REGRESION LINEAL SIMPLE
|
|
|
- Teresa Maidana Martínez
- hace 9 años
- Vistas:
Transcripción
1 REGREION LINEAL IMPLE Jorge Galbat Resco e dspone de una muestra de observacones formadas por pares de varables: (x 1, y 1 ), (x, y ),.., (x n, y n ) A través de esta muestra, se desea estudar la relacón exstente entre las dos varables X e Y. Es posble representar estas observacones medante un gráfco de dspersón, como el sguente Tambén se puede expresar el grado de asocacón medante algunos ndcadores, que se verán a contnuacón. MEDIDA DE AOCIACION DE VARIABLE Covaranza entre las varables X e Y. Es una medda de la varacón conjunta. e defne como 1 1 cov( X, Y ) = ( x x)( y y) = n n Puede tomar valores postvos o negatvos. Postvo, sgnfca que ambas varables tenden a varar de la msma forma, hay una asocacón postva. Negatvo, sgnfca que s una aumenta, la otra tende a dsmnur, y vce versa. Covaranza cercana a cero ndca que no hay asocacón entre las varables. xy 1
2 Ejemplo 1 DATO DEL CLUB DE ALUD Datos correspondentes a 0 empleados del club de salud de una empresa X Y pulsasones or mnuto en reposo tempo en correr 1 mlla ( reg) Fuente:. Chatterjee - A. Had: " entvty Analyss n Lnear Regresson" obs X Y Promedos: 64,3 38,8
3 Calcularemos de la covaranza entre estas dos varables. Covaranza Valores centrados y productos: obs X-64,3 Y-38,8 prod La covaranza entre las 1,7 98, 65,14-1,3-90,8 1116,84 3-8,3-5,8 14,14 4 1,7 13,,44 5 0,7-37,8-6, ,7 86, 1353,34 7 1,7 4, 535,94 8 0,7 10, 7,14 9 3,7-36,8-136, ,7 18, 30, ,7-115,8-660,06 1-5,3-14,8 78, ,3-87,8 553, ,3 8, -100, ,3 104, -31,6 16 7,7 98, 756, ,3-8,8 64,4 18-5,3-15,8 83, ,7 86, 491,34 0-1,3-130,8 170,04 Promedo : 39,41 varables X e Y es gual a 39,41 Coefcente de correlacón lneal. La covaraza tene el nconvenente de que su valor no es acotado, por lo que, a partr de él es dfcl juzgar s es grande o pequeña. e defne la correlacón, que es una medda de asocacón lneal ndependente de las undades de medda. Es gual a la covaranza dvdda por las desvacones estándar: (, cov( X, Y ) ) = = ( x x)( y y) corr X Y = dsx * dsy ( x x) ( y y) xx xy yy 3
4 El valor de la correlacón entre cualquer par de varables es un número entre -1 y 1. n valor alto de correlacón no ndca que exste alguna relacón de causa-efecto entre las varables. Ejemplo (contnuacón) Coefcente de Correlacón e deben calcular las desvacones standard. Para ello se deben elevar al cuadrado las observacones centradas y promedar, obtenéndose las varanzas. Las desvacones standard son las raíces cuadradas de éstas. cuadrados de obs X-64,3 Y-38,8 1 7,3 9643, 151,3 844,6 3 68,9 665,6 4,9 174, 5 0,5 148,8 6 46,5 7430, ,3 1780,8 8 0,5 104,0 9 13,7 1354, 10,9 331, 11 3, ,6 1 8,1 19, ,7 7708, ,3 67, 15 0, , ,3 9643, 17 53,3 77,4 18 8,1 49,6 19 3,5 7430,4 0 1, ,6 Promedos : 54, ,46 (varanzas) Las desvacones standard son dsx = 7,36 ds Y = 69,97 Para obtener las correlacones se debe dvdr la covaranza por las desvacones standard: corr(x,y) = / ( 7.36 * ) = 0,465 4
5 El sguente es un gráfco de dspersón que muestra estos datos. Club de alud Tempo en recorrer 1 mlla Pulsacones por mnuto La nterpretacón del coefcente de correlacón puede lustrarse medante los sguentes gráfcos. 5
6 REGREION LINEAL IMPLE Ahora asumremos que s hay una relacón de causaldad de la varable X (causa) haca la varable Y (efecto). Además, se sabe que esa relacón es de tpo lneal, dentro del rango de los datos. Estableceremos un modelo para explcar la ca usa (Y) en térmnos del efecto (X), del tpo sguente: Y = a + bx + e para = 1,,..., n en que a y b son dos cantdades fjas (parámetros del modelo) y los e son cantdades aleatoras a + bx y lo que realmente se que representan las dferencas entre lo que postula el modelo observa, y. Por esa razón a los e los llamaremos "errores" o "errores aleatoros". e asume que tenen valor esperado 0 y desvacón estándar común σ. Ejemplo Venta de automóvles e pensa que s aumentan el porcentaje de comsón pagada al vendedor de automóvles, aumenta la venta. Estudo sobre 15 concesonaros smlares X Comsones pagadas a vendedores de autos en un mes (%) Y Ganancas netas por ventas, en el msmo mes (Mllones de $) obs X Y Representacón de los datos en un gráfco de dspersón: 6
