Nos interesa asignar probabilidades a valores numéricos obtenidos a partir de fenómenos aleatorios, es decir a variables aleatorias.
|
|
- Cristóbal Parra Reyes
- hace 4 años
- Vistas:
Transcripción
1 Estadístca (Q) Dana M. Kelmansky 5 Varables Aleatoras Nos nteresa asgnar probabldades a valores numércos obtendos a partr de fenómenos aleatoros, es decr a varables aleatoras. Por ejemplo, calcular la probabldad de que al elegr una muestra de tamaño 0 de un lote que contene 5% de artículos defectuosos por lo menos 7 artículos de la muestra resulte defectuoso. Cuál es el epermento aleatoro ε, el espaco muestral Ω, la famla de sucesos en Ω, la funcón de probabldad P, el suceso de nterés y la varable aleatora en este ejemplo? Formalmente, dados un epermento aleatoro ε, un espaco muestral Ω, una famla de sucesos en Ω con una probabldad P, dremos que una funcón : Ω R, es una varable aleatora s -1 (-, ] = { ω Ω : ( ω ) } es un suceso Esta defncón asegura que sea posble el cálculo de probabldades sobre las varables aleatoras. No será necesaro utlzar esta defncón en lo que sgue! Veremos dos tpos de varables aleatoras, dscretas y contnuas, que nos permtrán utlzar la teoría de probabldades para realzar nferencas estadístcas. Varables Aleatoras Dscretas S el conjunto de resultados posbles, R, es fnto ó nfnto numerable, decmos que es una v.a. dscreta. Sea una v.a. dscreta. Indcaremos por R ={, Naturales} al conjunto de todos sus valores posbles. Un modelo de probabldad para está dado por la asgnacón de probabldades, p, a estos resultados,
2 Estadístca (Q) Dana M. Kelmansky 53 P(= ) = p ( ) =p. Las probabldades deben satsfacer 1. 0 p 1. Σ p =1 La probabldad P( esté en A) de cualquer suceso se calcula sumando las p de los resultados que componen A. Los valores p determnan la dstrbucón de probabldades de la v.a. medante la funcón de probabldad puntual (f.p.p. p ) que asgna a cada una probabldad p. Ejemplo: Un profesor calfca sus pruebas en una escala de 4 puntos (1,, 3, 4). Supongamos que en un curso de 30 alumnos los resultados ordenados fueron: Sea = resultado de la prueba para un alumno del curso elegdo al azar. Luego R = {1,, 3, 4} es una varable aletora dscreta La frecuenca de cada uno de los resultados es, 3, 6, 1 y 9 respectvamente. resultado ( ) frecuenca (f ) frec. relatva (f /n) p ( ) = p
3 Estadístca (Q) Dana M. Kelmansky 54 Dagrama de barras -- Hstograma de Probabldad Sguendo con el ejemplo: Cuál es la probabldad de que un alumno elegdo al azar haya tendo a lo sumo un 3? P( 3 ) = p (1) + p () + p (3) = p1 + p + p 3 = =.7 S pensamos que los 30 alumnos consttuyen la poblacón en estudo, podemos calcular la meda, µ, y la varanza, σ, poblaconales de la varable, (resultado de la prueba).
4 Estadístca (Q) Dana M. Kelmansky µ = = = 1p (1) + p () + 3p (3) + 4 p (4) La meda poblaconal µ de una varable es un promedo pesado de los valores posbles. En general tenemos: S es una v.a. dscreta con valores posbles R = {, en los Naturales} y f.p.p. p ( ) entonces se defne la Esperanza de (µ ) E()= R p ( ) Volvendo al ejemplo: La varanza poblaconal σ es σ (1 µ ) = = (1 µ ) = (1 µ ) + (1 µ ) + (1 µ ) (4 µ ) ( µ ) + (3 µ ) + (4 µ ) p (1) + ( µ ) p () + (3 µ ) p (3) + (4 µ ) p (4) En general tenemos: S es una v.a. dscreta con valores posbles R = {, en los Naturales} y f.p.p. p ( ) entonces se defne la Varanza de (σ )
5 Estadístca (Q) Dana M. Kelmansky 56 Var()= ( R - µ ) p ( ) Varables aleatoras contnuas. Informalmente dremos que: Una varable aleatora es contnua cuando el conjunto de sus valores posbles son todos los valores de un ntervalo o de una unón de ntervalos de números reales. Por ejemplo, la concentracón de cromo en el Rachuelo es una varable aleatora contnua. La dstrbucón de una varable aleatora contnua se descrbe medante la funcón de densdad de probabldad, ó smplemente funcón de densdad f. La funcón de densdad, f, de una varable aleatora satsface: 1. f () 0. f () d = 1 3. P( A) = A f () d S es una v. a. contnua cualquera. Cuánto vale la probabldad de que = 160? Por qué? Ejemplo: Las alturas de las mujeres jóvenes argentnas están apromadamente dstrbudas normalmente con µ = 160 cm σ = 4 cm. Sea = altura de una mujer argentna joven, elegda al azar, es una v.a. contnua y su funcón de densdad de probabldad está dada por:
