Problemas donde intervienen dos o más variables numéricas
|
|
|
- María Rosa Montes Suárez
- hace 9 años
- Vistas:
Transcripción
1 Análss de Regresón y Correlacón Lneal
2 Problemas donde ntervenen dos o más varables numércas Estudaremos el tpo de relacones que exsten entre ellas, y de que forma se asocan Ejemplos: La presón de una masa de gas depende de su volumen y de su temperatura. En un proceso químco, el rendmento del producto se relacona con la temperatura de operacón del proceso. El peso y la presón arteral se relaconan.
3 Analzaremos dos técncas : la de regresón y correlacón Uno de los objetvos de muchas nvestgacones en Ingenería es hacer predccones, preferentemente usando ecuacones matemátcas. El análss de regresón se utlza prncpalmente con éste propósto El nvestgador suele tener razones teórcas o práctcas para creer que determnada varable es causalmente dependente de una o más varables dstntas. S hay sufcentes observacones empírcas sobre estas varables, el análss de regresón es un método apropado para descrbr la estructura, fuerza y sentdo exacto de esta asocacón.
4 Análss de Regresón El modelo permte predecr los valores de una varable dependente basados en los valores de al menos una varable ndependente La dstncón entre varables dependentes e ndependentes debe fundamentarse con conceptos teórcos, por experenca y estudos anterores. Solo nos ocuparemos del caso de un modelo de regresón smple; usa una sola varable ndependente x para predecr el valor de la varable dependente y.
5 El análss de correlacón Se utlza para medr la ntensdad de la asocacón entre las varables numércas. En otras palabras el análss de En otras palabras el análss de correlacón estma la fuerza de la dependenca de una varable respecto de la otra.
6 Dagrama de dspersón El conjunto de observacones ( x, y ) forman el dagrama de dspersón. Se ubcan en un sstema de coordenadas.
7 A partr del dagrama de dspersón es posble, con frecuenca, vsualzar una curva suave que aproxma a los datos. En algunos casos vemos que exste una relacón lneal y en otros puede exstr una relacón no lneal. Solo nos ocuparemos del caso lneal.
8 Tpos de relacón entre varables (correlacón) Dos varables pueden estar relaconadas por una dependenca funconal, por una dependenca estadístca o pueden ser ndependentes. Raramente se determna una dependenca funconal rgurosa ya que ambas varables o una de ellas, están expuestas a factores aleatoros, surge entonces una dependenca estadístca. La dependenca se llama estadístca cuando la varacón de una de las varables da lugar a la alteracón de la dstrbucón de la otra. La dependenca estadístca se manfesta en que, al varar una de las varables se altera el valor medo de la otra, en este caso se llama dependenca de correlacón
9 Dependenca de correlacón Djmos que se da cuando al varar una de las varables se altera el valor medo de la otra. Ejemplo :supongamos que estamos analzando las alturas de dferentes cudades y las temperaturas. Puede darse el caso de que a guales alturas en dferentes cudades, se obtenen dstntas temperaturas. Es decr, y no es funcón de x. Esto se debe a factores aleatoros como ventos, lluvas, etc. Pero se puede demostrar que la temperatura meda es funcón de la altura. Es decr Y está vnculada con X por una dependenca de correlacón. Para precsar esto necestamos el concepto de meda condconal
10 Ejemplo Meda condconal Supongamos que en tres cudades que están a 200 m de altura sobre el nvel del mar las temperaturas son 5 C; 7 C; y 12 C respectvamente. Para estudar el enlace entre las varables aleatoras X e Y, admtamos que a cada valor de x, le corresponden varos valores de y.
