Física Estadística I (2017) Tarea 7

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Física Estadística I (2017) Tarea 7"

Transcripción

1 Física Estadística I (2017) Tarea 7 Resuelva 6 de los 10 problemas propuestos. 1. Gas ideal bidimensional de fermiones. Se trata de estudiar un gas compuesto de N fermiones no interactuantes (N 1) de masa m y espín 1/2 que pueden moverse libremente sobre la superficie S. (a) Encuntre la relación funcional del potencial químico µ con N, S y la temperatura T. (b) Por el momento considere que se cumple la aproximación de temperatura cero. (i) Calcule el potencial químico µ 0 y la temperatura de Fermi T F µ 0 /k. (ii) Cuál es la velocidad máxima de una partícula del gas?. Qué condición debe cumplir la densidad artificial de partículas N/S para que sean válidas las ecuaciones no relativistas aquí usadas?. Evalúe numéricamente dicha condición para electrones, estimando el número de partículas por Å 2. Estime el orden de magnitud de la temperatura de Fermi correspondiente. (iii) Calcule la energía E 0 del gas. Si T cl es la temperatura de un gas ideal bidimensional clásico de N átomos y energía E 0, calcule la razón T cl /T F. (c) Ahora considere una temperatura distinta de cero. (i) Utilizando la relación entre el factor de Fermi N F λ y la derivada ( ) ln ξλ F / ελ, siendo ξλ F la gran suma de estados del estado único (λ), exprese el potencial químico µ como función de µ 0 y T. Bosqueje la curva representativa de µ como función de T para N/S constante. Muestre que µ tiende a µ 0 conforme T se acerca a cero. (ii) Demuestre la relación J = E entre el potencial gran canónico J y la energía E del gas, así como la ecuación C S = 2E T Nk T F T 1 1 e T F /T, donde C S representa la capacidad calorífica a superficie S y número de partículas N constantes. 1

2 (iii) Encuentre el comportamiento de la capacidad calorífica C S en la región T T F. 2. Gas ideal bidimensional de bosones. Se trata de estudiar un gas compuesto de N bosones no interactuantes (N 1) de masa m y espín cero que pueden moverse libremente sobre la superficie S. (a) Encuntre la relación funcional del potencial químico µ con N, S y la temperatura T bajo la hipótesis de que se trata de un gas normal. (i) Muestre que la integral en la relación anterior diverge conforme µ va a cero. De esto obtenga que, independientemente de los valores que tomen N/S y T, existe un valor de µ que cumple con la relación. Concluya de esto que en dos dimensiones no existe el fenómeno de la condensación de Bose. (ii) Utilizando la relación entre el factor de Bose N B λ y la derivada ( ) ln ξλ B / ελ, siendo ξλ B la gran suma de estados del estado único (λ), exprese el potencial químico µ como función de T y N/S. Bosqueje la curva representativa de la fugacidad e βµ como función de T y compare con la curva correspondiente de un gas tridimensional de bosones libres. (iii) Sea T 0 2π 2 mk N S. Muestre que se deben esperar efectos cuánticos para T T 0, cuando la longitud de onda térmica ( 2π 2 Λ mkt ) 1/2 sea aproximádamente igual a la distancia promedio entre partículas vecinas. (iv) Calcule numéricamente T 0 para 4 He. Obtenga el número de ocupación promedio para el estado base con T = 1 K. Acaso es de orden macroscópico, como en tres dimensiones?. (b) Demuestre la relación J = E entre el potencial gran canónico J y la energía E del gas, así como la ecuación C S = 2E T Nk T 0 1 T e T0/T 1, donde C S representa la capacidad calorífica por superficie S y el número de partículas N es constante. 2

3 (c) Obtenga expresiones aproximadas para la energía E y para la capacidad calorífica C S en las regiones T T 0 y T T Gas ideal de bosones con grados de libertad internos. En un recipiente de volumen V se encuentra un gas ideal de N bosones libres que poseen grados de libertad internos. Por simplicidad supondremos que cada partícula posee un estado exitado de energía positiva ε 1 (la energía del estado base se escoge igual a cero). (a) Obtenga la expresión para el número de partículas en el estado base como función de la temperatura y del potencial químico, así como para el número de partículas que se encuentran en el estado exitado. Escriba la condición para la temperatura crítica T B de la condensación de Bose. (b) Suponiendo que ε 1 kt B muestre que T B está dada por la fórmula [ ] T B = TB e ε1/kt B, donde TB 0 es la temperatura crítica obtenida sin considerar los grados de libertad internos. Recuerde que x π e x dx = (c) Es necesario considerar la estructura interna del 4 He al estudiar su transición a la superfluidez?. 4. Bosones efectivos. En un recipiente de volumen V se encuentran N partículas de espín 1/2 y masa m a la temperatura T. Ellas pueden aparearse y formar nuevas partículas: pares de espín cero. La energía de unión de un par es ε 0 (ε 0 > 0). A continuación se desprecia cualquier estructura interna, con excepción del espín, y se supone que las partículas y los pares forman dos gases ideales que no interactúan entre si. (a) En equilibrio, qué relación hay entre el potencial químico de las partículas aisladas y el potencial químico de los pares?. (b) Muestre que los pares son capaces de condensar en el estado base (condensación de Bose) y calcule la temperatura de condensación T c (suponga que kt c ε 0 ). 5. Equilibrio entre materia y radiación. Una molécula A puede absorber un fotón de frecuencia ω y alcanzar de tal forma un estado exitado interno A. Al inverso, la molécula A puede desactivarse emitiendo un fotón de energía ω. Se cumple la reacción A A + fotón ω. 3

