REGRESION LINEAL SIMPLE
|
|
|
- José Francisco Miguélez Bustos
- hace 9 años
- Vistas:
Transcripción
1 REGREION LINEAL IMPLE Jorge Galbat Resco e dspone de una mustra de observacones formadas por pares de varables: (x 1, y 1 ) (x, y ).. (x n, y n ) A través de esta muestra, se desea estudar la relacón exstente entre las dos varables X e Y. Es posble representar estas observacones medante un gráfco de dspersón, como el sguente Tambén se puede expresar el grado de asocacón medante algunos ndcadores, que se verán a contnuacón. MEDIDA DE AOCIACION DE VARIABLE Covaranza entre las varables X e Y. Es una medda de la varacón conjunta. e defne como 1 1 cov( X, Y ) = ( x x)( y y) = n n xy 1
2 Puede tomar valores postvos o negatvos. Postvo, sgnfca que ambas varables tenden a varar de la msma forma, hay una asocacón postva. Negatvo, sgnfca que s una aumenta, la otra tende a dsmnur, y vce versa. Covaranza cercana a cero ndca que no hay asocacón entre las varables. Ejemplo 1 DATO DEL CLUB DE ALUD Datos correspondentes a 0 empleados del club de salud de una empresa X Y pulsasones or mnuto en reposo tempo en correr 1 mlla ( reg) Fuente:. Chatterjee - A. Had: " entvty Analyss n Lnear Regresson" obs X Y Promedos: 64,3 38,8
3 Calcularemos de la covaranza entre estas dos varables. Covaranza Valores centrados y productos: obs X-64,3 Y-38,8 prod 1,7 98, 65,14-1,3-90,8 1116,84 3-8,3-5,8 14,14 4 1,7 13,,44 5 0,7-37,8-6, ,7 86, 1353,34 7 1,7 4, 535,94 8 0,7 10, 7,14 9 3,7-36,8-136, ,7 18, 30, ,7-115,8-660,06 1-5,3-14,8 78, ,3-87,8 553, ,3 8, -100, ,3 104, -31,6 16 7,7 98, 756, ,3-8,8 64,4 18-5,3-15,8 83, ,7 86, 491,34 0-1,3-130,8 170,04 Promedo : 39,41 La covaranza entre las varables X e Y es gual a 39,41 Coefcente de correlacón lneal. La covaraza tene el nconvenente de que su valor no es acotado, por lo que, a partr de él es dfcl juzgar s es grande o pequeña. e defne la correlacón, que es una medda de asocacón lneal ndependente de las undades de medda. Es gual a la covaranza dvdda por las desvacones standard: cov( X, Y ) ( x x)( y y) corr ( X, Y ) = = = dsx * dsy ( x x) ( y y) xx xy yy 3
4 El valor de la correlacón entre cualquer par de varables es un número entre -1 y 1. n valor alto de correlacón no ndca que exste alguna relacón de causa-efecto entre las varables. Ejemplo (contnuacón) Coefcente de Correlacón e deben calcular las desvacones standard. Para ello se deben elevar al cuadrado las observacones centradas y promedar, obtenéndose las varanzas. Las desvacones standard son las raíces cuadradas de éstas. cuadrados de obs X-64,3 Y-38,8 1 7,3 9643, 151,3 844,6 3 68,9 665,6 4,9 174, 5 0,5 148,8 6 46,5 7430, ,3 1780,8 8 0,5 104,0 9 13,7 1354, 10,9 331, 11 3, ,6 1 8,1 19, ,7 7708, ,3 67, 15 0, , ,3 9643, 17 53,3 77,4 18 8,1 49,6 19 3,5 7430,4 0 1, ,6 Promedos : 54, ,46 (varanzas) Las desvacones standard son dsx = 7,36 ds Y = 69,97 Para obtener las correlacones se debe dvdr la covaranza por las desvacones standard: corr(x,y) = / ( 7.36 * ) = 0,465 4
5 El sguente es un gráfco de dspersón que muestra estos datos. Club de alud Tempo en recorrer 1 mlla Pulsacones por mnuto La nterpretacón del coefcente de correlacón puede lustrarse medante los sguentes gráfcos. 5
