Módulo 3. OPTIMIZACION MULTIOBJETIVO DIFUSA (Fuzzy Multiobjective Optimization)
|
|
|
- César Revuelta Márquez
- hace 10 años
- Vistas:
Transcripción
1 Módulo 3. OPTIMIZACION MULTIOBJETIVO DIFUSA (Fuzzy Multobjectve Optmzaton) Patrca Jaramllo A. y Rcardo Smth Q. Insttuto de Sstemas y Cencas de la Decsón Facultad de Mnas Unversdad Naconal de Colomba, Medellín, Colomba La lógca dfusa Es báscamente una lógca que permte valores ntermedos para poder defnr evaluacones convenconales como sí/no, verdadero/falso, negro/blanco, etc La lógca dfusa se ncó en 965 por Lotf A. Zadeh, profesor de cenca de computadoras en la Unversdad de Calforna en Berkeley.
2 En Japón la nvestgacón sobre lógca dfusa es apoyada amplamente con un presupuesto enorme. En Europa y USA se están realzando esfuerzos para alcanzar al tremendo éxto japonés. Por ejemplo, la NASA emplea lógca borrosa para el complejo proceso de manobras de acoplamento. Conjuntos Booleanos Defnamos un subconjunto A de X con todos números reales en el rango entre 5 y 8. A = [5,8], X [,] funcón característca: asgna un número o al elemento en X, dependendo de s el elemento está en el subconjunto A o no. 2
3 Conjuntos dfusos B = {conjunto de gente joven} B = [,2] por qué alguen es en su 2 cumpleaños joven y al día sguente no? Operacones con conjuntos dfusos Sea A un ntervalo dfuso entre 5 y 8, y B un número dfuso en torno a 4. Operacón AND (Y) (nterseccón) del A y B A AND B = Mn {A,B} 3
4 Operacón OR (O) (unón) del A y B A OR B = Max {A,B} Operacón NEGACION (A) A = - A Análss multobjetvo Max Z(x)=(Z (x),z 2 (x)...z q (x)) sujeto a: g (x) < b S(x) g 2 (x) < b 2 g k (x) < b k 4
5 Solucón Pareto Optma Se dce que una solucón x* es Pareto óptma s y solo s no exste otra x S, tal que Z (x) Z (x*) para todo y Z j (x) Z j (x*) para al menos un j Z (x) A c Z max Produccón económca ($) a Z mn d S B Hectáreas preservadas en estado satsfactoro I. Problema MO con Metas dfusas La meta dfusa se refere a desear alcanzar una solucón sustancalmente mayor o gual a un valor Z respecto al objetvo Z Para cada funcón objetvo exste una funcón de pertenenca µ (x). Por ejemplo: µ (x) Z Z, Z( x) Z µ ( x) =, Z Z, Z ( x) < Z Z < Z ( x) < Z Z ( x) > Z 5
6 Otros Tpos de metas. Z (X) debe estar en la vecndad de r (llamada meta dfusa de gualdad ) 2. Z (X) debe ser sustancalmente mayor o gual a p (llamado meta dfusa máxma ) 3. Z (X) debe ser sustancalmente menor o gual a p (llamado meta dfusa mínma ) µ j µ j µ j r p p Z j Z j Z j meta dfusa de gualdad meta dfusa máxma meta dfusa mínma Solucón Pareto Optma dfusa Se dce que una solucón x* es Pareto óptma dfusa s y solo s no exste otra x S, tal que µ (x) µ (x*) para todo y µ j (x) µ j (x*) para al menos un j A c d µ 2 B µ 6
7 La resolucón del problema multobjetvo será: Maxmzar µ D = µ D (µ (x),µ 2 (x),...,µ q (x)) Por ser funcones dfusas, esto es equvalente a: Maxmzar Mínmo(µ (x),µ 2 (x),...,µ q (x)} Sujeto a las restrccones orgnales Maxmzar Mínmo(µ (x),µ 2 (x),...,µ q (x)} Sujeto a las restrccones orgnales Equvalente a: Max λ Sujeto a: µ ( Z ( x)) λ, =,... q x S 7
