Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1"

Transcripción

1 Escuela de Ingenería Comercal Ayudantía # 01, Conceptos Generales, Modelo de Regresón Profesor: Carlos R. Ptta 1 1

2 Escuela de Ingenería Comercal Ayudantía 01 Parte 01: Comentes Señale s las sguentes afrmacones son verdaderas, falsas o ambguas Comente 01: Puesto que la correlacón entre dos varables, Y y X, puede varar de -1 a +1, esto sgnfca que cov(y, X) tambén está dentro de esos límtes. Comente 0: S la correlacón entre dos varables es cero, esto quere decr que no exste nnguna relacón entre las dos varables. Comente 03: S se hace la regresón de Y sobre (es decr, la Yreal sobre la Yestmada), el valor de la nterseccón y de la pendente serán O y 1, respectvamente. Problema 1 (0 pts): Modelo Smple. Parte 0: Problemas Una encuesta de Ingreso Famlar a 10 Famlas Representatvas ha sdo llevada a cabo. A usted se le proporcona la sguente nformacón, en donde x (mnúscula) representa al Ingreso Famlar mentras que y (mnúscula) representa al consumo. NOTE QUE LA INFORMACIÓN SE PROPORCIONA COMO DESVÍOS DE LA MEDIA. Además, usted sabe que los prmeros momentos son: E(x)=0.13 y E(y)=15.4 n x Y e (5 pts) Calcule el modelo Y = B 1 + B *X + e. Es decr, encuentre los valores numércos para B 1 y B.. (5 pts) Calcule de manera aproxmada el R para esta regresón partcular. 3. (5 pts) Calcule la DESVIACIÓN ESTÁNDAR para el parámetro B. 4. (5 pts) Son los resultados acordes con las teorías cláscas del consumo? Exste alguna crítca que usted pueda hacer a este modelo, basado en los resultados de esta muestra en partcular? Σ

3 Escuela de Ingenería Comercal Ayudantía 01 Problema (30 pts): Utlzando de nueva cuenta el modelo: Y 0 1 Demuestre (es sufcente que lo demuestre para α 1 ) que los estmadores basados en el Modelo Lneal Clásco ó MICO son: 1. Lneales. (3 pts). Insesgados. (7 pts) 3. Efcentes. (15 pts) Para ello, calcule prmero su varanza en térmnos de las X s y de la varanza poblaconal desconocda. (5 pts) Después, obtenga un estmador para la varanza poblaconal y demuestre que dcho estmador es nsesgado. (5 pts) Por últmo, demuestre el teorema de Gauss-Markov. (5 pts). 4. La (el) Nova (o) que más le ha nteresado hasta el momento t 0 le nvta fnalmente a conocer a sus padres durante una cena. Esta es una ocasón mportantísma y usted de nnguna manera quere pasar vergüenzas. Lamentablemente, el padre de su pareja es un estadístco bastante promnente. En el transcurso de la velada, el estadístco se enfrasca en una férrea defensa de los Estmadores Mínmos Cuadrados Ordnaros (MICO). Él arguye que, s se cumplen todos los supuestos del modelo clásco de regresón lneal, el Teorema de Gauss-Markov garantza que los estmadores MICO son los Mejores Estmadores Lneales Insesgados (MELI), por lo tanto, son los mejores estmadores posbles. Utlzando su mejor pose de ntelectual, su suegro contnúa dcendo que ncluso utlzando otros métodos de estmacón, como Máxma Verosmltud o el Método de Generalzado de Momentos, en el mejor de los casos sólo podríamos encontrar un estmador que guale a MELI. Usted, desesperado por decr algo ntelgente, recuerda su curso de. Es verdadero o falso el argumento de su suegro? Fundamente su respuesta. (5 pts) PISTA: Pregúntese s exste algo mejor que MELI. En caso afrmatvo, el suegro no tene la razón, y vceversa. Problema 03: (10 pts) Explque los crteros para selecconar entre estmadores. En partcular, explque Insesgamento ( pts) y Efcenca ( pts). Tene sentdo selecconar aquel estmador que maxmce el R? ( pts) Explque el crtero del Error Cuadrátco Medo. (4 pts) X e

4 Escuela de Ingenería Comercal Ayudantía 01 Problema 04: La empresa «La onda veloz» ha especfcado un modelo de regresón lneal clásco para explcar la funcón de demanda de sus aparatos de rado (Y), expresada en mles de undades, y en funcón del preco de los aparatos de rado (X), en mles de pesos. Para su estmacón se recoge una muestra de 4 observacones, con los sguentes resultados: A partr de lo anteror, se pde: 1. Estmar los parámetros del modelo.. Obtener el coefcente de determnacón. 3. Calcular la desvacón estándar del parámetro de pendente. Problema 05: Regresón sn Regresores. Supóngase que se le proporcona el sguente modelo:. Utlce MICO para determnar el estmador de. Cuál es su varanza y su SRC? El estmado tene algún sentdo ntutvo? Ahora consdere el modelo de dos varables. Vale la pena añadr X al modelo? S no es así, por qué molestarse con el análss de regresón?

5 Escuela de Ingenería Comercal Ayudantía 01 SECCIÓN DE RESPUESTAS Seccón 1: Comentes

6 Escuela de Ingenería Comercal Ayudantía 01 Seccón 0: Problemas Problema 1: Lo prmero es establecer una estratega de ataque al problema. Ya que tenemos la nformacón de las medas, podríamos transformar toda la nformacón de que dsponemos a varables es nveles en lugar de trabajar con medas, pero eso nos consumrá demasado tempo. Una estratega más económca en tempo es utlzar drectamente las fórmulas que hemos aprenddo para el modelo expresado es desvíos de la meda. Lo segundo que debemos hacer es completar con algunos cálculos una tabla que contenga toda la nformacón que necestamos. N x y xy x y e e Σ Para 1.1, utlzamos es estmador de B 1 y B : B1 B Y B x y x * X *

