Mª Dolores del Campo Maldonado. Tel: :

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Mª Dolores del Campo Maldonado. Tel: :"

Transcripción

1 Mª Dolores del Campo Maldonado Tel: : e-mal:

2 Documentacón de referenca nternaconalmente aceptada ISO/IEC GUIDE 98-3:008 Uncertanty of measurement Part 3: Gude to the n measurement expresson of uncertanty n measurement (GUM: 1995) Versón en español de próxma publcacón (dcembre 011).

3 Concepto de ncertdumbre Una medda sn nnguna ndcacón cuanttatva de su caldad es nservble: no puede ser comparada. Es un parámetro asocado con el resultado de una medda que caracterza la dspersón de los valores que podrían, razonablemente serle atrbudos. error ncertdumbre

4 La ncertdumbre del resultado de una ncertdumbre medcón refleja la mposbldad de conocer exactamente el valor del mensurando. Este resultado, ncluso con todas las correccones por efectos sstemátcos, es tan sólo una estmacón del valor real del mensurando. F U E N T E S DE I N C E R T I D U M B R E Defncón ncompleta del mensurando Realzacón mperfecta de la defncón del mensurando Muestra no representatva Condcones ambentales Instrumentos de medda (lectura, resolucón, calbracón ) Valores nexactos de los patrones o MR Valores nexactos de constantes y parámetros Hpótess establecdas en el método o el procedmento Varacones de las observacones en condcones déntcas... Estas fuentes no son ndependentes unas de otras

5 MENSURANDO MAGNITUD medcón COMPARACIÓN CON UN PATRÓN calbracón Cclo n meddas MEDICIÓN Instrumento de medda Resultado bruto Correccones Resultado corregdo RESULTADO DE MEDICIÓN Valor convenconalmente Verdadero Magntudes de nfluenca M O D E L O M A T E M A T I C O () INCERTIDUMBRE

6 EL MODELO MATEMÁTICO S se hacen varar todas las magntudes de las que depende el resultado de una medcón, su ncertdumbre podría evaluarse por métodos estadístcos Imposble en la práctca Es necesaro defnr un modelo matemátco que descrba el proceso de medcón y que tenga en cuenta todas las magntudes de nfluenca y = f (x 1, x, x 3, x n ) f es la funcón que contene todas las magntudes susceptbles de contrbur a una componente de la ncertdumbre del resultado de la medda, ncluyendo las correccones x = f (z 1, z, z n )

7 EL MODELO MATEMÁTICO Y LA LEY DE PROPAGACIÓN DE INCERTIDUMBRES y = f (x 1, x, x 3, x n ) Componentes (( ) ndependentes Ley de propagacón de ncertdumbres u c Incertdumbre típca combnada N f 1 x y u x Coefcentes de sensbldad La L.P.I. está basada en un desarrollo en sere de Taylor de prmer orden. S la funcón modelo no es lneal puede ser necesaro tomar térmnos de orden superor. Coefcente de correlacón Componentes (( ) dependentes u c N N1 N f f f y u x r x, x j ux ux j 1 x 1 j11 x x j

8 CLASIFICACIÓN DE INCERTIDUMBRES Clasfcacón Obsoleta: Componentes aleatoras Componentes sstemátcas Clasfcacón GUM: Según los métodos utlzados para su evaluacón más que según las propas componentes y sólo a efectos de clarfcar su presentacón. Los dos tpos de evaluacón se basan en dstrbucones de probabldad. Evaluacón TIPO A Evaluacón TIPO B Esta clasfcacón no sgnfca que sean equvalentes a las sstemátcas y aleatoras

9 CLASIFICACIÓN GUM EVALUACIÓN TIPO A Carácter objetvo. Análss estadístco. Calculada a partr de la varanza s de n observacones. INCERTIDUMBRE TÍPICA TIPO A u = + s EVALUACIÓN TIPO B Carácter subjetvo. Funcón de probabldad asumda. Varanza u evaluada a pror. INCERTIDUMBRE TÍPICA TIPO B u = + u

10 EVALUACIÓN TIPO A Varable aleatora N observacones ndependentes,k El mejor estmador del valor verdadero de es la meda muestral de las observacones : El mejor estmador de la varanza poblaconal es la varanza muestral: S x,k n 1 n k 1 n,k,k n 1 El mejor estmador de la varanza de la meda es: meda es: S S n,k

11 EVALUACIÓN TIPO A u x S,k n n debe tener un tamaño adecuado: grados de lbertad >> = n-1 S << una solucón es usar la dstrbucón t-student: u x t p S,k n

12 EVALUACIÓN TIPO B No basada en el análss estadístco de las observacones. Evaluada por: Resultados de meddas anterores. La experenca o el conocmento general del comportamento y propedades de los nstrumentos y materales utlzados. Especfcacones de los fabrcantes. Datos de calbracones y certfcados. Incertdumbre asgnada a valores de referenca procedentes de lbros y manuales.

13 Incertdumbre expandda Aunque u c (y) puede ser utlzada unversalmente para expresar la ncertdumbre de un resultado de medda, frecuentemente es necesaro, en certas aplcacones comercales, ndustrales o reglamentaras, o en los campos de la salud o la segurdad, dar una medda de la ncertdumbre que defna, alrededor del resultado de medda, un ntervalo en el nteror del cual pueda esperarse encontrar gran parte de la dstrbucón de valores que podrían ser razonablemente atrbudos al mensurando. La nueva expresón de la ncertdumbre, que satsface la exgenca de proporconar un ntervalo se denomna ncertdumbre expandda, y se representa por U.