8 II. Programacón Multobjetvo dfusa Maxmzar ( Z ( x, a ), (, Z2 x a2),..., Z ( x, a q q )) Sujeto a g( x, bj ) a, b son vectores j de parámetros dfusos Cada parámetro dfuso tene su propa funcón de pertenenca.por ejemplo: µ j a j Conjunto -nvel El conjunto -nvel de los números dfusos a y b son defndos como los conjuntos ordnaros ( a, b ) para los cuales el grado de sus funcones de pertenenca exceden el nvel. µ j a j 8
9 ( a, b ) Conjunto -nvel ( a, b) / µ a ( a r), =,..., q; r = µ ( bjs), j =,..., m b js De ese conjunto nfnto de posbldades, el decsor desea encontrar los valores que maxmcen la funcón objetvo. El problema queda ahora como Maxmzar ( Z ( x, a), Z2( x, a2),..., Z Sujeto a g( x, bj ) ( a, b) ( a, b ( x, a q q j ) Donde (a, b j, x) son varables de decsón )) Redefncón del concepto de Optmo de Pareto -nvel Se dce que una solucón x* es Pareto óptma -nvel s y solo s no exste otra y x X ( b ) ( a, b tal que: ) Z ( x, a ) Z( x*, a ), =,... q donde los correspondentes valores de a* y b* son llamados parámetros óptmos -nvel 9
10 Cuando el problema es lneal Maxmzar c x, c x,..., c ( 2 qx Sujeto a Ax b c, A, b son parámetros ) dfusos Cada parámetro dfuso tene su propa funcón de pertenenca.por ejemplo: µ j c j Redefncón del concepto de Conjunto -nvel Para PL El conjunto -nvel de los parámetros A, b y c se defne como el conjunto ( A, b, c ) para el cual el grado de funcón de pertenenca excede el nvel µ j a j
11 Conjunto -nvel problemas lneales De ese conjunto nfnto de posbldades, el decsor desea encontrar los valores que maxmcen la funcón objetvo. El problema queda ahora como Maxmzar c x, c x,..., c ( 2 qx ) Sujeto a Ax b ( A, b, c) ( A, b, c ) Donde (A, b, c, x) son varables de decsón NO LINEAL S µ (x) es la funcón de pertenenca de Z (x) Maxmzar ( µ ( ), ( ),..., ( c x µ 2 c2 x µ q cq x)) Sujeto a Ax b ( A, b, c) ( A, b, c )
12 S consderamos los puntos extremos de cada valor L R R A A L L R b, b [ c c ] [, ] [ ], µ j ( R ( R Maxmzar( ), ),..., ( R µ c x µ c2 x µ cq x)) Sujeto a A x b L R c j L c j R c j Aplcacones Ha sdo aplcado en: Problemas de regulacón de la contamnacón del are (Lotov et al, 997) Problemas de transporte (Verdegay, 984) Planfcacón medambental (Sakawa and Yano, 985) Planfcacón del sstema de sumnstro de agua (Slownsk, 986) Job Shop schedulng (Sakawa and Kubota, 2) Gestón de aguas resduales (Ducksten et al, 994) Otros... 2
III CONGRESO COLOMBIANO Y I CONFERENCIA ANDINA INTERNACIONAL DE INVESTIGACIÓN DE OPERACIONES
III CONGRESO COLOMBIANO Y I CONFERENCIA ANDINA INTERNACIONAL DE INVESTIGACIÓN DE OPERACIONES TUTORIAL: ANÁLISIS MULTIOBJETIVO CONSIDERANDO INCERTIDUMBRE E IMPRECISIÓN Patrca Jaramllo A. y Rcardo A. Smth
PROPORCIONAR RESERVA ROTANTE PARA EFECTUAR LA REGULACIÓN PRIMARIA DE FRECUENCIA ( RPF)
ANEXO I EVALUACIÓN DE LA ENERGIA REGULANTE COMENSABLE (RRmj) OR ROORCIONAR RESERVA ROTANTE ARA EFECTUAR LA REGULACIÓN RIMARIA DE FRECUENCIA ( RF) REMISAS DE LA METODOLOGÍA Las pruebas dnámcas para la Regulacón
Simulación y Optimización de Procesos Químicos. Titulación: Ingeniería Química. 5º Curso Optimización.