7 Ganancas netas versus comsones Ganancas (MM$) comsón (%) e puede aprecar la relacón lneal exstente entre ambas varables observadas. Nuestro problema es estmar los parámetros a, b y σ para poder dentfcar el modelo. Para estmar a y b se utlza el método de Mínmos cuadrados, que consste en encontrar aquellos valores de a y de b que hagan mínma la suma de los cuadrados de las desvacones de las observacones respecto de la recta que representa el modelo, en el sentdo vertcal. En la fgura, son los cuadrados de los segmentos vertcales cuya suma de cuadrados se debe mnmzar, para determnar a y b. Estos segmentos representan los errores e del modelo. b se llama pendente de la recta que representa los datos y a se llama ntercepto sobre el eje vertcal. La solucón está dada por las sguentes fórmulas: ( x x)( y y) b = = ( x x) xy xx 7
8 a = y b x Ejemplo (contnuacón) Calculamos los promedos de ambas varables y se las restamos a los valores. Promedo de la X : 5.4 Promedo de la Y : 16.1 Desvacones respecto de las medas, sus cuadrados y productos: obs X-5.4 Y-16.1 cuadrados prod sumas xx yy xy Entonces utlzando las fórmulas de arrba, b = 3.18 a = El modelo, para estos datos, es Y = , 18X + e para =1,,.. 15 Representa una recta, cuyo ntercepto con el eje vertcal es -0.96, y su pendente es 3.18, o sea, s el porcentaje de comsón X aumenta en 1%, la gananca neta Y aumenta en 3.18 Mllones de pesos. 8
9 Ganancas netas versus comsones Ganancas (MM$) com són (%) VALORE AJUTADO AL MODELO. El modelo de regresón lneal se puede utlzar para obtener valores de Y ajustados al modelo, Los valores puntuales se obtenen medante la fórmula Y = a + bx en que a y b son los valores estmados por el procedmento ndcado anterormente, y X toma los valores de la muestra. Los puntos que representan estos valores en el gráfco de dspersón, yacen sobre la recta. Ejemplo (contnuacón) La tabla sguente contene los valores de Y ajustados, para cada valor de X, además de los valores de Y observados, a modo de comparacón. Los ajustados se obtenen por la fórmula Y = X 9
10 obs X Y Yajust. df promedo e puede observar que el promedo de los valores ajustados es gual al promedo de los valores observados, y que el promedo de las dferencas es cero. La raíz cuadrada del promedo de los cuadrados de las dferencas entre los valores observados y ajustados, es una estmacón de la varanza del error, σ. En el ejemplo, la suma de las dferencas al cuadrado es 19.8, luego la estmacón de la desvacón estándar del error es gual a σ = = 1.3 = 1.15 Mllones de pesos Coefcente de determnacón. Es una medda de bondad de ajuste del modelos de regresón lneal a los datos. Es deseable que los valores de Y ajustados al modelo, sean lo más parecdos posble a los valores observados. Una medda de lo parecdo que son, es el coefcente de correlacón. e defne el coefcente de determnacón, R, como el cuadrado del coefcente de correlacón entre los valores de Y observados y los valores de Y ajustados. n embargo se puede demostrar que es gual a la sguente expresón: R [ ( x x)( y y) ] [ ( x x) ][ ( y y) ] xy = = xx yy El rango de R es entre 0, cero ajuste, hasta 1, ajuste perfecto (cuando los puntos aparecen en un línea recta). 10
11 Ejemplo (contnuacón) Más arrba se calcularos las sumas de cuadrados y de productos, y deron los sguentes valores: xx = 39.6, yy = 488.3, xy = 16.1 Entonces el coefcente de determnacón es R = (16.1) 39.6* que señala que el ajuste del modelo a los datos es bueno. = 0.8 Ejemplo 3 Los datos sguentes corresponde al Indce de Produccón Físca de la Industra Manufacturera, por agrupacón, de los meses de mayo de 00 y mayo de 003, entregado por el Insttuto Naconal de Estadístcas. Es un índce cuya base 100 es el promedo de produccón de cada agrupacón, en el año Agrupacones Mayo 0 Mayo 03 Fabrcac. de productos almentcos Industras de bebdas Industra del tabaco Fabrcac. de textles Fabrcac. prendas de vestr, excepto calzado Industra del cuero; produc. de cuero y sucedáneos Fabrcac. de calzado, exc. de caucho o plástco Industra de madera y sus productos exc. muebles Fabrcac. de muebles y accesoros, exc. metálcos Fabrcac. de papel y productos de papel Imprentas, edtorales e ndustras conexas Fabrcac. de sustancas químcas ndustrales Fabrcac. de otros productos químcos Refnerías de petróleo Fabrcac. prod. dervados de petróleo y carbón Fabrcac. de productos de caucho Fabrcac. de productos plástcos Fabrcac. de objetos de loza y porcelana Fabrcac. de vdro y productos de vdro Fabrcac. otros productos mnerales no metálcos Industras báscas de herro y acero Industras báscas de metales no ferrosos Fabrcac. prod. metálcos exc. maqunara y equpo Construccón de maqunara, exc. la eléctrca Construccón máq., aparatos y acces. eléctrcos Construccón de materal de transporte Fabrcac. equpo profesonal y artículos oftálmcos Otras ndustras manufactureras