7 Escuela de Ingenería Comercal Ayudantía 01 Para 1., usamos la fórmula del R en desvíos: R SCE SCT B y x 3 * Para 1.3, utlzamos la fórmula de la Varanza y sacamos raíz cuadrada. Recuerde que SE PIDE LA DESVIACIÓN ESTÁNDAR, NO LA VARIANZA: e ( ( n ) e B ) VAR( B ) x ( n ) x (10 ) 13.1 Para 1.4, podemos argür que el valor estmado de la propensón margnal a consumr está fuera de la realdad. El argumento keynesano clásco marca un 0 B 1, por lo que ésta muestra en partcular está sobreestmando lo que la teoría económca marca como rango aceptable para B. Esto sgnfcaría que por cada peso extra que ganamos, consummos 3 pesos, lo que no es coherente con el sentdo común. Problema 0: Las respuestas de.1,. y.3 son bastante complejas en cálculo y notacón, por lo que no se reproducen aquí, aunque se referen drectamente a las notas de clase, o remítase al apéndce 3A del Gujarat..4 El argumento de su suegro es Falso. Aun cuando las condcones de Gauss-Markov se cumplan, recordemos que nos movemos en la rama de los estmadores lneales. Hasta el momento, nada garantza que, dentro de los estmadores no lneales exsta un mejor estmador. En la segunda mtad del curso demostraremos que agregando el supuesto de dstrbucón normal de los errores, los estmadores MICO alcanzan la cota de Cramer-Rao. Éste fortísmo resultado mplcará que son MEI, es decr, los Mejores Estmadores Insesgados, que es un concepto de estmador más fuerte que MELI porque abarca tanto a los estmadores lneales como a los no lneales. Exste algo mejor aun que MEI? MEI es tan poderoso que yo sempre me conformaría con encontrarlo! Sn embargo, recordemos que aun nos movemos dentro de los estmadores nsesgados. Pero justamente eso es lo que queremos, O no? Recordemos que aun podría exstr un estmador sesgado, pero con varanza tan pequeña que compense al sesgo. La mejor manera de soluconar este trade-off entre varanza y sesgo, y de paso encontrar el Mejor

8 Escuela de Ingenería Comercal Ayudantía 01 Estmador, es utlzar el crtero del Mínmo Error Cuadrátco Medo. Éste sería el frst-best, o el "mejor de los mejores". Dado que exsten nfntos estmadores, en la práctca hallar MELI será sufcente, pero sendo rgurosos, no debemos olvdar que sempre exste algo mejor. Problema 03: Como vnos repetdamente, un estmador es nsesgado s su valor esperado es gual al verdadero valor poblaconal, es decr, s: E ( ) Por otra parte, es efcente s tene varanza mínma dentro de todos los estmadores nsesgados. El utlzar el máxmo R como crtero de seleccón de estmadores es una mala dea ya que, para cada muestra en partcular, nuestro problema de optmzacón garantza mnmzar el error estándar, lo que sgnfca maxmzar el R. El mejor crtero de decsón, en todo caso, es el crtero del mínmo error cuadrátco medo. Defndo como: ECM VAR( B) SESGO ECM E B E( B) E E( B) B Implca un trade-off entre varanza y sesgo. En el caso de los estmadores nsesgados, el segundo membro del ECM es cero y sólo nos preocupa mnmzar la varanza del estmador para encontrar el MELI. Problema 04:

9 Escuela de Ingenería Comercal Ayudantía 01 3) Esa es la varanza de la regresón. Para obtener la varanza de la pendente, debemos dvdr por, es decr, 3,09161, con lo qué: 1,045

10 Escuela de Ingenería Comercal Ayudantía 01 Problema 05:

Análisis de Regresión y Correlación

Análisis de Regresión y Correlación 1 Análss de Regresón y Correlacón El análss de regresón consste en emplear métodos que permtan determnar la mejor relacón funconal entre dos o más varables concomtantes (o relaconadas). El análss de correlacón

Más detalles

EXPERIMENTACIÓN COMERCIAL(I)

EXPERIMENTACIÓN COMERCIAL(I) EXPERIMENTACIÓN COMERCIAL(I) En un expermento comercal el nvestgador modfca algún factor (denomnado varable explcatva o ndependente) para observar el efecto de esta modfcacón sobre otro factor (denomnado

Más detalles

Licenciatura en Administración y Dirección de Empresas INTRODUCCIÓN A LA ESTADÍSTICA EMPRESARIAL

Licenciatura en Administración y Dirección de Empresas INTRODUCCIÓN A LA ESTADÍSTICA EMPRESARIAL INTRODUCCIÓN A LA ESTADÍSTICA EMPRESARIAL Relacón de Ejerccos nº 2 ( tema 5) Curso 2002/2003 1) Las cento trenta agencas de una entdad bancara presentaban, en el ejercco 2002, los sguentes datos correspondentes

Más detalles

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis Tema. Estadístcos unvarados: tendenca central, varabldad, asmetría y curtoss 1. MEDIDA DE TEDECIA CETRAL La meda artmétca La medana La moda Comparacón entre las meddas de tendenca central. MEDIDA DE VARIACIÓ

Más detalles

Relaciones entre variables

Relaciones entre variables Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón.

Más detalles

Lección 4. Ejercicios complementarios.

Lección 4. Ejercicios complementarios. Introduccón a la Estadístca Grado en Tursmo Leccón 4. Ejerccos complementaros. Ejercco 1 (juno 06). La nformacón relatva al mes de enero sobre los ngresos (X) y los gastos (Y), expresados en mles de euros,

Más detalles

REGRESION Y CORRELACION

REGRESION Y CORRELACION nav Estadístca (complementos) 1 REGRESION Y CORRELACION Fórmulas báscas en la regresón lneal smple Como ejemplo de análss de regresón, descrbremos el caso de Pzzería Armand, cadena de restaurantes de comda

Más detalles

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso CURSO ITERACIOAL: COSTRUCCIÓ DE ESCEARIOS ECOÓMICOS ECOOMETRÍA AVAZADA Instructor: Horaco Catalán Alonso Modelo de Regresón Lneal Smple El modelo de regresón lneal representa un marco metodológco, que

Más detalles

UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática Examen de Investigación Operativa 21 de enero de 2009

UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática Examen de Investigación Operativa 21 de enero de 2009 UNIVERSIDAD CARLOS III DE MADRID Ingenería Informátca Examen de Investgacón Operatva 2 de enero de 2009 PROBLEMA. (3 puntos) En Murca, junto al río Segura, exsten tres plantas ndustrales: P, P2 y P3. Todas