4 (a) Suponga que A y A son moléculas distintas. En equilibrio, qué relación existe entre los potenciales químicos µ A y µ A?. (b) Se encierran N 0 moléculas del tipo A en un recipiente a baja temperatura T 0 ( ω/k). Posteriormente se calienta el recipiente hasta alcanzar la temperatura T T 0. Suponiendo que ambos tipos de moléculas se comportan como gases ideales, obtenga los números N A (T ) y N A (T ) de las distintas moléculas en equilibrio. 6. Radiación de cuerpo negro. La temperatura de la superficie del sol es T 0 = 5500 K. La tierra obtiene su energía del sol. Suponiendo que tanto la tierra como el sol se comportan como cuerpos negros, estime la temperatura de la tierra. El radio del sol es R S = m, el de la tierra R T = m y la distancia tierra-sol d = m. 7. Electrones en metales. Un troso de metal de volumen V consta de un gas de N electrones, así como de iones positivos que compensan la carga negativa de los electrones y que prácticamente no se mueven. Si Ze es la carga de un ión y a la distancia promedio entre un electrón y el ión más cercano, la energía potencial de un electrón en el campo de los iones es del orden de Ze 2 /4πε 0 a. La magnitud de la energía debido a la interacción de Coulomb entre electrones es del mismo orden de magnitud. (a) Estime la energía potencial del gas de electrones y compárela con su energía cinética. De esto deduzca que la aproximación de gas ideal es mejor entre mayor sea la densidad de electrones N/V. (b) En metales típicos, se puede despreciar la energía potencial en comparación con la cinética?. 8. Electrones en metales. La energía de Fermi (potencial químico de los electrones a temperatura cero) del aluminio es µ 0 = 11.7eV. Muestre que a 900 K se tiene µ µ 0 /µ 0 < A qué temperatura se tendría µ µ 0 /µ ?. El punto de fusión del aluminio es a los 933 K y el de evaporación a los 2740 K. 9. Orden de magnitud de las estrellas de neutrones. Una vez que una estrella ha agotado su combustible nuclear se colapsa bajo la influencia de la fuerza gravitacional. Si su masa es mayor que el límite de Chandrasekhar, la presión del gas degenerado de electrones no alcanza para detener el proceso. El colapso continúa hasta que la estrella se convierte en un hoyo negro. Sin embargo, puede ocurrir que el calentamiento que acompaña al colapso conduzca a una explosión, formándose una supernova; la estrella expulsa materia hacia el exterior y la masa restante puede resultar menor que el límite de Chandrasekhar. En tal 4

5 caso, la estrella está demasiado comprimida como para estabilizarse como enana blanca, por lo que se convierte en una estrella de neutrones. (a) Para la diferencia de masas m n m p entre el neutrón y el protón se tiene (m n m p ) c 2 1.3MeV. (i) Calcule la densidad ρ que debe alcanzarse para que la energía de Fermi de los electrones supere dicho valor. (ii) Suponga que los protones y neutrones de la estrella prácticamente se encuentran en reposo ( cómo puede uno asegurarse de que dicha hipótesis se cumple?). En cuanto la densidad arriba calculada sea alcanzada, es posible que ocurra la reacción e + p n + ν, y los neutrinos abandonan la estrella. Muestre que la descomposición de los neutrones según n p + e + ν es bloqueada por el Principio de Pauli (aplicado a los electrones). (b) El proceso descrito conduce a la formación de un gas degenerado de neutrones; la presión cuántica de dicho gas es la que principalmente estabiliza a la estrella. (i) Muestre que los órdenes de magnitud correspondientes pueden obtenerse de las ecuaciones para enanas blancas, si la masa m del electrón se sustituye por la del neutrón m n. (ii) Deduzca de esto que la masa límite M 0 prácticamente permanece igual, pero el radio de una estrella de neutrones es unas 1000 veces menor que el de una enana blanca de la misma masa. Estime el orden de magnitud de la densidad de una estrella de neutrones. 10. Orden de magnitud de la radiación de fondo. (a) Muestre que el número total de fotones de un cuerpo negro es, como la entropía, proporcional a T 3. Estime el número de fotones por volumen en la radiación cósmica a 3 K (utilice Γ(3)ζ(3) = ). (b) De qué tamaño es la longitud de onda correspondiente al máximo de la distribución de Planck para T = 3 K?. (c) Las primeras mediciones de la radiación de fondo fueron hechas para longitudes de onda entre 1cm y aproximadamente 75cm. Compare las predicciones de la Ley de Planck con la fórmula de Rayleigh-Jeans en esta región. En su opinión, permitían estas primeras mediciones la conclusión de que la radiación cósmica se distribuía como la radiación de cuerpo negro?. 5

6 Problemas tomados de Éléments de Physique Statistique de Bernard Diu, Claudine Guthmann, Danielle Lederer y Bernard Roulet (Hermann Éditeurs 1989). 6

Repartido Estadísticas Cuánticas

Repartido Estadísticas Cuánticas Repartido 5 207 - Estadísticas Cuánticas Mecánica Estadística 207 - Facultad de Ciencias - UdelaR 26 de octubre de 207 Ejercicio. Obtenga la forma explícita del estado base y del primer estado excitado

Más detalles

7 Estadísticas cuánticas; fermiones.

7 Estadísticas cuánticas; fermiones. 7 Estadísticas cuánticas; fermiones. ersión borrador. Un gas de Fermi es un sistema de partículas en el que las interacciones entre ellas son su cientemente débiles de forma que los estados monoparticulares

Más detalles

Física Estadística. A entregar: Lunes 16 de mayo de 2011.

Física Estadística. A entregar: Lunes 16 de mayo de 2011. Física Estadística A entregar: Lunes 16 de mayo de 2011. En esta tarea necesitará el uso de las funciones de Bose g n (α). Los siguientes resultados pueden ser de utilidad. La función de Bose se define

Más detalles

Límite de Chandrasekhar

Límite de Chandrasekhar Límite de Chandrasekhar Martin Hendrick 24 de mayo 2010 Introduccíon Enenas blancas Límite de Chandrasekhar Bibliografía Introduccíon Física estadistica = estudio de sistemas compuestos de muchas particulas

Más detalles

Gas ideal de Fermi-Dirac

Gas ideal de Fermi-Dirac Capítulo 9 Gas ideal de Fermi-Dirac Los fermiones son partículas de spin semi-entero. Supongamos el caso mas simple de spin 1/2, esto es, partículas para las cuales S z ± h/2, estados que vamos a denotar

Más detalles

Condensación de un gas ideal de bosones

Condensación de un gas ideal de bosones Clase 13 Condensación de un gas ideal de bosones Para un gas de bosones, el número promedio de partículas está dado por la expresión, N = i e βɛ i(v ) 1 e βɛ i(v ) (13.1) Es a través de la fugacidad, denotada

Más detalles

Interacción de la radiación con la materia

Interacción de la radiación con la materia C A P Í T U L O 3 Interacción de la radiación con la materia 3.1. ENUNCIADOS Y SOLUCIONES DE LOS PROBLEMAS 1. Determine la probabilidad de transición para una perturbación H (x) independiente del tiempo