12 El gráfco de dspersón es el sguente: Prod. Físca Industra Manufacturera 600 Indce mayo Indce mayo 00 Cálculos parcales, en que X es el índce mayo 00, Y el índce mayo 003: n = 8 x = y = xx yy xy = ( x x) = ( y y) = = 134, ,813.7 = ( x x)( y y) = 154,350.8 Estmacón de los parámetros del modelo: b = xy xx 154,350.8 = = ,913.6 a = y bx = Bondad de ajuste: R = xx xy yy = (154,350.8) (134,913.6) *(187,350.8) = que ndca un muy buen ajuste. El sguente gráfco muestra de recta de regresón estmada: 1
13 Prod. Físca Industra Manufacturera 600 Indce mayo Indce mayo 00 Predccón por bandas de confanza. e pueden hacer predccones de valores Y para valores X que no están en el conjunto de observacones, dentro o fuera de su rango, utlzando la fórmula de la regresón lneal, con los parámetros a y b estmados. Tambén se pueden hacer predccones por ntervalos de confanza vertcales, que tenen la ventaja de proporconar una cuantfcacón del error de predccón. Los ntervalos tenen la propedad de ser de dferente ancho, según el valor de X, sendo más angostos cuando X es gual al promedo, ensanchándose a medda que nos alejamos del promedo. Cuando se sale del rango de los datos, se ensanchan más fuertemente. Esto sgnfca que mentras más nos alejamos del centro de los valores de la varable X, más mprecsas serán nuestras estmacones del valor de la varable Y, lo que parece razonable. unmos los extremos superores (o los nferores) de todos los ntervalos de confanza, se obtenen dos curvas con forma de hpérbola, como se muestra en la fgura: 13
14 El gráfco sguente muestra las bandas de confanza de coefcente 95%, para el ejemplo de la produccón físca manufacturera. Mentras mayor es el coefcente de determnacón R, más angostas son las bandas de confanza; lo msmo mentras mayor es la desvacón estándar de las X, y lo msmo s el tamaño muestral aumenta. Y a medda que nos alejamos del promedo de las X, se ensanchan las bandas. 14
15 PREGUNTA 1. e mden dos varables, x e y. e calcula su coefcente de correlacón. Qué mde este coefcente?. e tenen dos varables, relaconadas con las publcacones en revstas de profesores unverstaros: X = Número de publcacones. Y = Número de veces que ha sdo ctado. Utlzando regresón lneal, se estmó, en base a una muestra, que estas varables están relaconadas medante el sguente modelo lneal: Y = X Cómo se nterpretan los dos parámetros de este modelo? 3. Qué mde el coefcente de correlacón lneal de dos varables. 4. e tene un conjunto de pares de datos (x,y), a los que se les estma una recta de regresón. La varable ndependente es x, su rango es entre 150 y 30. e hacen dos estmacones de y por ntervalos de confanza de coefcente 95%, una para x=190 y otra para x=50. Cuál es más precsa? 5. e tenen dos varables, observadas en una muestra de estudantes egresados de la enseñanza meda: X = promedo de notas de los cuatro años de enseñanza meda. Y = puntos PU hstora. Utlzando regresón lneal, se estmó, en base a una muestra, que estas varables están relaconadas medante el sguente modelo lneal: Y = X Cómo se nterpretan los dos parámetros de este modelo? 6. La relacón entre el tempo, en días, dedcado a elaborar un proyecto y el costo del proyecto se modeló medante una regresón lneal, estmándose la sguente expresón: costo = * tempo Cómo nterpreta el número 3? Cómo nterpreta el número 0.5? 7. Qué mde el coefcente de determnacón, en un modelo de regresón lneal? 15