Más detalles

Modelos lineales Regresión simple y múl3ple

Modelos lineales Regresión simple y múl3ple Modelos lneales Regresón smple y múl3ple Dept. of Marne Scence and Appled Bology Jose Jacobo Zubcoff Modelos de Regresón Smple Que tpo de relacón exste entre varables Predccón de valores a partr de una

Más detalles

EXAMEN FINAL DE ECONOMETRIA, 3º CURSO (GRADOS EN ECO y ADE) 19 de Septiembre de :30 horas. Pregunta 19 A B C En Blanco

EXAMEN FINAL DE ECONOMETRIA, 3º CURSO (GRADOS EN ECO y ADE) 19 de Septiembre de :30 horas. Pregunta 19 A B C En Blanco EXAMEN FINAL DE ECONOMETRIA, 3º CURSO (GRADOS EN ECO y ADE) 19 de Septembre de 01 15:30 horas Prmer Apelldo: Nombre: DNI: Teléfono: Segundo Apelldo: Grupo y Grado: Profesor(a): e mal: Pregunta 1 A B C

Más detalles

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos.

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos. ESTADÍSTICA I. Recuerda: Poblacón: Es el conjunto de todos los elementos que cumplen una determnada propedad, que llamamos carácter estadístco. Los elementos de la poblacón se llaman ndvduos. Muestra:

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

EXAMEN FINAL DE ECONOMETRIA, 3º CURSO (GRADOS EN ECO y ADE) 6 de Junio de :00 horas. Pregunta 19 A B C En Blanco. Pregunta 18 A B C En Blanco

EXAMEN FINAL DE ECONOMETRIA, 3º CURSO (GRADOS EN ECO y ADE) 6 de Junio de :00 horas. Pregunta 19 A B C En Blanco. Pregunta 18 A B C En Blanco EXAMEN FINAL DE ECONOMETRIA, 3º CURSO (GRADOS EN ECO y ADE) 6 de Juno de 3 9: horas Prmer Apelldo: Nombre: DNI: Teléfono: Segundo Apelldo: Grupo y Grado: Profesor(a): e mal: Pregunta A B C En Blanco Pregunta

Más detalles

Problemas donde intervienen dos o más variables numéricas

Problemas donde intervienen dos o más variables numéricas Análss de Regresón y Correlacón Lneal Problemas donde ntervenen dos o más varables numércas Estudaremos el tpo de relacones que exsten entre ellas, y de que forma se asocan Ejemplos: La presón de una masa

Más detalles

Modelo Lineal Múltiple. Clase 03. Profesor: Carlos R. Pitta. ICPM050, Econometría. Universidad Austral de Chile Escuela de Ingeniería Comercial

Modelo Lineal Múltiple. Clase 03. Profesor: Carlos R. Pitta. ICPM050, Econometría. Universidad Austral de Chile Escuela de Ingeniería Comercial Unversdad Austral de Chle Escuela de Ingenería Comercal ICPM050, Econometría Clase 03 Modelo Lneal Múltple Profesor: Carlos R. Ptta Econometría, Prof. Carlos R. Ptta, Unversdad Austral de Chle. Análss

Más detalles

Aspectos fundamentales en el análisis de asociación

Aspectos fundamentales en el análisis de asociación Carrera: Ingenería de Almentos Perodo: BR01 Docente: Lc. María V. León Asgnatura: Estadístca II Seccón A Análss de Regresón y Correlacón Lneal Smple Poblacones bvarantes Una poblacón b-varante contene

Más detalles

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): Ajustes de Tendencia

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): Ajustes de Tendencia Investgacón y Técncas de Mercado Prevsón de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): s de Tendenca Profesor: Ramón Mahía Curso 00-003 I.- Introduccón Hasta el momento,

Más detalles

EJERCICIO 1 1. VERDADERO 2. VERDADERO (Esta afirmación no es cierta en el caso del modelo general). 3. En el modelo lineal general

EJERCICIO 1 1. VERDADERO 2. VERDADERO (Esta afirmación no es cierta en el caso del modelo general). 3. En el modelo lineal general PRÁCTICA 6: MODELO DE REGRESIÓN MÚLTIPLE SOLUCIÓN EJERCICIO. VERDADERO. VERDADERO (Esta afrmacón no es certa en el caso del modelo general. 3. En el modelo lneal general Y =X β + ε, explcar la forma que

Más detalles

EXAMEN FINAL DE ECONOMETRIA, 3º CURSO (GRADOS EN ECO y ADE) 17 de Mayo de :00 horas

EXAMEN FINAL DE ECONOMETRIA, 3º CURSO (GRADOS EN ECO y ADE) 17 de Mayo de :00 horas EXAMEN FINAL DE ECONOMETRIA, 3º CURSO (GRADOS EN ECO y ADE) 7 de Mayo de 08 9:00 horas Prmer Apelldo: Nombre: DNI: Teléfono: Segundo Apelldo: Grupo y Grado: Profesor(a): e-mal: Pregunta A B C En Blanco

Más detalles

Instituto Tecnológico Superior del Sur del Estado de Yucatán EGRESIÓN LINEAL REGRESI. 10 kg. 10 cm

Instituto Tecnológico Superior del Sur del Estado de Yucatán EGRESIÓN LINEAL REGRESI. 10 kg. 10 cm Insttuto Tecnológco Superor del Sur del Estado de Yucatán REGRESI EGRESIÓN LINEAL 100 90 80 70 60 10 kg. 50 40 10 cm. 30 140 150 160 170 180 190 200 Objetvo de la undad Insttuto Tecnológco Superor del

Más detalles

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS Edgar Acuña Fernández Departamento de Matemátcas Unversdad de Puerto Rco Recnto Unverstaro de Mayagüez Edgar Acuña Analss de Regreson Regresón con varables

Más detalles

TEMA 4 Variables aleatorias discretas Esperanza y varianza

TEMA 4 Variables aleatorias discretas Esperanza y varianza Métodos Estadístcos para la Ingenería Curso007/08 Felpe Ramírez Ingenería Técnca Químca Industral TEMA 4 Varables aleatoras dscretas Esperanza y varanza La Probabldad es la verdadera guía de la vda. Ccerón

