales II Sistemas de Ecuaciones Lineales II Factorización LU: Eliminación Gaussiana Relación con la factorización LU 521230-1 - DIM Universidad de Concepción Solución de sistemas con matriz triangular Dadas L =

Más detalles

Teoría Tema 4 Notación matricial en la resolución de sistemas de ecuaciones por Gauss

Teoría Tema 4 Notación matricial en la resolución de sistemas de ecuaciones por Gauss página 1/6 Teoría Tema 4 Notación matricial en la resolución de sistemas de ecuaciones por Gauss Índice de contenido Matriz del sistema y matriz ampliada...2 Método de Gauss...3 Solución única, ausencia

Más detalles

Parte 2. Métodos directos para la resolución de sistemas de ecuaciones lineales

Parte 2. Métodos directos para la resolución de sistemas de ecuaciones lineales Parte 2. Métodos directos para la resolución de sistemas de ecuaciones lineales Gustavo Montero Escuela Técnica Superior de Ingenieros Industriales University of Las Palmas de Gran Canaria Curso 2006-2007

Más detalles

Curso de Métodos Numéricos. Ecuaciones diferenciales ordinarias

Curso de Métodos Numéricos. Ecuaciones diferenciales ordinarias Curso de Métodos Numéricos. Ecuaciones diferenciales ordinarias Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Universidad: ITESM CEM Fecha: Lunes, 11 de noviembre de 2014

Más detalles

Resolución de sistemas de ecuaciones lineales

Resolución de sistemas de ecuaciones lineales Tema 2 Resolución de sistemas de ecuaciones lineales 21 Métodos directos de resolución de sistemas de ecuaciones lineales 211 Resolución de sistemas triangulares Definición 211 Una matriz A se dice triangular

Más detalles

Definición de matriz Una matriz A es un conjunto de números dispuestos en filas y en columnas.

Definición de matriz Una matriz A es un conjunto de números dispuestos en filas y en columnas. 1.- CONCEPTO DE MATRIZ. TIPOS DE MATRICES Definición de matriz Una matriz A es un conjunto de números dispuestos en filas y en columnas. 1 3 4 Por ejemplo, A = es una matriz de 2 filas y 3 columnas 0 5

Más detalles

Determinantes. Determinante de orden uno. a 11 = a 11 5 = 5

Determinantes. Determinante de orden uno. a 11 = a 11 5 = 5 DETERMINANTES Determinantes Concepto de determinante A cada matriz cuadrada A se le asigna un escalar particular denominado determinante de A, denotado por A o por det (A). A = Determinante de orden uno

Más detalles

Universidad Alonso de Ojeda. Facultad de Ingeniería GUIA DE ESTUDIO ALGEBRA LINEAL.

Universidad Alonso de Ojeda. Facultad de Ingeniería GUIA DE ESTUDIO ALGEBRA LINEAL. UNIDAD III: TÓPICOS DE ANÁLISIS NUMÉRICOS Determinante: El determinante es un número real asociado con una matriz mediante la función determinante. El determinante de una matriz de 1 x 1 es igual a su

Más detalles

DOCENTE: JESÚS E. BARRIOS P.

DOCENTE: JESÚS E. BARRIOS P. DOCENTE: JESÚS E. BARRIOS P. DEFINICIONES Es larga la historia del uso de las matrices para resolver ecuaciones lineales. Un texto matemático chino que proviene del año 300 A. C. a 200 A. C., Nueve capítulos

Más detalles

Elementos de Cálculo Numérico

Elementos de Cálculo Numérico Universidad de Buenos Aires - Facultad de Ciencias Exactas y Naturales - Depto. de Matemática Elementos de Cálculo Numérico Primer cuatrimestre 2006 Práctica N 2: Condicionamiento de una matriz. Descomposición

Más detalles

TEMA VI 1. MÉTODO DE ELIMINACIÓN DE GAUSS Y GAUSS JORDAN PARA RESOLVER SISTEMAS DE ECUACIONES LINEALES.

TEMA VI 1. MÉTODO DE ELIMINACIÓN DE GAUSS Y GAUSS JORDAN PARA RESOLVER SISTEMAS DE ECUACIONES LINEALES. TEMA VI 1. MÉTODO DE ELIMINACIÓN DE GAUSS Y GAUSS JORDAN PARA RESOLVER SISTEMAS DE ECUACIONES LINEALES. El método de Eliminación de Gauss consiste en transformar un sistema de ecuaciones lineales (S.E.L.)

Más detalles

TEMA 4: Sistemas de ecuaciones lineales II

TEMA 4: Sistemas de ecuaciones lineales II TEM 4: Sistemas de ecuaciones lineales II ) Teorema de Rouché-Frobenius. ) Sistemas de Cramer: regla de Cramer. 3) Sistemas homogeneos. 4) Eliminación de parámetros. 5) Métodos de factorización. 5) Métodos

Más detalles

Descomposición LU de matrices

Descomposición LU de matrices Descomposición LU de matrices José L. Vieitez IMERL, Facultad de Ingeniería, Universidad de la República 3 de agosto de 006 Abstract Descomposición LU de una matriz A = (a ij ), i, j = 1,..., n. 1 Hechos

