Propiedades características de un metal o donde. estábamos en 1900

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Propiedades características de un metal o donde. estábamos en 1900"

Transcripción

1 Propiedades características de un metal o donde ρ estábamos en 1900

2 Los metales son buenos conductores de la electricidad. Podemos caracterizar esta propiedad introduciendo la resistividad eléctrica ρ o su inversa la conductividad σ que son propiedades intrínsecas de cada material y se definen mediante la ley de Ohm: V=R I V=E L L A

3 R es la resistencia eléctrica y depende del tamaño de la muestra. La densidad de corriente j=i/a es la cantidad de carga por unidad de tiempo que pasa por una sección unitaria perpendicular a la dirección de la corriente V = R j A E = RA/L j ρ RA/L La ley de Ohm se escribe E = ρ j

4 La resistividad se mide en Ω m Metal ρ ~ µω cm Semiconductor ρ ~ µω cm Aislador hasta 10 0 µω cm La resistividad depende linealmente de la temperatura (salvo a bajas temperaturas). ρ= A T + B Para muestras muy puras (baja densidad de impurezas), B 0.

5

6 Dependencia de ρ con T

7

8 Los metales son tambien buenos conductores del calor. La conductividad térmica κ se define por la ley de Fourier j q =-κ T El flujo de calor es proporcional al gradiente de temperaturas. La conductividad térmica varia poco con la temperatura

9 Wiederman-Franz Las conductividades eléctricas y térmicas varian mucho de un metal a otro. Ej: σ (o κ) del oro es 10 veces la del plomo. Sin embargo la relación σ/ κ se mantiene constate a una dada temperatura. Wiederman y Franz (1857) observaron que las mediciones para diferentes metales y diferentes temperaturas pueden resumirse en la siguiente ley: κ σ = LT L (llamado número de Lorentz) varia poco con la temperatura y con el material

10

11 Calor Específico El calor específico molar de un metal es similar al de un aislador. Aumenta rapidamente a bajas temperaturas y luego satura en un valor constante cercano a 6 cal/mol K o sea 3 N A k/ mol (N A = número de Avogadro, k= constante de Boltzman). Esta es la Ley de Dulong y Petit

12

13

14

15 Modelo de Drude Consideramos un gas de electrones libres que corresponden a los electrones de valencia de los átomos de un metal. Ej: Li Z =3 1s s 1 electrón de valencia(z v ) n=n A Z v ρ m / A masa átomica (gr de un mol) densidad de masa Átomos por mol Introducimos un radio de la esfera que contiene cada electrón: V N = 1 n = 4 3 π r 3 s

16 n y r s para diferentes metales

17 Hipotesis de Drude 1.El movimiento del electrón es sólo perturbado por colisiones que ocurren en promedio cada τ. 1/ τ da la probabilidad por unidad de tiempo de que un electrón experimente una colisión.

18 . Entre colisiones el electrón se mueve siguendo las leyes de Newton: f = -e E o f = 0 si E = 0 3. Después de una colisión el electrón olvida la velocidad que traía y arranca con una dirigida al azar pero cuyo módulo corresponde a la temperatura en ese sitio.

19 Ecuación n de Movimiento dp dt = f (t) Las colisiones introducen un término de amortiguamiento. La velocidad p/m es la velocidad de arrastre (o deriva) del gas no la velocidad de cada electrón. p τ

20 Conductividad Eléctrica j = nev v = σ = eeτ m ne τ m τ = m ρne La velocidad cuadrática media es (Maxwell-Boltzman) El camino libre medio es λ= v 0 τ 1-10 Å = m e 3 0 s 14. ρ( µ Ω cm) 3 r a 4π a m v0 = kt v0 10 m / s a T ambiente s

21 La velocidad cuadrática media es (Fermi-Dirac) v F 10 6 m / s El camino libre medio es λ= v F τ Å A bajas Temperaturas λ puede ser mayor que 10 3 Å y llegar casi hasta el centímetro

22 Conductividad TérmicaT T 1 T T1 > T x Flujo neto de energía Los electrones que llegan desde la izquierda tuvieron su última colisión en la región de mayor T

23 Ejemplo en 1D La mitad viene del lado caliente y la otra mitad del frío E(T(x-v x τ)) x E(T(x+v x τ)) x nvx j q = xτ + xτ { E( T ( x v )) E( T ( x v ))} dt de λ dt dx

24 En 3D 3 x v v = { } T c v v q = τ 3 1 j { } v v c v c v λ τ κ = 1 = y se cumple Wiederman-Franz Maxwell- Boltzman K W e k mt ne c v T v Ω = = = τ τ σ κ nk 3 m kt 3 del orden de la mitad del valor experimental

25 K W e k mt ne c v T v Ω = = = π τ τ σ κ F E T k n π F V Fermi-Dirac del orden del valor experimental

26 Poder termoeléctrico Además de un flujo de energía habrá uno de cargas (en la medición de κ no se ve porque es a circuito abierto). A un gradiente térmico se opone un campo eléctrico T 1 j q Efecto Seebeck E = Q T + - T T 1 > T T E

27 Usando Drude y estadística clásica sale: cv k 4 Q = = = V / 3ne e K El Q experimental es del orden de µv/k, 100 veces más chico. Esto se explica usando Fermi-Dirac π n k E T F Q = cv 3ne = π 6 k e kt E F = 1.4 kt E F 10 4 V / K 0.01

28 En algunos metales el signo del Q es opuesto al predicho por Drude. Para medir este efecto: V=(Q A -Q B )(T -T 1 )

29 Efecto Hall Aplico H y E x Magnetoresistencia Coef. Hall E y es el campo Hall, se origina al desviarse los e por la fuerza de Lorentz R H = ρ ( j E x y H H ) = E j x x

30 dp dt p = τ p e( E + H) m En el estado estacionario dp dt = 0 j y = 0 j = en m p m ρ = = e n τ 1 σ 0 1 R H = ne