Smulacón y Optmzacón de Procesos Químcos Ttulacón: Ingenería Químca. 5º Curso Optmzacón. Programacón Cuadrátca Métodos de Penalzacón Programacón Cuadrátca Sucesva Gradente Reducdo Octubre de 009. Programacón
315 M/R Versión 1 Integral 1/ /1 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA
35 M/R Versón Integral / 28/ UNIVERSIDAD NACIONAL AIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA MODELO DE RESPUESTA ASIGNATURA: Investgacón de Operacones I CÓDIGO: 35 MOMENTO: Prueba Integral FECHA DE
TEMA 4 Variables aleatorias discretas Esperanza y varianza
Métodos Estadístcos para la Ingenería Curso007/08 Felpe Ramírez Ingenería Técnca Químca Industral TEMA 4 Varables aleatoras dscretas Esperanza y varanza La Probabldad es la verdadera guía de la vda. Ccerón
3.- Programación por metas.
Programacón Matemátca para Economstas 1 3.- Programacón por metas. Una vez menconados algunos de los nconvenentes de las técncas generadoras, la ncorporacón de nformacón se va a traducr en una accón del
Problemas de Optimización. Conceptos básicos de optimización. Indice. Un problema de optimización NLP. Equivalencias. Contornos / Curvas de nivel
Conceptos báscos de optmzacón Problemas de Optmzacón Prof. Cesar de Prada Dpt. Ingenería de Sstemas y Automátca UVA [email protected] mn J() h() = g() Problema general NPL Para encontrar una solucón al
Modelo de programación jerárquica de la producción en un Job shop flexible con interrupciones y tiempos de alistamiento dependientes de la secuencia
REVISTA INGENIERÍA E INVESTIGACIÓN VOL. 28 No. 2, AGOSTO DE 2008 (72-79) Modelo de programacón jerárquca de la produccón en un Job shop flexble con nterrupcones y tempos de alstamento dependentes de la
Mosto Vino joven Vino crianza Vino reserva Gran reserva Precio [ /l] Coste [ /l] Evap [%]
PROBLEMA: EL BODEGUERO Un bodeguero ha tendo una buena cosecha que estma sea de 10000 ltros. El bodeguero ha de decdr qué cantdad de la cosecha dedcarla a hacer mosto, qué cantdad conservarla un año en
FUNDAMENTOS DE DIRECCIÓN FINANCIERA TEMA 2- Parte III CONCEPTO DE INVERSIÓN Y CRITERIOS PARA SU VALORACIÓN
FUNDAMENTOS DE DIRECCIÓN FINANCIERA TEMA 2- Parte III CONCEPTO DE INVERSIÓN Y CRITERIOS PARA SU VALORACIÓN 1 CÁLCULO DE LOS FLUJOS NETOS DE CAJA Y TOMA DE DECISIONES DE INVERSIÓN PRODUCTIVA Peculardades
4) Ahora elaboremos la tabla de distribución de frecuencias: TABLA DE DISTRIBUCIÓN DE FRECUENCIAS DE LOS PESOS DE LOS ESTUDIANTES MERU CALIDAD.
APELLIDOS Y NOMBRES:... EJERCICIO: Se han regstrado dferentes pesos de los alumnos del segundo grado de una Insttucón Educatva en klogramos. 40 41 42 50 40 48 41 43 39 40 47 46 49 49 50 39 50 48 42 45
CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS
CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS Edgar Acuña Fernández Departamento de Matemátcas Unversdad de Puerto Rco Recnto Unverstaro de Mayagüez Edgar Acuña Analss de Regreson Regresón con varables
A B C D Margen Básico Transmisor Wifi Número de empleados
PROBLEMA: TELEVISIÓN DIGITAL Una empresa de fabrcacón de aparatos electróncos está vendo la posbldad de lanzar al mercado decodfcacodres que permtan a los televsores analógcos vsualzar la señal de la televsón
Tema 4. Transistor Bipolar (BJT)
Tema 4. Transstor polar (JT) Joaquín aquero López lectrónca, 2007 Joaquín aquero López 1 Transstor polar (JT): Índce 4.1) Introduccón a los elementos de 3 termnales 4.2) Transstor polar JT (polar Juncton
y λu = Idea. Podemos sumar vectores y multiplicar por un escalar. El resultado vuelve a ser un vector Definición de espacio vectorial.