16 8. e tenen dos varables, observadas en trabajadores de la salud: X = años de servco. Y = asgnacones salarales actuales (mles de pesos). Utlzando regresón lneal, se estmó, en base a una muestra, que estas varables están relaconadas medante el sguente modelo lneal: Y = X Cómo se nterpretan los dos parámetros de este modelo? 9. Cómo se nterpreta el coefcente de determnacón, en una regresón lneal? 10. Una nsttucón ha encargado una sere de proyectos. Con los datos hstórcos, se quso relaconar los montos de los proyectos con los tempos de ejecucón, obtenéndose los sguentes resultados: Monto (M$) = x Tempo (días) con un coefcente de determnacón R = 0.86 Explque qué mde el coefcente R. Un valor de 0.6 sería mejor o peor, y por qué? 16
REGRESION LINEAL SIMPLE
REGREION LINEAL IMPLE Jorge Galbat Resco e dspone de una mustra de observacones formadas por pares de varables: (x 1, y 1 ) (x, y ).. (x n, y n ) A través de esta muestra, se desea estudar la relacón exstente
CORRELACION Y REGRESION
CORRELACION Y REGREION Jorge Galbat Resco e dspone de una muestra de observacones formadas por pares de varables: (x 1, y 1 ), (x, y ),.., (x n, y n ) A través de esta muestra, se desea estudar la relacón
Tema 6. Estadística descriptiva bivariable con variables numéricas
Clase 6 Tema 6. Estadístca descrptva bvarable con varables numércas Estadístca bvarable: tpos de relacón Relacón entre varables cuanttatvas Para dentfcar las característcas de una relacón entre dos varables
CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso
CURSO ITERACIOAL: COSTRUCCIÓ DE ESCEARIOS ECOÓMICOS ECOOMETRÍA AVAZADA Instructor: Horaco Catalán Alonso Modelo de Regresón Lneal Smple El modelo de regresón lneal representa un marco metodológco, que
Problemas donde intervienen dos o más variables numéricas
Análss de Regresón y Correlacón Lneal Problemas donde ntervenen dos o más varables numércas Estudaremos el tpo de relacones que exsten entre ellas, y de que forma se asocan Ejemplos: La presón de una masa
Análisis de Regresión y Correlación
1 Análss de Regresón y Correlacón El análss de regresón consste en emplear métodos que permtan determnar la mejor relacón funconal entre dos o más varables concomtantes (o relaconadas). El análss de correlacón
DISTRIBUCIONES BIDIMENSIONALES
Matemátcas 1º CT 1 DISTRIBUCIONES BIDIMENSIONALES PROBLEMAS RESUELTOS 1. a) Asoca las rectas de regresón: y = +16, y = 1 e y = 0,5 + 5 a las nubes de puntos sguentes: b) Asgna los coefcentes de correlacón
Inferencia en Regresión Lineal Simple
Inferenca en Regresón Lneal Smple Modelo de regresón lneal smple: Se tenen n observacones de una varable explcatva x y de una varable respuesta y, ( x, y)(, x, y),...,( x n, y n ) el modelo estadístco
Relaciones entre variables
Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón.
Medidas de Variabilidad
Meddas de Varabldad Una medda de varabldad es un ndcador del grado de dspersón de un conjunto de observacones de una varable, en torno a la meda o centro físco de la msma. S la dspersón es poca, entonces
REGRESION Y CORRELACION
nav Estadístca (complementos) 1 REGRESION Y CORRELACION Fórmulas báscas en la regresón lneal smple Como ejemplo de análss de regresón, descrbremos el caso de Pzzería Armand, cadena de restaurantes de comda
EJERCICIOS. Ejercicio 1.- Para el modelo de regresión simple siguiente: Y i = βx i + ε i i =1,..., 100. se tienen las siguientes medias muestrales:
EJERCICIOS Tema 2: MODELO DE REGRESION LINEAL SIMPLE Ejercco 1.- Para el modelo de regresón smple sguente: Y = βx + ε =1,..., 100 se tenen las sguentes medas muestrales: ( P y ) /n =0.3065 ( P y 2 ) /n
ESTADISTÍCA. 1. Población, muestra e individuo. 2. Variables estadísticas. 3. El proceso que se sigue en estadística
ESTADISTÍCA. Poblacón, muestra e ndvduo Las característcas de una dstrbucón se pueden estudar drectamente sobre la poblacón o se pueden nferr a partr de l estudo de una muestra. Poblacón estadístca es
EJERCICIO 1 1. VERDADERO 2. VERDADERO (Esta afirmación no es cierta en el caso del modelo general). 3. En el modelo lineal general
PRÁCTICA 6: MODELO DE REGRESIÓN MÚLTIPLE SOLUCIÓN EJERCICIO. VERDADERO. VERDADERO (Esta afrmacón no es certa en el caso del modelo general. 3. En el modelo lneal general Y =X β + ε, explcar la forma que
Tema 1.3_A La media y la desviación estándar
Curso 0-03 Grado en Físca Herramentas Computaconales Tema.3_A La meda y la desvacón estándar Dónde estudar el tema.3_a: Capítulo 4. J.R. Taylor, Error Analyss. Unv. cence Books, ausalto, Calforna 997.
IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas
IES Menéndez Tolosa (La Línea) Físca y Químca - 1º Bach - Gráfcas 1 Indca qué tpo de relacón exste entre las magntudes representadas en la sguente gráfca: La gráfca es una línea recta que no pasa por el
Regresión Lineal Simple y Correlación
4 Regresón Lneal Smple y Correlacón 4.1. Fundamentos teórcos 4.1.1. Regresón La regresón es la parte de la estadístca que trata de determnar la posble relacón entre una varable numérca, que suele llamarse
Correlación y regresión lineal simple
. Regresón lneal smple Correlacón y regresón lneal smple. Introduccón La correlacón entre dos varables ( e Y) se refere a la relacón exstente entre ellas de tal manera que a determnados valores de se asocan
TEMA III EL ANÁLISIS DE REGRESIÓN LINEAL MÚLTIPLE
TEMA III EL ANÁLISIS DE REGRESIÓN LINEAL MÚLTIPLE LECTURA OBLIGATORIA Regresón Lneal Múltple. En Ral, A. y Varela, J. (008). Estadístca Práctca para la Investgacón en Cencas de la Salud. Coruña: Netbblo.
FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004)
FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Xménez & San Martín, 004) Capítulo. Nocones báscas de álgebra de matrces Fe de erratas.. Cálculo de la transpuesta de una matrz
SEMANA 5 MEDIDAS DE TENDENCIA CENTRAL Y POSICIÓN
Estadístca SEMANA 5 MEDIDAS DE TENDENCIA CENTRAL Y POSICIÓN LOGRO DE APRENDIZAJE: Al fnalzar la sesón, el estudante estará en la capacdad de calcular e nterpretar meddas de tendenca central y poscón de
( ) MUESTREO ALEATORIO SIMPLE SIN REEMPLAZO ( mas ) y Y. N n. S y. MUESTREO ALEATORIO SIMPLE SIN REEMPLAZO ( mas )
MUETREO ALEATORIO IMPLE I Este esquema de muestreo es el más usado cuando se tene un marco de muestreo que especfque la manera de dentfcar cada undad en la poblacón. Además no se tene conocmento a pror
Medidas de centralización
1 Meddas de centralzacón Meda Datos no agrupados = x X = n = 0 Datos agrupados = x X = n = 0 Medana Ordenamos la varable de menor a mayor. Calculamos la columna de la frecuenca relatva acumulada F. Buscamos
ESTADÍSTICA BIDIMENSIONAL ÍNDICE GENERAL
ESTADÍSTICA BIDIMESIOAL ÍDICE GEERAL 1.-Varable Estadístca Bdmensonal. Tablas de frecuenca... 1.1.- Concepto de varable estadístca bdmensonal. Eemplos.... 1..-Tablas bdmensonales de frecuencas. Tablas
NOMBRE Apellido Paterno Apellido Materno Nombre(s) Porcentaje de defectos producidos Máquina Porcentaje de producción
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE PROBABILIDAD Y ESTADÍSTICA PRIMER EAMEN FINAL RESOLUCIONES
MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas
Unversdad de Cádz Departamento de Matemátcas MATEMÁTICAS para estudantes de prmer curso de facultades y escuelas técncas Tema 13 Dstrbucones bdmensonales. Regresón y correlacón lneal Elaborado por la Profesora
TRABAJO 1: Variables Estadísticas Unidimensionales (Tema 1).
TRABAJO 1: Varables Estadístcas Undmensonales (Tema 1). Técncas Cuanttatvas I. Curso 2016/2017. APELLIDOS: NOMBRE: GRADO: GRUPO: DNI (o NIE): A: B: C: D: En los enuncados de los ejerccos que sguen aparecen
Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos
Reconclacón de datos expermentales MI5022 Análss y smulacón de procesos mneralúgcos Balances Balances en una celda de flotacón En torno a una celda de flotacón (o un crcuto) se pueden escrbr los sguentes
EJERCICIOS DE ESTADÍSTICA BIDIMENSIONAL.