Más detalles

1) Rellene la tabla siguiente y escriba los cuatro números cuánticos del electrón diferenciador (el más externo) de los siguientes elementos:

1) Rellene la tabla siguiente y escriba los cuatro números cuánticos del electrón diferenciador (el más externo) de los siguientes elementos: 1 Ejercicios resueltos 1) Rellene la tabla siguiente y escriba los cuatro números cuánticos del electrón diferenciador (el más externo) de los siguientes elementos: Nº atómico Z Nº másico A Protones Neutrones

Más detalles

Condensación de un gas ideal de bosones

Condensación de un gas ideal de bosones Clase 13 Condensación de un gas ideal de bosones Para un gas de bosones, el número promedio de partículas está dado por la expresión, N = i e βɛ i 1 e βɛ i(v ) (13.1) Es a través de la fugacidad, denotada

Más detalles

Tema 14 11/02/2005. Tema 8. Mecánica Cuántica. 8.1 Fundamentos de la mecánica cuántica

Tema 14 11/02/2005. Tema 8. Mecánica Cuántica. 8.1 Fundamentos de la mecánica cuántica Tema 14 11/0/005 Tema 8 Mecánica Cuántica 8.1 Fundamentos de la mecánica cuántica 8. La ecuación de Schrödinger 8.3 Significado físico de la función de onda 8.4 Soluciones de la ecuación de Schrödinger

Más detalles

producción de energía en las estrellas interiores estelares

producción de energía en las estrellas interiores estelares producción de energía en las estrellas interiores estelares porqué brillan las estrellas? la energía emitida por las estrellas tiene su origen en reacciones termonucleares que tienen lugar en su interior

Más detalles

ESTADISTICA CUANTICA

ESTADISTICA CUANTICA ESTADISTICA CUANTICA Introducción Por qué? Mayor número de partículas, mayor complejidad del problema. Es posible obtener propiedades colectivas o macroscópicas del sistema sin considerar el movimiento

Más detalles

INGRESO AL PROGRAMA DE DOCTORADO 2001 OBSERVATORIO PIERRE AUGER

INGRESO AL PROGRAMA DE DOCTORADO 2001 OBSERVATORIO PIERRE AUGER INGRESO AL PROGRAMA DE DOCTORADO 2001 OBSERVATORIO PIERRE AUGER 1. Dado el circuito: 1 100 V + - 2 3 50 Ω + - 10 H + - a) Inicialmente se pasa el interruptor de la posición 1 a la posición 2 y se deja

Más detalles

Física Estadística. Tercer curso del Grado en Física. J. Largo & J.R. Solana. Departamento de Física Aplicada Universidad de Cantabria

Física Estadística. Tercer curso del Grado en Física. J. Largo & J.R. Solana. Departamento de Física Aplicada Universidad de Cantabria Tercer curso del Grado en Física largoju at unican.es J. Largo & J.R. Solana solanajr at unican.es Departamento de Física Aplicada Universidad de Cantabria Indice I Considerar un gas, con N, V, T. las

Más detalles

Física Estadística. Tercer curso del Grado en Física. J. Largo & J.R. Solana. Departamento de Física Aplicada Universidad de Cantabria

Física Estadística. Tercer curso del Grado en Física. J. Largo & J.R. Solana. Departamento de Física Aplicada Universidad de Cantabria Tercer curso del Grado en Física largoju at unican.es J. Largo & J.R. Solana solanajr at unican.es Departamento de Física Aplicada Universidad de Cantabria Indice I En el caso de un sólido metálico, además

Más detalles

Física Nuclear y Reacciones Nucleares Problemas de Práctica

Física Nuclear y Reacciones Nucleares Problemas de Práctica Slide 1 / 58 Física Nuclear y Reacciones Nucleares Problemas de Práctica Slide 2 / 58 Multiopción Slide 3 / 58 1 El núcleo atómico se compone de: A B C D E electrones protones protones y electrones protones

Más detalles

FÍSICA MODERNA FÍSICA CUÁNTICA. José Luis Rodríguez Blanco

FÍSICA MODERNA FÍSICA CUÁNTICA. José Luis Rodríguez Blanco FÍSICA MODERNA FÍSICA CUÁNTICA José Luis Rodríguez Blanco CRISIS DE LA FÍSICA CLÁSICA Problemas de la Física Clásica a finales del siglo XIX, principios del XX Espectros discontinuos de gases Efecto fotoeléctrico

Más detalles

Cuestiones de Autoevaluación

Cuestiones de Autoevaluación Cuestiones de Autoevaluación Temas 1-5 Razone cuál de las respuestas es correcta en cada caso 1. En un experimento fotoeléctrico que se realiza con fotones de energías superiores a la función trabajo del

Más detalles

Modelos nucleares. Laura C. Damonte 2014

Modelos nucleares. Laura C. Damonte 2014 Modelos nucleares Laura C. Damonte 2014 Introducción Núcleos: sistema de muchos cuerpos matemática complejidad Modelos estadísticos (gota líquida, un volumen de gas, etc) o sistema central de fuerzas (el

Más detalles

Apuntes de clase : Introducción a la Física del Estado Sólido pag. 1/16

Apuntes de clase : Introducción a la Física del Estado Sólido pag. 1/16 Apuntes de clase : Introducción a la Física del Estado Sólido pag. 1/16 Semana 4. Gas de Fermi de electrones libres Bibliografía: Introduction to Solid State Physics, 8 th edition, C. Kittel. Capítulo

Más detalles

T = Al sustituir el valor de la longitud de onda para la que la energía radiada es máxima, l máx, se obtiene: = 1379 K 2, m

T = Al sustituir el valor de la longitud de onda para la que la energía radiada es máxima, l máx, se obtiene: = 1379 K 2, m 2 Física cuántica Actividades del interior de la unidad. Calcula la temperatura de un ierro al rojo vivo para el cual l máx = 2, µm. Para calcular la temperatura que solicita el enunciado, aplicamos la

Más detalles

Interacciones Eléctricas La Ley de Coulomb

Interacciones Eléctricas La Ley de Coulomb Interacciones Eléctricas La Ley de Coulomb 1. Introducción La Electrostática se ocupa del estudio de las interacciones entre cargas eléctricas en reposo. Las primeras experiencias relativas a los fenómenos