6 Estadístca (Q) Dana M. Kelmansky 57 f ( µ ) 1 ( ) = e σ πσ En general, s la funcón de densdad de probabldad de una varable aleatora está dada por la epresón anteror, decmos que tene dstrbucón normal de parámetros con µ y σ : ~ N (µ, σ ) Propedades de la dstrbucón Normal Sea ~ N (µ, σ ), entonces a) Z= ( - µ) / σ ~ N (0, 1) dstrbucón Normal Estándar. b) a + b ~ N (a µ + b, a σ ) Sguendo con el ejemplo: Cuál es la probabldad de que una mujer joven elegda al azar tenga una altura entre 160 cm y 168 cm? Recordemos que = altura de una mujer argentna joven, elegda al azar entonces ~ N (µ, σ ) con µ = 160 cm y σ = 4 cm P (160 < < 168) = P ( 0 < ( - 160) / 4 < ) = Φ() - Φ(0) = = Esperanza y varanza de una varable aleatora contnua Cómo se calculan la esperanza y la varanza de una varable aleatora contnua conocendo su funcón de densdad de probabldad f? S es una varable aleatora contnua con funcón de densdad, f entonces la su meda o esperanza (E()) está dada por:
7 Estadístca (Q) Dana M. Kelmansky 58 y su varanza µ t f ( t) = dt σ f ) = ( t µ ) ( t dt Compare con el caso dscreto. En base a las propedades de la esperanza tendremos que Var() = E[(- µ) ] Propedades de la Esperanza y la Varanza a) Esperanza de una funcón de una varable aleatora: sea Y = h( ) entonces
8 Estadístca (Q) Dana M. Kelmansky 59 b) S P( = c) = 1 entonces E() = c ( E (c) = c ) c) E( a + b) = ae() + b d) Var (a + b) = a Var() e) Var (c) =... Funcón de Dstrbucón acumulada. La funcón de dstrbucón acumulada de una varable aleatora, cualquera, es: F () = P ( ) S es una varable aleatora dscreta F () = p ( ) R S es una varable aleatora contnua F ( ) = f ( t) dt Luego
9 Estadístca (Q) Dana M. Kelmansky 60 Propedades ' F ( ) = f ( ) () 0 F () 1 R porque es una probabldad () Es monótona no decrecente porque es acumulada () Es contnua a derecha por la forma en que está defnda (v) lím F () = 1 + lím F () = 0 - por () () (v) En cada punto el valor del salto es la probabldad puntual de ese punto: salto = F () - F ( - ) = p () Ejemplo: Sea = nota obtenda en una prueba de un alumno elegdo al azar nota () p ()
10 Estadístca (Q) Dana M. Kelmansky 61 Funcón de dstrbucón acumulada F ( ) = s s 1 < s s < 1 3 s 4 < 3 < 4
3. VARIABLES ALEATORIAS.
3. VARIABLES ALEATORIAS. Una varable aleatora es una varable que toma valores numércos determnados por el resultado de un epermento aleatoro (no hay que confundr la varable aleatora con sus posbles valores)
TEMA 3. VARIABLE ALEATORIA
TEMA 3. VARIABLE ALEATORIA 3.. Introduccón. 3... Dstrbucón de Probabldad de una varable aleatora 3... Funcón de Dstrbucón de una varable aleatora 3.. Varable aleatora dscreta 3... Funcón masa de probabldad
Tema 4: Variables aleatorias
Estadístca 46 Tema 4: Varables aleatoras El concepto de varable aleatora surge de la necesdad de hacer más manejables matemátcamente los resultados de los expermentos aleatoros, que en muchos casos son
INTRODUCCIÓN. Técnicas estadísticas
Tema : Estadístca Descrptva Undmensonal ITRODUCCIÓ Fenómeno determnsta: al repetrlo en déntcas condcones se obtene el msmo resultado. (Ejemplo: lómetros recorrdos en un ntervalo de tempo a una velocdad
Descripción de una variable
Descrpcón de una varable Tema. Defncones fundamentales. Tabla de frecuencas. Datos agrupados. Meddas de poscón Meddas de tendenca central: meda, medana, moda Ignaco Cascos Depto. Estadístca, Unversdad
Métodos específicos de generación de diversas distribuciones discretas
Tema 3 Métodos específcos de generacón de dversas dstrbucones dscretas 3.1. Dstrbucón de Bernoull Sea X B(p). La funcón de probabldad puntual de X es: P (X = 1) = p P (X = 0) = 1 p Utlzando el método de
Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos.