EJERCICIOS DE ESTADÍSTICA BIDIMENSIONAL. 1. Una cofradía de pescadores regstra la cantdad de sardnas que llegan al puerto (X), en klogramos, el preco de la subasta en la lonja (Y), en euros por klo, han
Tema 4: Variables aleatorias
Estadístca 46 Tema 4: Varables aleatoras El concepto de varable aleatora surge de la necesdad de hacer más manejables matemátcamente los resultados de los expermentos aleatoros, que en muchos casos son
2 Dos tipos de parámetros estadísticos
Dos tpos de parámetros estadístcos Págna 198 1. Calcula la meda, la medana y la moda de cada una de estas dstrbucones estadístcas: a) 4, 5, 6, 6, 6, 6, 7, 11, 1, 17 b), 1, 6, 9,, 8, 9,, 14, c), 3, 3, 3,
Guía de Electrodinámica
INSTITITO NACIONAL Dpto. de Físca 4 plan electvo Marcel López U. 05 Guía de Electrodnámca Objetvo: - econocer la fuerza eléctrca, campo eléctrco y potencal eléctrco generado por cargas puntuales. - Calculan
CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS
CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS Edgar Acuña Fernández Departamento de Matemátcas Unversdad de Puerto Rco Recnto Unverstaro de Mayagüez Edgar Acuña Analss de Regreson Regresón con varables
CARTAS DE CONTROL. Han sido difundidas exitosamente en varios países dentro de una amplia variedad de situaciones para el control del proceso.
CARTAS DE CONTROL Las cartas de control son la herramenta más poderosa para analzar la varacón en la mayoría de los procesos. Han sdo dfunddas extosamente en varos países dentro de una ampla varedad de
Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis
Tema. Estadístcos unvarados: tendenca central, varabldad, asmetría y curtoss 1. MEDIDA DE TEDECIA CETRAL La meda artmétca La medana La moda Comparacón entre las meddas de tendenca central. MEDIDA DE VARIACIÓ
8 MECANICA Y FLUIDOS: Calorimetría
8 MECANICA Y FLUIDOS: Calormetría CONTENIDOS Dencones. Capacdad caloríca. Calor especíco. Equlbro térmco. Calormetría. Calorímetro de las mezclas. Marcha del calorímetro. Propagacón de Errores. OBJETIVOS
SEGUNDA PARTE RENTAS FINANCIERAS
SEGUNDA PARTE RENTAS FINANCIERAS 5 INTRODUCCIÓN A LA TEORÍA DE RENTAS 5.1 CONCEPTO: Renta fnancera: conjunto de captales fnanceros cuyos vencmentos regulares están dstrbudos sucesvamente a lo largo de
Pronósticos. Humberto R. Álvarez A., Ph. D.
Pronóstcos Humberto R. Álvarez A., Ph. D. Predccón, Pronóstco y Prospectva Predccón: estmacón de un acontecmento futuro que se basa en consderacones subjetvas, en la habldad, experenca y buen juco de las
3. VARIABLES ALEATORIAS.
3. VARIABLES ALEATORIAS. Una varable aleatora es una varable que toma valores numércos determnados por el resultado de un epermento aleatoro (no hay que confundr la varable aleatora con sus posbles valores)
GERENCIA DE OPERACIONES Y PRODUCCIÓN DISEÑO DE NUEVOS PRODUCTOS Y SERVICIOS ESTRATEGIAS DE OPERACIONES
GERENCIA DE OPERACIONES Y PRODUCCIÓN DISEÑO DE NUEVOS PRODUCTOS Y SERVICIOS ESTRATEGIAS DE OPERACIONES PRONÓSTICOS PREDICCIÓN, PRONÓSTICO Y PROSPECTIVA Predccón: estmacón de un acontecmento futuro que
Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma
Estadístca Tema 1: Estadístca Descrptva Undmensonal Undad 2: Meddas de Poscón, Dspersón y de Forma Área de Estadístca e Investgacón Operatva Lceso J. Rodríguez-Aragón Septembre 2010 Contendos...............................................................
Pista curva, soporte vertical, cinta métrica, esferas metálicas, plomada, dispositivo óptico digital, varilla corta, nuez, computador.