Más detalles

Tema 14 Mecánica Cuántica

Tema 14 Mecánica Cuántica Tema 14 Mecánica Cuántica 1 14.1 Fundamentos de la mecánica cuántica 14. La ecuación de Schrödinger 14.3 Significado físico de la función de onda 14.4 Soluciones de la ecuación de Schrödinger para el átomo

Más detalles

Problema Teórico No. 2

Problema Teórico No. 2 Problema Teórico No. 2 XIII Olimpiada Iberoamericana de Física, 2008, Morelia, Michoacán, México Cuánta energía tienen y de qué tan lejos provienen los Rayos Cósmicos Ultraenergéticos? Introducción: El

Más detalles

MATERIA MOLÉCULAS ÁTOMOS PARTÍCULAS SUBATÓMICAS. Partícula Masa (g) Carga (Coulombs) Carga unitaria. Electrón

MATERIA MOLÉCULAS ÁTOMOS PARTÍCULAS SUBATÓMICAS. Partícula Masa (g) Carga (Coulombs) Carga unitaria. Electrón MATERIA MOLÉCULAS ÁTOMOS PARTÍCULAS SUBATÓMICAS Partícula Masa (g) Carga (Coulombs) Carga unitaria Electrón 9.10939 10-28 -1.6022 10-19 -1 Protón 1.67262 10-24 +1.6022 10-19 +1 Neutrón 1.67493 10-24 0

Más detalles

TEMA 1: FÍSICA DE LAS RADIACIONES

TEMA 1: FÍSICA DE LAS RADIACIONES TEMA 1: FÍSICA DE LAS RADIACIONES Concepto de magnitud Cualquier propiedad medible que posee un cuerpo. Medir es comparar el valor de la magnitud con otro que nos sirva de referencia. Tipos de magnitud

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA

PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA CURSO 013 014 CONVOCATORIA: PROBLEMAS OPCIÓN A MATERIA: FÍSICA De las dos opciones propuestas, sólo hay que desarrollar

Más detalles

N i,m e ( χ i,m. kt ) (4.1)

N i,m e ( χ i,m. kt ) (4.1) 4.3. Excitación térmica. Formula de Boltzmann # Intensidad de una línea depende de ( al menos en sentido cualitativo): Número de átomos del elemento en el estado de ionización correspondiente Número de

Más detalles

Departamento de Química del Cinvestav

Departamento de Química del Cinvestav Departamento de Química del Cinvestav Preguntas tipo examen de admisión de Fisicoquímica I. Mecánica Clásica. Cual de los siguientes cuerpos está sometido a la acción de la mayor fuerza, tomando como referencia

Más detalles

ÍNDICE GENERAL. Introducción 11. Tema 1. Principales características del núcleo Introducción teórica Problemas resueltos...

ÍNDICE GENERAL. Introducción 11. Tema 1. Principales características del núcleo Introducción teórica Problemas resueltos... ÍNDICE GENERAL Introducción 11 Tema 1. Principales características del núcleo 13 1. Introducción teórica................................... 13 1.1. Propiedades nucleares...............................

Más detalles

Física Estadística. Tercer curso del Grado en Física. J. Largo & J.R. Solana. Departamento de Física Aplicada Universidad de Cantabria

Física Estadística. Tercer curso del Grado en Física. J. Largo & J.R. Solana. Departamento de Física Aplicada Universidad de Cantabria Tercer curso del Grado en Física largoju at unican.es J. Largo & J.R. Solana solanajr at unican.es Departamento de Física Aplicada Universidad de Cantabria Indice I equilibrio Densidad de La radiación

Más detalles

Comportamiento Electrónico de los Materiales. Tema 2. Electrones en Sólidos. Teoría de Bandas de Energía.

Comportamiento Electrónico de los Materiales. Tema 2. Electrones en Sólidos. Teoría de Bandas de Energía. Comportamiento Electrónico de los Materiales Tema. Electrones en Sólidos. Teoría de Bandas de Energía. .1 Teoría de Bandas de Energía..1.1 Partículas en interacción con objetos múltiples. Molécula de Hidrógeno.

Más detalles

Las Estrellas: Su Vida y Muerte

Las Estrellas: Su Vida y Muerte Las Estrellas: Su Vida y Muerte Jane Arthur IRyA, UNAM: Morelia Escuela de Verano en Astrofísica, 2017 El Cielo de Noche: Estrellas Inmutables? Medir la luz de las estrellas: Fotometría Mediciones del

Más detalles

Ejercicios de Física cuántica y nuclear. PAU (PAEG)

Ejercicios de Física cuántica y nuclear. PAU (PAEG) 1. Las longitudes de onda del espectro visible están comprendidas, aproximadamente, entre 390 nm en el violeta y 740 nm en el rojo. Qué intervalo aproximado de energías, en ev, corresponde a los fotones

Más detalles

Serie de problemas para el curso. Química Cuantica I

Serie de problemas para el curso. Química Cuantica I erie de problemas para el curso Química Cuantica I Matemáticas Tema Resuelva todos los problemas del capítulo de la referencia B6 y compare sus resultados con las soluciones que se incluyen al final de

Más detalles

FÍSICA TEÓRICA 3-2do. Cuatrimestre de 2009 Segundo parcial: soluciones. log ( 1 ± e βϵ z ), (1) V h 3. d 3 p log ( 1 + e βp2 /2m 1.

FÍSICA TEÓRICA 3-2do. Cuatrimestre de 2009 Segundo parcial: soluciones. log ( 1 ± e βϵ z ), (1) V h 3. d 3 p log ( 1 + e βp2 /2m 1. FÍSICA TEÓRICA 3 - do. Cuatrimestre de 009 Segundo parcial: soluciones Problema 1: Se trata de encontrar los volúmenes que hacen que la presión sea la misma a ambos lados del tabique. Esto puede calcularse

Más detalles

MODELOS ATOMICOS. Solución Å; Ultravioleta; 1106 m/s

MODELOS ATOMICOS. Solución Å; Ultravioleta; 1106 m/s MODELOS ATOMICOS 1. Calcular el valor del radio de la órbita que recorre el electrón del hidrogeno en su estado normal. Datos. h = 6 63 10 27 erg s, m(e ) = 9 1 10 28 gr, q(e ) = 4 8 10-10 u.e.e. Solución.

Más detalles

Unidad I: Electrostática.