31 Ondas de densidad de carga El sistema electrónico tiene una frecuencia propia ω p (frecuencia de plasma). Imaginemos el siguiente experimento: σ ned = ε 0 ε 0.. Nm d.. Nm d = Ne = ε σ ε Nne 0 0 d

32 que corresponde a un oscilador armónico de frecuencia: p ω = ne ε Es una onda de densidad de carga o plasmón. Para verlo hacemos pasar un haz de electrones por una lámina del material. 0 m

33

34 medido calculado

35 Conductividad en corriente alterna La ecuación de movimiento en presencia de un campo eléctrico dependiente del tiempo: dp dt = ee(t) p τ Si excitamos con una campo alterno: E( t) = Re( E( ω) e iωt )

36 Tendremos una solución de la forma p( t) = Re( p( ω ) e iωt ) Si sustituimos las formas complejas en la ecuación de movimiento obtenemos la conductividad compleja σ(ω) j ( ω) = σ ( ω) E( ω) σ σ ( ω) = 0 1 i ωτ σ 0 = e n m τ

Dinámica de electrones Bloch y Propiedades de Transporte Física del Estado Sólido II

Dinámica de electrones Bloch y Propiedades de Transporte Física del Estado Sólido II Dinámica de electrones Bloch y Propiedades de Transporte Física del Estado Sólido II Rubén Pérez Departamento de Física Teórica de la Materia Condensada Universidad Autónoma de Madrid Curso 2010-2011 Índice

Más detalles

Capítulo 1 Marco teórico

Capítulo 1 Marco teórico Capítulo 1 Marco teórico 1.1 Onda de Densidad de Carga A bajas temperaturas los metales pueden sufrir un cambio de fase, una transición que los lleva a un nuevo orden. Metales como el plomo o aluminio

Más detalles

Física de los Semiconductores. 28 de abril de Sitio web: www3.fi.mdp.edu.ar/fes/semic.html

Física de los Semiconductores. 28 de abril de Sitio web: www3.fi.mdp.edu.ar/fes/semic.html Física de los Semiconductores 28 de abril de 2017 Sitio web: www3.fi.mdp.edu.ar/fes/semic.html Dinámica de los portadores de Carga Flujo de corriente en presencia de E y B Cantidad de Portadores (electrones

Más detalles

La ecuación de Boltzmann

La ecuación de Boltzmann La ecuación de Boltzmann El movimiento de un portador en un metal o semiconductor está condicionado por un lado por presencia de campos externos (eléctricos, magnéticos), gradientes de temperatura y por

Más detalles

FES. Electrones libres en los metales. Modelo de Sommerfeld.

FES. Electrones libres en los metales. Modelo de Sommerfeld. . Suponemos que el sólido metálico se puede modelizar de acuerdo a las siguientes hipótesis: 1. En el metal existen los denominados electrones de conducción que están constituidos por todos los electrones

Más detalles

Modelos de la conductividad eléctrica

Modelos de la conductividad eléctrica Clase 14 Modelos de la conductividad eléctrica 14.1. Paul Karl Ludwig Drude El modelo de Drude fué desarrollado en el siglo XX por Paul Drude. Surgió pocos años después de que J. J. Thomson descubriera

Más detalles

Transporte de Portadores Marzo de Movimiento térmico de portadores 2. Arrastre de portadores 3. Difusión de portadores

Transporte de Portadores Marzo de Movimiento térmico de portadores 2. Arrastre de portadores 3. Difusión de portadores 86.03/66.25 - Dispositivos Semiconductores Clase 3-1 Clase 3 1 - Física de semiconductores (II) Transporte de Portadores Marzo de 2017 Contenido: 1. Movimiento térmico de portadores 2. Arrastre de portadores

Más detalles

(1) dt dq es la carga que pasa a través de la sección transversal

(1) dt dq es la carga que pasa a través de la sección transversal La corriente y la resisitencia Hasta ahora, se han estudiado muchos casos de la electrostática. Ahora se estudiará la corriente eléctrica que consiste en considerar a las cargas en movimiento. La corriente

Más detalles

Tema 4º. Corriente eléctrica

Tema 4º. Corriente eléctrica Tema 4º Corriente eléctrica Programa Corriente y densidad de corriente eléctrica. La ecuación de continuidad. Corriente de conducción. Ley de Ohm. Propiedades de conducción en los materiales: Conductores,

Más detalles

4 Electrocinética. M. Mudarra. Física III - M. Mudarra Enginyeria Aeroespacial - p. 1/35

4 Electrocinética. M. Mudarra. Física III - M. Mudarra Enginyeria Aeroespacial - p. 1/35 4 Electrocinética M. Mudarra Física III - M. Mudarra Enginyeria Aeroespacial - p. 1/35 Objetivos Nuestro objetivo es el estudio del flujo de s estacionarias. Profundizaremos en el caso de s a través de

Más detalles

1.6 Transporte en presencia de campos magneticos. Superficies de Fermi. Efecto Hall y Magnetoresistencia.

1.6 Transporte en presencia de campos magneticos. Superficies de Fermi. Efecto Hall y Magnetoresistencia. 1.6 Transporte en presencia de campos magneticos. Superficies de Fermi. Efecto Hall y Magnetoresistencia. Dinámica semiclásica en H uniforme r = v n( k) = 1 k εn( k) k ( = e 1 c vn( k) H ) = k l kε n(

Más detalles

Movilidad en semiconductores extrínsecos

Movilidad en semiconductores extrínsecos Movilidad en semiconductores etrínsecos µ (Movilidad) f(concentracion de Impurezas) f(tipo de Impurezas) μ = μ min + μ MAX μ min 1 + N N r α 1 µ (Movilidad) Dispersión de los portadores en la red Xtalina

Más detalles

4.- PROPIEDADES ELÉCTRICAS DE LOS SÓLIDOS FÍSICA DEL ESTADO SÓLIDO II

4.- PROPIEDADES ELÉCTRICAS DE LOS SÓLIDOS FÍSICA DEL ESTADO SÓLIDO II 4.- DE LOS SÓLIDOS FÍSICA DEL ESTADO SÓLIDO II 4. Propiedades eléctricas de los sólidos Conductividad eléctrica. Metales, semiconductores y aislantes. Semiconductores intrínsecos y extrínsecos. Dieléctricos.