14 La ncertdumbre expandda U se obtene multplcando la ncertdumbre típca combnada u c (y) por un factor de cobertura k: U = k u c (y) El factor de cobertura se determna en funcón de la probabldad de cobertura (nvel confanza) deseada. LA INCERTIDUMBRE SE EPRESA SIN SIGNOS Y CON DOS CIFRAS SIGNIFICATIVAS

15

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA Alca Maroto, Rcard Boqué, Jord Ru, F. Xaver Rus Departamento de Químca Analítca y Químca Orgánca Unverstat Rovra Vrgl. Pl. Imperal Tàrraco,

Más detalles

UTILIZACIÓN DEL TEOREMA DEL LÍMITE CENTRAL EN EL CÁLCULO DE LA INCERTIDUMBRE DE MEDICIÓN

UTILIZACIÓN DEL TEOREMA DEL LÍMITE CENTRAL EN EL CÁLCULO DE LA INCERTIDUMBRE DE MEDICIÓN Scenta et Technca Año XV, No 43, Dcembre de 2009. Unversdad Tecnológca de Perera ISSN 0122-1701 288 UTILIZACIÓN DEL TEOREMA DEL LÍMITE CENTRAL EN EL CÁLCULO DE LA INCERTIDUMBRE DE MEDICIÓN Use of the central

Más detalles

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso CURSO ITERACIOAL: COSTRUCCIÓ DE ESCEARIOS ECOÓMICOS ECOOMETRÍA AVAZADA Instructor: Horaco Catalán Alonso Modelo de Regresón Lneal Smple El modelo de regresón lneal representa un marco metodológco, que

Más detalles

( ) MUESTREO ALEATORIO SIMPLE SIN REEMPLAZO ( mas ) y Y. N n. S y. MUESTREO ALEATORIO SIMPLE SIN REEMPLAZO ( mas )

( ) MUESTREO ALEATORIO SIMPLE SIN REEMPLAZO ( mas ) y Y. N n. S y. MUESTREO ALEATORIO SIMPLE SIN REEMPLAZO ( mas ) MUETREO ALEATORIO IMPLE I Este esquema de muestreo es el más usado cuando se tene un marco de muestreo que especfque la manera de dentfcar cada undad en la poblacón. Además no se tene conocmento a pror

Más detalles

Simposio de Metrología 25 al 27 de Octubre de 2006

Simposio de Metrología 25 al 27 de Octubre de 2006 Smposo de Metrología 25 al 27 de Octubre de 2006 ESTIMACIÓN DE INCERTIDUMBRE EN LA MEDICIÓN DE ABSORCIÓN DE HUMEDAD EN AISLAMIENTOS Y CUBIERTAS PROTECTORAS DE CONDUCTORES ELÉCTRICOS POR EL MÉTODO ELÉCTRICO

Más detalles

ESTIMACIÓN DE LA INCERTIDUMBRE EN LA CALIBRACIÓN DE EQUIPOS ELECTROMÉDICOS

ESTIMACIÓN DE LA INCERTIDUMBRE EN LA CALIBRACIÓN DE EQUIPOS ELECTROMÉDICOS Scenta et Technca ño XIII, No, Mayo de 006. nversdad Tecnológca de. ISSN 01-1701 8 ESTIMIÓN DE L INERTIDMBRE EN L LIBRIÓN DE EQIPOS ELETROMÉDIOS RESMEN El Laboratoro de Metrología Varables Eléctrcas con

Más detalles

Economía de la Empresa: Financiación

Economía de la Empresa: Financiación Economía de la Empresa: Fnancacón Francsco Pérez Hernández Departamento de Fnancacón e Investgacón de la Unversdad Autónoma de Madrd Objetvo del curso: Dentro del contexto de Economía de la Empresa, se

Más detalles

PROCEDIMIENTO ME- 021 PARA LA CALIBRACIÓN DE COLUMNAS DE LÍQUIDO MANO Y BAROMÉTRICAS

PROCEDIMIENTO ME- 021 PARA LA CALIBRACIÓN DE COLUMNAS DE LÍQUIDO MANO Y BAROMÉTRICAS PROCEDIMIENTO ME- 0 PARA LA CALIBRACIÓN DE COLUMNAS DE LÍQUIDO MANO Y BAROMÉTRICAS 0 Edcón dgtal Este procedmento ha sdo revsado, corregdo y actualzado, s ha sdo necesaro. La presente edcón se emte en

Más detalles

Incertidumbre de la Medición: Teoría y Práctica

Incertidumbre de la Medición: Teoría y Práctica CAPACIDAD, GESTION Y MEJORA Incertdumbre de la Medcón: Teoría y Práctca (1 ra Edcón) Autores: Sfredo J. Sáez Ruz Lus Font Avla Maracay - Estado Aragua - Febrero 001 Copyrght 001 L&S CONSULTORES C.A. Calle

Más detalles

Análisis cuantitativo aplicado al Comercio Internacional y el Transporte

Análisis cuantitativo aplicado al Comercio Internacional y el Transporte Máster de Comerco, Transporte y Comuncacones Internaconales Análss cuanttatvo aplcado al Comerco Internaconal y el Transporte Ramón úñez Sánchez Soraya Hdalgo Gallego Departamento de Economía Introduccón

Más detalles

Boletín Científico Técnico INIMET ISSN: Instituto Nacional de Investigaciones en Metrología. Cuba

Boletín Científico Técnico INIMET ISSN: Instituto Nacional de Investigaciones en Metrología. Cuba Boletín Centífco Técnco INIMET ISSN: 0138-8576 normateca@nmet.cu Insttuto Naconal de Investgacones en Metrología Cuba Perdomo Morales, A. J.; Rodríguez López, J.; Fernández Álvarez, F.; Rodríguez Mambuca,

Más detalles

3. VARIABLES ALEATORIAS.

3. VARIABLES ALEATORIAS. 3. VARIABLES ALEATORIAS. Una varable aleatora es una varable que toma valores numércos determnados por el resultado de un epermento aleatoro (no hay que confundr la varable aleatora con sus posbles valores)

Más detalles

Tema 6. Estadística descriptiva bivariable con variables numéricas

Tema 6. Estadística descriptiva bivariable con variables numéricas Clase 6 Tema 6. Estadístca descrptva bvarable con varables numércas Estadístca bvarable: tpos de relacón Relacón entre varables cuanttatvas Para dentfcar las característcas de una relacón entre dos varables