ESTADÍSTICA I. Recuerda: Poblacón: Es el conjunto de todos los elementos que cumplen una determnada propedad, que llamamos carácter estadístco. Los elementos de la poblacón se llaman ndvduos. Muestra:
Modelos triangular y parabólico
Modelos trangular y parabólco ClassPad 0 Prof. Jean-Perre Marcallou INTRODUCCIÓN La calculadora CASIO ClassPad 0 dspone de la Aplcacón Prncpal para realzar los cálculos correspondentes a los modelos trangular
Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio.
Tema 9 - Estadístca - Matemátcas B 4º E.S.O. 1 TEMA 9 - ESTADÍSTICA 9.1 DOS RAMAS DE LA ESTADÍSTICA 9.1.1 - INTRODUCCIÓN La estadístca tene por objeto el desarrollo de técncas para el conocmento numérco
PROBABILIDAD Y ESTADÍSTICA
PROBABILIDAD Y ESTADÍSTICA 1. S A es un suceso de probabldad 0.3, la probabldad de su suceso contraro es: a) 0. b) 1.0 c) 0.7 (Convocatora juno 006. Eamen tpo H) S A es un suceso, la probabldad de su suceso
LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION
Unversdad Católca Los Ángeles de Chmbote LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION 1. DEFINICION: Las meddas estadístcas
TEMA 4 Variables aleatorias discretas Esperanza y varianza
Métodos Estadístcos para la Ingenería Curso007/08 Felpe Ramírez Ingenería Técnca Químca Industral TEMA 4 Varables aleatoras dscretas Esperanza y varanza La Probabldad es la verdadera guía de la vda. Ccerón
Ejercicio nº 1. a) Elabora una tabla de frecuencias. b) Representa gráficamente la distribución.
Ejercco nº En una empresa de teleonía están nteresados en saber cuál es el número de aparatos teleóncos (ncludos teléonos móvles) que se tene en las vvendas. Se hace una encuesta y, hasta ahora, han recbdo
LECTURA N 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) TEMA 14: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION
Unversdad Católca Los Ángeles de Chmbote LECTURA N 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) TEMA 4: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION. DEFINICION Las meddas estadístcas son meddas de resumen
lanzamos una moneda y él ganó".
4. Varable aleatora dscreta El msmo Doob eplcaba el orgen del térmno varable aleatora random varable: "Cuando estaba escrbendo m lbro [Stochastc Processes] tuve una dscusón con Wllam Feller. Él aseguraba
VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL.
VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL. Concepto de varable aleatora. Se llama varable aleatora a toda aplcacón que asoca a cada elemento del espaco muestral de un expermento, un número real.
Tema 8 - Estadística - Matemáticas CCSSI 1º Bachillerato 1
Tema 8 - Estadístca - Matemátcas CCSSI 1º Bachllerato 1 TEMA 8 - ESTADÍSTICA 8.1 NOCIONES GENERALES DE ESTADÍSTICA 8.1.1 INTRODUCCIÓN Objetvo: La estadístca tene por objeto el desarrollo de técncas para
Variable aleatoria: definiciones básicas
Varable aleatora: defncones báscas Varable Aleatora Hasta ahora hemos dscutdo eventos elementales y sus probabldades asocadas [eventos dscretos] Consdere ahora la dea de asgnarle un valor al resultado
PARÁMETROS DE UNA DISTRIBUCIÓN DE PROBABILIDAD DISCRETA Media aritmética: μ = x
Dstrbucones de Probabldad dscretas-bn1b DISTRIBUIONES DISRETAS DE PROBABILIDAD Dstrbucones dscretas son aquellas en las que la varable sólo puede tomar valores aslados. Ejemplo: lanzar una moneda ( valores:
Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos
Reconclacón de datos expermentales MI5022 Análss y smulacón de procesos mneralúgcos Balances Balances en una celda de flotacón En torno a una celda de flotacón (o un crcuto) se pueden escrbr los sguentes
Bloque 5. Probabilidad y Estadística Tema 2. Estadística descriptiva Ejercicios resueltos
Bloque 5. Probabldad y Estadístca Tema. Estadístca descrptva Ejerccos resueltos 5.-1 Dada la sguente tabla de ngresos mensuales, calcular la meda, la medana y el ntervalo modal. Ingresos Frecuenca Menos
Distribuciones de probabilidad
Dstrbucones de probabldad Toda dstrbucón de probabldad es generada por una varable aleatora x, la que puede ser de dos tpos: Varable aleatora dscreta (x). Se le denomna varable porque puede tomar dferentes
Tema 1: Análisis de datos unidimensionales
Tema : Análss de datos undmensonales. Varables estadístcas undmensonales. Representacones gráfcas.. Característcas de las dstrbucones de frecuencas undmensonales.. Varables estadístcas undmensonales. Representacones
XII. Uso de la Estimación de la Distribución de Probabilidad para Muestras Pequeñas y de la Simulación en la Inferencia de Carteras de Seguros.