Unidad I: Electrostática. Unidad I: Electrostática. I. Naturaleza eléctrica de la sustancia. En la electrostática se aborda el estudio de las propiedades estáticas de las cargas eléctricas. La palabra electricidad procede del griego

Más detalles

Propiedades del núcleo. Laura C. Damonte 2014

Propiedades del núcleo. Laura C. Damonte 2014 Propiedades del núcleo Laura C. Damonte 2014 El núcleo Dos problemas principales: Las fuerzas que mantienen unido al núcleo. La descripción de un sistema de muchas partículas. 1. MODELOS Propiedades estáticas:

Más detalles

Mecánica Estadística

Mecánica Estadística 52 CFATA Y FESC, UNAM UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO CENTRO DE FÍSICA APLICADA Y TECNOLOGÍA AVANZADA Y FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN Carrera: Licenciatura en Tecnología Programa de

Más detalles

Radiación electromagnética

Radiación electromagnética Page 1 Radiación electromagnética Consideremos una partícula cargada en reposo respecto de un observador inercial, produciendo un campo eléctrico. Al moverse a cierta velocidad se observará un campo electromagnético.

Más detalles

III. El Gas Ideal clásico

III. El Gas Ideal clásico III. El Gas Ideal clásico Función de partición Ecuación de estado Energía interna y calor específico Entropía (Sackur-Tetrode) Paradoja de Gibbs Módulo de Mecánica Estadística Instituto de Física - Facultad

Más detalles

PROGRAMA DE CURSO. Horas de Trabajo Personal Horas de Cátedra. Competencias a las que tributa el curso

PROGRAMA DE CURSO. Horas de Trabajo Personal Horas de Cátedra. Competencias a las que tributa el curso Código FI 4002 Nombre PROGRAMA DE CURSO Mecánica Estadística Nombre en Inglés SCT Unidades Docentes Statistical Mechanics Horas de Cátedra Horas Docencia Auxiliar Horas de Trabajo Personal 9 15 3.0 3.0

Más detalles

INTRODUCCIÓN A LA FÍSICA MODERNA

INTRODUCCIÓN A LA FÍSICA MODERNA INTRODUCCIÓN A LA FÍSICA MODERNA CUESTIONES Física relativista (Ver Lección 12) 1. Teóricamente qué demostraba el experimento de Michelson Morley 2. Einstein desarrolló dos teorías de la relatividad: a.

Más detalles

TEORÍA CORPUSCULAR DE LA LUZ.

TEORÍA CORPUSCULAR DE LA LUZ. Marta Vílchez TEORÍA CORPUSCULAR DE LA LUZ. Max Planck (1858-1947) Albert Einstein (1879-1955) Arthur H. Compton (189-196) 1 Marta Vílchez Antecedentes de la teoría corpuscular. Radiación del cuerpo negro.

Más detalles

ESTRUCTURA DE LA MATERIA

ESTRUCTURA DE LA MATERIA ESTRUCTURA DE LA MATERIA Cuestiones 1. Conteste breve y razonadamente lo que se plantea en los apartados siguientes: a) Qué son los modelos atómicos y qué utilidad tienen?. b) Cite dos modelos atómicos

Más detalles

Química Inorgánica I Curso Intersemestral semestre: 16-2

Química Inorgánica I Curso Intersemestral semestre: 16-2 Química Inorgánica I Curso Intersemestral semestre: 6-2 EJERCICIOS COMPLEMENTARIOS Indica cuál es el núcleo X que se produce en la siguiente reacción nuclear. 5 N + p + X + α a) 3 C b) 5 º c) 2 C d) 4

Más detalles

Examen Predoctoral Física Estadística Jueves 15 de junio, 2016

Examen Predoctoral Física Estadística Jueves 15 de junio, 2016 Física Estadística Jueves 15 de junio, 2016 Elija y resuelva dos de los siguientes tres problemas, cada uno en hojas separadas. Ponga su nombre en cada una de las hojas. 1. Considere un cilindro de 1 m

Más detalles

Ejercicios Química PAU Comunidad de Madrid Enunciados Revisado 15 septiembre 2016

Ejercicios Química PAU Comunidad de Madrid Enunciados Revisado 15 septiembre 2016 2016-Septiembre Pregunta A1.- Los números atómicos de los elementos A, B y C son Z, Z+1 y Z+2, respectivamente. Si B es el gas noble que se encuentra en el tercer periodo, conteste razonadamente a las

Más detalles

Física Nuclear y Reacciones Nucleares Problemas de Práctica Multiopción 1 El núcleo atómico se compone de: A electrones

Física Nuclear y Reacciones Nucleares Problemas de Práctica Multiopción 1 El núcleo atómico se compone de: A electrones Slide 1 / 58 Física Nuclear y Reacciones Nucleares Problemas de Práctica Slide 2 / 58 Multiopción 1 l núcleo atómico se compone de: Slide 3 / 58 electrones protones protones y electrones protones y neutrones

Más detalles

Síntesis de Física 2º de Bach. Borrador Mecánica Cuántica - 1 RADIACIÓN DEL CUERPO NEGRO Y LA HIPÓTESIS DE PLANCK

Síntesis de Física 2º de Bach. Borrador Mecánica Cuántica - 1 RADIACIÓN DEL CUERPO NEGRO Y LA HIPÓTESIS DE PLANCK Síntesis de Física º de Bach. Borrador Mecánica Cuántica - 1 MECÁNICA CUÁNTICA RADIACIÓN DEL CUERPO NEGRO Y LA HIPÓTESIS DE PLANCK Todos los cuerpos emiten energía radiante debido a su temperatura. Vamos

Más detalles

Termodinámica Clásica

Termodinámica Clásica Termodinámica Clásica Conceptos fundamentales Física Estadística Maestría en Ciencias (Física) IFUAP Lilia Meza Montes Primavera 2016 Historia Mecánica Clásica (1833) Ecuaciones de (Lagrange) Hamilton

Más detalles

Unidad I: Electrostática.