Más detalles

MUESTREO EN POBLACIONES FINITAS

MUESTREO EN POBLACIONES FINITAS MUESTREO EN POBLACIONES FINITAS Antono Morllas A.Morllas: Muestreo 1 MUESTREO EN POBLACIONES FINITAS 1. Conceptos estadístcos báscos. Etapas en el muestreo 3. Tpos de error 4. Métodos de muestreo 5. Tamaño

Más detalles

Problemas donde intervienen dos o más variables numéricas

Problemas donde intervienen dos o más variables numéricas Análss de Regresón y Correlacón Lneal Problemas donde ntervenen dos o más varables numércas Estudaremos el tpo de relacones que exsten entre ellas, y de que forma se asocan Ejemplos: La presón de una masa

Más detalles

LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION

LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION Unversdad Católca Los Ángeles de Chmbote LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION 1. DEFINICION: Las meddas estadístcas

Más detalles

Variables Aleatorias

Variables Aleatorias Varables Aleatoras VARIABLES ALEATORIAS. Varable aleatora. Tpos.... Dstrbucón de probabldad asocada a una varable aleatora dscreta... 4. Funcón de dstrbucón. Propedades... 5 4. Funcón de densdad... 7 5.

Más detalles

Inferencia en Regresión Lineal Simple

Inferencia en Regresión Lineal Simple Inferenca en Regresón Lneal Smple Modelo de regresón lneal smple: Se tenen n observacones de una varable explcatva x y de una varable respuesta y, ( x, y)(, x, y),...,( x n, y n ) el modelo estadístco

Más detalles

TEMA 3. VARIABLE ALEATORIA

TEMA 3. VARIABLE ALEATORIA TEMA 3. VARIABLE ALEATORIA 3.. Introduccón. 3... Dstrbucón de Probabldad de una varable aleatora 3... Funcón de Dstrbucón de una varable aleatora 3.. Varable aleatora dscreta 3... Funcón masa de probabldad

Más detalles

Tema 2: El modelo clásico de regresión

Tema 2: El modelo clásico de regresión CURSO 010/011 Tema : El modelo clásco de regresón Aránzazu de Juan Fernández ECONOMETRÍA I ESQUEMA DEL TEMA Presentacón del modelo Hpótess del modelo Estmacón MCO Propedades algebracas de los estmadores

Más detalles

INFLUENCIA DEL FLUJO DE HIDRÓGENO EN LA INCERTIDUMBRE DEL SISTEMA DE REFERENCIA PARA MEDICIÓN DE ph

INFLUENCIA DEL FLUJO DE HIDRÓGENO EN LA INCERTIDUMBRE DEL SISTEMA DE REFERENCIA PARA MEDICIÓN DE ph INFLUENCIA DEL FLUJO DE HIDRÓGENO EN LA INCERTIDUMBRE DEL SISTEMA DE REFERENCIA PARA MEDICIÓN DE ph Torres, M 1, y Godnez, L.A. 1 Centro Naconal de Metrología km 4,5 Carr A Los Cues, CP. 7641. Mpo. El

Más detalles

DEPARTAMENTO DE INGENIERIA MECÁNICA INGENIERÍA INDUSTRIAL

DEPARTAMENTO DE INGENIERIA MECÁNICA INGENIERÍA INDUSTRIAL DEPARTAMENTO DE INGENIERIA MECÁNICA INGENIERÍA INDUSTRIAL DISEÑO MECÁNICO PRÁCTICA Nº 4 METROLOGÍA Y CALIDAD. CALIBRACIÓN DE UN PIE DE REY Metrología y Caldad. Calbracón de n pe de rey. INDICE 1. OBJETIVOS

Más detalles

Procedimiento de Calibración. Metrología PROCEDIMIENTO DI-010 PARA LA CALIBRACIÓN DE COMPARADORES MECÁNICOS

Procedimiento de Calibración. Metrología PROCEDIMIENTO DI-010 PARA LA CALIBRACIÓN DE COMPARADORES MECÁNICOS Procedmento de Calbracón Metrología PROCEDIMIENTO DI-00 PARA LA CALIBRACIÓN DE COMPARADORES MECÁNICOS La presente edcón de este procedmento se emte exclusvamente en formato dgtal y puede descargarse gratutamente

Más detalles

Tema 4: Variables aleatorias

Tema 4: Variables aleatorias Estadístca 46 Tema 4: Varables aleatoras El concepto de varable aleatora surge de la necesdad de hacer más manejables matemátcamente los resultados de los expermentos aleatoros, que en muchos casos son

Más detalles

Midiendo la Asociación lineal entre dos variables

Midiendo la Asociación lineal entre dos variables Unversdad de Sonora XVIII Semana Regonal de Investgacón y Docenca en Matemátcas Mdendo la Asocacón lneal entre dos varables Rosa Ma. Montesnos Csneros Adán Durazo Armenta Departamento de Matemátcas Hermosllo,

Más detalles

Población 1. Población 1. Población 2. Población 2. Población 1. Población 1. Población 2. Población 2. Frecuencia. Frecuencia

Población 1. Población 1. Población 2. Población 2. Población 1. Población 1. Población 2. Población 2. Frecuencia. Frecuencia MAT-3 Estadístca I Tema : Meddas de Dspersón Facltador: Félx Rondón, MS Insttuto Especalzado de Estudos Superores Loyola Introduccón Las meddas de tendenca central son ndcadores estadístcos que resumen

Más detalles

Nos interesa asignar probabilidades a valores numéricos obtenidos a partir de fenómenos aleatorios, es decir a variables aleatorias.