Uso de la Estmacón de la Dstrbucón de Probabldad para Muestras Pequeñas y de la Smulacón en la Inferenca de Carteras de Seguros. Trabajo presentado para el XII Premo de Investgacón sobre Seguros y Fanzas
Cálculo y EstadísTICa. Primer Semestre.
Cálculo y EstadísTICa. Prmer Semestre. EstadísTICa Curso Prmero Graduado en Geomátca y Topografía Escuela Técnca Superor de Ingeneros en Topografía, Geodesa y Cartografía. Unversdad Poltécnca de Madrd
Reconocimiento de Locutor basado en Procesamiento de Voz. ProDiVoz Reconocimiento de Locutor 1
Reconocmento de Locutor basado en Procesamento de Voz ProDVoz Reconocmento de Locutor Introduccón Reconocmento de locutor: Proceso de extraccón automátca de nformacón relatva a la dentdad de la persona
Teoría de Modelos y Simulación Enrique Eduardo Tarifa Facultad de Ingeniería - Universidad Nacional de Jujuy. Generación de Números Aleatorios
Teoría de Modelos y Smulacón Enrque Eduardo Tarfa Facultad de Ingenería - Unversdad Naconal de Jujuy Generacón de Números Aleatoros Introduccón Este capítulo trata sobre la generacón de números aleatoros.
Matemáticas aplicadas a las ciencias sociales Estadística y Probabilidad 1º de bachillerato
Departamento de Matemátcas Matemátcas aplcadas a las cencas socales Estadístca y Probabldad º de bachllerato Matemátcas aplcadas a las cencas socales I, pág. de 48 Departamento de Matemátcas TEMA : ESTADÍSTICA
1. Concepto y origen de la estadística Conceptos básicos Tablas estadísticas: recuento Representación de graficas...
TEMA. ESTADÍSTICA DESCRIPTIVA.. Concepto y orgen de la estadístca..... Conceptos báscos..... Tablas estadístcas: recuento..... Representacón de grafcas.... 6.. Varables cualtatvas... 6.. Varables cuanttatvas
APLICACIÓN DEL ANALISIS INDUSTRIAL EN CARTERAS COLECTIVAS DE VALORES
APLICACIÓN DEL ANALISIS INDUSTRIAL EN CARTERAS COLECTIVAS DE VALORES Documento Preparado para la Cámara de Fondos de Inversón Versón 203 Por Rodrgo Matarrta Venegas 23 de Setembre del 204 2 Análss Industral
Pruebas Estadísticas de Números Pseudoaleatorios
Pruebas Estadístcas de Números Pseudoaleatoros Prueba de meda Consste en verfcar que los números generados tengan una meda estadístcamente gual a, de esta manera, se analza la sguente hpótess: H 0 : =
Tema 21: Distribución muestral de un estadístico
Análss de Datos I Esquema del Tema 21 Tema 21: Dstrbucón muestral de un estadístco 1. INTRODUCCIÓN 2. DISTRIBUCIÓN MUESTRAL DE LA MEDIA 3. DISTRIBUCIÓN MUESTRAL DE LA PROPORCIÓN Bblografía * : Tema 15
Facultad de Ingeniería División de Ciencias Básicas Coordinación de Ciencias Aplicadas Departamento de Probabilidad y Estadística
Facultad de Ingenería Dvsón de Cencas Báscas Coordnacón de Cencas Aplcadas Departamento de Probabldad y Estadístca Probabldad y Estadístca Prmer Eamen Fnal Tpo A Semestre: 00- Duracón máma:. h. Consderar
Problemas donde intervienen dos o más variables numéricas
Análss de Regresón y Correlacón Lneal Problemas donde ntervenen dos o más varables numércas Estudaremos el tpo de relacones que exsten entre ellas, y de que forma se asocan Ejemplos: La presón de una masa
Medidas de centralización
1 Meddas de centralzacón Meda Datos no agrupados = x X = n = 0 Datos agrupados = x X = n = 0 Medana Ordenamos la varable de menor a mayor. Calculamos la columna de la frecuenca relatva acumulada F. Buscamos
LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA
LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA. LA MEDIANA: Es una medda de tendenca central que dvde al total de n observacones debdamente ordenadas
Dicha tabla adopta la forma del diagrama de árbol del dibujo. En éste, a cada uno de los sucesos A y A c se les ha asociado los sucesos B y B c.