6 REGREION LINEAL IMPLE Ahora asumremos que s hay una relacón de causaldad de la varable X (causa) haca la varable Y (efecto). Además, se sabe que esa relacón es de tpo lneal, dentro del rango de los datos. Estableceremos un modelo para explcar la ca usa (Y) en térmnos del efecto (X), del tpo sguente: Y = a + bx + e para = 1,,..., n en que a y b son dos cantdades fjas (parámetros del modelo) y los e son cantdades aleatoras que representan las dferencas entre lo que postula el modelo a + bx y lo que realmente se observa, y. Por esa razón a los e los llamaremos "errores" o "errores aleatoros". e asume que tenen valor esperado 0 y desvacón standard común σ. Ejemplo Venta de automóvles e pensa que s aumentan el porcentaje de comsón pagada al vendedor de automóvles, aumenta la venta. Estudo sobre 15 concesonaros smlares X Comsones pagadas a vendedores de autos en un mes (%) Y Ganancas netas por ventas, en el msmo mes (Mllones de $) obs X Y
7 Representacón de los datos en un gráfco de dspersón: Ganancas netas versus comsones Ganancas (MM$) comsón (%) e puede aprecar la relacón lneal exstente entre ambas varables observadas. Nuestro problema es estmar los parámetros a, b y σ para poder dentfcar el modelo. Para estmar a y b se utlza el método de Mínmos cuadrados, que consste en encontrar aquellos valores de a y de b que hagan mínma la suma de los cuadrados de las desvacones de las observacones respecto de la recta que representa el modelo, en el sentdo vertcal. 7
8 En la fgura, son los cuadrados de los segmentos vertcales cuya suma de cuadrados se debe mnmzar, para determnar a y b. Estos segmentos representan los errores e del modelo. b se llama pendente de la recta que representa los datos y a se llama ntercepto sobre el eje vertcal. La solucón está dada por las sguentes fórmulas: ( x x)( y y) b = = ( x x) a = y b x xy xx Ejemplo (contnuacón) Calculamos los promedos de ambas varables y se las restamos a los valores. Promedo de la X : 5.4 Promedo de la Y :
9 Desvacones respecto de las medas, sus cuadrados y productos: obs X-5.4 Y-16.1 cuadrados prod sumas xx yy xy Entonces utlzando las fórmulas de arrba, b = 3.18 a = El modelo, para estos datos, es Y = , 18X + e para =1,,.. 15 Representa una recta, cuyo ntercepto con el eje vertcal es -0.96, y su pendente es 3.18, o sea, s el porcentaje de comsón X aumenta en 1%, la gananca neta Y aumenta en 3.18 Mllones de pesos. Ganancas netas versus comsones Ganancas (MM$) comsón (%) 9
10 Valores ajustados al modelo. El modelo de regresón lneal se puede utlzar para obtener valores de Y ajustados al modelo, Los valores puntuales se obtenen medante la fórmula Y = a + bx en que a y b son los valores estmados por el procedmento ndcado anterormente, y X toma los valores de la muestra. Los puntos que representan estos valores en el gráfco de dspersón, yacen sobre la recta. Ejempol (contnuacón) La tabla sguente contene los valores de Y ajustados, para cada valor de X, además de los valores de Y observados, a modo de comparacón. Los ajustados se obtenen por la fórmula Y = X obs X Y Yajust. df promedo
11 e puede observar que el promedo de los valores ajustados es gual al promedo de los valores observados, y que el promedo de las dferencas es cero. La raíz cuadrada del promedo de los cuadrados de las dferencas entre los valores observados y ajustados, es una estmacón de la varanza del error, σ. En el ejemplo, la suma de las dferencas al cuadrado es 19.8, luego la estmacón de la desvacón standard del error es gual a 1 σ = 19.8 = 1.3 = 1.15 Mllones de pesos 15 Coefcente de determnacón Es una medda de bondad de ajuste del modelos de regresón lneal a los datos. Es deseable que los valores de Y ajustados al modelo, sean lo más parecdos posble a los valores observados. Una medda de lo parecdo que son, es el coefcente de correlacón. e defne el coefcente de determnacón, R, como el cuadrado del coefcente de correlacón entre los valores de Y observados y los valores de Y ajustados. n embargo se puede demostrar que es gual a la sguente expresón: R [ ( x x)( y y) ] [ ( x x) ][ ( y y) ] xy = = xx yy 11