Nos interesa asignar probabilidades a valores numéricos obtenidos a partir de fenómenos aleatorios, es decir a variables aleatorias. Estadístca (Q) Dana M. Kelmansky 5 Varables Aleatoras Nos nteresa asgnar probabldades a valores numércos obtendos a partr de fenómenos aleatoros, es decr a varables aleatoras. Por ejemplo, calcular la

Más detalles

Física del Medio Ambiente

Física del Medio Ambiente Físca del Medo Ambente Teoría de Errores (Programa de Práctcas) Sara Marañón Jménez (smaranon@ugr.es) Andy Kowalsk (andy@ugr.es) 1 Programa IB. Teoría de Errores. (3h) Introduccón. Errores y conceptos

Más detalles

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado Análss de la varanza con dos factores. Introduccón Hasta ahora se ha vsto el modelo de análss de la varanza con un factor que es una varable cualtatva cuyas categorías srven para clasfcar las meddas de

Más detalles

Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma

Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma Estadístca Tema 1: Estadístca Descrptva Undmensonal Undad 2: Meddas de Poscón, Dspersón y de Forma Área de Estadístca e Investgacón Operatva Lceso J. Rodríguez-Aragón Septembre 2010 Contendos...............................................................

Más detalles

Relaciones entre variables

Relaciones entre variables Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón.

Más detalles

Descripción de una variable

Descripción de una variable Descrpcón de una varable Tema. Defncones fundamentales. Tabla de frecuencas. Datos agrupados. Meddas de poscón Meddas de tendenca central: meda, medana, moda Ignaco Cascos Depto. Estadístca, Unversdad

Más detalles

MEDIDAS ELÉCTRICAS. Incertidumbre en las Mediciones. Introducción a la. según la Guía del Comité. Internacional de Pesas y Medidas

MEDIDAS ELÉCTRICAS. Incertidumbre en las Mediciones. Introducción a la. según la Guía del Comité. Internacional de Pesas y Medidas MEDIDAS ELÉCTRICAS Introduccón a la Incertdubre en las Medcones según la Guía del Coté Internaconal de Pesas y Meddas Ing. Rcardo Das Año 016 Incertdubre en las Medcones La expresón del resultado de una

Más detalles

EXPERIMENTACIÓN COMERCIAL(I)

EXPERIMENTACIÓN COMERCIAL(I) EXPERIMENTACIÓN COMERCIAL(I) En un expermento comercal el nvestgador modfca algún factor (denomnado varable explcatva o ndependente) para observar el efecto de esta modfcacón sobre otro factor (denomnado

Más detalles

Práctica 2 Caracterización de un dinamómetro

Práctica 2 Caracterización de un dinamómetro Págna 1/9 Práctca Caracterzacón de un dnamómetro Págna 1 Págna /9 1. Segurdad en la ejecucón Pelgro o fuente de energía 1 Peso de las masas patrón Resgo asocado Al manpular las masas nadecuadamente se

Más detalles

EJERCICIO 1 1. VERDADERO 2. VERDADERO (Esta afirmación no es cierta en el caso del modelo general). 3. En el modelo lineal general

EJERCICIO 1 1. VERDADERO 2. VERDADERO (Esta afirmación no es cierta en el caso del modelo general). 3. En el modelo lineal general PRÁCTICA 6: MODELO DE REGRESIÓN MÚLTIPLE SOLUCIÓN EJERCICIO. VERDADERO. VERDADERO (Esta afrmacón no es certa en el caso del modelo general. 3. En el modelo lneal general Y =X β + ε, explcar la forma que

Más detalles

Tema 1: Estadística Descriptiva Unidimensional

Tema 1: Estadística Descriptiva Unidimensional Fenómeno determnsta: al repetrlo en déntcas condcones se obtene el msmo resultado. Fenómeno aleatoro: no es posble predecr el resultado. La estadístca se ocupa de aquellos fenómenos no determnstas donde

Más detalles

Modelos unifactoriales de efectos aleatorizados

Modelos unifactoriales de efectos aleatorizados Capítulo 4 Modelos unfactorales de efectos aleatorzados En el modelo de efectos aleatoros, los nveles del factor son una muestra aleatora de una poblacón de nveles. Este modelo surge ante la necesdad de

Más detalles

Ejemplo: Consumo - Ingreso. Ingreso. Consumo. Población 60 familias

Ejemplo: Consumo - Ingreso. Ingreso. Consumo. Población 60 familias Ejemplo: Consumo - Ingreso Ingreso Consumo Poblacón 60 famlas ( YX ) P = x [ YX ] E = x Línea de regresón poblaconal 80 60 Meda Condconal 40 20 00 [ X = 200] EY o o o o [ X = 200] EY 80 o o o 60 o 40 8

Más detalles

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio.

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio. Tema 9 - Estadístca - Matemátcas B 4º E.S.O. 1 TEMA 9 - ESTADÍSTICA 9.1 DOS RAMAS DE LA ESTADÍSTICA 9.1.1 - INTRODUCCIÓN Objetvo: La estadístca tene por objeto el desarrollo de técncas para el conocmento

Más detalles

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS Edgar Acuña Fernández Departamento de Matemátcas Unversdad de Puerto Rco Recnto Unverstaro de Mayagüez Edgar Acuña Analss de Regreson Regresón con varables

Más detalles

Tema 8 - Estadística - Matemáticas CCSSI 1º Bachillerato 1

Tema 8 - Estadística - Matemáticas CCSSI 1º Bachillerato 1 Tema 8 - Estadístca - Matemátcas CCSSI 1º Bachllerato 1 TEMA 8 - ESTADÍSTICA 8.1 NOCIONES GENERALES DE ESTADÍSTICA 8.1.1 INTRODUCCIÓN Objetvo: La estadístca tene por objeto el desarrollo de técncas para

Más detalles

Cada uno da lo que recibe, Y luego recibe lo que da, Nada es más simple, No hay otra norma: Nada se pierde, Todo se transforma.