11 Meda condconal x 1 = 2 toma los valores y1 = 5; y2 = 7 ;y3 = entonces y2 = = 8 3 Se llama meda condconal (la varable aleatora Y depende de X correlatvamente) Se llama meda condconal y x a la meda artmétca de los valores de y correspondentes al valor de X = x
12 Dependenca de correlacón Se llama dependenca de correlacón de Y respecto de X, a la dependenca funconal de la meda condconal respecto de x: y x = f ( x) Ecuacón de regresón de Y en X Funcón de regresón de Y en X Análogamente se determna x = g( y) y
13 Determnacón de las rectas de regresón Las gráfcas de f(x) y g(y) son rectas llamadas rectas de regresón Y= ax+b a = pendente de la recta de a = pendente de la recta de regresón, tambén llamado coefcente de regresón muestral de y en x
14 DIAGRAMA DE DISPERSIÓN RECTA DE REGRESIÓN y = a + bx
15 Cálculo de la Recta de Regresón de Y en X Se elgen los parámetros a y b de manera tal que los puntos del plano (los valores observados) se encuentren lo más cerca posble a la recta de regresón. Para el cálculo de la recta de regresón se aplca el método de mínmos cuadrados entre dos varables. uno. Y = ax + b donde a = ρ yx
16 Y y Notacón :desvacón, donde Y es una ordenada calculada por la ecuacón correspondente al valor observado y Como no podemos hacer mínma cada desvacón, haremos mínma su suma: n = 1 ( Y y ) Tan cercana a cero como sea posble. Pero esta suma se puede hacer cero de muchas maneras y los errores compensarse, por lo que elegremos para mnmzar = 1 ( ) 2 F( ρ, b) = Y y n n 2 ( ) ( ) 2 ρyx F( ρ, b) = Y y = x + b y = 1 = 1 n
17 Para mnmzar F( ρ, b) = ( Y ) 2 y n F F 2 = 0 = 2 ( ρyxx + b y ). x = 0 ρ ρ = 1 y n = bn + ρ x F F 2 = 0 2 ( ρyxx b y ) 0 b = + = b x y = b x + ρ x Resolvendo el sstema obtenemos ρ yx = 2 = 1 2 n x ( ) 2 x n x y x y b n = 1 y = ρ n n x Ecuacón muestral de regresón de Y en X y = ρ x + b x yx Ecuacón muestral de regresón de X en Y xy = ρxyy + c
18 Ejemplo Para ajustar una recta a un conjunto de datos apareados, veamos en este caso, X: representa el tempo de recalentamento e Y los espesores de óxdo de certa peza: X (en mn) Y (en Angst rom) ,5 7,4 7,1 15,6 11,1 14,9 23,5 27,1 22,1 32,9 xy = x = 860 y = 165,2 2 x = ρyx = 0,17 b = 1,9 y x = 0,17 x + 1,9
19 Cómo usar y = 0,17x + 1,9? x Por ejemplo, para predecr que el espesor de óxdo de herro de una peza calentada durante 80 mnutos: y = 0, ,9 = 15,5 Angstrom x
20 Coefcente de correlacón de la poblacón La medda del grado de relacón entre dos varables, se llama coefcente de correlacón (r) Supuestos para aplcar este modelo: a) X e Y son varables aleatoras. b) La poblacón bvarable debe ser normal. (X e Y dstrbudas normalmente) c) La relacón entre X e Y es, en certo sentdo, lneal. Este supuesto mplca que todas las medas de Y asocadas con valores de X, caen sobre una recta que es la recta de regresón de Y en X. Análogamente, todas las medas de X asocadas con valores de Y, caen sobre la recta de regresón de X en Y.
21 Coefcente de Correlacón Es la medda de la ntensdad de la relacón lneal entre dos varables. El valor del coefcente de correlacón puede tomar valores desde menos uno hasta uno, ndcando que mentras más cercano a uno sea el valor del coefcente de correlacón, en cualquer dreccón, más fuerte será la asocacón lneal entre las dos varables. Mentras más cercano a cero sea el coefcente de correlacón ndcará que más débl es la asocacón entre ambas varables. S es gual a cero se conclurá que no exste relacón lneal alguna entre ambas varables. S el valor del coefcente de correlacón muestral es mayor de 0,93 se consdera buena la estmacón que se realza con la recta de regresón.
22 Hablaremos de correlacón lneal fuerte cuando la nube se parezca mucho a una recta y será cada vez más débl (o menos fuerte) cuando la nube vaya desparramándose con respecto a la recta. En el gráfco observamos que en nuestro ejemplo la correlacón es bastante fuerte, ya que la recta que hemos dbujado está próxma a los puntos de la nube.