Más detalles

Regresión y Correlación Métodos numéricos

Regresión y Correlación Métodos numéricos Regresón y Correlacón Métodos numércos Prof. Mguel Hesquo Garduño. Est. Mrla Benavdes Rojas Depto. De Ingenería Químca Petrolera ESIQIE-IPN hesquogm@yahoo.com.mx mbenavdesr5@gmal.com Regresón lneal El

Más detalles

Unidad Central del Valle del Cauca Facultad de Ciencias Administrativas, Económicas y Contables Programa de Contaduría Pública

Unidad Central del Valle del Cauca Facultad de Ciencias Administrativas, Económicas y Contables Programa de Contaduría Pública Undad Central del Valle del Cauca Facultad de Cencas Admnstratvas, Económcas y Contables Programa de Contaduría Públca Curso de Matemátcas Fnanceras Profesor: Javer Hernando Ossa Ossa Ejerccos resueltos

Más detalles

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado Análss de la varanza con dos factores. Introduccón Hasta ahora se ha vsto el modelo de análss de la varanza con un factor que es una varable cualtatva cuyas categorías srven para clasfcar las meddas de

Más detalles

EJERCICIOS. Ejercicio 1.- Para el modelo de regresión simple siguiente: Y i = βx i + ε i i =1,..., 100. se tienen las siguientes medias muestrales:

EJERCICIOS. Ejercicio 1.- Para el modelo de regresión simple siguiente: Y i = βx i + ε i i =1,..., 100. se tienen las siguientes medias muestrales: EJERCICIOS Tema 2: MODELO DE REGRESION LINEAL SIMPLE Ejercco 1.- Para el modelo de regresón smple sguente: Y = βx + ε =1,..., 100 se tenen las sguentes medas muestrales: ( P y ) /n =0.3065 ( P y 2 ) /n

Más detalles

Muestra: son datos de corte transversal correspondientes a 120 familias españolas.

Muestra: son datos de corte transversal correspondientes a 120 familias españolas. Capítulo II: El Modelo Lneal Clásco - Estmacón Aplcacones Informátcas 3. APLICACIONES INFORMÁTICAS Fchero : cp.wf (modelo de regresón smple) Seres: : consumo famlar mensual en mles de pesetas RENTA: renta

Más detalles

CONTROVERSIAS A LAS BASES TÉCNICO ECONOMICAS PRELIMINARES PROCESO TARIFARIO CONCESIONARIA COMPAÑÍA DE TELÉFONOS DE COYHAIQUE S.A.

CONTROVERSIAS A LAS BASES TÉCNICO ECONOMICAS PRELIMINARES PROCESO TARIFARIO CONCESIONARIA COMPAÑÍA DE TELÉFONOS DE COYHAIQUE S.A. CONTROVERSIAS A LAS BASES TÉCNICO ECONOMICAS PRELIMINARES PROCESO TARIFARIO CONCESIONARIA COMPAÑÍA DE TELÉFONOS DE COYHAIQUE S.A. PERÍODO 201-2020 Introduccón Las Bases Técnco Económcas Prelmnares, en

Más detalles

EXAMEN FINAL DE ECONOMETRIA, 3º CURSO (GRADOS EN ECO y ADE) 20 DE JUNIO DE horas

EXAMEN FINAL DE ECONOMETRIA, 3º CURSO (GRADOS EN ECO y ADE) 20 DE JUNIO DE horas EXAMEN FINAL DE ECONOMETRIA, 3º CURSO (GRADOS EN ECO y ADE) 0 DE JUNIO DE 018 15.30 horas Prmer Apelldo: Nombre: DNI: Teléfono: Segundo Apelldo: Grupo y Grado: Profesor(a): e-mal: Pregunta 1 A B C En Blanco

Más detalles

Prueba de Evaluación Continua

Prueba de Evaluación Continua Estadístca Descrptva y Regresón y Correlacón Prueba de Evaluacón Contnua 1-III-18 1.- Dada la varable x y la nueva varable y=a+bx, ndcar (demostrándolo) la expresón exstente entre las respectvas medas

Más detalles

Comparación entre distintos Criterios de decisión (VAN, TIR y PRI) Por: Pablo Lledó

Comparación entre distintos Criterios de decisión (VAN, TIR y PRI) Por: Pablo Lledó Comparacón entre dstntos Crteros de decsón (, TIR y PRI) Por: Pablo Lledó Master of Scence en Evaluacón de Proyectos (Unversty of York) Project Management Professonal (PMP certfed by the PMI) Profesor

Más detalles

El Impacto de las Remesas en el PIB y el Consumo en México, 2015

El Impacto de las Remesas en el PIB y el Consumo en México, 2015 El Impacto de las Remesas en el y el Consumo en Méxco, 2015 Ilana Zárate Gutérrez y Javer González Rosas Cudad de Méxco Juno 23 de 2016 1 O B J E T I V O Durante muchos años la mgracón ha sdo vsta como

Más detalles

Guía de ejercicios #1

Guía de ejercicios #1 Unversdad Técnca Federco Santa María Departamento de Electrónca Fundamentos de Electrónca Guía de ejerccos # Ejercco Ω v (t) V 3V Ω v0 v 6 3 t[mseg] 6 Suponendo el modelo deal para los dodos, a) Dbuje

Más detalles

Estadísticos muéstrales

Estadísticos muéstrales Estadístcos muéstrales Hemos estudado dferentes meddas numércas correspondentes a conjuntos de datos, entre otras, estudamos la meda, la desvacón estándar etc. Ahora vamos a dstngur entre meddas numércas

Más detalles

Índice de Precios de las Materias Primas

Índice de Precios de las Materias Primas May-15 Resumen Ejecutvo El objetvo del (IPMP) es sntetzar la dnámca de los precos de las exportacones de Argentna, consderando la relatva establdad en el corto plazo de los precos de las ventas externas

Más detalles

Inferencia en Regresión Lineal Simple

Inferencia en Regresión Lineal Simple Inferenca en Regresón Lneal Smple Modelo de regresón lneal smple: Se tenen n observacones de una varable explcatva x y de una varable respuesta y, ( x, y)(, x, y),...,( x n, y n ) el modelo estadístco

Más detalles

Un estimado de intervalo o intervalo de confianza ( IC

Un estimado de intervalo o intervalo de confianza ( IC Un estmado puntual, por ser un sólo número, no proporcona por sí msmo nformacón alguna sobre la precsón y confabldad de la estmacón. Debdo a la varabldad que pueda exstr en la muestra, nunca se tendrá

Más detalles

CAPÍTULO 4 MARCO TEÓRICO

CAPÍTULO 4 MARCO TEÓRICO CAPÍTULO 4 MARCO TEÓRICO Cabe menconar que durante el proceso de medcón, la precsón y la exacttud de cualquer magntud físca está lmtada. Esta lmtacón se debe a que las medcones físcas sempre contenen errores.