Cada uno da lo que recibe, Y luego recibe lo que da, Nada es más simple, No hay otra norma: Nada se pierde, Todo se transforma. Cada uno da lo que recbe, Y luego recbe lo que da, Nada es más smple, No hay otra norma: Nada se perde, Todo se transforma. Todo se transforma (Jorge Drexler, cantautor uruguayo) Estadístca Básca - Manuel

Más detalles

Análisis de Regresión y Correlación

Análisis de Regresión y Correlación 1 Análss de Regresón y Correlacón El análss de regresón consste en emplear métodos que permtan determnar la mejor relacón funconal entre dos o más varables concomtantes (o relaconadas). El análss de correlacón

Más detalles

CAPÍTULO X ESTADÍSTICA APLICADA A LA HIDROLOGIA

CAPÍTULO X ESTADÍSTICA APLICADA A LA HIDROLOGIA CAPÍTULO X ESTADÍSTICA APLICADA A LA HIDROLOGIA 0. INTRODUCCIÓN. Los estudos hdrológcos requeren del análss de nformacón hdrometeorológca, esta nformacón puede ser de datos de precptacón, caudales, temperatura,

Más detalles

MODELOS DE ELECCIÓN BINARIA

MODELOS DE ELECCIÓN BINARIA MODELOS DE ELECCIÓN BINARIA Econometría I UNLP http://www.econometra1.depeco.econo.unlp.edu.ar/ Modelos de Eleccón Bnara: Introduccón Estamos nteresados en la probabldad de ocurrenca de certo evento Podemos

Más detalles

INTRODUCCIÓN. Técnicas estadísticas

INTRODUCCIÓN. Técnicas estadísticas Tema : Estadístca Descrptva Undmensonal ITRODUCCIÓ Fenómeno determnsta: al repetrlo en déntcas condcones se obtene el msmo resultado. (Ejemplo: lómetros recorrdos en un ntervalo de tempo a una velocdad

Más detalles

ESTADÍSTICA BIDIMENSIONAL ÍNDICE GENERAL

ESTADÍSTICA BIDIMENSIONAL ÍNDICE GENERAL ESTADÍSTICA BIDIMESIOAL ÍDICE GEERAL 1.-Varable Estadístca Bdmensonal. Tablas de frecuenca... 1.1.- Concepto de varable estadístca bdmensonal. Eemplos.... 1..-Tablas bdmensonales de frecuencas. Tablas

Más detalles

PRÁCTICA 16: MODELO DE REGRESIÓN MÚLTIPLE SOLUCIÓN

PRÁCTICA 16: MODELO DE REGRESIÓN MÚLTIPLE SOLUCIÓN PRÁCTICA 6: MODELO DE REGRESIÓN MÚLTIPLE SOLUCIÓN EJERCICIO. VERDADERO. VERDADERO (Esta afrmacón no es certa en el caso del modelo general). 3. En el modelo lneal general Y = X b + e, explcar la forma

Más detalles

CARTAS DE CONTROL. Han sido difundidas exitosamente en varios países dentro de una amplia variedad de situaciones para el control del proceso.

CARTAS DE CONTROL. Han sido difundidas exitosamente en varios países dentro de una amplia variedad de situaciones para el control del proceso. CARTAS DE CONTROL Las cartas de control son la herramenta más poderosa para analzar la varacón en la mayoría de los procesos. Han sdo dfunddas extosamente en varos países dentro de una ampla varedad de

Más detalles

HERRAMIENTAS PARA ANÁLISIS POR CONFIABILIDAD EN GEOTECNIA: LA TEORÍA

HERRAMIENTAS PARA ANÁLISIS POR CONFIABILIDAD EN GEOTECNIA: LA TEORÍA Revsta Ingenerías Unversdad de Medellín HERRAMIENTAS PARA ANÁLISIS POR CONFIABILIDAD EN GEOTECNIA: LA TEORÍA César Augusto Hdalgo Montoya * André Pacheco de Asss ** Recbdo: 09/04/2010 Aceptado: 06/04/2011

Más detalles

Modelos triangular y parabólico

Modelos triangular y parabólico Modelos trangular y parabólco ClassPad 0 Prof. Jean-Perre Marcallou INTRODUCCIÓN La calculadora CASIO ClassPad 0 dspone de la Aplcacón Prncpal para realzar los cálculos correspondentes a los modelos trangular

Más detalles

VARIABLES DE INFLUENCIA EN LA MEDICIÓN DE POTENCIA ULTRASÓNICA

VARIABLES DE INFLUENCIA EN LA MEDICIÓN DE POTENCIA ULTRASÓNICA Smposo de Metrología 5 al 7 de Octubre de 006 VARIABLES DE INFLUENCIA EN LA MEDICIÓN DE POTENCIA ULTRASÓNICA Rogelo Amezola Luna y Alfredo A. Elías Juárez Centro Naconal de Metrología Laboratoro de Ultrasondo/

Más detalles

Análisis estadístico de incertidumbres aleatorias

Análisis estadístico de incertidumbres aleatorias Análss estadístco de ncertdumbres aleatoras Errores aleatoros y sstemátcos La meda y la desvacón estándar La desvacón estándar como error de una sola medda La desvacón estándar de la meda úmero de meddas

Más detalles

Medidas de centralización

Medidas de centralización 1 Meddas de centralzacón Meda Datos no agrupados = x X = n = 0 Datos agrupados = x X = n = 0 Medana Ordenamos la varable de menor a mayor. Calculamos la columna de la frecuenca relatva acumulada F. Buscamos

Más detalles

Tema 1.3_A La media y la desviación estándar

Tema 1.3_A La media y la desviación estándar Curso 0-03 Grado en Físca Herramentas Computaconales Tema.3_A La meda y la desvacón estándar Dónde estudar el tema.3_a: Capítulo 4. J.R. Taylor, Error Analyss. Unv. cence Books, ausalto, Calforna 997.