ITM, Insttucón unverstara Guía de Laboratoro de Físca Mecánca Práctca : Colsones en una dmensón Implementos Psta curva, soporte vertcal, cnta métrca, eseras metálcas, plomada, dspostvo óptco dgtal, varlla
Introducción a la Física. Medidas y Errores
Departamento de Físca Unversdad de Jaén Introduccón a la Físca Meddas y Errores J.A.Moleón 1 1- Introduccón La Físca y otras cencas persguen la descrpcón cualtatva y cuanttatva de los fenómenos que ocurren
Estadística Unidimensional: SOLUCIONES
4ª SesónFecha: Estadístca Undmensonal: SOLUCIOES Varables estadístca dscreta 1 Con los datos del ejercco de Pág 19 nº 3 determna: a) Tabla de Frecuencas b) Dagrama de barras Gráfco acumulado c) Meddas
Regresión Binomial Negativa
Regresón Bnomal Negatva Resumen El procedmento Regresón Bnomal Negatva está dseñado para ajustar un modelo de regresón en el cual la varable dependente Y consste de conteos. El modelo de regresón ajustado
Estadística con R. Modelo Probabilístico Lineal
Estadístca con R Modelo Probablístco Lneal Modelo Probablístco Lneal Forma de la funcón: Y b 0 +b 1 X +e Varable dependente, endógena o a explcar dcotómca : Y, S Y 0 e -b 0 - b 1 X con probabldad p. S
DATOS AGRUPADOS POR INTERVALOS DE CLASE
3. Datos agrupados por ntervalo (Varable contnua) Generalmente los datos se agrupan por medo de ntervalos de clase, los cálculos son una aproxmacón a la realdad, se faclta los cálculos. En la agrupacón
Tallerine: Energías Renovables. Fundamento teórico
Tallerne: Energías Renovables Fundamento teórco Tallerne Energías Renovables 2 Índce 1. Introduccón 3 2. Conceptos Báscos 3 2.1. Intensdad de corrente................................. 3 2.2. Voltaje..........................................
T. 9 El modelo de regresión lineal
1 T. 9 El modelo de regresón lneal 1. Conceptos báscos sobre el análss de regresón lneal. Ajuste de la recta de regresón 3. Bondad de ajuste del modelo de regresón Modelos predctvos o de regresón: la representacón
EXPERIMENTACIÓN COMERCIAL(I)
EXPERIMENTACIÓN COMERCIAL(I) En un expermento comercal el nvestgador modfca algún factor (denomnado varable explcatva o ndependente) para observar el efecto de esta modfcacón sobre otro factor (denomnado
Regresión y Correlación Métodos numéricos
Regresón y Correlacón Métodos numércos Prof. Mguel Hesquo Garduño. Est. Mrla Benavdes Rojas Depto. De Ingenería Químca Petrolera ESIQIE-IPN [email protected] [email protected] Regresón lneal El
Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1
Escuela de Ingenería Comercal Ayudantía # 01, Conceptos Generales, Modelo de Regresón Profesor: Carlos R. Ptta 1 1 [email protected] Escuela de Ingenería Comercal Ayudantía 01 Parte 01: Comentes Señale
Especialista en Estadística y Docencia Universitaria REGRESION LINEAL MULTIPLE
Especalsta en Estadístca y Docenca Unverstara REGRESION LINEAL MULTIPLE El modelo de regresón lneal múltple El modelo de regresón lneal múltple con p varables predctoras y basado en n observacones tomadas
Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos.
ESTADÍSTICA I. Recuerda: Poblacón: Es el conjunto de todos los elementos que cumplen una determnada propedad, que llamamos carácter estadístco. Los elementos de la poblacón se llaman ndvduos. Muestra:
Capitalización y descuento simple
Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los
Variables Dummy (parte I)
Varables Dummy (parte I) Fortno Vela Peón Unversdad Autónoma Metropoltana [email protected] Octubre, 2010 19/10/2010 Méxco, D. F. 1 Introduccón Algunas de las varables son por su naturaleza propa
Mª Dolores del Campo Maldonado. Tel: :
Mª Dolores del Campo Maldonado Tel: : 918 074 714 e-mal: [email protected] Documentacón de referenca nternaconalmente aceptada ISO/IEC GUIDE 98-3:008 Uncertanty of measurement Part 3: Gude to the n