Espacios vectoriales Espacios y subespacios R n es el conjunto de todos los vectores columna con n componentes. Además R n es un espacio vectorial. Ejemplo Dados dos vectores de R por ejemplo u = 5 v =
Planificación de la Operación de Corto Plazo de Sistemas de Energía Hidroeléctrica
Planfcacón de la Operacón de Corto Plao de Sstemas de Energía Hdroeléctrca João P. Catalão 1, Sílvo J. Marano 1, Vctor M. Mendes 2 y Luís A. Ferrera 3 (1) Unversdad Bera Interor. Dpto. de Ingenaría Electromecánca.
ASIGNACIÓN DE LOCALIZACIONES DE ALMACENAMIENTO CONSIDERANDO DISTANCIAS Y TIEMPOS DE ESTADÍA ENTRE PEDIDOS
ASIGNACIÓN DE LOCALIZACIONES DE ALMACENAMIENTO CONSIDERANDO DISTANCIAS Y TIEMPOS DE ESTADÍA ENTRE PEDIDOS Marcela C. González-Araya Departamento de Modelacón y Gestón Industral, Facultad de Ingenería,
Selectividad Junio 2008 JUNIO 2008 PRUEBA A
Selectividad Junio 008 JUNIO 008 PRUEBA A 3 a x + a y =.- Sea el sistema: x + a y = 0 a) En función del número de soluciones, clasifica el sistema para los distintos valores del parámetro a. b) Resuélvelo
Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis
Tema. Estadístcos unvarados: tendenca central, varabldad, asmetría y curtoss 1. MEDIDA DE TEDECIA CETRAL La meda artmétca La medana La moda Comparacón entre las meddas de tendenca central. MEDIDA DE VARIACIÓ
INVIRTIENDO EN PUBLICIDAD: ESTRATEGIAS DE LAS EMPRESAS DEL SECTOR COMERCIAL ECUATORIANO
ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS HUMANISTICAS Y ECONOMICAS INVIRTIENDO EN PUBLICIDAD: ESTRATEGIAS DE LAS EMPRESAS DEL SECTOR COMERCIAL ECUATORIANO Resumen: Las decsones de
Apellidos y nombre: i. El valor anual de la amortización de la construcción es fijo y vale A. 2. Cada punto de venta tiene una demanda anual dem
4º IIND Métodos Matemátcos 5 de septembre de 00 Apelldos y nombre: PROBLEMA (4 puntos) Una empresa tene puntos de venta stuados sobre una ruta que, a efectos de planfcacón, puede ser consderada como una
Un algoritmo GRASP para resolver el problema de la programación de tareas dependientes en máquinas diferentes (task scheduling)
Un algortmo GRASP para resolver el problema de la programacón de tareas dependentes en máqunas dferentes (tas schedulng) Manuel Tupa Pontfca Unversdad Católca del Perú, Departamento de Ingenería Av. Unverstara
Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma
Estadístca Tema 1: Estadístca Descrptva Undmensonal Undad 2: Meddas de Poscón, Dspersón y de Forma Área de Estadístca e Investgacón Operatva Lceso J. Rodríguez-Aragón Septembre 2010 Contendos...............................................................
12-16 de Noviembre de 2012. Francisco Javier Burgos Fernández
MEMORIA DE LA ESTANCIA CON EL GRUPO DE VISIÓN Y COLOR DEL INSTITUTO UNIVERSITARIO DE FÍSICA APLICADA A LAS CIENCIAS TECNOLÓGICAS. UNIVERSIDAD DE ALICANTE. 1-16 de Novembre de 01 Francsco Javer Burgos Fernández
ACTIVIDADES INICIALES
Soluconaro 7 Números complejos ACTIVIDADES INICIALES 7.I. Clasfca los sguentes números, dcendo a cuál de los conjuntos numércos pertenece (entendendo como tal el menor conjunto). a) 0 b) 6 c) d) e) 0 f)
ALN - SVD. Definición SVD. Definición SVD (Cont.) 29/05/2013. CeCal In. Co. Facultad de Ingeniería Universidad de la República.