Más detalles

Figura 1

Figura 1 5 Regresón Lneal Smple 5. Introduccón 90 En muchos problemas centífcos nteresa hallar la relacón entre una varable (Y), llamada varable de respuesta, ó varable de salda, ó varable dependente y un conjunto

Más detalles

PROCEDIMIENTO DI-005 PARA LA CALIBRACIÓN DE MICRÓMETROS DE EXTERIORES DE DOS CONTACTOS

PROCEDIMIENTO DI-005 PARA LA CALIBRACIÓN DE MICRÓMETROS DE EXTERIORES DE DOS CONTACTOS PROCEDIMIENTO DI-005 PARA LA CALIBRACIÓN DE MICRÓMETROS DE EXTERIORES DE DOS CONTACTOS 10 Edcón dgtal 1 Este procedmento ha sdo revsado, corregdo y actualzado, s ha sdo necesaro. La presente edcón se emte

Más detalles

REGRESION Y CORRELACION

REGRESION Y CORRELACION nav Estadístca (complementos) 1 REGRESION Y CORRELACION Fórmulas báscas en la regresón lneal smple Como ejemplo de análss de regresón, descrbremos el caso de Pzzería Armand, cadena de restaurantes de comda

Más detalles

Regresión y correlación simple 113

Regresión y correlación simple 113 Regresón y correlacón smple 113 Captulo X ANALISIS DE REGRESION Y CORRELACION El análss de regresón consste en emplear métodos que permtan determnar la mejor relacón funconal entre dos o más varables concomtantes

Más detalles

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis Tema. Estadístcos unvarados: tendenca central, varabldad, asmetría y curtoss 1. MEDIDA DE TEDECIA CETRAL La meda artmétca La medana La moda Comparacón entre las meddas de tendenca central. MEDIDA DE VARIACIÓ

Más detalles

Pruebas Estadísticas de Números Pseudoaleatorios

Pruebas Estadísticas de Números Pseudoaleatorios Pruebas Estadístcas de Números Pseudoaleatoros Prueba de meda Consste en verfcar que los números generados tengan una meda estadístcamente gual a, de esta manera, se analza la sguente hpótess: H 0 : =

Más detalles

Apéndice F - Método de cuadrados mínimos análisis avanzado

Apéndice F - Método de cuadrados mínimos análisis avanzado Apéndce F - Método de cuadrados mínmos análss avanzado Método de cuadrados mínmos. Regresón lneal. Funcón χ. Obtencón de los parámetros de un modelo. Incertdumbre de los parámetros de un ajuste. Bondad

Más detalles

Econometría de corte transversal. Pablo Lavado Centro de Investigación de la Universidad del Pacífico

Econometría de corte transversal. Pablo Lavado Centro de Investigación de la Universidad del Pacífico Econometría de corte transversal Pablo Lavado Centro de Investgacón de la Unversdad del Pacífco Contendo Defncones báscas El contendo mínmo del curso Bblografía recomendada Aprendendo econometría Defncones

Más detalles

Problema: Existe relación entre el estado nutricional y el rendimiento académico de estudiantes de enseñanza básica?

Problema: Existe relación entre el estado nutricional y el rendimiento académico de estudiantes de enseñanza básica? Relacones entre varables cualtatvas Problema: xste relacón entre el estado nutrconal y el rendmento académco de estudantes de enseñanza básca? stado Nutrconal Malo Regular Bueno TOTAL Bajo 13 95 3 55 Rendmento

Más detalles

Tratamiento de datos experimentales. Teoría de errores

Tratamiento de datos experimentales. Teoría de errores Tratamento de datos expermentales. Teoría de errores. Apéndce II Tratamento de datos expermentales. Teoría de errores (Fuente: Práctcas de Laboratoro: Físca, Hernández et al., 005) El objetvo de la expermentacón

Más detalles

A. Una pregunta muy particular que se puede hacer a una distribución de datos es de qué magnitud es es la heterogeneidad que se observa.

A. Una pregunta muy particular que se puede hacer a una distribución de datos es de qué magnitud es es la heterogeneidad que se observa. MEDIDA DE DIPERIÓ A. Una pregunta muy partcular que se puede hacer a una dstrbucón de datos es de qué magntud es es la heterogenedad que se observa. FICHA º 18 Las meddas de dspersón generalmente acompañan

Más detalles

1. Variable aleatoria. Clasificación

1. Variable aleatoria. Clasificación Tema 7: Varable Aleatora Undmensonal 1. Varable aleatora. Clasfcacón. Caracterzacón de una varable aleatora. Varable Aleatora dscreta. Varable Aleatora contnua 3. Característcas de una varable aleatora.

Más detalles

Efectos fijos o aleatorios: test de especificación

Efectos fijos o aleatorios: test de especificación Cómo car?: Montero. R (2011): Efectos fjos o aleatoros: test de especfcacón. Documentos de Trabajo en Economía Aplcada. Unversdad de Granada. España Efectos fjos o aleatoros: test de especfcacón Roberto

Más detalles

METODOLOGÍA MUESTRAL ENCUESTA A LAS PEQUEÑAS Y MEDIANAS EMPRESAS

METODOLOGÍA MUESTRAL ENCUESTA A LAS PEQUEÑAS Y MEDIANAS EMPRESAS SUBDIRECCIÓN TÉCNICA DEPARTAMENTO DE INVESTIGACIÓN Y DESARROLLO ÁREA DE ANÁLISIS ESTADÍSTICAS ECONÓMICAS METODOLOGÍA MUESTRAL ENCUESTA A LAS PEQUEÑAS Y MEDIANAS EMPRESAS Santago, Enero de 2008. Departamento

Más detalles

CyRCE: Un modelo de Riesgo de Crédito para Mercados Emergentes.