12 El rango de R es entre 0, cero ajuste, hasta 1, ajuste perfecto (cuando los puntos aparecen en un línea recta). Ejemplo (contnuacón) Más arrba se calcularos las sumas de cuadrados y de productos, y deron los sguentes valores: xx = 39.6, yy = 488.3, xy = 16.1 Entonces el coefcente de determnacón es R = (16.1) 39.6* = 0.8 que señala que el ajuste del modelo a los datos es bueno. Ejemplo 3 Los datos sguentes corresponde al Indce de Produccón Físca de la Industra Manufacturera, por agrupacón, de los meses de mayo de 00 y mayo de 003, entregado por el Insttuto Naconal de Estadístcas. Es un índce cuya base 100 es el promedo de produccón de cada agrupacón, en el año
13 Agrupacones Mayo 0 Mayo 03 Fabrcac. de productos almentcos Industras de bebdas Industra del tabaco Fabrcac. de textles Fabrcac. prendas de vestr, excepto calzado Industra del cuero; produc. de cuero y sucedáneos Fabrcac. de calzado, exc. de caucho o plástco Industra de madera y sus productos exc. muebles Fabrcac. de muebles y accesoros, exc. metálcos Fabrcac. de papel y productos de papel Imprentas, edtorales e ndustras conexas Fabrcac. de sustancas químcas ndustrales Fabrcac. de otros productos químcos Refnerías de petróleo Fabrcac. prod. dervados de petróleo y carbón Fabrcac. de productos de caucho Fabrcac. de productos plástcos Fabrcac. de objetos de loza y porcelana Fabrcac. de vdro y productos de vdro Fabrcac. otros productos mnerales no metálcos Industras báscas de herro y acero Industras báscas de metales no ferrosos Fabrcac. prod. metálcos exc. maqunara y equpo Construccón de maqunara, exc. la eléctrca Construccón máq., aparatos y acces. eléctrcos Construccón de materal de transporte Fabrcac. equpo profesonal y artículos oftálmcos Otras ndustras manufactureras El gráfco de dspersón es el sguente: Prod. Físca Industra Manufacturera 600 Indce mayo Indce mayo 00 13
14 Cálculos parcales, en que X es el índce mayo 00, Y el índce mayo 003: n = 8 x = y = xx yy xy = ( x x) = ( y y) = = 134, ,813.7 = ( x x)( y y) = 154,350.8 Estmacón de los parámetros del modelo: b = xy xx = 154, ,913.6 = 1.14 a = y bx = Bondad de ajuste: R = xx xy yy = (154,350.8) (134,913.6) *(187,350.8) = que ndca un muy buen ajuste. El sguente gráfco muestra de recta de regresón estmada: Prod. Físca Industra Manufacturera 600 Indce mayo Indce mayo 00 14
15 Predccón por bandas de confanza. e pueden hacer predccones de valores Y para valores X que no están en el conjunto de observacones, dentro o fuera de su rango, utlzando la fórmula de la regresón lneal, con los parámetros a y b estmados. Tamben se pueden hacer predccones por ntervalos de confanza vertcales, que tenen la ventaja de proporconar una cuantfcacón del error de predccón. Los ntervalos tenen la propedad de ser de dferente ancho, según el valor de X, sendo más angostos cuando X es gual al promedo, ensanchándose a medda que nos alejamos del promedo. Cuando se sale del rango de los datos, se ensanchan más fuertemente. Esto sgnfca que mentras más nos alejamos del centro de los valores de la varable X, más mprecsas serán nuestras estmacones del valor de la varable Y, lo que parece razonable. unmos los extremos superores (o los nferores) de todos los ntervalos de confanza, se obtenen dos curvas con forma de hpérbola, como se muestra en la fgura: 15