23 Cuando la recta es crecente la correlacón es postva o drecta: al aumentar una varable, la otra tene tambén tendenca a aumentar, como en el ejemplo anteror. Cuando la recta es decrecente la correlacón es negatva o nversa: al aumentar una varable, la otra tene tendenca a dsmnur.
CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso
CURSO ITERACIOAL: COSTRUCCIÓ DE ESCEARIOS ECOÓMICOS ECOOMETRÍA AVAZADA Instructor: Horaco Catalán Alonso Modelo de Regresón Lneal Smple El modelo de regresón lneal representa un marco metodológco, que
Regresión y Correlación Métodos numéricos
Regresón y Correlacón Métodos numércos Prof. Mguel Hesquo Garduño. Est. Mrla Benavdes Rojas Depto. De Ingenería Químca Petrolera ESIQIE-IPN [email protected] [email protected] Regresón lneal El
Tema 6. Estadística descriptiva bivariable con variables numéricas
Clase 6 Tema 6. Estadístca descrptva bvarable con varables numércas Estadístca bvarable: tpos de relacón Relacón entre varables cuanttatvas Para dentfcar las característcas de una relacón entre dos varables
DISTRIBUCIONES BIDIMENSIONALES
Matemátcas 1º CT 1 DISTRIBUCIONES BIDIMENSIONALES PROBLEMAS RESUELTOS 1. a) Asoca las rectas de regresón: y = +16, y = 1 e y = 0,5 + 5 a las nubes de puntos sguentes: b) Asgna los coefcentes de correlacón
Medidas de centralización
1 Meddas de centralzacón Meda Datos no agrupados = x X = n = 0 Datos agrupados = x X = n = 0 Medana Ordenamos la varable de menor a mayor. Calculamos la columna de la frecuenca relatva acumulada F. Buscamos
ESTADÍSTICA BIDIMENSIONAL ÍNDICE GENERAL
ESTADÍSTICA BIDIMESIOAL ÍDICE GEERAL 1.-Varable Estadístca Bdmensonal. Tablas de frecuenca... 1.1.- Concepto de varable estadístca bdmensonal. Eemplos.... 1..-Tablas bdmensonales de frecuencas. Tablas
Relaciones entre variables
Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón.
Inferencia en Regresión Lineal Simple
Inferenca en Regresón Lneal Smple Modelo de regresón lneal smple: Se tenen n observacones de una varable explcatva x y de una varable respuesta y, ( x, y)(, x, y),...,( x n, y n ) el modelo estadístco
IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas
IES Menéndez Tolosa (La Línea) Físca y Químca - 1º Bach - Gráfcas 1 Indca qué tpo de relacón exste entre las magntudes representadas en la sguente gráfca: La gráfca es una línea recta que no pasa por el
Introducción a la Física. Medidas y Errores
Departamento de Físca Unversdad de Jaén Introduccón a la Físca Meddas y Errores J.A.Moleón 1 1- Introduccón La Físca y otras cencas persguen la descrpcón cualtatva y cuanttatva de los fenómenos que ocurren
REGRESION Y CORRELACION
nav Estadístca (complementos) 1 REGRESION Y CORRELACION Fórmulas báscas en la regresón lneal smple Como ejemplo de análss de regresón, descrbremos el caso de Pzzería Armand, cadena de restaurantes de comda
REGRESION LINEAL SIMPLE
REGREION LINEAL IMPLE Jorge Galbat Resco e dspone de una mustra de observacones formadas por pares de varables: (x 1, y 1 ) (x, y ).. (x n, y n ) A través de esta muestra, se desea estudar la relacón exstente
ANÁLISIS DE REGRESIÓN Y CORRELACIÓN LINEAL
ANÁLISIS DE REGRESIÓN Y CORRELACIÓN LINEAL TIPOS DE RELACIONES ENTRE VARIABLES Dos varables puede estar relacoadas por: Modelo determsta Modelo estadístco Ejemplo: Relacó de la altura co la edad e ños.