Más detalles

Corriente, Resistencia y Fuerza Electromotriz

Corriente, Resistencia y Fuerza Electromotriz Corriente Corriente, Resistencia y Fuerza Electromotriz La unidad de corriente en MKS es:1 Ampere(A)=1 C s La dirección de la corriente es la dirección de movimiento de las cargas positivas Corriente Eléctrica

Más detalles

CONDUCCION ELECTRICA

CONDUCCION ELECTRICA CONDUCCION ELECTRICA Corriente Eléctrica [ I ] Carga eléctrica q (Coulomb) por unidad de tiempo que atraviesa un plano Unidad de corriente eléctrica: Ampere 1 Ampere = 1 Coulomb /seg Carga Elemental [

Más detalles

Teniendo en cuenta que si el voltaje se mide en Volts y la corriente en Amperes las unidades de resistencia resultan ser

Teniendo en cuenta que si el voltaje se mide en Volts y la corriente en Amperes las unidades de resistencia resultan ser Ley de Ohm La resistencia se define como la razón entre la caída de tensión, entre los dos extremos de una resistencia, y la corriente que circula por ésta, tal que 1 Teniendo en cuenta que si el voltaje

Más detalles

Sólidos ENLACE IONICO

Sólidos ENLACE IONICO Zonas de Brillouin Sólidos NLAC IONICO nlace iónico jemplo: Na + Cl -. structura cristalina fcc con una base de un ion (Na + ) en (,,) y el otro (Cl - ) en el centro del cubo (1/,1/,1/)a. Madelung propone

Más detalles

Propiedades Ópticas de Metales

Propiedades Ópticas de Metales Propiedades Ópticas de Metales Ricardo E. Marotti Mayo 2008 * e-mail: khamul@fing.edu.uy Instituto de Física Facultad de Ingeniería Universidad de la República Montevideo, URUGUAY Propiedades Ópticas de

Más detalles

TEMA 10 Corriente eléctrica y magnetismo

TEMA 10 Corriente eléctrica y magnetismo ases Físicas y Químicas del Medio Ambiente Corriente eléctrica Alambre metálico TEMA 10 Corriente eléctrica y magnetismo iones positivos En un metal las cargas negativas se mueven libremente alrededor

Más detalles

FÍSICA 4. { k vdv 0<v< V. dn v = (a) Calcular el número de choques por segundo que efectúa una molécula contra otras (d(o 2 )=0.22nm).

FÍSICA 4. { k vdv 0<v< V. dn v = (a) Calcular el número de choques por segundo que efectúa una molécula contra otras (d(o 2 )=0.22nm). FÍSICA 4 PRIMER CUATRIMESTRE DE 2015 GUÍA 4: MECÁNICA ESTADÍSTICA 1. La función de distribución de velocidades escalares de un grupo de N partículas está definida por { k dv 0 V 2. (a)

Más detalles

TEMA 5: INTROD. AL ESTADO SÓLIDO

TEMA 5: INTROD. AL ESTADO SÓLIDO 5.3 Electrones libres en metales: modelo de Drude Se pretende explicar las propiedades de los metales a partir de diferentes modelos (5.3: Drude y 5.4: bandas) Propiedades de los metales: Todos, excepto

Más detalles

2.- PROPIEDADES TÉRMICAS FÍSICA DEL ESTADO SÓLIDO II

2.- PROPIEDADES TÉRMICAS FÍSICA DEL ESTADO SÓLIDO II 2.- PROPIEDADES TÉRMICAS FÍSICA DEL ESTADO SÓLIDO II 2. Propiedades térmicas Capacidad Calorífica. Ley de Dulong y Petit Modelos clásicos de Debye y Einstein. Dilatación térmica. Conductividad térmica.

Más detalles

Radiación electromagnética

Radiación electromagnética Page 1 Radiación electromagnética Consideremos una partícula cargada en reposo respecto de un observador inercial, produciendo un campo eléctrico. Al moverse a cierta velocidad se observará un campo electromagnético.

Más detalles

FIZ Física Contemporánea

FIZ Física Contemporánea FIZ1111 - Física Contemporánea Interrogación N o 3 17 de Junio de 2008, 18 a 20 hs Nombre completo: hrulefill Sección: centering Buenas Malas Blancas Nota Table 1. Instrucciones - Marque con X el casillero

Más detalles

Corriente y Resistencia

Corriente y Resistencia Presentación basada en el material contenido en: Serway, R. Physics for Scientists and Engineers. Saunders College Pub. 3rd edition. Corriente y Resistencia La corriente eléctrica La Corriente Eléctrica

Más detalles

Teniendo en cuenta que si el voltaje se mide en Volts y la corriente en Amperes las unidades de resistencia resultan ser

Teniendo en cuenta que si el voltaje se mide en Volts y la corriente en Amperes las unidades de resistencia resultan ser Ley de Ohm La resistencia eléctrica de un resistor se define como la razón entre la caída de tensión, entre los extremos del resistor, y la corriente que circula por éste, tal que Teniendo en cuenta que

Más detalles

EFECTO HALL. (1) donde d es la anchura de la placa conductora

EFECTO HALL. (1) donde d es la anchura de la placa conductora EFECTO ALL 1. OBJETIVO En esta práctica se estudia el efecto all en dos semiconductores de germanio para conocer el tipo de portadores de carga, la concentración de los mismos y su movilidad. 2.- FUNDAMENTOS

Más detalles

SEMICONDUCTORES. Semiconductores extrínsecos: estructura cristalina de Ge o Si Si con impurezas en bajo porcentaje de átomos distintos.