16 El gráfco sguente muestra las bandas de confanza de coefcente 95%, para el ejemplo de la produccón físca manufacturera. Mentras mayor es el coefcente de determnacón R, más angostas son las bandas de confanza; lo msmo mentras mayor es la desvacón standard de las X, y lo msmo s el tamaño muestral aumenta. Y a medda que nos alejamos del promedo de las X, se ensanchan las bandas. 16
REGRESION LINEAL SIMPLE
REGREION LINEAL IMPLE Jorge Galbat Resco e dspone de una muestra de observacones formadas por pares de varables: (x 1, y 1 ), (x, y ),.., (x n, y n ) A través de esta muestra, se desea estudar la relacón
CORRELACION Y REGRESION
CORRELACION Y REGREION Jorge Galbat Resco e dspone de una muestra de observacones formadas por pares de varables: (x 1, y 1 ), (x, y ),.., (x n, y n ) A través de esta muestra, se desea estudar la relacón
Tema 6. Estadística descriptiva bivariable con variables numéricas
Clase 6 Tema 6. Estadístca descrptva bvarable con varables numércas Estadístca bvarable: tpos de relacón Relacón entre varables cuanttatvas Para dentfcar las característcas de una relacón entre dos varables
CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso
CURSO ITERACIOAL: COSTRUCCIÓ DE ESCEARIOS ECOÓMICOS ECOOMETRÍA AVAZADA Instructor: Horaco Catalán Alonso Modelo de Regresón Lneal Smple El modelo de regresón lneal representa un marco metodológco, que
Problemas donde intervienen dos o más variables numéricas
Análss de Regresón y Correlacón Lneal Problemas donde ntervenen dos o más varables numércas Estudaremos el tpo de relacones que exsten entre ellas, y de que forma se asocan Ejemplos: La presón de una masa
Lección 4. Ejercicios complementarios.
Introduccón a la Estadístca Grado en Tursmo Leccón 4. Ejerccos complementaros. Ejercco 1 (juno 06). La nformacón relatva al mes de enero sobre los ngresos (X) y los gastos (Y), expresados en mles de euros,
DISTRIBUCIONES BIDIMENSIONALES
Matemátcas 1º CT 1 DISTRIBUCIONES BIDIMENSIONALES PROBLEMAS RESUELTOS 1. a) Asoca las rectas de regresón: y = +16, y = 1 e y = 0,5 + 5 a las nubes de puntos sguentes: b) Asgna los coefcentes de correlacón
Medidas de Variabilidad
Meddas de Varabldad Una medda de varabldad es un ndcador del grado de dspersón de un conjunto de observacones de una varable, en torno a la meda o centro físco de la msma. S la dspersón es poca, entonces
Inferencia en Regresión Lineal Simple
Inferenca en Regresón Lneal Smple Modelo de regresón lneal smple: Se tenen n observacones de una varable explcatva x y de una varable respuesta y, ( x, y)(, x, y),...,( x n, y n ) el modelo estadístco
COLEGIO INGLÉS MEDIDAS DE DISPERSIÓN
COLEGIO IGLÉS DEPARTAMETO IVEL: CUARTO MEDIO PSU. UIDAD: ESTADISTICA 3 PROFESOR: ATALIA MORALES A. ROLADO SAEZ M. MIGUEL GUTIÉRREZ S. JAVIER FRIGERIO B. MEDIDAS DE DISPERSIÓ Las meddas de dspersón dan
Licenciatura en Administración y Dirección de Empresas INTRODUCCIÓN A LA ESTADÍSTICA EMPRESARIAL
INTRODUCCIÓN A LA ESTADÍSTICA EMPRESARIAL Relacón de Ejerccos nº 2 ( tema 5) Curso 2002/2003 1) Las cento trenta agencas de una entdad bancara presentaban, en el ejercco 2002, los sguentes datos correspondentes
Relaciones entre variables
Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón.
EJERCICIOS: Tema 3. Los ejercicios señalados con.r se consideran de conocimientos previos necesarios para la comprensión del tema 3.