9/05/03 ALN - VD CeCal In. Co. Facultad de Ingenería Unversdad de la Repúblca Índce Defncón Propedades de VD Ejemplo de VD Métodos para calcular VD Aplcacones de VD Repaso de matrces: Una matrz es Untara
Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1
Escuela de Ingenería Comercal Ayudantía # 01, Conceptos Generales, Modelo de Regresón Profesor: Carlos R. Ptta 1 1 [email protected] Escuela de Ingenería Comercal Ayudantía 01 Parte 01: Comentes Señale
METODOLOGIA DE OPTIMIZACIÓN DE SECUENCIA DE INTERVENCIONES A POZOS
METODOLOGIA DE OPTIMIZACIÓN DE SECUENCIA DE INTERVENCIONES A POZOS Medardo Yañez, Hernando Gómez de La Vega, Manuel Fretas, Karna Semeco, Mguel Aguero Relablty and Rsk Management Méxco SA de CV RM Méxco
GEOMETRÍA ANALÍTICA 2º Curso de Bachillerato 22 de mayo de 2008
1. Sean los puntos A (1, 0,-1) y B (,-1, 3). Calcular la distancia del origen de coordenadas a la recta que pasa por A y B. Calculemos la recta que pasa por A y B. El vector AB es (1,-1,4) y por tanto
Unidad Central del Valle del Cauca Facultad de Ciencias Administrativas, Económicas y Contables Programa de Contaduría Pública
Undad Central del Valle del Cauca Facultad de Cencas Admnstratvas, Económcas y Contables Programa de Contaduría Públca Curso de Matemátcas Fnanceras Profesor: Javer Hernando Ossa Ossa Ejerccos resueltos
Administración financiera empresarial 150 horas / 5 módulos
Dplomado en Admnstracón fnancera empresaral 0 horas / módulos Dplomado en Admnstracón fnancera empresaral Presupuestos Fnancamento empresaral Admnstracón de costos Admnstracón de la tesorería Admnstracón
MODELO DE PROGRAMACIÓN LINEAL DE LA PRODUCCIÓN, INTEGRADO EN UN SISTEMA COMPUTARIZADO DE PRODUCCIÓN, INVENTARIO Y VENTAS INDUSTRIAL
Ponsot, E. y Márquez V.: Modelo de programacón lneal de la produccón... MODELO DE PROGRAMACIÓN LINEAL DE LA PRODUCCIÓN, INTEGRADO EN UN SISTEMA COMPUTARIZADO DE PRODUCCIÓN, INVENTARIO Y VENTAS INDUSTRIAL
Capitalización y descuento simple
Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los
Modelo de programación lineal de la producción, integrado en un sistema computarizado de producción, inventario y ventas industrial
Economía, XXV, 6 (2000), pp. 73-90 Modelo de programacón lneal de la produccón, ntegrado en un sstema computarzado de produccón, nventaro y ventas ndustral A lnear programmng producton model ntegrated
PROBLEMAS DE ELECTRÓNICA ANALÓGICA (Diodos)
PROBLEMAS DE ELECTRÓNCA ANALÓGCA (Dodos) Escuela Poltécnca Superor Profesor. Darío García Rodríguez . En el crcuto de la fgura los dodos son deales, calcular la ntensdad que crcula por la fuente V en funcón
[a, b) = { X E R la::; x < b } (a, b) = { X E R I a < x < b } Comprobemos, a manera de ejemplo, que (a - bxa 2 + ab + b 2 ) = a) - b) :
MATEMÁTCAS BÁSCAS Comprobemos, a manera de ejemplo, que (a - bxa 2 + ab + b 2 ) = a) - b) : Otra manera de comprobarlo es: NTERVALOS Sean a, b E R con a < b. Entonces (a, b) = { X E R a < x < b } se llama
Tema 9: Otros temas de aplicación
Tema 9: Otros temas de aplcacón. Introduccón Exsten muchos elementos nteresantes y aplcacones del Matlab que no se han comentado a lo largo de los temas. Se nvta al lector a que nvestgue sobre ellos según
RESUELTOS POR M. I. A. MARIO LUIS CRUZ VARGAS PROBLEMAS RESUELTOS DE ANUALIDADES ANTICIPADAS