SEMICONDUCTORES. Semiconductores extrínsecos: estructura cristalina de Ge o Si Si con impurezas en bajo porcentaje de átomos distintos. Diapositiva 1 Semiconductores extrínsecos: estructura cristalina de Ge o Si Si con impurezas en bajo porcentaje de átomos distintos. Característica: n p n ii Clasificación: Tipo-n Tipo-p Diapositiva 2

Más detalles

Apuntes de clase : Introducción a la Física del Estado Sólido pag. 1/16

Apuntes de clase : Introducción a la Física del Estado Sólido pag. 1/16 Apuntes de clase : Introducción a la Física del Estado Sólido pag. 1/16 Semana 4. Gas de Fermi de electrones libres Bibliografía: Introduction to Solid State Physics, 8 th edition, C. Kittel. Capítulo

Más detalles

UNIVERSIDAD DE LOS ANDES FACULTAD DE INGENIERIA TRANSFERENCIA DE CALOR PROF.. FRANZ RAIMUNDO

UNIVERSIDAD DE LOS ANDES FACULTAD DE INGENIERIA TRANSFERENCIA DE CALOR PROF.. FRANZ RAIMUNDO UNIVERSIDAD DE LOS ANDES FACULTAD DE INGENIERIA TRANSFERENCIA DE CALOR PROF.. FRANZ RAIMUNDO CONTENIDO: INTRODUCCIÓN Qué es la transferencia de calor? Cómo se transfiere el calor? Modos de transferencia

Más detalles

INTRODUCCIÓN A LOS SEMICONDUCTORES.

INTRODUCCIÓN A LOS SEMICONDUCTORES. Tema 1 INTRODUCCIÓN A LOS SEMICONDUCTORES. 1.- Introducción 2.- Clasificación de los materiales. 3.- Semiconductores intrínsecos. Estructura cristalina. 4.- Semiconductores extrínsecos. Impurezas donadoras

Más detalles

Física II CF-342 Ingeniería Plan Común.

Física II CF-342 Ingeniería Plan Común. Física II CF-342 Ingeniería Plan Común. Omar Jiménez Henríquez Departamento de Física, Universidad de Antofagasta, Antofagasta, Chile, I semestre 2011. Omar Jiménez. Universidad de Antofagasta. Chile Física

Más detalles

Física del Estado Sólido I. Tema 3: Gas de Fermi de electrones libres

Física del Estado Sólido I. Tema 3: Gas de Fermi de electrones libres Física del Estado Sólido I Tema 3: Gas de Fermi de electrones libres En los metales, la última banda de energía ocupada (de mayor energía) está ocupada parcialmente. Por ello, los electrones tienen acceso

Más detalles

Tema 5 TEORÍA CINÉTICA DE LOS GASES POSTULADOS DE LA TEORÍA CINÉTICA DE LOS GASES POSTULADOS DE LA TEORÍA CINÉTICA DE LOS GASES

Tema 5 TEORÍA CINÉTICA DE LOS GASES POSTULADOS DE LA TEORÍA CINÉTICA DE LOS GASES POSTULADOS DE LA TEORÍA CINÉTICA DE LOS GASES TEORÍA CINÉTICA DE LOS GASES Tema Entre los siglos XVIII y XIX Bernoulli, Krönig, Clausius, Maxwell y Boltzmann desarrollaron la Teoría Cinética Molecular de los Gases para explicar el comportamiento de

Más detalles

TEMA 3 TEORIA DE SEMICONDUCTORES

TEMA 3 TEORIA DE SEMICONDUCTORES TEMA 3 TEORIA DE SEMICONDUCTORES (Guía de clases) Asignatura: Dispositivos Electrónicos I Dpto. Tecnología Electrónica CONTENIDO PARTÍCULAS CARGADAS Átomo Electrón Ión Hueco TEORÍA DE LAS BANDAS DE ENERGÍA

Más detalles

No olvide escribir claramente su nombre completo en la esquina superior derecha en cada una de las hojas de su examen.

No olvide escribir claramente su nombre completo en la esquina superior derecha en cada una de las hojas de su examen. Examen de Admisión Instrucciones 22-Noviembre-2011 No olvide escribir claramente su nombre completo en la esquina superior derecha en cada una de las hojas de su examen. El examen es a libro cerrado, por

Más detalles

Física Estadística. Tercer curso del Grado en Física. J. Largo & J.R. Solana. Departamento de Física Aplicada Universidad de Cantabria

Física Estadística. Tercer curso del Grado en Física. J. Largo & J.R. Solana. Departamento de Física Aplicada Universidad de Cantabria Tercer curso del Grado en Física largoju at unican.es J. Largo & J.R. Solana solanajr at unican.es Departamento de Física Aplicada Universidad de Cantabria Indice I En el caso de un sólido metálico, además

Más detalles

Conductividad en presencia de campo eléctrico

Conductividad en presencia de campo eléctrico 6. Fenómenos de transporte Fenómenos de transporte Conductividad térmicat Viscosidad Difusión n sedimentación Conductividad en presencia de campo eléctrico UAM 01-13. Química Física. Transporte CT V 1

Más detalles

OPERACIONES UNITARIAS

OPERACIONES UNITARIAS OPERACIONES UNITARIAS 2016 TEMA 2 - CALOR INTRODUCCION MECANISMOS DE TRANSFERENCIA DE CALOR Prácticamente en todas las operaciones que realiza el ingeniero interviene la producción o absorción de energía

Más detalles

Tema 5.-Corriente eléctrica

Tema 5.-Corriente eléctrica Tema 5: Corriente eléctrica Fundamentos Físicos de la Ingeniería Primer curso de Ingeniería Industrial Curso 2006/2007 Dpto. Física Aplicada III Universidad de Sevilla 1 Índice Introducción Corriente eléctrica