EJERCICIOS: Tema 3 Los ejerccos señalados con.r se consderan de conocmentos prevos necesaros para la comprensón del tema 3. Ejercco 1.R Dos bblotecas con el msmo fondo bblográfco especalzado ofrecen las
Análisis de Regresión y Correlación
1 Análss de Regresón y Correlacón El análss de regresón consste en emplear métodos que permtan determnar la mejor relacón funconal entre dos o más varables concomtantes (o relaconadas). El análss de correlacón
CAPÍTULO 4 MARCO TEÓRICO
CAPÍTULO 4 MARCO TEÓRICO Cabe menconar que durante el proceso de medcón, la precsón y la exacttud de cualquer magntud físca está lmtada. Esta lmtacón se debe a que las medcones físcas sempre contenen errores.
ESTADISTÍCA. 1. Población, muestra e individuo. 2. Variables estadísticas. 3. El proceso que se sigue en estadística
ESTADISTÍCA. Poblacón, muestra e ndvduo Las característcas de una dstrbucón se pueden estudar drectamente sobre la poblacón o se pueden nferr a partr de l estudo de una muestra. Poblacón estadístca es
REGRESION Y CORRELACION
nav Estadístca (complementos) 1 REGRESION Y CORRELACION Fórmulas báscas en la regresón lneal smple Como ejemplo de análss de regresón, descrbremos el caso de Pzzería Armand, cadena de restaurantes de comda
TEMA III EL ANÁLISIS DE REGRESIÓN LINEAL MÚLTIPLE
TEMA III EL ANÁLISIS DE REGRESIÓN LINEAL MÚLTIPLE LECTURA OBLIGATORIA Regresón Lneal Múltple. En Ral, A. y Varela, J. (008). Estadístca Práctca para la Investgacón en Cencas de la Salud. Coruña: Netbblo.
Estadísticos muéstrales
Estadístcos muéstrales Hemos estudado dferentes meddas numércas correspondentes a conjuntos de datos, entre otras, estudamos la meda, la desvacón estándar etc. Ahora vamos a dstngur entre meddas numércas
UNIDAD 12: Distribuciones bidimensionales. Correlación y regresión
Matemátcas aplcadas a las Cencas Socales UNIDAD 1: Dstrbucones bdmensonales. Correlacón regresón ACTIVIDADES-PÁG. 68 1. La meda la desvacón típca son: 1,866 0,065. Los jugadores que se encuentran por encma
EJERCICIO 1 1. VERDADERO 2. VERDADERO (Esta afirmación no es cierta en el caso del modelo general). 3. En el modelo lineal general
PRÁCTICA 6: MODELO DE REGRESIÓN MÚLTIPLE SOLUCIÓN EJERCICIO. VERDADERO. VERDADERO (Esta afrmacón no es certa en el caso del modelo general. 3. En el modelo lneal general Y =X β + ε, explcar la forma que
ACTIVIDADES ESTADÍSTICA UNIDIMENSIONAL. a) Calcula la temperatura media y la temperatura mediana de la semana.