CyRCE: Un modelo de Riesgo de Crédito para Mercados Emergentes. CyRCE: Un modelo de Resgo de Crédto para Mercados Emergentes. Javer Márquez Dez-Canedo. DICIEMBRE 2004 Índce I. Introduccó cón II. CyRCE 1. El Modelo General 2. Segmentacón del Portafolo 3. Índce de Concentracón

Más detalles

Análisis de error y tratamiento de datos obtenidos en el laboratorio

Análisis de error y tratamiento de datos obtenidos en el laboratorio Análss de error tratamento de datos obtendos en el laboratoro ITRODUCCIÓ Todas las meddas epermentales venen afectadas de una certa mprecsón nevtable debda a las mperfeccones del aparato de medda, o a

Más detalles

ENCUESTA ESTRUCTURAL DE TRANSPORTE POR CARRETERA AÑO CONTABLE 2011 INSTITUTO NACIONAL DE ESTADÍSTICAS

ENCUESTA ESTRUCTURAL DE TRANSPORTE POR CARRETERA AÑO CONTABLE 2011 INSTITUTO NACIONAL DE ESTADÍSTICAS METODOLOGÍA ENCUESTA ESTRUCTURAL DE TRANSPORTE POR CARRETERA AÑO CONTABLE 0 INSTITUTO NACIONAL DE ESTADÍSTICAS 03 ÍNDICE I. METODOLOGÍA ENCUESTA ESTRUCTURAL DE TRANSPORTE INTERURBANO DE PASAJEROS POR CARRETERA.

Más detalles

HERRAMIENTAS ESTADÍSTICAS-COMPARACIÓN DE MÁS DE DOS MUESTRAS: ANOVA (PARTE I)

HERRAMIENTAS ESTADÍSTICAS-COMPARACIÓN DE MÁS DE DOS MUESTRAS: ANOVA (PARTE I) HERRAMIENTAS ESTADÍSTICAS-COMPARACIÓN DE MÁS DE DOS MUESTRAS: Módulo 13 APUNTES DE CLASE Profesor: Arturo Ruz-Falcó Rojas Madrd, Mayo 009 Pág. 1 Módulo 13. HERRAMIENTAS ESTADÍSTICAS-COMPARACIÓN DE MÁS

Más detalles

INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA

INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA LABORATORIO 1-008 PRACTICA 4: LEYES DE LOS GASES 1. OBJETIVOS ) Comprobacón expermental de las leyes de los gases. En este caso nos vamos a concentrar en el estudo

Más detalles

CÁLCULO DE INCERTIDUMBRES Y REPRESENTACIONES GRÁFICAS

CÁLCULO DE INCERTIDUMBRES Y REPRESENTACIONES GRÁFICAS CÁLCULO DE ICERTIDUMBRES Y REPRESETACIOES GRÁFICAS ITRODUCCIÓ El estudo de la Físca es ncompleto s no se apoya en epermentos de laboratoro que permtan la comprensón de los fenómenos en estudo. Con los

Más detalles

ESTADÍSTICA UNIDIMENSIONAL

ESTADÍSTICA UNIDIMENSIONAL ESTADÍSTICA UNIDIMENSIONAL La estadístca undmensonal trata de resumr la nformacón contenda en una tabla que contene nformacón de una sola varable en unos pocos números. Las meddas de poscón pueden ser:

Más detalles

Correlación y regresión lineal simple

Correlación y regresión lineal simple . Regresón lneal smple Correlacón y regresón lneal smple. Introduccón La correlacón entre dos varables ( e Y) se refere a la relacón exstente entre ellas de tal manera que a determnados valores de se asocan

Más detalles

ANÁLISIS DE FRECUENCIAS

ANÁLISIS DE FRECUENCIAS ANÁLII D FRCUNCIA XPRION PARA L CÁLCULO D LO VNO PARA L PRÍODO D RORNO Y D LO RPCIVO RROR ÁNDAR D IMACIÓN RQURIDO PARA LA DRMINACIÓN D LO INRVALO D CONFIANZA D LO IMADO D LO VALOR PRADO JULIAN DAVID ROJO

Más detalles

Riesgos Proporcionales de Cox

Riesgos Proporcionales de Cox Resgos Proporconales de Cox Resumen El procedmento Resgos Proporconales de Cox esta dseñado para ajustar un modelo estadístco sem-parámetrco a los tempos de falla de una o mas varables predctoras. Los

Más detalles

Práctica 1 Caracterización de un voltímetro analógico

Práctica 1 Caracterización de un voltímetro analógico Págna 3/9 Área: Práctca 1 Caracterzacón de un voltímetro analógco Págna 3 Págna 4/9 Área: 1. Segurdad en la ejecucón Pelgro o fuente de energía 1 Foco ncandescente Fuente de poder Resgo asocado Quemadura

Más detalles

El subestimado problema de la confusión residual. Héctor Lamadrid-Figueroa; Alejandra Montoya; Gustavo Ángeles

El subestimado problema de la confusión residual. Héctor Lamadrid-Figueroa; Alejandra Montoya; Gustavo Ángeles El subestmado problema de la confusón resdual Héctor Lamadrd-Fgueroa; Alejandra Montoya; Gustavo Ángeles El objetvo de la estmacón del efecto Establecer s exste una relacón causal entre una exposcón y

Más detalles

Estadísticos muéstrales

Estadísticos muéstrales Estadístcos muéstrales Una empresa dedcada al transporte y dstrbucón de mercancías, tene una plantlla de 50 trabajadores. Durante el últmo año se ha observado que 5 trabajadores han faltado un solo día

Más detalles

Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1

Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1 Escuela de Ingenería Comercal Ayudantía # 01, Conceptos Generales, Modelo de Regresón Profesor: Carlos R. Ptta 1 1 cptta@spm.uach.cl Escuela de Ingenería Comercal Ayudantía 01 Parte 01: Comentes Señale

Más detalles

Introducción a la Física. Medidas y Errores

Introducción a la Física. Medidas y Errores Departamento de Físca Unversdad de Jaén Introduccón a la Físca Meddas y Errores J.A.Moleón 1 1- Introduccón La Físca y otras cencas persguen la descrpcón cualtatva y cuanttatva de los fenómenos que ocurren