Unidad I: Electrostática. Unidad I: Electrostática. I. Naturaleza eléctrica de la sustancia. En la electrostática se aborda el estudio de las propiedades estáticas de las cargas eléctricas. La palabra electricidad procede del griego

Más detalles

La ley de desplazamiento de Wien (Premio Nobel 1911):

La ley de desplazamiento de Wien (Premio Nobel 1911): Trabajo de laboratorio Nro 1: Verificación de la ley de Stefan Boltzmann y determinación de la constante de Planck mediante el análisis de la radiación del cuerpo negro Introducción Toda superficie cuya

Más detalles

Propiedades características de un metal o donde. estábamos en 1900

Propiedades características de un metal o donde. estábamos en 1900 Propiedades características de un metal o donde ρ estábamos en 1900 Los metales son buenos conductores de la electricidad. Podemos caracterizar esta propiedad introduciendo la resistividad eléctrica ρ

Más detalles

Laboratorio 1. Efecto fotoeléctrico

Laboratorio 1. Efecto fotoeléctrico Laboratorio 1 Efecto fotoeléctrico 1.1 Objetivos 1. Determinar la constante de Planck h 2. Determinar la dependencia del potencial de frenado respecto de la intensidad de la radiación incidente. 1.2 Preinforme

Más detalles

RELACIÓN CARGA MASA DEL ELECTRÓN.

RELACIÓN CARGA MASA DEL ELECTRÓN. RELACIÓN CARGA MASA DEL ELECTRÓN. OBJETIVOS. *Identificar que cuando una carga eléctrica se acelera emite radiación electromagnética (luz). *Identificar la interacción de las cargas eléctricas con un campo

Más detalles

FES. Electrones libres en los metales. Modelo de Sommerfeld.

FES. Electrones libres en los metales. Modelo de Sommerfeld. . Suponemos que el sólido metálico se puede modelizar de acuerdo a las siguientes hipótesis: 1. En el metal existen los denominados electrones de conducción que están constituidos por todos los electrones

Más detalles

Z, ( a veces se suprime Z),donde X es el símbolo químico del elemento. Así por ejemplo tenemos los isótopos del carbono:

Z, ( a veces se suprime Z),donde X es el símbolo químico del elemento. Así por ejemplo tenemos los isótopos del carbono: RADIACTIVIDAD El núcleo atómico está constituido por nucleones: Z protones y N neutrones, ( en total A ). Como sabemos los nucleones son partículas elementales y están constituidos por la agrupación de

Más detalles

Estructura de la Materia Serie 1

Estructura de la Materia Serie 1 Estructura de la Materia Serie 1 Dra. Martha M. Flores Leonar Semestre 20182 1. Las partículas alfa (α), se pueden definir como núcleos de Helio, es decir, son átomos de Helio completamente ionizados (que

Más detalles

QUINTA OLIMPIADA UNIVERSITARIA DE FÍSICA (ONUF) PRIMERA OLIMPIADA LATINOAMERICANA Y DEL CARIBE UNIVERSITARIA DE FÍSICA (OLUF) 7 de abril de 2017

QUINTA OLIMPIADA UNIVERSITARIA DE FÍSICA (ONUF) PRIMERA OLIMPIADA LATINOAMERICANA Y DEL CARIBE UNIVERSITARIA DE FÍSICA (OLUF) 7 de abril de 2017 DATOS PERSONALES: Nombre: Universidad: País: Carrera: Año que cursa: Teléfono: C. Electrónico: Numero de Identidad: FIRMA: PUNTUACIONES: 1:, 2:, 3:, 4:, 5: TOTAL: LAS SOLUCIONES: Las soluciones a problemas

Más detalles

TEMA 5. Estructura estelar: Ecuaciones básicas. Generación y transporte de energía. Reacciones nucleares más importantes.

TEMA 5. Estructura estelar: Ecuaciones básicas. Generación y transporte de energía. Reacciones nucleares más importantes. TEMA 5 Estructura estelar: Ecuaciones básicas. Generación y transporte de energía. Reacciones nucleares más importantes. CTE 2 - Tema 5 1 Estructura interior de una estrella Las condiciones de equilibrio

Más detalles

Tercer principio de la Termodinámica 16 de marzo de 2009 Cuestiones y problemas: Cuestiones 4.43 y 4.44

Tercer principio de la Termodinámica 16 de marzo de 2009 Cuestiones y problemas: Cuestiones 4.43 y 4.44 Índice 5 CELINA GONZÁLEZ ÁNGEL JIMÉNEZ IGNACIO LÓPEZ RAFAEL NIETO Tercer principio de la Termodinámica 6 de marzo de 2009 Cuestiones y problemas: Cuestiones 4.43 y 4.44 subrayados y en negrita para voluntarios

Más detalles

PRINCIPIO Y FIN DEL UNIVERSO

PRINCIPIO Y FIN DEL UNIVERSO PRINCIPIO Y FIN DEL UNIVERSO J. J. Ruiz-Lorenzo Dep. Física, Universidad de Extremadura http://www.unex.es/fisteor/juan/juan_talks.html http://www.unex.es/eweb/astrono http://www.astronomia2009.es Badajoz,

Más detalles

EXAMEN DE ADMISIÓN INGRESO DE NOVIEMBRE DE 2008 MAESTRÍA EN CIENCIAS (ASTRONOMÍA)

EXAMEN DE ADMISIÓN INGRESO DE NOVIEMBRE DE 2008 MAESTRÍA EN CIENCIAS (ASTRONOMÍA) INSTRUCCIONES: El aspirante deberá seleccionar dos problemas de los tres propuestos. Resolver cada problema en hojas separadas por una sola cara Escribir el nombre en cada una de ellas. MECÁNICA CLÁSICA

Más detalles

Pasaje de partículas cargadas por la materia. Efecto Cherenkov. Bremsstrahlung Laura C. Damonte 2014

Pasaje de partículas cargadas por la materia. Efecto Cherenkov. Bremsstrahlung Laura C. Damonte 2014 Pasaje de partículas cargadas por la materia. Efecto Cherenkov. Bremsstrahlung Laura C. Damonte 014 Pasaje de partículas cargadas por la materia Cuando una partícula cargada atraviesa materia, alguno o

Más detalles

MATERIA OSCURA. Motivos de su existencia Distribución Candidatos a materia oscura Formas de medida Conclusiones

MATERIA OSCURA. Motivos de su existencia Distribución Candidatos a materia oscura Formas de medida Conclusiones MATERIA OSCURA Motivos de su existencia Distribución Candidatos a materia oscura Formas de medida Conclusiones Segunda Ley de Kepler: Cuando el planeta está más alejado del Sol (afelio) su velocidad es