Matemátcas Aplcadas a las Cencas Socales I ACTIVIDADES ESTADÍSTICA UNIDIMENSIONAL 1) Se ha meddo la temperatura en grados centígrados la presón atmosférca en mm en una cudad durante una semana obtenéndose
MEDIDAS DE ASOCIACIÓN: COEFICIENTES DE CORRELACIÓN Y DE REGRESIÓN I.- Introducción En el tema I estudiamos las medidas descriptivas para una
MEDIDAS DE ASOCIACIÓ: COEFICIETES DE CORRELACIÓ DE REGRESIÓ I.- Introduccón En el tema I estudamos las meddas descrptvas para una varable, y además, planteamos que tales meddas tambén exsten para dos o
IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas
IES Menéndez Tolosa (La Línea) Físca y Químca - 1º Bach - Gráfcas 1 Indca qué tpo de relacón exste entre las magntudes representadas en la sguente gráfca: La gráfca es una línea recta que no pasa por el
Medidas de centralización
1 Meddas de centralzacón Meda Datos no agrupados = x X = n = 0 Datos agrupados = x X = n = 0 Medana Ordenamos la varable de menor a mayor. Calculamos la columna de la frecuenca relatva acumulada F. Buscamos
ESTADÍSTICA BIDIMENSIONAL ÍNDICE GENERAL
ESTADÍSTICA BIDIMESIOAL ÍDICE GEERAL 1.-Varable Estadístca Bdmensonal. Tablas de frecuenca... 1.1.- Concepto de varable estadístca bdmensonal. Eemplos.... 1..-Tablas bdmensonales de frecuencas. Tablas
TEMA III EL ANÁLISIS DE REGRESIÓN LINEAL MÚLTIPLE
TEMA III EL ANÁLISIS DE REGRESIÓN LINEAL MÚLTIPLE LECTURA OBLIGATORIA Regresón Lneal Múltple. En Ral, A. y Varela, J. (008). Estadístca Práctca para la Investgacón en Cencas de la Salud. Coruña: Netbblo.
EJERCICIOS. Ejercicio 1.- Para el modelo de regresión simple siguiente: Y i = βx i + ε i i =1,..., 100. se tienen las siguientes medias muestrales:
EJERCICIOS Tema 2: MODELO DE REGRESION LINEAL SIMPLE Ejercco 1.- Para el modelo de regresón smple sguente: Y = βx + ε =1,..., 100 se tenen las sguentes medas muestrales: ( P y ) /n =0.3065 ( P y 2 ) /n
FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004)
FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Xménez & San Martín, 004) Capítulo. Nocones báscas de álgebra de matrces Fe de erratas.. Cálculo de la transpuesta de una matrz
Análisis de Resultados con Errores
Análss de Resultados con Errores Exsten dos tpos de errores en los expermentos Errores sstemátcos errores aleatoros. Los errores sstemátcos son, desde lejos, los más mportantes. Errores Sstemátcos: Exsten
EXAMEN FINAL DE ECONOMETRIA, 3º CURSO (GRADOS EN ECO y ADE) 20 DE JUNIO DE horas
EXAMEN FINAL DE ECONOMETRIA, 3º CURSO (GRADOS EN ECO y ADE) 0 DE JUNIO DE 018 15.30 horas Prmer Apelldo: Nombre: DNI: Teléfono: Segundo Apelldo: Grupo y Grado: Profesor(a): e-mal: Pregunta 1 A B C En Blanco
Regresión Lineal Simple y Correlación
4 Regresón Lneal Smple y Correlacón 4.1. Fundamentos teórcos 4.1.1. Regresón La regresón es la parte de la estadístca que trata de determnar la posble relacón entre una varable numérca, que suele llamarse
Solución de los Ejercicios de Práctica # 1. Econometría 1 Prof. R. Bernal
Solucón de los Ejerccos de ráctca # 1 Econometría 1 rof. R. Bernal 1. La tabla de frecuencas está dada por: Marca A Marca B
Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos
Reconclacón de datos expermentales MI5022 Análss y smulacón de procesos mneralúgcos Balances Balances en una celda de flotacón En torno a una celda de flotacón (o un crcuto) se pueden escrbr los sguentes
MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas
Unversdad de Cádz Departamento de Matemátcas MATEMÁTICAS para estudantes de prmer curso de facultades y escuelas técncas Tema 13 Dstrbucones bdmensonales. Regresón y correlacón lneal Elaborado por la Profesora
Probabilidad Grupo 23 Semestre Segundo examen parcial
Probabldad Grupo 3 Semestre 015- Segundo examen parcal La tabla sguente presenta 0 postulados, algunos de los cuales son verdaderos y otros son falsos. Analza detendamente cada postulado y elge tu respuesta
Correlación y regresión lineal simple
. Regresón lneal smple Correlacón y regresón lneal smple. Introduccón La correlacón entre dos varables ( e Y) se refere a la relacón exstente entre ellas de tal manera que a determnados valores de se asocan
Tema 1.3_A La media y la desviación estándar
Curso 0-03 Grado en Físca Herramentas Computaconales Tema.3_A La meda y la desvacón estándar Dónde estudar el tema.3_a: Capítulo 4. J.R. Taylor, Error Analyss. Unv. cence Books, ausalto, Calforna 997.