Más detalles

Especialista en Estadística y Docencia Universitaria REGRESION LINEAL MULTIPLE

Especialista en Estadística y Docencia Universitaria REGRESION LINEAL MULTIPLE Especalsta en Estadístca y Docenca Unverstara REGRESION LINEAL MULTIPLE El modelo de regresón lneal múltple El modelo de regresón lneal múltple con p varables predctoras y basado en n observacones tomadas

Más detalles

Divisibilidad y números primos

Divisibilidad y números primos Divisibilidad y números primos Divisibilidad En muchos problemas es necesario saber si el reparto de varios elementos en diferentes grupos se puede hacer equitativamente, es decir, si el número de elementos

Más detalles

2.2 TASA INTERNA DE RETORNO (TIR). Flujo de Caja Netos en el Tiempo

2.2 TASA INTERNA DE RETORNO (TIR). Flujo de Caja Netos en el Tiempo Evaluacón Económca de Proyectos de Inversón 1 ANTECEDENTES GENERALES. La evaluacón se podría defnr, smplemente, como el proceso en el cual se determna el mérto, valor o sgnfcanca de un proyecto. Este proceso

Más detalles

Capítulo 7: Distribuciones muestrales

Capítulo 7: Distribuciones muestrales Capítulo 7: Distribuciones muestrales Recordemos: Parámetro es una medida de resumen numérica que se calcularía usando todas las unidades de la población. Es un número fijo. Generalmente no lo conocemos.

Más detalles

Correlación y regresión lineal simple

Correlación y regresión lineal simple . Regresón lneal smple Correlacón y regresón lneal smple. Introduccón La correlacón entre dos varables ( e Y) se refere a la relacón exstente entre ellas de tal manera que a determnados valores de se asocan

Más detalles

Módulo 3. OPTIMIZACION MULTIOBJETIVO DIFUSA (Fuzzy Multiobjective Optimization)

Módulo 3. OPTIMIZACION MULTIOBJETIVO DIFUSA (Fuzzy Multiobjective Optimization) Módulo 3. OPTIMIZACION MULTIOBJETIVO DIFUSA (Fuzzy Multobjectve Optmzaton) Patrca Jaramllo A. y Rcardo Smth Q. Insttuto de Sstemas y Cencas de la Decsón Facultad de Mnas Unversdad Naconal de Colomba, Medellín,

Más detalles

Pruebas Estadísticas de Números Pseudoaleatorios

Pruebas Estadísticas de Números Pseudoaleatorios Pruebas Estadístcas de Números Pseudoaleatoros Prueba de meda Consste en verfcar que los números generados tengan una meda estadístcamente gual a, de esta manera, se analza la sguente hpótess: H 0 : =

Más detalles

ESTIMACIÓN. puntual y por intervalo

ESTIMACIÓN. puntual y por intervalo ESTIMACIÓN puntual y por intervalo ( ) Podemos conocer el comportamiento del ser humano? Podemos usar la información contenida en la muestra para tratar de adivinar algún aspecto de la población bajo estudio

Más detalles

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS FACULTAD DE CIENCIAS MATEMÁTICAS E.A.P. DE..ESTADÍSTICA La fecunddad y su relacón con varables socoeconómcas, demográfcas y educatvas aplcando el Modelo de Regresón

Más detalles

Solución de los Ejercicios de Práctica # 1. Econometría 1 Prof. R. Bernal

Solución de los Ejercicios de Práctica # 1. Econometría 1 Prof. R. Bernal Solucón de los Ejerccos de ráctca # 1 Econometría 1 rof. R. Bernal 1. La tabla de frecuencas está dada por: Marca A Marca B

Más detalles

( ) MUESTREO ALEATORIO SIMPLE SIN REEMPLAZO ( mas ) y Y. N n. S y. MUESTREO ALEATORIO SIMPLE SIN REEMPLAZO ( mas )

( ) MUESTREO ALEATORIO SIMPLE SIN REEMPLAZO ( mas ) y Y. N n. S y. MUESTREO ALEATORIO SIMPLE SIN REEMPLAZO ( mas ) MUETREO ALEATORIO IMPLE I Este esquema de muestreo es el más usado cuando se tene un marco de muestreo que especfque la manera de dentfcar cada undad en la poblacón. Además no se tene conocmento a pror

Más detalles

DISTRIBUCIONES BIDIMENSIONALES

DISTRIBUCIONES BIDIMENSIONALES Matemátcas 1º CT 1 DISTRIBUCIONES BIDIMENSIONALES PROBLEMAS RESUELTOS 1. a) Asoca las rectas de regresón: y = +16, y = 1 e y = 0,5 + 5 a las nubes de puntos sguentes: b) Asgna los coefcentes de correlacón

Más detalles

QUÉ ES LA RENTABILIDAD Y CÓMO MEDIRLA. La rentabilidad mide la eficiencia con la cual una empresa utiliza sus recursos financieros.