Más detalles

ÁLGEBRA DE MATRICES TRASPUESTA DE UNA MATRIZ SUMA Y RESTA DE MATRICES

ÁLGEBRA DE MATRICES TRASPUESTA DE UNA MATRIZ SUMA Y RESTA DE MATRICES ÁLGEBRA DE MATRICES TRASPUESTA DE UNA MATRIZ La traspuesta de una matriz A consiste en intercambiar las filas por las columnas (o las columnas por las filas) y se denota por: A T Así, la traspuesta de

Más detalles

CONTENIDOS MATEMÁTICAS II SEGUNDA EVALUACIÓN CURSO 2017/2018 MATRICES

CONTENIDOS MATEMÁTICAS II SEGUNDA EVALUACIÓN CURSO 2017/2018 MATRICES CONTENIDOS MATEMÁTICAS II SEGUNDA EVALUACIÓN CURSO 2017/2018 Unidades: - Matrices (Bloque Álgebra) - Determinantes (Bloque Álgebra) - Sistemas de ecuaciones lineales (Bloque Álgebra) - Vectores (Bloque

Más detalles

Práctica 2: Matrices. Sistemas de ecuaciones lineales.

Práctica 2: Matrices. Sistemas de ecuaciones lineales. Práctica 2: Matrices. Sistemas de ecuaciones lineales. 1 Matrices en MATLAB. El nombre MATLAB es una contracción de matrix laboratory, y como su nombre indica, este paquete es especialmente útil para efectuar

Más detalles

Cálculo Numérico - CO3211. Ejercicios. d ) Sabiendo que la inversa de la matriz A = es A c d

Cálculo Numérico - CO3211. Ejercicios. d ) Sabiendo que la inversa de la matriz A = es A c d Cálculo Numérico - CO32 Ejercicios Decida cuáles de las siguientes proposiciones son verdaderas y cuáles son falsas Si una proposición es verdadera, demuéstrela, y si es falsa dé un contraejemplo: a Sea

Más detalles

Sistemas Lineales y Matrices

Sistemas Lineales y Matrices Profesores Hernán Giraldo y Omar Saldarriaga Instituto de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia 2014 Ejemplo Solución de sistemas de ecuaciones lineales, usaremos

Más detalles

Determinantes. = a 11a 22 a 12 a 21 = ( 3) ( 5) ( 4) 7 = 15 ( 28) = = 43

Determinantes. = a 11a 22 a 12 a 21 = ( 3) ( 5) ( 4) 7 = 15 ( 28) = = 43 Determinante de una matriz cuadrada Toda matriz cuadrada A lleva asociado un número, llamado determinante de A, y que denotaremos mediante el símbolo. Este número, entre otras cosas, permite saber cuándo

Más detalles

Sistemas de ecuaciones no lineales

Sistemas de ecuaciones no lineales Sistemas de ecuaciones no lineales Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Correo: j.a.otero@itesm.mx web: http://metodosnumericoscem.weebly.com Universidad: ITESM

Más detalles

Matrices bandadas Cálculo de la inversa y determinante Normas vectoriales y matriciales

Matrices bandadas Cálculo de la inversa y determinante Normas vectoriales y matriciales Clase No. 8: MAT 251 Matrices bandadas Cálculo de la inversa y determinante Normas vectoriales y matriciales Dr. Alonso Ramírez Manzanares CIMAT A.C. e-mail: alram@ cimat.mx web: http://www.cimat.mx/ alram/met_num/

Más detalles

Métodos Numéricos. Grado en Ingeniería en Informática Tema 4. Análisis Numérico Matricial I

Métodos Numéricos. Grado en Ingeniería en Informática Tema 4. Análisis Numérico Matricial I Métodos Numéricos. Grado en Ingeniería en Informática Tema 4. Análisis Numérico Matricial I Luis Alvarez León Univ. de Las Palmas de G.C. Luis Alvarez León () Métodos Numéricos Univ. de Las Palmas de G.C.

Más detalles

Elementos de una matriz.

Elementos de una matriz. Matrices. Elementos de una matriz. Renglón. Columnas. A=[a ij ] A-Nombre de la matriz. a-número. i-renglón. j-columna. i j-orden de la matriz. Ejercicio. Indica el orden de la matriz. Indica el valor de

Más detalles

OCW-V.Muto Sistemas lineales: Preliminares Cap. XIII CAPITULO XIII. METODOS PARA LA RESOLUCION DE SISTEMAS LINEALES: PRELIMINARES

OCW-V.Muto Sistemas lineales: Preliminares Cap. XIII CAPITULO XIII. METODOS PARA LA RESOLUCION DE SISTEMAS LINEALES: PRELIMINARES CAPITULO XIII. METODOS PARA LA RESOLUCION DE SISTEMAS LINEALES: PRELIMINARES. SISTEMAS LINEALES DE ECUACIONES En esta tercera parte se consideran técnicas para resolver el sistema de ecuaciones lineales:

Más detalles

Tema 2. Sistemas de ecuaciones lineales

Tema 2. Sistemas de ecuaciones lineales Tema 2 Sistemas de ecuaciones lineales Ecuaciones lineales ( x,, x n ) Una ecuación lineal tiene variables 1 término independiente (b) y coeficientes (reales o complejos) a a x a x a x b 1 1 2 2 n n,,

Más detalles