MAGNITUD: propiedad o cualidad física susceptible de ser medida y cuantificada. Ejemplos: longitud, superficie, volumen, tiempo, velocidad, etc.
TEMA. INSTRUMENTOS FÍSICO-MATEMÁTICOS.. SISTEMAS DE MAGNITUDES Y UNIDADES. CONVERSIÓN DE UNIDADES. MAGNITUD: propedad o cualdad físca susceptble de ser medda y cuantfcada. Ejemplos: longtud, superfce,
Instrucciones: Leer detenidamente los siete enunciados y resolver seis de los siete problemas propuestos. Frecuencia absoluta (f i )
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE PROBABILIDAD Y ESTADÍSTICA PRIMER EAMEN FINAL RESOLUCIÓN SEMESTRE
SEGUNDA PARTE RENTAS FINANCIERAS
SEGUNDA PARTE RENTAS FINANCIERAS 5 INTRODUCCIÓN A LA TEORÍA DE RENTAS 5.1 CONCEPTO: Renta fnancera: conjunto de captales fnanceros cuyos vencmentos regulares están dstrbudos sucesvamente a lo largo de
SEMANA 5 MEDIDAS DE TENDENCIA CENTRAL Y POSICIÓN
Estadístca SEMANA 5 MEDIDAS DE TENDENCIA CENTRAL Y POSICIÓN LOGRO DE APRENDIZAJE: Al fnalzar la sesón, el estudante estará en la capacdad de calcular e nterpretar meddas de tendenca central y poscón de
EXAMEN FINAL DE ECONOMETRIA, 3º CURSO (GRADOS EN ECO y ADE) 6 de Junio de :00 horas. Pregunta 19 A B C En Blanco. Pregunta 18 A B C En Blanco
EXAMEN FINAL DE ECONOMETRIA, 3º CURSO (GRADOS EN ECO y ADE) 6 de Juno de 3 9: horas Prmer Apelldo: Nombre: DNI: Teléfono: Segundo Apelldo: Grupo y Grado: Profesor(a): e mal: Pregunta A B C En Blanco Pregunta
EJERCICIOS RESUELTOS VARIABLE ALEATORIA UNIDIMENSIONAL
Gestón Aeronáutca: Estadístca Teórca Facultad Cencas Económcas y Empresarales Departamento de Economía Aplcada Profesor: Santago de la Fuente Fernández EJERCICIOS RESUELTOS VARIABLE ALEATORIA UNIDIMENSIONAL
EJERCICIOS DE ESTADÍSTICA BIDIMENSIONAL.
EJERCICIOS DE ESTADÍSTICA BIDIMENSIONAL. 1. Una cofradía de pescadores regstra la cantdad de sardnas que llegan al puerto (X), en klogramos, el preco de la subasta en la lonja (Y), en euros por klo, han
Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma
Estadístca Tema 1: Estadístca Descrptva Undmensonal Undad 2: Meddas de Poscón, Dspersón y de Forma Área de Estadístca e Investgacón Operatva Lceso J. Rodríguez-Aragón Septembre 2010 Contendos...............................................................