Más detalles

Reflexión y refracción

Reflexión y refracción Reflexión y refracción Superficies reflectoras y refractoras Felipe Valencia Hernandez fvalenciah@unal.edu.co Departamento de física, Universidad Nacional de Colombia http://sites.google.com/a/unal.edu.co/curso1000020

Más detalles

TEMA2: Fundamentos de Semiconductores

TEMA2: Fundamentos de Semiconductores TEMA2: Fundamentos de Semiconductores Contenidos del tema: Modelos de enlace y de bandas de energía en sólidos: tipos de materiales Portadores de carga en semiconductores Concentración de portadores Procesos

Más detalles

Capítulo 16. Electricidad

Capítulo 16. Electricidad Capítulo 16 Electricidad 1 Carga eléctrica. Ley de Coulomb La carga se mide en culombios (C). La del electrón vale e = 1.6021 10 19 C. La fuerza eléctrica que una partícula con carga Q ejerce sobre otra

Más detalles

Tema 5.-Corriente eléctrica

Tema 5.-Corriente eléctrica Tema 5: Corriente eléctrica Fundamentos Físicos de la ngeniería Primer curso de ngeniería ndustrial Curso 2009/2010 Dpto. Física plicada 1 Índice ntroducción Corriente eléctrica Sentido de la corriente

Más detalles

Fundamentos de acústica

Fundamentos de acústica Tema 1 Fundamentos de acústica 1.1 Introducción Definición del sonido El sonido es una vibración mecánica que se transmite a través de un medio elástico, capaz de producir una sensación auditiva debido

Más detalles

Conductividad eléctrica

Conductividad eléctrica Propiedades eléctricas La conductividad eléctrica (σ) es una propiedad física intrínseca de los materiales que proporciona información sobre la cantidad de carga que se conduce a través de un conductor.

Más detalles

Relación de Ejercicios Propuestos FÍSICA DEL ESTADO SÓLIDO II

Relación de Ejercicios Propuestos FÍSICA DEL ESTADO SÓLIDO II Relación de Ejercicios Propuestos FÍSICA DEL ESTADO SÓLIDO II 7 Entregable 1.- Considerar una cadena monoatómica lineal de constante de red a, cuya relación de dispersión viene dada por: C [1 cos(ka)]

Más detalles

Física 3 - Turno : Mañana

Física 3 - Turno : Mañana Física 3 - Turno : Mañana Guía N 3 - Primer cuatrimestre de 2010 Corrientes estacionarias, ley de Ohm, teorema de Thevenin, transferencia de potencia, conexiones de resistencias. 1. Calcular la resistencia

Más detalles

Física del Estado Sólido Práctico 8 Estructura Electrónica de Bandas y Semiconductores

Física del Estado Sólido Práctico 8 Estructura Electrónica de Bandas y Semiconductores Física del Estado Sólido Práctico 8 Estructura Electrónica de Bandas y Semiconductores 1. Origen de las Bandas de Energía Considere un potencial cristalino unidimensional y sinusoidal U(x) = U 0 cos( π

Más detalles

Gas ideal de Fermi-Dirac

Gas ideal de Fermi-Dirac Capítulo 9 Gas ideal de Fermi-Dirac Los fermiones son partículas de spin semi-entero. Supongamos el caso mas simple de spin 1/2, esto es, partículas para las cuales S z ± h/2, estados que vamos a denotar

Más detalles

Física Teórica 3 1er. cuatrimestre de 2015 Guía 4: Teoría cinética Ecuación de Boltzmann

Física Teórica 3 1er. cuatrimestre de 2015 Guía 4: Teoría cinética Ecuación de Boltzmann Física Teórica 3 1er. cuatrimestre de 2015 Guía 4: Teoría cinética Ecuación de Boltzmann Notarán que esta es una guía de problemas en el sentido literal de la palabra. No hay ningún concepto muy complicado,

Más detalles

SOLO PARA INFORMACION

SOLO PARA INFORMACION DOCENTE: TEMA: TURNO: ALUMNOS: UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERIA ELECTRICA Y ELECTRONICA ESCUELA PROFESIONAL DE INGENIERIA ELECTRICA LABORATORIO Nº 4 FISICA III CICLO: 2009-A JUAN

Más detalles

Capítulo 8. Modelos microscópicos de rapidez de reacción

Capítulo 8. Modelos microscópicos de rapidez de reacción Capítulo 8 Modelos microscópicos de rapidez de reacción Teoría de colisiones El número de colisiones en un cierto tiempo para una partícula A que se mueve a través de un campo de partículas con número

Más detalles

Módulo II Trasferencia del Calor

Módulo II Trasferencia del Calor Módulo II Trasferencia del Calor Bibliografía Recomendada Fundamentals of Heat and Mass Transfer Incropera DeWitt Editorial Wiley Transferencia de Calor B. V. Karlekar Transferencia de Calor J. P. Holman

Más detalles

Es el flujo de cargas eléctricas (electrones, protones, iones) a través de un medio conductor.