PROBLEMAS RESUELTOS DE ANUALIDADES ANTICIPADAS. En las msmas condcones, qué tpo de anualdades produce un monto mayor: una vencda o una antcpada? Por qué? Las anualdades antcpadas producen un monto mayor
Cifrado de imágenes usando autómatas celulares con memoria
Cfrado de mágenes usando autómatas celulares con memora L. Hernández Encnas 1, A. Hernández Encnas 2, S. Hoya Whte 2, A. Martín del Rey 3, G. Rodríguez Sánchez 4 1 Insttuto de Físca Aplcada, CSIC, C/Serrano
FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004)
FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Xménez & San Martín, 004) Capítulo. Nocones báscas de álgebra de matrces Fe de erratas.. Cálculo de la transpuesta de una matrz
Programación entera, el método del árbol de cubos, su algoritmo paralelo y sus aplicaciones
Programacón entera, el método del árbol de cubos, su algortmo paralelo y sus aplcacones Dr. José Crspín Zavala Díaz, Dr. Vladmr Khachaturov 2 Facultad de Contabldad, Admnstracón e Informátca, [email protected]
MACROECONOMÍA II Licenciatura en Administración y Dirección de Empresas Marzo 2004
MACROECONOMÍA II Licenciatura en Administración y Dirección de Empresas Marzo 2004 EL TIO DE CAMBIO REAL El tipo de cambio nominal expresa el precio de una moneda en términos de otra. or ejemplo, el tipo
RECTAS Y PLANOS EN EL ESPACIO
UNIDAD 6 RECTA Y PLANO EN EL EPACIO Página 1 1. Puntos alineados en el plano Comprueba que los puntos A (, ), B (8, ) y C (1, ) no están alineados. A (, ) B (8, ) C (1, ) AB = (, 1); BC = (, ) No tienen
Relaciones entre variables
Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón.
Guía de ejercicios #1
Unversdad Técnca Federco Santa María Departamento de Electrónca Fundamentos de Electrónca Guía de ejerccos # Ejercco Ω v (t) V 3V Ω v0 v 6 3 t[mseg] 6 Suponendo el modelo deal para los dodos, a) Dbuje
Física I. TRABAJO y ENERGÍA MECÁNICA. Apuntes complementarios al libro de texto. Autor : Dr. Jorge O. Ratto
ísca I Apuntes complementaros al lbro de teto TRABAJO y ENERGÍA MECÁNICA Autor : Dr. Jorge O. Ratto Estudaremos el trabajo mecánco de la sguente manera : undmensonal constante Tpo de movmento varable bdmensonal
Programación lineal (+ extensiones). Ejemplos.
Departamento de Matemáticas. ITAM. 2012. Forma estándar de un PPL PPL minimizar x c T x sujeta a Ax = b, x 0, en donde x 0 indica x i 0, i = 1, 2,..., n. c es el vector de costos. c R n. A es una matriz
RELACIÓN DE PROBLEMAS DE CLASE DE MODELADO DE DECISIÓN MULTICRITERIO PROBLEMA 1: FÁBRICA DE COMPONENTES ELECTRÓNICOS (FACTORY OF
RELACIÓN DE PROBLEMAS DE CLASE DE MODELADO DE DECISIÓN MULTICRITERIO PROBLEMA 1: FÁBRICA DE COMPONENTES ELECTRÓNICOS (FACTOR OF ELECTRONIC PARTS) Una empresa fabrca tres tpos de componentes electróncos,
CI63G Planificación de Sistemas de Transporte Público Urbano. Clase 8 Semestre Otoño 2008
CI63G Planfcacón de Sstemas de Transporte Públco Urbano Clase 8 Semestre Otoño 2008 Undades Temátcas 1. La oferta de transporte públco urbano (2 semanas) 2. La demanda por TPU (1,5 sem.) 3. Dseño y optmzacón
Instructivo Interno UNIVERSIDAD. Popular del cesar
Instructivo Interno UNIVERSIDAD Popular del cesar >> Definición Instructivo Interno El aula Web, es el espacio donde se establece el encuentro entre el estudiante y el tutor para realizar interacción sincrónica