Regresión Lineal Simple y Correlación
4 Regresón Lneal Smple y Correlacón 4.1. Fundamentos teórcos 4.1.1. Regresón La regresón es la parte de la estadístca que trata de determnar la posble relacón entre una varable numérca, que suele llamarse
REGRESION LINEAL SIMPLE
REGREION LINEAL IMPLE Jorge Galbat Resco e dspone de una muestra de observacones formadas por pares de varables: (x 1, y 1 ), (x, y ),.., (x n, y n ) A través de esta muestra, se desea estudar la relacón
Tema 1: Estadística Descriptiva Unidimensional
Fenómeno determnsta: al repetrlo en déntcas condcones se obtene el msmo resultado. Fenómeno aleatoro: no es posble predecr el resultado. La estadístca se ocupa de aquellos fenómenos no determnstas donde
FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004)
FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Xménez & San Martín, 004) Capítulo. Nocones báscas de álgebra de matrces Fe de erratas.. Cálculo de la transpuesta de una matrz
MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas
Unversdad de Cádz Departamento de Matemátcas MATEMÁTICAS para estudantes de prmer curso de facultades y escuelas técncas Tema 13 Dstrbucones bdmensonales. Regresón y correlacón lneal Elaborado por la Profesora
Análisis de Regresión y Correlación
1 Análss de Regresón y Correlacón El análss de regresón consste en emplear métodos que permtan determnar la mejor relacón funconal entre dos o más varables concomtantes (o relaconadas). El análss de correlacón
TEMA 3. VARIABLE ALEATORIA
TEMA 3. VARIABLE ALEATORIA 3.. Introduccón. 3... Dstrbucón de Probabldad de una varable aleatora 3... Funcón de Dstrbucón de una varable aleatora 3.. Varable aleatora dscreta 3... Funcón masa de probabldad
Regresión y correlación simple 113
Regresón y correlacón smple 113 Captulo X ANALISIS DE REGRESION Y CORRELACION El análss de regresón consste en emplear métodos que permtan determnar la mejor relacón funconal entre dos o más varables concomtantes
TEMA III EL ANÁLISIS DE REGRESIÓN LINEAL MÚLTIPLE
TEMA III EL ANÁLISIS DE REGRESIÓN LINEAL MÚLTIPLE LECTURA OBLIGATORIA Regresón Lneal Múltple. En Ral, A. y Varela, J. (008). Estadístca Práctca para la Investgacón en Cencas de la Salud. Coruña: Netbblo.
CAPITULO 3.- ANÁLISIS CONJUNTO DE DOS VARIABLES. 3.1 Presentación de los datos. Tablas de doble entrada.
Introduccón a la Estadístca Empresaral Capítulo - Análss conjunto de dos varables Jesús ánchez Fernández CAPITULO - AÁLII COJUTO DE DO VARIABLE Presentacón de los datos Tablas de doble entrada En el capítulo
EJERCICIOS. Ejercicio 1.- Para el modelo de regresión simple siguiente: Y i = βx i + ε i i =1,..., 100. se tienen las siguientes medias muestrales:
EJERCICIOS Tema 2: MODELO DE REGRESION LINEAL SIMPLE Ejercco 1.- Para el modelo de regresón smple sguente: Y = βx + ε =1,..., 100 se tenen las sguentes medas muestrales: ( P y ) /n =0.3065 ( P y 2 ) /n
Medidas de Variabilidad
Meddas de Varabldad Una medda de varabldad es un ndcador del grado de dspersón de un conjunto de observacones de una varable, en torno a la meda o centro físco de la msma. S la dspersón es poca, entonces
Correlación y regresión lineal simple
. Regresón lneal smple Correlacón y regresón lneal smple. Introduccón La correlacón entre dos varables ( e Y) se refere a la relacón exstente entre ellas de tal manera que a determnados valores de se asocan
EXPERIMENTACIÓN COMERCIAL(I)
EXPERIMENTACIÓN COMERCIAL(I) En un expermento comercal el nvestgador modfca algún factor (denomnado varable explcatva o ndependente) para observar el efecto de esta modfcacón sobre otro factor (denomnado
INTRODUCCIÓN. Técnicas estadísticas
Tema : Estadístca Descrptva Undmensonal ITRODUCCIÓ Fenómeno determnsta: al repetrlo en déntcas condcones se obtene el msmo resultado. (Ejemplo: lómetros recorrdos en un ntervalo de tempo a una velocdad
Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1
Escuela de Ingenería Comercal Ayudantía # 01, Conceptos Generales, Modelo de Regresón Profesor: Carlos R. Ptta 1 1 [email protected] Escuela de Ingenería Comercal Ayudantía 01 Parte 01: Comentes Señale
Tema 1.3_A La media y la desviación estándar
Curso 0-03 Grado en Físca Herramentas Computaconales Tema.3_A La meda y la desvacón estándar Dónde estudar el tema.3_a: Capítulo 4. J.R. Taylor, Error Analyss. Unv. cence Books, ausalto, Calforna 997.