Es el flujo de cargas eléctricas (electrones, protones, iones) a través de un medio conductor. Corriente Eléctrica Es el flujo de cargas s (electrones, protones, iones) a través de un medio conductor. Los metales están constituidos por una red cristalina de iones positivos. Moviéndose a través de

Más detalles

Incidencia de Anestesia General en Operación Cesárea: Registro de Tres Años. Castillo Alvarado, Frencisco Miguel. CAPÍTULO III

Incidencia de Anestesia General en Operación Cesárea: Registro de Tres Años. Castillo Alvarado, Frencisco Miguel. CAPÍTULO III CAPÍTULO III ESTADÍSTICA DE LOS PORTADORES DE CARGA DEL SEMICONDUCTOR 1. Introducción. Cada material suele presentar varias bandas, tanto de conducción (BC) como de valencia (BV), pero las más importantes

Más detalles

La conductividad térmica en este apartado viene definida a través de la ley de Fourier

La conductividad térmica en este apartado viene definida a través de la ley de Fourier Conductividad térmica de materiales aislantes. La conductividad térmica en este apartado viene definida a través de la ley de Fourier Donde Q es el flujo de calor (energía transmitida por unidad de tiempo

Más detalles

Anexo de Evaluación de las Practicas de Laboratorio

Anexo de Evaluación de las Practicas de Laboratorio Anexo de Evaluación de las Practicas de Laboratorio Desglose de Puntajes por Practica Práctica #1 Determinación de la aceleración de la gravedad utilizando el Péndulo Simple Introducción 6% 0.11550 Objetivos

Más detalles

índice analítico Prólogo a la segunda edición del volumen II Prólogo a la primera edición del volumen II Prólogo al Berkeley Physics Course

índice analítico Prólogo a la segunda edición del volumen II Prólogo a la primera edición del volumen II Prólogo al Berkeley Physics Course índice analítico Prólogo a la segunda edición del volumen II Prólogo a la primera edición del volumen II Prólogo al Berkeley Physics Course V VII IX Capítulo 1 Electrostática: cargas y campos 1 1.1 Carga

Más detalles

CORRIENTE CONTINUA ÍNDICE

CORRIENTE CONTINUA ÍNDICE CORRENTE CONTNUA ÍNDCE 1. ntroducción 2. Resistencia 3. Asociación de resistencias 4. Potencia eléctrica 5. Fuerza electromotriz 6. Leyes de Kirchhoff BBLOGRAFÍA: Cap. 25 del Tipler Mosca, vol. 2, 5ª ed.

Más detalles

Ecuaciones de Maxwell y ondas electromagnéticas. Ondas Electromagnéticas

Ecuaciones de Maxwell y ondas electromagnéticas. Ondas Electromagnéticas Ecuaciones de Maxwell y ondas electromagnéticas Ondas Electromagnéticas Electricidad, Magnetismo y luz Una primera consecuencia fundamental de la corriente de desplazamiento es que los campos eléctricos

Más detalles

Distribución y Transporte de Portadores de Carga

Distribución y Transporte de Portadores de Carga Distribución y Transporte de Portadores de Carga Lección 01.2 Ing. Jorge Castro-Godínez EL2207 Elementos Activos Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica I Semestre 2014 Jorge

Más detalles

TEMA 1.1 SEMICONDUCTORES TEMA 1 SEMICONDUCTORES. DIODO. FUNDAMENTOS DE ELECTRÓNICA

TEMA 1.1 SEMICONDUCTORES TEMA 1 SEMICONDUCTORES. DIODO. FUNDAMENTOS DE ELECTRÓNICA TEMA 1.1 SEMICONDUCTORES TEMA 1 SEMICONDUCTORES. DIODO. FUNDAMENTOS DE ELECTRÓNICA 17 de febrero de 2015 TEMA 1.1 SEMICONDUCTORES Introducción. Metales, aislantes y semiconductores Modelo enlace covalente

Más detalles

ESTRUCTURA DEL ÁTOMO

ESTRUCTURA DEL ÁTOMO ESTRUCTURA DEL ÁTOMO BANDAS DE VALENCIA Y DE CONDUCCIÓN MECANISMOS DE CONDUCCIÓN EN UN SEMICONDUCTOR SEMICONDUCTORES *Semiconductor *Cristal de silicio *Enlaces covalentes. Banda de valencia *Semiconductor

Más detalles

Distribución y Transporte de Portadores de Carga

Distribución y Transporte de Portadores de Carga Distribución y Transporte de Portadores de Carga Lección 01.2 Ing. Jorge Castro-Godínez Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica II Semestre 2013 Jorge Castro-Godínez Distribución

Más detalles

Metal Cu Al Peso específico 8,9 g/cm 3 2,7 g/cm 3 Peso atómico 64 g/mol 27 g/mol Número de electrones libres 1 e - /átomo 3 e - /átomo

Metal Cu Al Peso específico 8,9 g/cm 3 2,7 g/cm 3 Peso atómico 64 g/mol 27 g/mol Número de electrones libres 1 e - /átomo 3 e - /átomo 1. La densidad específica del tungsteno es de 18,8 g/cm 3 y su peso atómico es 184. La concentración de electrones libres es 1,23 x 10 23 /cm 3.Calcular el número de electrones libres por átomo. 2. Dadas

Más detalles

Tema 4: Electrocinética

Tema 4: Electrocinética Tema 4: Electrocinética 4.1 Corriente eléctrica y densidad de corriente 4.2 Conductividad, resistividad, resistencia y Ley de Ohm 4.3 Potencia disipada y Ley de Joule 4.4 Fuerza electromotriz y baterías

Más detalles

Inducción, cuasi-estacionario y leyes de conservación.

Inducción, cuasi-estacionario y leyes de conservación. Física Teórica 1 Guia 4 - Inducción y teoremas de conservación 1 cuat. 2014 Inducción, cuasi-estacionario y leyes de conservación. Aproximación cuasi-estacionaria. 1. Se tiene una espira circular de radio

Más detalles

Curso de electromagnetismo Test No 3. Circuitos de corriente continua

Curso de electromagnetismo Test No 3. Circuitos de corriente continua Curso de electromagnetismo Test No 3. Circuitos de corriente continua Este test contiene problemas sobre los siguientes temas: 1. Resistencia de un conductor 2. Combinación de resistencias 3. Ley de Ohm

Más detalles

INGRESO AL PROGRAMA DE DOCTORADO 2001 OBSERVATORIO PIERRE AUGER

INGRESO AL PROGRAMA DE DOCTORADO 2001 OBSERVATORIO PIERRE AUGER INGRESO AL PROGRAMA DE DOCTORADO 2001 OBSERVATORIO PIERRE AUGER 1. Dado el circuito: 1 100 V + - 2 3 50 Ω + - 10 H + - a) Inicialmente se pasa el interruptor de la posición 1 a la posición 2 y se deja