Matemática Financiera Sistemas de Amortización de Deudas
Matemátca Fnancera Sstemas de Amortzacón de Deudas 7 Qué aprendemos Sstema Francés: Descomposcón de la cuota. Amortzacones acumuladas. Cálculo del saldo. Evolucón. Representacón gráfca. Expresones recursvas
Funciones de varias variables
Funciones de varias variables Derivadas parciales. El concepto de función derivable no se puede extender de una forma sencilla para funciones de varias variables. Aquí se emplea el concepto de diferencial
Regresión y Correlación Métodos numéricos
Regresón y Correlacón Métodos numércos Prof. Mguel Hesquo Garduño. Est. Mrla Benavdes Rojas Depto. De Ingenería Químca Petrolera ESIQIE-IPN [email protected] [email protected] Regresón lneal El
DETERMINACIÓN DEL NIVEL DE PRECIOS PACTADOS EN EL MERCADO DE CONTRATOS Y MITIGACIÓN DE LA VOLATILIDAD EN EL MERCADO ELÉCTRICO MAYORISTA ECUATORIANO
DETERMINACIÓN DEL NIVEL DE PACTADOS EN EL MERCADO DE CONTRATOS Y MITIGACIÓN DE LA VOLATILIDAD EN EL MERCADO ELÉCTRICO MAYORISTA ECUATORIANO Galo Nna Análss y Control RESUMEN El obetvo de este trabao es
Práctica 5: Obtención de los parámetros Z e Y de un cuadripolo
Práctca 5: Obtencón de los parámetros Z e Y de un cuadrpolo MÓDULO MATERIA CURSO CUATRIME STRE CRÉDITOS - - 1º 1º 6 Oblgatora TIPO PROFESORES de PRÁCTICAS DIRECCIÓN COMPLETA DE CONTACTO PARA TUTORÍAS (Dreccón
Segundo de Bachillerato Geometría en el espacio
Segundo de Bachillerato Geometría en el espacio Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid 204-205. Coordenadas de un vector En el conjunto de los vectores libres del espacio el concepto
Comparación entre distintos Criterios de decisión (VAN, TIR y PRI) Por: Pablo Lledó
Comparacón entre dstntos Crteros de decsón (, TIR y PRI) Por: Pablo Lledó Master of Scence en Evaluacón de Proyectos (Unversty of York) Project Management Professonal (PMP certfed by the PMI) Profesor
Por: Ing César Chilet León
Por: Ing César Chlet eón 1 El flujo de potenca tambén es conocdo tambén como flujo de carga. El flujo de potenca es una herramenta para el análss de redes. En tareas de planfcacón de redes Determnacón
PROPUESTAS PARA LA DETERMINACIÓN DE LOS PARÁMETROS DEL GRÁFICO DE CONTROL MEWMA
Est. María. I. Flury Est. Crstna A. Barbero Est. Marta Rugger Insttuto de Investgacones Teórcas y Aplcadas. Escuela de Estadístca. PROPUESTAS PARA LA DETERMINACIÓN DE LOS PARÁMETROS DEL GRÁFICO DE CONTROL
CAPÍTULO V ESTRUCTURAS ALGEBRAICAS
ESTRUCTURAS ALGEBRAICAS 7 CAPÍTULO V ESTRUCTURAS ALGEBRAICAS Estructura Algebraca es todo conjunto no vacío en el cual se han defndo una o más leyes de composcón nterna, luego de cumplr certas propedades
DEFINICIÓN DE INDICADORES
DEFINICIÓN DE INDICADORES ÍNDICE 1. Notacón básca... 3 2. Indcadores de ntegracón: comerco total de benes... 4 2.1. Grado de apertura... 4 2.2. Grado de conexón... 4 2.3. Grado de conexón total... 5 2.4.
En el presente capítulo se describe la programación del instrumento virtual y cómo
Capítulo 6. Instrumentación virtual En el presente capítulo se describe la programación del instrumento virtual y cómo éste controla el circuito de captura de señales, la llamada telefónica y escribe los
Práctica 4 Diseño de circuitos con puertas lógicas.