3. VARIABLES ALEATORIAS.
3. VARIABLES ALEATORIAS. Una varable aleatora es una varable que toma valores numércos determnados por el resultado de un epermento aleatoro (no hay que confundr la varable aleatora con sus posbles valores)
Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos.
ESTADÍSTICA I. Recuerda: Poblacón: Es el conjunto de todos los elementos que cumplen una determnada propedad, que llamamos carácter estadístco. Los elementos de la poblacón se llaman ndvduos. Muestra:
LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION
Unversdad Católca Los Ángeles de Chmbote LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION 1. DEFINICION: Las meddas estadístcas
TEMA 10: ESTADÍSTICA
TEMA 10: La Estadístca es la parte de las matemátcas que se ocupa de recoger, organzar y analzar grandes cantdades de datos para estudar alguna característca de un colectvo. 1. VARIABLES S UIDIMESIOALES
EJERCICIO 1 1. VERDADERO 2. VERDADERO (Esta afirmación no es cierta en el caso del modelo general). 3. En el modelo lineal general
PRÁCTICA 6: MODELO DE REGRESIÓN MÚLTIPLE SOLUCIÓN EJERCICIO. VERDADERO. VERDADERO (Esta afrmacón no es certa en el caso del modelo general. 3. En el modelo lneal general Y =X β + ε, explcar la forma que
ESTADISTÍCA. 1. Población, muestra e individuo. 2. Variables estadísticas. 3. El proceso que se sigue en estadística
ESTADISTÍCA. Poblacón, muestra e ndvduo Las característcas de una dstrbucón se pueden estudar drectamente sobre la poblacón o se pueden nferr a partr de l estudo de una muestra. Poblacón estadístca es
Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos
Reconclacón de datos expermentales MI5022 Análss y smulacón de procesos mneralúgcos Balances Balances en una celda de flotacón En torno a una celda de flotacón (o un crcuto) se pueden escrbr los sguentes
CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS
CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS Edgar Acuña Fernández Departamento de Matemátcas Unversdad de Puerto Rco Recnto Unverstaro de Mayagüez Edgar Acuña Analss de Regreson Regresón con varables
Tema 8 - Estadística - Matemáticas CCSSI 1º Bachillerato 1
Tema 8 - Estadístca - Matemátcas CCSSI 1º Bachllerato 1 TEMA 8 - ESTADÍSTICA 8.1 NOCIONES GENERALES DE ESTADÍSTICA 8.1.1 INTRODUCCIÓN Objetvo: La estadístca tene por objeto el desarrollo de técncas para
T. 9 El modelo de regresión lineal
1 T. 9 El modelo de regresón lneal 1. Conceptos báscos sobre el análss de regresón lneal. Ajuste de la recta de regresón 3. Bondad de ajuste del modelo de regresón Modelos predctvos o de regresón: la representacón
Mª Dolores del Campo Maldonado. Tel: :
Mª Dolores del Campo Maldonado Tel: : 918 074 714 e-mal: [email protected] Documentacón de referenca nternaconalmente aceptada ISO/IEC GUIDE 98-3:008 Uncertanty of measurement Part 3: Gude to the n
Guía de Electrodinámica
INSTITITO NACIONAL Dpto. de Físca 4 plan electvo Marcel López U. 05 Guía de Electrodnámca Objetvo: - econocer la fuerza eléctrca, campo eléctrco y potencal eléctrco generado por cargas puntuales. - Calculan
TÉCNICAS AUXILIARES DE LABORATORIO
TÉCNICAS AUXILIARES DE LABORATORIO I.- ERRORES 1.- Introduccón Todas las meddas epermentales venen afectadas de una mprecsón nherente al proceso de medda. Puesto que en éste se trata, báscamente, de comparar
GERENCIA DE OPERACIONES Y PRODUCCIÓN DISEÑO DE NUEVOS PRODUCTOS Y SERVICIOS ESTRATEGIAS DE OPERACIONES
GERENCIA DE OPERACIONES Y PRODUCCIÓN DISEÑO DE NUEVOS PRODUCTOS Y SERVICIOS ESTRATEGIAS DE OPERACIONES PRONÓSTICOS PREDICCIÓN, PRONÓSTICO Y PROSPECTIVA Predccón: estmacón de un acontecmento futuro que
Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma
Estadístca Tema 1: Estadístca Descrptva Undmensonal Undad 2: Meddas de Poscón, Dspersón y de Forma Área de Estadístca e Investgacón Operatva Lceso J. Rodríguez-Aragón Septembre 2010 Contendos...............................................................