QUÉ ES LA RENTABILIDAD Y CÓMO MEDIRLA. La rentabilidad mide la eficiencia con la cual una empresa utiliza sus recursos financieros. QUÉ ES LA RENTABILIDAD Y CÓMO MEDIRLA La rentabilidad mide la eficiencia con la cual una empresa utiliza sus recursos financieros. Qué significa esto? Decir que una empresa es eficiente es decir que no

Más detalles

MUESTREO EN POBLACIONES FINITAS

MUESTREO EN POBLACIONES FINITAS MUESTREO EN POBLACIONES FINITAS Antono Morllas A.Morllas: Muestreo 1 MUESTREO EN POBLACIONES FINITAS 1. Conceptos estadístcos báscos. Etapas en el muestreo 3. Tpos de error 4. Métodos de muestreo 5. Tamaño

Más detalles

RMV FUNDEVAL, Bolsa Nacional de Valores, S.A. y Universidad Interamericana de Costa Rica San José, Costa Rica

RMV FUNDEVAL, Bolsa Nacional de Valores, S.A. y Universidad Interamericana de Costa Rica San José, Costa Rica RV-2005-03 DETERINACIÓN DE LA TASA LIBRE DE RIESGO IPLÍCITA PARA EL ERCADO DE VALORES EN COSTA RICA: UNA PROPUESTA * RODRIGO ATARRITA VENEGAS ** FUNDEVAL, Bolsa Naconal de Valores, S.A. y Unversdad Interamercana

Más detalles

PRÁCTICA 16: MODELO DE REGRESIÓN MÚLTIPLE SOLUCIÓN

PRÁCTICA 16: MODELO DE REGRESIÓN MÚLTIPLE SOLUCIÓN PRÁCTICA 6: MODELO DE REGRESIÓN MÚLTIPLE SOLUCIÓN EJERCICIO. VERDADERO. VERDADERO (Esta afrmacón no es certa en el caso del modelo general). 3. En el modelo lneal general Y = X b + e, explcar la forma

Más detalles

Medidas de Tendencia Central y de Variabilidad

Medidas de Tendencia Central y de Variabilidad Meddas de Tendenca Central y de Varabldad Contendos Meddas descrptvas de forma: curtoss y asmetría Meddas de tendenca central: meda, medana y moda Meddas de dspersón: rango, varanza y desvacón estándar.

Más detalles

Análisis cuantitativo aplicado al Comercio Internacional y el Transporte

Análisis cuantitativo aplicado al Comercio Internacional y el Transporte Máster de Comerco, Transporte y Comuncacones Internaconales Análss cuanttatvo aplcado al Comerco Internaconal y el Transporte Ramón úñez Sánchez Soraya Hdalgo Gallego Departamento de Economía Introduccón

Más detalles

Esta es la forma vectorial de la recta. Si desarrollamos las dos posibles ecuaciones, tendremos las ecuaciones paramétricas de la recta:

Esta es la forma vectorial de la recta. Si desarrollamos las dos posibles ecuaciones, tendremos las ecuaciones paramétricas de la recta: Todo el mundo sabe que dos puntos definen una recta, pero los matemáticos son un poco diferentes y, aún aceptando la máxima universal, ellos prefieren decir que un punto y un vector nos definen una recta.

Más detalles

Regresión múltiple k k

Regresión múltiple k k Métodos de Regresón Estadístca Ismael Sánchez Borrego Regresón múltple El modelo de regresón múltple es la extensón a k varables explcatvas del modelo de regresón smple estudado en el apartado anteror.

Más detalles

RESUELTOS POR M. I. A. MARIO LUIS CRUZ VARGAS PROBLEMAS RESUELTOS DE ANUALIDADES ANTICIPADAS

RESUELTOS POR M. I. A. MARIO LUIS CRUZ VARGAS PROBLEMAS RESUELTOS DE ANUALIDADES ANTICIPADAS PROBLEMAS RESUELTOS DE ANUALIDADES ANTICIPADAS. En las msmas condcones, qué tpo de anualdades produce un monto mayor: una vencda o una antcpada? Por qué? Las anualdades antcpadas producen un monto mayor

Más detalles

En caso de que el cliente nunca haya obtenido una concesión de licencia de un servidor DHCP:

En caso de que el cliente nunca haya obtenido una concesión de licencia de un servidor DHCP: Servidor DHCP El protocolo de configuración dinámica de host (DHCP, Dynamic Host Configuration Protocol) es un estándar TCP/IP diseñado para simplificar la administración de la configuración IP de los

Más detalles

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004)

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004) FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Xménez & San Martín, 004) Capítulo. Nocones báscas de álgebra de matrces Fe de erratas.. Cálculo de la transpuesta de una matrz

Más detalles

Covarianza y coeficiente de correlación

Covarianza y coeficiente de correlación Covarianza y coeficiente de correlación Cuando analizábamos las variables unidimensionales considerábamos, entre otras medidas importantes, la media y la varianza. Ahora hemos visto que estas medidas también

Más detalles

EJERCICIOS: Tema 3. Los ejercicios señalados con.r se consideran de conocimientos previos necesarios para la comprensión del tema 3.

EJERCICIOS: Tema 3. Los ejercicios señalados con.r se consideran de conocimientos previos necesarios para la comprensión del tema 3. EJERCICIOS: Tema 3 Los ejerccos señalados con.r se consderan de conocmentos prevos necesaros para la comprensón del tema 3. Ejercco 1.R Dos bblotecas con el msmo fondo bblográfco especalzado ofrecen las

Más detalles

Lección 24: Lenguaje algebraico y sustituciones

Lección 24: Lenguaje algebraico y sustituciones LECCIÓN Lección : Lenguaje algebraico y sustituciones En lecciones anteriores usted ya trabajó con ecuaciones. Las ecuaciones expresan una igualdad entre ciertas relaciones numéricas en las que se desconoce

Más detalles

TÉCNICAS AUXILIARES DE LABORATORIO

TÉCNICAS AUXILIARES DE LABORATORIO TÉCNICAS AUXILIARES DE LABORATORIO I.- ERRORES 1.- Introduccón Todas las meddas epermentales venen afectadas de una mprecsón nherente al proceso de medda. Puesto que en éste se trata, báscamente, de comparar

Más detalles

TEMA 13. FONDOS DE INVERSIÓN

TEMA 13. FONDOS DE INVERSIÓN FICHERO MUESTRA Pág. 1 Fichero muestra que comprende parte del Tema 13 del libro Productos y Servicios Financieros,, y algunas de sus actividades y ejercicios propuestos. TEMA 13. FONDOS DE INVERSIÓN 13.6.

Más detalles

UNIDAD 1. LOS NÚMEROS ENTEROS.

UNIDAD 1. LOS NÚMEROS ENTEROS. UNIDAD 1. LOS NÚMEROS ENTEROS. Al final deberás haber aprendido... Interpretar y expresar números enteros. Representar números enteros en la recta numérica. Comparar y ordenar números enteros. Realizar

Más detalles

Qué. rol tienes. en clase? en casa? con los amigos?