Más detalles

El cuerpo negro. Figura 3.1: Cuerpo negro

El cuerpo negro. Figura 3.1: Cuerpo negro Capítulo 3 El cuerpo negro. Cuerpo negro: Distribución de fotones dentro de un recinto cuyas paredes se mantienen en equilibrio termodinámico (T = cte.): radiación del cuerpo negro (BB). Figura 3.1: Cuerpo

Más detalles

N par. x dx. x dx. 2kT m

N par. x dx. x dx. 2kT m Tarea. Formulario: Función masa proailidad (proailidad de que ocurra el evento x): frecuencia del evento f xn xn xn N número total de eventos Media: x, x Moda: x mod x max Mediana: x med x x N N N N impar

Más detalles

Capítulo 1. Antecedentes de la Química Cuántica y primeras Teorías Atómicas

Capítulo 1. Antecedentes de la Química Cuántica y primeras Teorías Atómicas Capítulo 1. Antecedentes de la Química Cuántica y primeras Teorías Atómicas Objetivos: Recordar y actualizar los conocimientos sobre las características de electrones, protones y neutrones Describir la

Más detalles

Física del Estado Sólido I. Tema 2: Enlace y propiedades de los materiales

Física del Estado Sólido I. Tema 2: Enlace y propiedades de los materiales Física del Estado Sólido I Tema : Enlace y propiedades de los materiales Tema : Enlace y propiedades de los materiales Introducción Qué interacción es responsable de la cohesión en los cristales? - La

Más detalles

Ejercicios Química PAU Comunidad de Madrid Enunciados Revisado 22 septiembre 2017

Ejercicios Química PAU Comunidad de Madrid Enunciados Revisado 22 septiembre 2017 2018-Modelo Pregunta B1.- Considere los cuatro elementos con la siguiente configuración electrónica en los niveles de energía más externos: A : 2s 2 2p 4 ; B: 2s 2 ; C: 3s 2 3p 2 ; D: 3s 2 3p 5. a) Identifique

Más detalles

FÍSICA. 2º BACHILLERATO BLOQUE V: INTRODUCCIÓN A LA FÍSICA MODERNA Examen 1

FÍSICA. 2º BACHILLERATO BLOQUE V: INTRODUCCIÓN A LA FÍSICA MODERNA Examen 1 Examen 1 1. En la explosión de una bomba atómica se produce Sr-90, que es un peligroso contaminante radiactivo, cuyo periodo de semidesintegración es de 28,8 años. Cuánto tiempo debe transcurrir para que

Más detalles

Simetría de funciones de onda y Principio de Pauli. Rueda Carlos Alberto Tinajero Verónica Tavera Hernández Rosario

Simetría de funciones de onda y Principio de Pauli. Rueda Carlos Alberto Tinajero Verónica Tavera Hernández Rosario Simetría de funciones de onda y Principio de Pauli Rueda Carlos Alberto Tinajero Verónica Tavera Hernández Rosario Introducción. En el espectro de emisión del sodio la línea amarilla es la más intensa

Más detalles

INSTITUTO DE FÍSICA MECÁNICA ESTADÍSTICA

INSTITUTO DE FÍSICA MECÁNICA ESTADÍSTICA INSTITUTO DE FÍSICA MECÁNICA ESTADÍSTICA Curso 01 Práctico II Postulados de Mecánica Estadística. Fecha de Entrega: 1 de Setiembre de 01. 1 Parte A: Ejercicios Teórico: Ejercicio N o 1 Pico Agudo de la

Más detalles

La Hipótesis: Los electrones de las paredes se agitan térmicamente y emiten radiación electromagnética dentro de la cavidad.

La Hipótesis: Los electrones de las paredes se agitan térmicamente y emiten radiación electromagnética dentro de la cavidad. Solución Clásica de Rayleigh-Jeans (1900) La Hipótesis: Los electrones de las paredes se agitan térmicamente y emiten radiación electromagnética dentro de la cavidad. En la cavidad se establece y se mantiene

Más detalles

Ejercicios I Dos objetos, A y B, tienen el mismo momentum. B tiene más energía cinética que A si

Ejercicios I Dos objetos, A y B, tienen el mismo momentum. B tiene más energía cinética que A si Ejercicios I1 1. El momentum de un objeto en un instante dado es independiente de su a) inercia b) mass c) rapidez d) velocidad e) aceleración 2. -Dos objetos, A y B, tienen el mismo momentum. B tiene

Más detalles

Métodos y Terapias 2.2 Interacción Partículas Cargadas

Métodos y Terapias 2.2 Interacción Partículas Cargadas Métodos y Terapias 2.2 Interacción Partículas Cargadas Materia Dr. Willy H. Gerber Instituto de Fisica Universidad Austral de Chile Valdivia, Chile Objetivos: Comprender como interactúan partículas cargadas

Más detalles

FÍSICA CUÁNTICA 1. Antecedentes y crisis. 2. Modelo atómico de Bohr. 3. Principios de la mecánica cuántica.

FÍSICA CUÁNTICA 1. Antecedentes y crisis. 2. Modelo atómico de Bohr. 3. Principios de la mecánica cuántica. FÍSICA CUÁNTICA 1. Antecedentes y crisis. 2. Modelo atómico de Bohr. 3. Principios de la mecánica cuántica. Física 2º bachillerato Física cuántica 1 0. CONOCIMIENTOS PREVIOS Los conocimientos previos que

Más detalles

Sólidos ENLACE IONICO

Sólidos ENLACE IONICO Zonas de Brillouin Sólidos NLAC IONICO nlace iónico jemplo: Na + Cl -. structura cristalina fcc con una base de un ion (Na + ) en (,,) y el otro (Cl - ) en el centro del cubo (1/,1/,1/)a. Madelung propone

Más detalles

FÍSICA ESTADÍSTICA Diploma de Especialización en Física (ANEP UdelaR) Curso 2013

FÍSICA ESTADÍSTICA Diploma de Especialización en Física (ANEP UdelaR) Curso 2013 FÍSICA ESTADÍSTICA Diploma de Especialización en Física (ANEP UdelaR) Curso 2013 DOCENTES: Teórico: Ricardo Marotti khamul@fing.edu.uy IFFI: 2711 09 05 / 2711 54 44 / 2711 54 45 Práctico: Sofía Favre sfavre@fisica.edu.uy