Prueba de Inferencia Estadística y Contraste de Hipótesis. 8 de octubre de 2012 GRUPO A
Prueba de Inferenca Estadístca y Contraste de Hpótess 8 de octubre de 01 GRUPO A 1.- Se ha observado un ángulo cnco veces, obtenéndose los sguentes valores: Se pde: 65º5 ; 65º33 ; 65º3 ; 65º8 ; 65º7 a)
NOMBRE Apellido Paterno Apellido Materno Nombre(s) Porcentaje de defectos producidos Máquina Porcentaje de producción
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE PROBABILIDAD Y ESTADÍSTICA PRIMER EAMEN FINAL RESOLUCIONES
8 MECANICA Y FLUIDOS: Calorimetría
8 MECANICA Y FLUIDOS: Calormetría CONTENIDOS Dencones. Capacdad caloríca. Calor especíco. Equlbro térmco. Calormetría. Calorímetro de las mezclas. Marcha del calorímetro. Propagacón de Errores. OBJETIVOS
Estadística con R. Modelo Probabilístico Lineal
Estadístca con R Modelo Probablístco Lneal Modelo Probablístco Lneal Forma de la funcón: Y b 0 +b 1 X +e Varable dependente, endógena o a explcar dcotómca : Y, S Y 0 e -b 0 - b 1 X con probabldad p. S
Guía de Electrodinámica
INSTITITO NACIONAL Dpto. de Físca 4 plan electvo Marcel López U. 05 Guía de Electrodnámca Objetvo: - econocer la fuerza eléctrca, campo eléctrco y potencal eléctrco generado por cargas puntuales. - Calculan
( ) MUESTREO ALEATORIO SIMPLE SIN REEMPLAZO ( mas ) y Y. N n. S y. MUESTREO ALEATORIO SIMPLE SIN REEMPLAZO ( mas )
MUETREO ALEATORIO IMPLE I Este esquema de muestreo es el más usado cuando se tene un marco de muestreo que especfque la manera de dentfcar cada undad en la poblacón. Además no se tene conocmento a pror
EXAMEN FINAL DE ECONOMETRIA, 3º CURSO (GRADOS EN ECO y ADE) 19 de Septiembre de :30 horas. Pregunta 19 A B C En Blanco
EXAMEN FINAL DE ECONOMETRIA, 3º CURSO (GRADOS EN ECO y ADE) 19 de Septembre de 01 15:30 horas Prmer Apelldo: Nombre: DNI: Teléfono: Segundo Apelldo: Grupo y Grado: Profesor(a): e mal: Pregunta 1 A B C
Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis
Tema. Estadístcos unvarados: tendenca central, varabldad, asmetría y curtoss 1. MEDIDA DE TEDECIA CETRAL La meda artmétca La medana La moda Comparacón entre las meddas de tendenca central. MEDIDA DE VARIACIÓ
2 Dos tipos de parámetros estadísticos
Dos tpos de parámetros estadístcos Págna 198 1. Calcula la meda, la medana y la moda de cada una de estas dstrbucones estadístcas: a) 4, 5, 6, 6, 6, 6, 7, 11, 1, 17 b), 1, 6, 9,, 8, 9,, 14, c), 3, 3, 3,
Regresión y Correlación Métodos numéricos
Regresón y Correlacón Métodos numércos Prof. Mguel Hesquo Garduño. Est. Mrla Benavdes Rojas Depto. De Ingenería Químca Petrolera ESIQIE-IPN [email protected] [email protected] Regresón lneal El
3 - VARIABLES ALEATORIAS
arte Varables aleatoras rof. María B. ntarell - VARIABLES ALEATORIAS.- Generaldades En muchas stuacones epermentales se quere asgnar un número real a cada uno de los elementos del espaco muestral. Al descrbr
3. VARIABLES ALEATORIAS.
3. VARIABLES ALEATORIAS. Una varable aleatora es una varable que toma valores numércos determnados por el resultado de un epermento aleatoro (no hay que confundr la varable aleatora con sus posbles valores)
Variables Aleatorias
Varables Aleatoras VARIABLES ALEATORIAS. Varable aleatora. Tpos.... Dstrbucón de probabldad asocada a una varable aleatora dscreta... 4. Funcón de dstrbucón. Propedades... 5 4. Funcón de densdad... 7 5.
CASO PRÁCTICO TEORÍA. 1 i (REGRESIÓN LINEAL CON PESOS ESTADÍSTICOS OBTENIDOS DE RÉPLICAS)
Caso 6: Calbrado para fosfato y predccón nversa 43 Caso 6 : Calbrado para fosfato y predccón nversa (REGRESIÓN LINEAL CON PESOS ESTADÍSTICOS OBTENIDOS DE RÉPLICAS) CASO PRÁCTICO Al hacer calbrados con