Efectos fijos o aleatorios: test de especificación
Cómo car?: Montero. R (2011): Efectos fjos o aleatoros: test de especfcacón. Documentos de Trabajo en Economía Aplcada. Unversdad de Granada. España Efectos fjos o aleatoros: test de especfcacón Roberto
Pronósticos. Humberto R. Álvarez A., Ph. D.
Pronóstcos Humberto R. Álvarez A., Ph. D. Predccón, Pronóstco y Prospectva Predccón: estmacón de un acontecmento futuro que se basa en consderacones subjetvas, en la habldad, experenca y buen juco de las
Variables Aleatorias. Variables Aleatorias. Variables Aleatorias. Objetivos del tema: Al final del tema el alumno será capaz de:
Varables Aleatoras Varables Aleatoras Objetvos del tema: Concepto de varable aleatora Al fnal del tema el alumno será capaz de: Varables aleatoras dscretas y contnuas Funcón de probabldad Funcón de dstrbucón
Estadística Unidimensional: SOLUCIONES
4ª SesónFecha: Estadístca Undmensonal: SOLUCIOES Varables estadístca dscreta 1 Con los datos del ejercco de Pág 19 nº 3 determna: a) Tabla de Frecuencas b) Dagrama de barras Gráfco acumulado c) Meddas
Práctica 12 - Programación en C++ Pág. 1. Practica Nº 12. Prof. Dr. Paul Bustamante. Informática II Fundamentos de Programación - Tecnun
Práctca 1 - Programacón en C++ Pág. 1 Práctcas de C++ Practca Nº 1 Informátca II Fundamentos de Programacón Prof. Dr. Paul Bustamante Práctca 1 - Programacón en C++ Pág. 1 INDICE ÍNDICE... 1 1.1 Ejercco
5.0 ESTADÍSTICOS PARA DATOS AGRUPADOS.
5.0 ESTADÍSTICOS PARA DATOS AGRUPADOS. Para organzar los datos a medda que el número de observacones crece, es necesaro condensar más los datos en tablas apropadas, a fn de presentar, analzar e nterpretar
Bloque 5. Probabilidad y Estadística Tema 2. Estadística descriptiva Ejercicios resueltos
Bloque 5. Probabldad y Estadístca Tema. Estadístca descrptva Ejerccos resueltos 5.-1 Dada la sguente tabla de ngresos mensuales, calcular la meda, la medana y el ntervalo modal. Ingresos Frecuenca Menos
Riesgos Proporcionales de Cox
Resgos Proporconales de Cox Resumen El procedmento Resgos Proporconales de Cox esta dseñado para ajustar un modelo estadístco sem-parámetrco a los tempos de falla de una o mas varables predctoras. Los
Tema 4: Variables aleatorias
Estadístca 46 Tema 4: Varables aleatoras El concepto de varable aleatora surge de la necesdad de hacer más manejables matemátcamente los resultados de los expermentos aleatoros, que en muchos casos son
Hidrología superficial
Laboratoro de Hdráulca Ing. Davd Hernández Huéramo Manual de práctcas Hdrología superfcal 7o semestre Autores: Héctor Rvas Hernández Juan Pablo Molna Agular Rukmn Espnosa Díaz alatel Castllo Contreras
EJERCICIOS DE ESTADÍSTICA BIDIMENSIONAL.