Más detalles

FENÓMENOS DE TRASPORTE EN METALURGIA EXTRACTIVA Clase 03/06 Transporte de Calor

FENÓMENOS DE TRASPORTE EN METALURGIA EXTRACTIVA Clase 03/06 Transporte de Calor FENÓMENOS DE TRASPORTE EN METALURGIA EXTRACTIVA Clase 03/06 Transporte de Calor Prof. Leandro Voisin A, MSc., Dr. Académico Universidad de Chile. Jefe del Laboratorio de Pirometalurgia. Investigador Senior

Más detalles

ELECTRODINÁMICA CLÁSICA FIM 8650 (4)

ELECTRODINÁMICA CLÁSICA FIM 8650 (4) ELECTRODINÁMICA CLÁSICA FIM 8650 (4) Ricardo Ramírez Facultad de Física, Pontificia Universidad Católica, Chile 2do. Semestre 2014 Las cuatro ecuaciones de Maxwell en el vacío son: D = ρ H = J + D B =

Más detalles

Comportamiento Electrónico de los Materiales. Tema 2. Electrones en Sólidos. Teoría de Bandas de Energía.

Comportamiento Electrónico de los Materiales. Tema 2. Electrones en Sólidos. Teoría de Bandas de Energía. Comportamiento Electrónico de los Materiales Tema. Electrones en Sólidos. Teoría de Bandas de Energía. .1 Teoría de Bandas de Energía..1.1 Partículas en interacción con objetos múltiples. Molécula de Hidrógeno.

Más detalles

FES. Calor específico asociado a las vibraciones reticulares

FES. Calor específico asociado a las vibraciones reticulares Calcularemos en esta sección el calo específico reticular C v, término más fácil de calcular si bien experimentalmente el dato que se mide es C p La relación entre ambos calores específicos viene dada

Más detalles

TEMA 3. Realización de los ejercicios 4,6 i 11 del tema 3 del libro Fonaments Físics de la Informàtica

TEMA 3. Realización de los ejercicios 4,6 i 11 del tema 3 del libro Fonaments Físics de la Informàtica TEMA. ealización de los ejercicios 4,6 i 11 del tema del libro Fonaments Físics de la Informàtica En este texto vamos a trabajar con el concepto de intensidad de corriente. Cabe señalar que la teoría de

Más detalles

REAL SOCIEDAD ESPAÑOLA DE FÍSICA REAL SOCIEDAD ESPAÑOLA DE FÍSICA. XX Olimpiada FASE LOCAL DE LA RIOJA. 27 de febrero de 2009.

REAL SOCIEDAD ESPAÑOLA DE FÍSICA REAL SOCIEDAD ESPAÑOLA DE FÍSICA. XX Olimpiada FASE LOCAL DE LA RIOJA. 27 de febrero de 2009. XX Olimpiada ESPAÑOLA DE FÍSICA FASE LOCAL DE LA RIOJA 7 de febrero de 009 ª Parte P y P Esta prueba consiste en la resolución de dos problemas. Razona siempre tus planteamientos No olvides poner tus apellidos,

Más detalles

PROGRAMA ANALÍTICO DE FÍSICA EXPERIMENTAL II: Año 2009

PROGRAMA ANALÍTICO DE FÍSICA EXPERIMENTAL II: Año 2009 PROGRAMA ANALÍTICO DE FÍSICA EXPERIMENTAL II: Año 2009 UNIDAD I: Breve repaso de Temperatura y Calor. Temperatura. Calor y energía. Temperatura. Propiedades mensurables. Escalas termométricas. Métodos

Más detalles

Departamento de Física Aplicada Universidad de Cantabria. Febrero 28, 2005

Departamento de Física Aplicada Universidad de Cantabria. Febrero 28, 2005 Introducción a la Física Experimental Guía de la experiencia Determinación de la resistencia eléctrica de un conductor lineal. Dependencia de la resistencia eléctrica con la naturaleza del material, las

Más detalles

Tema 20 Propiedades eléctricas de los materiales.

Tema 20 Propiedades eléctricas de los materiales. Tema 20 Propiedades eléctricas de los materiales. Las propiedades eléctricas miden la respuesta del material cuando se le aplica un campo eléctrico. Conductividad eléctrica R i = V ; R= resistencia del

Más detalles

Física Teórica 1 Guia 5 - Ondas 1 cuat Ondas electromagnéticas.

Física Teórica 1 Guia 5 - Ondas 1 cuat Ondas electromagnéticas. Física Teórica 1 Guia 5 - Ondas 1 cuat. 2014 Ondas electromagnéticas. 1. (Análisis de las experiencias de Wiener) En 1890, Wiener realizó tres experiencias para demostrar la existencia de ondas electromagnéticas

Más detalles

Guía n 9: Materiales Magnéticos Ecuaciones de Maxwell Ondas Electromagnéticas

Guía n 9: Materiales Magnéticos Ecuaciones de Maxwell Ondas Electromagnéticas Guía n 9: Materiales Magnéticos Ecuaciones de Maxwell Ondas Electromagnéticas Problema 1 Dos imanes permanentes iguales A y B, cuyo momento magnético es P m están situados como indica la figura. La distancia

Más detalles

Termoelectricidad OBJETIVOS: CONCEPTOS NECESARIOS PARA LA PRÁCTICA: INTRODUCCIÓN BREVE

Termoelectricidad OBJETIVOS: CONCEPTOS NECESARIOS PARA LA PRÁCTICA: INTRODUCCIÓN BREVE Termoelectricidad OBJETIVOS: - Caracterizar el funcionamiento de una celda termoeléctrica - Obtener para dicha celda los coeficientes netos de Seebeck (α), conductividad térmica ( ) y la resistencia (R).