Qué. rol tienes. en clase? en casa? con los amigos? Qué rol tienes. en clase? en casa? con los amigos? 1 Introducción Ya sabéis que nuestra personalidad es como una seña de identidad propia que vamos construyendo a lo largo de nuestra vida, y conforme a

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Soluconaro 7 Números complejos ACTIVIDADES INICIALES 7.I. Clasfca los sguentes números, dcendo a cuál de los conjuntos numércos pertenece (entendendo como tal el menor conjunto). a) 0 b) 6 c) d) e) 0 f)

Más detalles

PROPORCIONAR RESERVA ROTANTE PARA EFECTUAR LA REGULACIÓN PRIMARIA DE FRECUENCIA ( RPF)

PROPORCIONAR RESERVA ROTANTE PARA EFECTUAR LA REGULACIÓN PRIMARIA DE FRECUENCIA ( RPF) ANEXO I EVALUACIÓN DE LA ENERGIA REGULANTE COMENSABLE (RRmj) OR ROORCIONAR RESERVA ROTANTE ARA EFECTUAR LA REGULACIÓN RIMARIA DE FRECUENCIA ( RF) REMISAS DE LA METODOLOGÍA Las pruebas dnámcas para la Regulacón

Más detalles

Instrucciones: Leer detenidamente los siete enunciados y resolver seis de los siete problemas propuestos. Frecuencia absoluta (f i )

Instrucciones: Leer detenidamente los siete enunciados y resolver seis de los siete problemas propuestos. Frecuencia absoluta (f i ) UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE PROBABILIDAD Y ESTADÍSTICA PRIMER EAMEN FINAL RESOLUCIÓN SEMESTRE

Más detalles

Relación 2: Regresión Lineal.

Relación 2: Regresión Lineal. Relacón 2: Regresón Lneal. 1. Se llevó a cabo un estudo acerca de la cantdad de azúcar refnada (Y ) medante un certo proceso a varas temperaturas dferentes (X). Los datos se codfcan y regstraron en el

Más detalles

Figura 1

Figura 1 5 Regresón Lneal Smple 5. Introduccón 90 En muchos problemas centífcos nteresa hallar la relacón entre una varable (Y), llamada varable de respuesta, ó varable de salda, ó varable dependente y un conjunto

Más detalles

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22 DOCENTE: LIC.GUSTO DOLFO JUEZ GUI DE TJO PCTICO Nº 22 CES: POFESODO Y LICENCITU EN IOLOGI PGIN Nº 132 GUIS DE CTIIDDES Y TJO PCTICO Nº 22 OJETIOS: Lograr que el lumno: Interprete la nformacón de un vector.

Más detalles

EL MODELO DE REGRESIÓN LINEAL SIMPLE

EL MODELO DE REGRESIÓN LINEAL SIMPLE Unversdad Carlos III de Madrd César Alonso ECONOMETRIA EL MODELO DE REGRESIÓN LINEAL SIMLE Índce 1. Relacones empírcas y teórcas......................... 1 2. Conceptos prevos................................

Más detalles

Colección de problemas de. Poder de Mercado y Estrategia

Colección de problemas de. Poder de Mercado y Estrategia de Poder de Mercado y Estratega Curso 3º - ECO- 0-03 Iñak Agurre Jaromr Kovark Marta San Martín Fundamentos del Análss Económco I Unversdad del País Vasco UPV/EHU Tema. Olgopolo y competenca monopolístca.

Más detalles

Simulación y Optimización de Procesos Químicos. Titulación: Ingeniería Química. 5º Curso Optimización.

Simulación y Optimización de Procesos Químicos. Titulación: Ingeniería Química. 5º Curso Optimización. Smulacón y Optmzacón de Procesos Químcos Ttulacón: Ingenería Químca. 5º Curso Optmzacón. Programacón Cuadrátca Métodos de Penalzacón Programacón Cuadrátca Sucesva Gradente Reducdo Octubre de 009. Programacón

Más detalles

1.1 Ejercicios Resueltos Tema 1

1.1 Ejercicios Resueltos Tema 1 .. EJERCICIOS RESUELTOS TEMA. Ejerccos Resueltos Tema Ejemplo: Probarque ++3+ + n 3 + 3 +3 3 + + n 3 n (n +) Ã n (n +)! - Para n es certa, tambén lo comprobamos para n, 3,... ( + ) + 3 (+) supuesto certa

Más detalles

Medidas de Variabilidad

Medidas de Variabilidad Meddas de Varabldad Una medda de varabldad es un ndcador del grado de dspersón de un conjunto de observacones de una varable, en torno a la meda o centro físco de la msma. S la dspersón es poca, entonces

Más detalles

Examen Final de Econometría Grado

Examen Final de Econometría Grado Examen Fnal de Econometría Grado 17 de Mayo de 2016 15.30 horas Apelldos: Grado (ADE/ ECO): Nombre del profesor(a): Nombre: Grupo: Emal: Antes de empezar a resolver el examen, rellene TODA la nformacón

Más detalles

Smoothed Particle Hydrodynamics Animación Avanzada

Smoothed Particle Hydrodynamics Animación Avanzada Smoothed Partcle Hydrodynamcs Anmacón Avanzada Iván Alduán Íñguez 03 de Abrl de 2014 Índce Métodos sn malla Smoothed partcle hydrodynamcs Aplcacón del método en fludos Búsqueda de vecnos Métodos sn malla

Más detalles

Matemática Financiera Sistemas de Amortización de Deudas

Matemática Financiera Sistemas de Amortización de Deudas Matemátca Fnancera Sstemas de Amortzacón de Deudas 7 Qué aprendemos Sstema Francés: Descomposcón de la cuota. Amortzacones acumuladas. Cálculo del saldo. Evolucón. Representacón gráfca. Expresones recursvas

Más detalles

Economía de la Empresa: Financiación

Economía de la Empresa: Financiación Economía de la Empresa: Fnancacón Francsco Pérez Hernández Departamento de Fnancacón e Investgacón de la Unversdad Autónoma de Madrd Objetvo del curso: Dentro del contexto de Economía de la Empresa, se

Más detalles

Homilía del Padre Cipriano Sánchez, L.C. Misa del Espíritu Santo 5 de noviembre de 2015 Capilla Universitaria.