Práctica 4 Diseño de circuitos con puertas lógicas. Descripción de la práctica: -Esta práctica servirá para afianzar los conocimientos adquiridos hasta ahora de simplificación, e implementación de funciones,
Índice de Precios de las Materias Primas
May-15 Resumen Ejecutvo El objetvo del (IPMP) es sntetzar la dnámca de los precos de las exportacones de Argentna, consderando la relatva establdad en el corto plazo de los precos de las ventas externas
MATEMÁTICA DE LAS OPERACIONES FINANCIERAS I
MATEMÁTICA DE LAS OPERACIONES FINANCIERAS I CURSO 0/04 PRIMERA SEMANA Día 7/0/04 a las 6 horas MATERIAL AUXILIAR: Calculadora fnancera DURACIÓN: horas. a) Captal fnancero aleatoro: Concepto. Equvalente
Optimización multicriterio. Andrés Ramos Universidad Pontificia Comillas
Optmzacón multcrtero Andrés Ramos Unversdad Pontfca Comllas http://www.t.comllas.edu/aramos/ [email protected] Contendo 1. Conceptos báscos 2. Métodos contnuos 3. Métodos dscretos Escuela Técnca
BREVE MANUAL DE SOLVER
BREVE MANUAL DE SOLVER PROFESOR: DAVID LAHOZ ARNEDO PROGRAMACIÓN LINEAL Definición: Un problema se define de programación lineal si se busca calcular el máximo o el mínimo de una función lineal, la relación
TERMODINÁMICA AVANZADA
TERMODINÁMICA AVANZADA Undad III: Termodnámca del Equlbro Ecuacones para el coefcente de actvdad Funcones de eceso para mezclas multcomponentes 9/7/0 Rafael Gamero Funcones de eceso en mezclas bnaras Epansón
Optimización no lineal
Optmzacón no lneal José María Ferrer Caja Unversdad Pontfca Comllas Planteamento general mn f( x) x g ( x) 0 = 1,..., m f, g : n R R La teoría se desarrolla para problemas de mnmzacón, los problemas de
OP-AMP ideal. Circuito equivalente. R o. i o. R i. v o. i 2 + v 2. A(v 1 v 2 )
El amplfcador operaconal Símbolos y termnales El amplfcador operaconal op amp es un crcuto ntegrado básco utlzado en crcutos analógcos. Aplcacones: amplfcacón/escalamento de señales de entrada nversón
Tema 1. VECTORES (EN EL PLANO Y EN EL ESPACIO)
Vectores Tema. VECTORES (EN EL PLANO Y EN EL ESPACIO Definición de espacio vectorial Un conjunto E es un espacio vectorial si en él se definen dos operaciones, una interna (suma y otra externa (producto
34.- Cómo Hacer Evaluación del Desempeño
34.- Cómo Hacer Evaluación del Desempeño Permite registrar y mantener las evaluaciones del desempeño de los trabajadores de la empresa, para ello se hace necesario registrar un libro de hechos relevantes,
Universidad Simón Bolívar Conversión de Energía Eléctrica - Prof. José Manuel Aller
Unversdad Smón Bolívar Conversón de Energía Eléctrca Prof José anuel Aller 41 Defncones báscas En este capítulo se estuda el comportamento de los crcutos acoplados magnétcamente, fjos en el espaco El medo
CONECTANDO EL SOFTWARE EN REDES
CONECTANDO EL SOFTWARE EN REDES En principio tenemos que suponer que los equipos ya están interconectados en red, que pertenecen al mismo grupo de trabajo y que se ven entre si sin problemas. Si no es
Metodología para el diseño de mecanismos en el esquema de seguridad social en Colombia. Wilson Mayorga M.
. La Caldad Académca, un Compromso Insttuconal Close up marquta - hoja Mayorga M., Wlson (2009). Metodología para el dseño de mecansmos en el esquema de segurdad socal en Colomba. Crtero Lbre, 7 (), 5-46
Matrices. Definiciones básicas de matrices. www.math.com.mx. José de Jesús Angel Angel. [email protected]
Matrices Definiciones básicas de matrices wwwmathcommx José de Jesús Angel Angel jjaa@mathcommx MathCon c 2007-2008 Contenido 1 Matrices 2 11 Matrices cuadradas 3 12 Matriz transpuesta 4 13 Matriz identidad
Objetivos. Contenidos. Revisar los principales conceptos de la lógica de primer orden
Especificación TEMA 1 formal de problemas Objetivos Revisar los principales conceptos de la lógica de primer orden Entender el concepto de estado de cómputo y cómo se modela con predicados lógicos Familiarizarse