Más detalles

Interacción de la radiación con la materia

Interacción de la radiación con la materia C A P Í T U L O 3 Interacción de la radiación con la materia 3.1. ENUNCIADOS Y SOLUCIONES DE LOS PROBLEMAS 1. Determine la probabilidad de transición para una perturbación H (x) independiente del tiempo

Más detalles

Respuesta: a- puntos situados en la recta definida por las posiciones de las cargas.

Respuesta: a- puntos situados en la recta definida por las posiciones de las cargas. Página 1 de 14 Índice exámenes T1. Tenemos 2 cargas puntuales separadas una distancia l, discuta en qué puntos de la recta que une las cargas y de fuera de ella el campo eléctrico es nulo. Explique los

Más detalles

DETERMINACIÓN DE LA BANDA PROHIBIDA (BAND GAP) EN Si

DETERMINACIÓN DE LA BANDA PROHIBIDA (BAND GAP) EN Si DETERMINACIÓN DE LA BANDA PROHIBIDA (BAND GAP) EN Si Travizano, Matías, Romano, Sebastián y Kamienkowski, Juan Laboratorio 5, Departamento de física, UBA- 00 Resumen En este trabajo se realizó la medición

Más detalles

Física moderna. José Mariano Lucena Cruz Física 2 o Bachillerato

Física moderna. José Mariano Lucena Cruz Física 2 o Bachillerato José Mariano Lucena Cruz chenalc@gmail.com Física 2 o Bachillerato Radiación térmica Todo cuerpo, no importa a la temperatura que se encuentre, es fuente de radiación térmica. (Emite energía en forma de

Más detalles

TERMODINÁMICA y FÍSICA ESTADÍSTICA I

TERMODINÁMICA y FÍSICA ESTADÍSTICA I TERMODINÁMICA y FÍSICA ESTADÍSTICA I Tema 3 - CALORIMETRÍA Y TRANSMISIÓN DEL CALOR Capacidad calorífica y su medida. Calor específico. Calor latente. Transmisión del calor. Conductividad térmica. Ley de

Más detalles

Sistemas termodinámicos: Temperatura Temperatura: lo que medimos con un termómetro, Calor: energía que se transfiere por causa de una diferencia de

Sistemas termodinámicos: Temperatura Temperatura: lo que medimos con un termómetro, Calor: energía que se transfiere por causa de una diferencia de Sistemas termodinámicos: Temperatura Temperatura: lo que medimos con un termómetro, Calor: energía que se transfiere por causa de una diferencia de temperatura. La descripción microscópica de una pequeña

Más detalles

Ondas. Prof. Jesús Hernández Trujillo Facultad de Química, UNAM. Ondas/J. Hdez. T p. 1

Ondas. Prof. Jesús Hernández Trujillo Facultad de Química, UNAM. Ondas/J. Hdez. T p. 1 Ondas Prof. Jesús Hernández Trujillo Facultad de Química, UNAM Ondas/J. Hdez. T p. 1 Introducción Definición: Una onda es una perturbación que se propaga en el tiempo y el espacio Ejemplos: Ondas en una

Más detalles

Sesión 7 Fundamentos de dispositivos semiconductores

Sesión 7 Fundamentos de dispositivos semiconductores Sesión 7 Fundamentos de dispositivos semiconductores Componentes y Circuitos Electrónicos Isabel Pérez / José A García Souto www.uc3m.es/portal/page/portal/dpto_tecnologia_electronica/personal/isabelperez

Más detalles

27.1. Una revisión del electromagnetismo. Capítulo 27

27.1. Una revisión del electromagnetismo. Capítulo 27 27 La carga eléctrica y la ley de Coulomb Muchas de las propiedades de los materiales residen en sus propiedades electromagnéticas. Aquí se inicia con el estudio de la cargá eléctrica, algunas propiedades

Más detalles

[CONDUCTIVIDAD TÉRMICA]

[CONDUCTIVIDAD TÉRMICA] Curso 2009-10 Conductividad Térmica D.Reyman U.A.M. Curso 2009-10 Curso2009-10 Página 1 Conductividad Térmica. Ley de Fourier Es un proceso de transporte en el que la energía migra en respuesta a un gradiente

Más detalles

mecánica estadística El Conjunto Canónico Capítulo 2

mecánica estadística El Conjunto Canónico Capítulo 2 mecánica estadística El Conjunto Canónico Capítulo 2 2013 Conjunto Canónico Características de cada miembro del conjunto,v,t,v,t,v,t,v,t I I I Los miembros del conjunto son idénticos y distinguibles. umero

Más detalles

Conducción de electricidad en soluciones electrolíticas

Conducción de electricidad en soluciones electrolíticas onducción de electricidad en soluciones electrolíticas En un conductor metálico (1ra clase) el transporte de corriente eléctrica es debido al movimiento de los electrones dentro de la red del sólido cuando

Más detalles

Nombre... TEORÍA. 1.- Sobre campo eléctrico y potencial. Contestar razonadamente a las siguientes cuestiones.

Nombre... TEORÍA. 1.- Sobre campo eléctrico y potencial. Contestar razonadamente a las siguientes cuestiones. Nombre... TEORÍA 1.- Sobre campo eléctrico y potencial. Contestar razonadamente a las siguientes cuestiones. 1 A.- Qué carga oculta la interrogación de la figura 1 A, si la carga visible es +2 C? (0.5

Más detalles

LEY DE BOYLE. La presión (p) de un gas ideal varía inversamente a su volumen (V) si la temperatura (T) se mantiene constante.

LEY DE BOYLE. La presión (p) de un gas ideal varía inversamente a su volumen (V) si la temperatura (T) se mantiene constante. Gas un GAS IDEAL tiene las propiedades siguientes: está formado por partículas llamadas moléculas. Estas se mueven irregularmente y obedecen las leyes de Newton del movimiento. El número total de moléculas

Más detalles