Más detalles

Física del Estado Sólido Práctico 8 Estructura Electrónica de Bandas y Semiconductores

Física del Estado Sólido Práctico 8 Estructura Electrónica de Bandas y Semiconductores Física del Estado Sólido Práctico 8 Estructura Electrónica de Bandas y Semiconductores 1. Origen de las Bandas de Energía Considere un potencial cristalino unidimensional y sinusoidal U(x) = U 0 cos( π

Más detalles

Dinámica de la materia nuclear

Dinámica de la materia nuclear Tema 13 Dinámica de la materia nuclear Asignatura de Física Nuclear Curso académico 009/010 Universidad de Santiago de Compostela 1 Dinámica de la materia nuclear Uno de los objetivos fundamentales de

Más detalles

Física Nuclear y de Partículas 2005/2006 Tema 1

Física Nuclear y de Partículas 2005/2006 Tema 1 TEMA 1 INTRODUCCIÓN. CONCEPTOS BÁSICOS CONTENIDOS Breve introducción histórica. Átomos, electrones y núcleos. Quarks y leptones. Interacciones fundamentales. Escala de las fuerzas y distancias subatómicas.

Más detalles

Capitulo 11. Estructura estelar.

Capitulo 11. Estructura estelar. Capitulo 11. Estructura estelar. 11.1 Condiciones de equilibrio interno. * Equilibrio hidrostatico. * Distribucion de la masa. * Produccion de energia. * Gradiente de temperatura. 11.2 Fuentes de energia

Más detalles

Química Inorgánica Dra.Silvia E. Jacobo. Nucleogénesis

Química Inorgánica Dra.Silvia E. Jacobo. Nucleogénesis Nucleogénesis Big Bang 10-43 s 10-34 s 10-10 s 1 s 3 minutos 30 minutos 300.000 años 10 6 años 10 8 años 10 9 años 5x10 9 años 10 10 años Densidad infinita, volumen cero. Fuerzas no diferenciadas Sopa

Más detalles

No olvide escribir claramente su nombre completo en la esquina superior derecha en cada una de las hojas de su examen.

No olvide escribir claramente su nombre completo en la esquina superior derecha en cada una de las hojas de su examen. Examen de Admisión Instrucciones 22-Noviembre-2011 No olvide escribir claramente su nombre completo en la esquina superior derecha en cada una de las hojas de su examen. El examen es a libro cerrado, por

Más detalles

Examen predoctoral de Mecánica Clásica

Examen predoctoral de Mecánica Clásica Examen predoctoral de Mecánica Clásica Este examen consta de dos tipos de problemas: problemas conceptuales que se pueden resolver rapidamente si se tiene la idea correcta, y problemas tradicionales o

Más detalles

ESTRUCTURA DE LA MATERIA 1.-junio 1996 a) Establezca cuales de las siguientes series de números cuánticos serían posibles y cuáles imposibles para especificar el estado de un electrón en un átomo: serie

Más detalles

Estructura electrónica de los átomos

Estructura electrónica de los átomos Estructura electrónica de los átomos Partículas subatómicas Protón (p) 1,673 10-27 Kg + 1,602 10-19 C Goldstein (1886) Electrón (e) 9,109 10-31 Kg - 1,602 10-19 C Thomson (1897) Neutrón (n) 1,673 10-27

Más detalles

PROBLEMAS DE FÍSICA CUÁNTICA

PROBLEMAS DE FÍSICA CUÁNTICA PROBLEMAS DE FÍSICA CUÁNTICA 2017 1) Qué velocidad ha de tener un electrón para que su longitud de onda sea 100 veces mayor que la de un neutrón cuya energía cinética es 6 ev? me = 9,11 10-31 kg; mn =

Más detalles

Motivación de la mecánica Cuántica

Motivación de la mecánica Cuántica Motivación de la mecánica Cuántica Química Física Aplicada, UAM 4 de febrero de 2011 (Química Física Aplicada, UAM) Motivación de la mecánica Cuántica 4 de febrero de 2011 1 / 13 Tema 1: Motivación de

Más detalles

Problemas. Cuestiones. Física 2º Bach. Física moderna 20/05/09 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre: [2 PUNTOS /UNO]

Problemas. Cuestiones. Física 2º Bach. Física moderna 20/05/09 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre: [2 PUNTOS /UNO] Física 2º Bach. Física moderna 20/05/09 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: [2 PUNTOS /UNO] 1. Al iluminar una célula fotoeléctrica con radiación electromagnética de longitud de onda 185

Más detalles

Relación Problemas Tema 11: Física Cuántica

Relación Problemas Tema 11: Física Cuántica 1.- Determinar la energía de un fotón para: a) Ondas de radio de 1500 khz b) Luz verde de 550 nm c) Rayos X de 0,06 nm Relación Problemas Tema 11: Física Cuántica Problemas (para todas, el medio de propagación

Más detalles

Universidad Nacional de La Plata Facultad de Ciencias Astronómicas y Geofísicas. INTRODUCCIÓN a las CIENCIAS de la ATMÓSFERA

Universidad Nacional de La Plata Facultad de Ciencias Astronómicas y Geofísicas. INTRODUCCIÓN a las CIENCIAS de la ATMÓSFERA Universidad Nacional de La Plata Facultad de Ciencias Astronómicas y Geofísicas INTRODUCCIÓN a las CIENCIAS de la ATMÓSFERA Práctica 2 : ENERGÍA, CALOR, RADIACIÓN SOLAR Y TERRESTRE. Definiciones, ecuaciones

Más detalles

Tema 1: Electrones, energía, átomos y sólidos

Tema 1: Electrones, energía, átomos y sólidos Tema 1: Electrones, energía, átomos y sólidos K. Kano: cap. 1 y cap. El modelo de Bohr Mecánica cuántica. Dualidad onda corpúsculo. Ecuación de Schrödinger en un átomo hidrogenoide. Números cuánticos Formación

Más detalles

FÍSICA MODERNA. a) Explique las transformaciones energéticas en el proceso de fotoemisión y calcule la

FÍSICA MODERNA. a) Explique las transformaciones energéticas en el proceso de fotoemisión y calcule la FÍSICA MODERNA 2001 1. Un haz de luz de longitud de onda 546 10-9 m incide en una célula fotoeléctrica de cátodo de cesio, cuyo trabajo de extracción es de 2 ev: a) Explique las transformaciones energéticas

Más detalles