Homilía del Padre Cipriano Sánchez, L.C. Misa del Espíritu Santo 5 de noviembre de 2015 Capilla Universitaria. Homilía del Padre Cipriano Sánchez, L.C. Misa del Espíritu Santo 5 de noviembre de 2015 Capilla Universitaria. Creo que las lecturas de hoy son como unos faros potentísimos preciosos para lo que hoy como

Más detalles

Estadísticos muéstrales

Estadísticos muéstrales Estadístcos muéstrales Una empresa dedcada al transporte y dstrbucón de mercancías, tene una plantlla de 50 trabajadores. Durante el últmo año se ha observado que 5 trabajadores han faltado un solo día

Más detalles

e i para construir el modelo econométrico que se escribe a continuación:

e i para construir el modelo econométrico que se escribe a continuación: 5.3 Especfcacón del modelo empírco Para este análss se formló n modelo econométrco de seccón crzada, porqe las observacones corresponden a las característcas de las personas encestadas en n msmo período

Más detalles

PyE_ EF2_TIPO1_

PyE_ EF2_TIPO1_ UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE PROBABILIDAD Y ESTADÍSTICA SEGUNDO EAMEN FINAL RESOLUCIÓN SEMESTRE

Más detalles

Gráficos de flujo de señal

Gráficos de flujo de señal UNIVRSIDAD AUTÓNOMA D NUVO ÓN FACUTAD D INGNIRÍA MCANICA Y ÉCTRICA Gráfcos de flujo de señal l dagrama de bloques es útl para la representacón gráfca de sstemas de control dnámco y se utlza extensamente

Más detalles

Unidad I. 1. 1. Definición de reacción de combustión. 1. 2. Clasificación de combustibles

Unidad I. 1. 1. Definición de reacción de combustión. 1. 2. Clasificación de combustibles 2 Undad I.. Defncón de reaccón de combustón La reaccón de combustón se basa en la reaccón químca exotérmca de una sustanca (o una mezcla de ellas) denomnada combustble, con el oxígeno. Como consecuenca

Más detalles

CAPÍTULO IV. MEDICIÓN. De acuerdo con Székely (2005), existe dentro del período información

CAPÍTULO IV. MEDICIÓN. De acuerdo con Székely (2005), existe dentro del período información IV. Base de Datos CAPÍTULO IV. MEDICIÓN De acuerdo con Székely (2005), exste dentro del período 950-2004 nformacón representatva a nvel naconal que en algún momento se ha utlzado para medr la pobreza.

Más detalles

UNA EXPERIENCIA ÚNICA

UNA EXPERIENCIA ÚNICA Estefania Granda Orozco Diseño Industrial Intercambio de pregrado, 2015/1 Universidad de Barcelona Barcelona, España UNA EXPERIENCIA ÚNICA Desde el inicio de carrera en la Universidad siempre estuve a

Más detalles

DEFINICIÓN DE INDICADORES

DEFINICIÓN DE INDICADORES DEFINICIÓN DE INDICADORES ÍNDICE 1. Notacón básca... 3 2. Indcadores de ntegracón: comerco total de benes... 4 2.1. Grado de apertura... 4 2.2. Grado de conexón... 4 2.3. Grado de conexón total... 5 2.4.

Más detalles

Ejemplo de tipo fijo CALCULADOR CONTABLE

Ejemplo de tipo fijo CALCULADOR CONTABLE CALCULADOR CONTABLE Ejemplo de tipo fijo Supongamos un préstamo de 100.000 concedido el 05/10/2008 a devolver en 120 mensualidades iguales, siendo la primera el 5/11/2009. El préstamo se concedió a un

Más detalles

Tema 8: Heteroscedasticidad

Tema 8: Heteroscedasticidad Tema 8: Heteroscedastcdad Máxmo Camacho Máxmo Camacho Econometría I - ADE+D / - Tema 8 Heteroscedastcdad Bloque I: El modelo lneal clásco r Tema : Introduccón a la econometría r Tema : El modelo de regresón

Más detalles

Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma

Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma Estadístca Tema 1: Estadístca Descrptva Undmensonal Undad 2: Meddas de Poscón, Dspersón y de Forma Área de Estadístca e Investgacón Operatva Lceso J. Rodríguez-Aragón Septembre 2010 Contendos...............................................................

Más detalles

Algoritmo para la ubicación de un nodo por su representación binaria

Algoritmo para la ubicación de un nodo por su representación binaria Título: Ubcacón de un Nodo por su Representacón Bnara Autor: Lus R. Morera González En este artículo ntroducremos un algortmo de carácter netamente geométrco para ubcar en un árbol natural la representacón

Más detalles

Inversión. Inversión. Arbitraje. Descuento. Tema 5

Inversión. Inversión. Arbitraje. Descuento. Tema 5 Inversión Tema 5 Inversión Los bienes de inversión obligan a gastar hoy para obtener ganancias en el futuro Vamos a estudiar cómo se valoran los pagos futuros Por ejemplo, la promesa de recibir euro dentro

Más detalles

El sistema decimal, es aquél en el que se combinan 10 cifras (o dígitos) del 0 al 9 para indicar una cantidad específica.

El sistema decimal, es aquél en el que se combinan 10 cifras (o dígitos) del 0 al 9 para indicar una cantidad específica. 5.2 SISTEMAS DE NUMERACIÓN. DECIMAL El sistema decimal, es aquél en el que se combinan 10 cifras (o dígitos) del 0 al 9 para indicar una cantidad específica. La base de un sistema indica el número de caracteres

Más detalles

Modelos de elección simple y múltiple. Regresión logit y probit. Modelos multilogit y multiprobit.

Modelos de elección simple y múltiple. Regresión logit y probit. Modelos multilogit y multiprobit. Modelos de eleccón smple y múltple. Regresón logt y probt. Modelos multlogt y multprobt. Sga J.Muro(14/4/2004) 2 Modelos de eleccón dscreta. Modelos de eleccón smple. Modelos de eleccón múltple. Fnal J.Muro(14/4/2004)

Más detalles