EJERCICIOS DE ESTADÍSTICA BIDIMENSIONAL. 1. Una cofradía de pescadores regstra la cantdad de sardnas que llegan al puerto (X), en klogramos, el preco de la subasta en la lonja (Y), en euros por klo, han
Análisis de error y tratamiento de datos obtenidos en el laboratorio
Análss de error tratamento de datos obtendos en el laboratoro ITRODUCCIÓ Todas las meddas epermentales venen afectadas de una certa mprecsón nevtable debda a las mperfeccones del aparato de medda, o a
LECTURA N 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) TEMA 14: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION
Unversdad Católca Los Ángeles de Chmbote LECTURA N 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) TEMA 4: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION. DEFINICION Las meddas estadístcas son meddas de resumen
MODELOS DE ELECCIÓN BINARIA
MODELOS DE ELECCIÓN BINARIA Econometría I UNLP http://www.econometra1.depeco.econo.unlp.edu.ar/ Modelos de Eleccón Bnara: Introduccón Estamos nteresados en la probabldad de ocurrenca de certo evento Podemos
Especialista en Estadística y Docencia Universitaria REGRESION LINEAL MULTIPLE
Especalsta en Estadístca y Docenca Unverstara REGRESION LINEAL MULTIPLE El modelo de regresón lneal múltple El modelo de regresón lneal múltple con p varables predctoras y basado en n observacones tomadas
PROCESOS DE SEPARACION UTILIZANDO EQUIPOS DE ETAPAS DE EQUILIBRIO
PROCESOS DE SEPARACION UTILIZANDO EQUIPOS DE ETAPAS DE EQUILIBRIO Concepto de equlbro físco Sstema Fase Componente Solubldad Transferenca Equlbro Composcón 2 Varables de mportanca en el equlbro de fases:
NOMBRE Apellido Paterno Apellido Materno Nombre(s) Porcentaje de defectos producidos Máquina Porcentaje de producción
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE PROBABILIDAD Y ESTADÍSTICA PRIMER EAMEN FINAL RESOLUCIONES
Estadistica No Parametrica
Estadstca No Parametrca CLASE 3 Pruebas Basadas en la Dstrbucon Bnomal JAIME MOSQUERA RESTREPO Bnomal Test La prueba bnomal es quzás la prueba mas antgua encontrada en al lteratura. Se encuentra asocada
Tema 1. Conceptos generales
Análss de Datos I Esquema del Tema Tema. Conceptos generales. COCEPTOS PREVIOS. DEFIICIÓ DE MEDICIÓ 3. DEFIICIÓ DE ESCALAS DE MEDIDA 4. VARIABLES CLASIFICACIÓ Y OTACIÓ REGLAS DEL SUMATORIO 5. EJERCICIOS
10. VIBRACIONES EN SISTEMAS CON N GRADOS DE LIBERTAD
10. VIBRACIONES EN SISEMAS CON N GRADOS DE LIBERAD 10.1. Matrces de rgdez, nerca y amortguamento Se puede demostrar que las ecuacones lneales del movmento de un sstema dscreto de N grados de lbertad sometdo
Regresión y correlación Tema 8. 1.1 Contraste sobre β 1.2 Regresión en formato ANOVA. 2. Correlación. Contraste sobre ρ xy
Unversdad Autónoma de Madrd 1 Regresón y correlacón Tema 8 1. Regresón lneal smple 1.1 Contraste sobre β 1. Regresón en formato ANOVA. Correlacón. Contraste sobre ρ xy Análss de Datos en Pscología II Tema
Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis
Tema. Estadístcos unvarados: tendenca central, varabldad, asmetría y curtoss 1. MEDIDA DE TEDECIA CETRAL La meda artmétca La medana La moda Comparacón entre las meddas de tendenca central. MEDIDA DE VARIACIÓ