2. EL TENSOR DE TENSIONES. Supongamos un cuerpo sometido a fuerzas externas en equilibrio y un punto P en su interior.
. EL TENSOR DE TENSIONES Como se explcó prevamente, el estado tensonal en un punto nteror de un cuerpo queda defndo por 9 componentes, correspondentes a componentes por cada una de las tensones nternas
MODELOS DE ELECCIÓN BINARIA
MODELOS DE ELECCIÓN BINARIA Econometría I UNLP http://www.econometra1.depeco.econo.unlp.edu.ar/ Modelos de Eleccón Bnara: Introduccón Estamos nteresados en la probabldad de ocurrenca de certo evento Podemos
Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): Ajustes de Tendencia
Investgacón y Técncas de Mercado Prevsón de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): s de Tendenca Profesor: Ramón Mahía Curso 00-003 I.- Introduccón Hasta el momento,
Variables Aleatorias. Variables Aleatorias. Variables Aleatorias. Objetivos del tema: Al final del tema el alumno será capaz de:
Varables Aleatoras Varables Aleatoras Objetvos del tema: Concepto de varable aleatora Al fnal del tema el alumno será capaz de: Varables aleatoras dscretas y contnuas Funcón de probabldad Funcón de dstrbucón
EXPERIMENTOS ANIDADOS O JERARQUICOS NESTED
EXPERIMENTOS ANIDADOS O JERARQUICOS NESTED Exsten ocasones donde los nveles de un factor B son smlares pero no déntcos para dferentes nveles del factor A. Es decr, dferentes nveles del factor A ven nveles
METODOLOGÍA MUESTRAL ENCUESTA A LAS PEQUEÑAS Y MEDIANAS EMPRESAS
SUBDIRECCIÓN TÉCNICA DEPARTAMENTO DE INVESTIGACIÓN Y DESARROLLO ÁREA DE ANÁLISIS ESTADÍSTICAS ECONÓMICAS METODOLOGÍA MUESTRAL ENCUESTA A LAS PEQUEÑAS Y MEDIANAS EMPRESAS Santago, Enero de 2008. Departamento
Estadística Descriptiva y Analisis de Datos con la Hoja de Cálculo Excel. Números Índices
Estadístca Descrptva y Analss de Datos con la Hoja de Cálculo Excel úmeros Índces úmeros Índces El número índce es un recurso estadístco para medr dferencas entre grupos de datos. Un número índce se puede
Para construir un diagrama de tallo y hoja seguimos los siguientes pasos:
UNIDAD 2: Gráfcos estadístcos Los gráfcos muestran vsualmente y de forma rápda la dstrbucón de los datos y sus prncpales característcas, consttuyen un mportante complemento en la presentacón de la nformacón.
Regresión y correlación simple 113
Regresón y correlacón smple 113 Captulo X ANALISIS DE REGRESION Y CORRELACION El análss de regresón consste en emplear métodos que permtan determnar la mejor relacón funconal entre dos o más varables concomtantes
Maestría en Administración. Medidas Descriptivas. Formulario e Interpretación. Dr. Francisco Javier Cruz Ariza
Maestría en Admnstracón Meddas Descrptvas Formularo e Interpretacón Dr. Francsco Javer Cruz Arza A contnuacón mostramos el foco de atencón de las dstntas meddas que abordaremos en el presente manual. El
Modelos triangular y parabólico
Modelos trangular y parabólco ClassPad 0 Prof. Jean-Perre Marcallou INTRODUCCIÓN La calculadora CASIO ClassPad 0 dspone de la Aplcacón Prncpal para realzar los cálculos correspondentes a los modelos trangular
1.Variables ficticias en el modelo de regresión: ejemplos.
J.M.Arranz y M.M. Zamora.Varables fctcas en el modelo de regresón: ejemplos. Las varables fctcas recogen los efectos dferencales que se producen en el comportamento de los agentes económcos debdo a dferentes
Cálculo y EstadísTICa. Primer Semestre.
Cálculo y EstadísTICa. Prmer Semestre. EstadísTICa Curso Prmero Graduado en Geomátca y Topografía Escuela Técnca Superor de Ingeneros en Topografía, Geodesa y Cartografía. Unversdad Poltécnca de Madrd
TÉCNICAS AUXILIARES DE LABORATORIO
TÉCNICAS AUXILIARES DE LABORATORIO I.- ERRORES 1.- Introduccón Todas las meddas epermentales venen afectadas de una mprecsón nherente al proceso de medda. Puesto que en éste se trata, báscamente, de comparar
12-16 de Noviembre de 2012. Francisco Javier Burgos Fernández
MEMORIA DE LA ESTANCIA CON EL GRUPO DE VISIÓN Y COLOR DEL INSTITUTO UNIVERSITARIO DE FÍSICA APLICADA A LAS CIENCIAS TECNOLÓGICAS. UNIVERSIDAD DE ALICANTE. 1-16 de Novembre de 01 Francsco Javer Burgos Fernández
Hidrología superficial
Laboratoro de Hdráulca Ing. Davd Hernández Huéramo Manual de práctcas Hdrología superfcal 7o semestre Autores: Héctor Rvas Hernández Juan Pablo Molna Agular Rukmn Espnosa Díaz alatel Castllo Contreras
INTRODUCCIÓN. Técnicas estadísticas
Tema : Estadístca Descrptva Undmensonal ITRODUCCIÓ Fenómeno determnsta: al repetrlo en déntcas condcones se obtene el msmo resultado. (Ejemplo: lómetros recorrdos en un ntervalo de tempo a una velocdad