Más detalles

Métodos específicos de generación de diversas distribuciones discretas

Métodos específicos de generación de diversas distribuciones discretas Tema 3 Métodos específcos de generacón de dversas dstrbucones dscretas 3.1. Dstrbucón de Bernoull Sea X B(p). La funcón de probabldad puntual de X es: P (X = 1) = p P (X = 0) = 1 p Utlzando el método de

Más detalles

Estadística con R. Modelo Probabilístico Lineal

Estadística con R. Modelo Probabilístico Lineal Estadístca con R Modelo Probablístco Lneal Modelo Probablístco Lneal Forma de la funcón: Y b 0 +b 1 X +e Varable dependente, endógena o a explcar dcotómca : Y, S Y 0 e -b 0 - b 1 X con probabldad p. S

Más detalles

CERTIFICADO DE CALIBRACIÓN Certificate of Calibration

CERTIFICADO DE CALIBRACIÓN Certificate of Calibration CERTIFICADO DE CALIBRACIÓN Certfcate of Calbraton Número Number 79/LC10.054 Págna 1 de 5 pagnas Page of pages Metrología Pesaje Industral, S.L. P.A.E. Asuarán, Edfco Enekur Nº 15 Asua - Erando (Vzcaya)

Más detalles

Procedimiento de Calibración. Metrología PROCEDIMIENTO DI-004 PARA LA CALIBRACIÓN DE MEDIDORAS DE UNA COORDENADA VERTICAL

Procedimiento de Calibración. Metrología PROCEDIMIENTO DI-004 PARA LA CALIBRACIÓN DE MEDIDORAS DE UNA COORDENADA VERTICAL Procedmento de Calbracón Metrología PROCEDIMIENTO DI-004 PARA LA CALIBRACIÓN DE MEDIDORAS DE UNA COORDENADA VERTICAL La presente edcón de este procedmento se emte exclusvamente en formato dgtal y puede

Más detalles

Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos

Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos Reconclacón de datos expermentales MI5022 Análss y smulacón de procesos mneralúgcos Balances Balances en una celda de flotacón En torno a una celda de flotacón (o un crcuto) se pueden escrbr los sguentes

Más detalles

Dpto. Física y Mecánica

Dpto. Física y Mecánica Dpto. Físca y Mecánca Mecánca analítca Introduccón Notacón Desplazamento y fuerza vrtual Fuerza de lgadura Trabao vrtual Energía cnétca. Ecuacones de Lagrange Prncpode los trabaos vrtuales Prncpo de D

Más detalles

DESEMPEÑO DEL CONTROL DE FRECUENCIA PROCEDIMIENTO DO

DESEMPEÑO DEL CONTROL DE FRECUENCIA PROCEDIMIENTO DO Clascacón: Emtdo para Observacones de los Coordnados Versón: 1.0 DESEMPEÑO DEL CONTROL DE FRECUENCIA PROCEDIMIENTO DO Autor Dreccón de Operacón Fecha Creacón 06-04-2010 Últma Impresón 06-04-2010 Correlatvo

Más detalles

REGRESION LINEAL SIMPLE

REGRESION LINEAL SIMPLE REGREION LINEAL IMPLE Jorge Galbat Resco e dspone de una mustra de observacones formadas por pares de varables: (x 1, y 1 ) (x, y ).. (x n, y n ) A través de esta muestra, se desea estudar la relacón exstente

Más detalles

TEMA III EL ANÁLISIS DE REGRESIÓN LINEAL MÚLTIPLE

TEMA III EL ANÁLISIS DE REGRESIÓN LINEAL MÚLTIPLE TEMA III EL ANÁLISIS DE REGRESIÓN LINEAL MÚLTIPLE LECTURA OBLIGATORIA Regresón Lneal Múltple. En Ral, A. y Varela, J. (008). Estadístca Práctca para la Investgacón en Cencas de la Salud. Coruña: Netbblo.

Más detalles

H 0 : La distribución poblacional es uniforme H 1 : La distribución poblacional no es uniforme

H 0 : La distribución poblacional es uniforme H 1 : La distribución poblacional no es uniforme Una hpótess estadístca es una afrmacón con respecto a una característca que se desconoce de una poblacón de nterés. En la seccón anteror tratamos los casos dscretos, es decr, en forma exclusva el valor

Más detalles

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004)

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004) FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Xménez & San Martín, 004) Capítulo. Nocones báscas de álgebra de matrces Fe de erratas.. Cálculo de la transpuesta de una matrz

Más detalles

Medidas de Variabilidad

Medidas de Variabilidad Meddas de Varabldad Una medda de varabldad es un ndcador del grado de dspersón de un conjunto de observacones de una varable, en torno a la meda o centro físco de la msma. S la dspersón es poca, entonces

Más detalles

EL ANÁLISIS DE LA VARIANZA (ANOVA) 2. Estimación de componentes de varianza

EL ANÁLISIS DE LA VARIANZA (ANOVA) 2. Estimación de componentes de varianza EL ANÁLSS DE LA VARANZA (ANOVA). Estmacón de componentes de varanza Alca Maroto, Rcard Boqué Grupo de Qumometría y Cualmetría Unverstat Rovra Vrgl C/ Marcel.lí Domngo, s/n (Campus Sescelades) 43007-Tarragona

Más detalles

1.Variables ficticias en el modelo de regresión: ejemplos.

1.Variables ficticias en el modelo de regresión: ejemplos. J.M.Arranz y M.M. Zamora.Varables fctcas en el modelo de regresón: ejemplos. Las varables fctcas recogen los efectos dferencales que se producen en el comportamento de los agentes económcos debdo a dferentes

Más detalles

Guía para el Trabajo Práctico N 5. Métodos Estadísticos en Hidrología

Guía para el Trabajo Práctico N 5. Métodos Estadísticos en Hidrología Guía para el Trabajo Práctco 5 Métodos Estadístcos en Hdrología er. PASO) Realzar el ajuste de la funcón de dstrbucón normal a una muestra de datos totales anuales de una varable (caudal, precptacón, etc.)

Más detalles