Estadístca robablístca 6. Tablas de contngenca y dagramas de árbol. En los problemas de probabldad y en especal en los de probabldad condconada, resulta nteresante y práctco organzar la nformacón en una
Modelos unifactoriales de efectos aleatorizados
Capítulo 4 Modelos unfactorales de efectos aleatorzados En el modelo de efectos aleatoros, los nveles del factor son una muestra aleatora de una poblacón de nveles. Este modelo surge ante la necesdad de
4. PROBABILIDAD CONDICIONAL
. ROBBILIDD CONDICIONL La probabldad de que ocurra un evento B cuando se sabe que ha ocurrdo algún otro evento se denomna robabldad Condconal, Se denota como (B/) y se lee como la probabldad de que ocurra
PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE 25 AÑOS MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES
PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE AÑOS EXÁMENES PROPUESTOS Y RESUELTOS DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES CONVOCATORIAS DE --- F Jménez Gómez Este cuaderno
INTRODUCCIÓN A LA PROBABILIDAD
INTRODUCCIÓN A LA PROBABILIDAD José Lus Quntero Expermento aleatoro Expermento Bnomal Teoría de Conjuntos Probabldad Teorema de Bayes Técncas de Conteo Unversdad Central de Venezuela Facultad de Ingenería
Análisis de Weibull. StatFolio de Muestra: Weibull analysis.sgp
Análss de Webull Resumen El procedmento del Análss de Webull está dseñado para ajustar una dstrbucón de Webull a un conjunto de n observacones. Es comúnmente usado para analzar datos representando tempos
Fugacidad. Mezcla de gases ideales
Termodnámca del equlbro Fugacdad. Mezcla de gases deales rofesor: Alí Gabrel Lara 1. Fugacdad 1.1. Fugacdad para gases Antes de abarcar el caso de mezclas de gases, debemos conocer como podemos relaconar
Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma
Estadístca Tema 1: Estadístca Descrptva Undmensonal Undad 2: Meddas de Poscón, Dspersón y de Forma Área de Estadístca e Investgacón Operatva Lceso J. Rodríguez-Aragón Septembre 2010 Contendos...............................................................
CAPITULO CUATRO MEDIDAS DE DISPERSION, ASIMETRIA Y CURTOSIS
CAPITULO CUATRO MEDIDAS DE DISPERSION, ASIMETRIA Y CURTOSIS El conocmento de las meddas de centralzacón no es sufcente para caracterzar completamente a una dstrbucón por ejemplo: s las edades medas de
MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas
Unversdad de Cádz Departamento de Matemátcas MATEMÁTICAS para estudantes de prmer curso de facultades y escuelas técncas Tema 13 Dstrbucones bdmensonales. Regresón y correlacón lneal Elaborado por la Profesora
Análisis estadístico de incertidumbres aleatorias
Análss estadístco de ncertdumbres aleatoras Errores aleatoros y sstemátcos La meda y la desvacón estándar La desvacón estándar como error de una sola medda La desvacón estándar de la meda úmero de meddas
Media es la suma de todas las observaciones dividida por el tamaño de la muestra.
Estadístcos Los estadístcos son valores calculados con los datos de una varable cuanttatva y que mden alguna de las característcas de la dstrbucón muestral. Las prncpales característcas son: tendenca central,
Matemáticas Discretas
Coordnacón de Cencas Computaconales - INAOE Matemátcas Dscretas Cursos Propedéutcos 2010 Cencas Computaconales INAOE Dr. Lus Vllaseñor Pneda vllasen@naoep.mx http://ccc.naoep.mx/~vllasen Algo de nformacón
MODELOS DE ELECCIÓN BINARIA
MODELOS DE ELECCIÓN BINARIA Econometría I UNLP http://www.econometra1.depeco.econo.unlp.edu.ar/ Modelos de Eleccón Bnara: Introduccón Estamos nteresados en la probabldad de ocurrenca de certo evento Podemos
Definición de probabilidad
Tema 5: LA DISTRIBUCIÓN NORMAL 1. INTRODUCCIÓN A LA PROBABILIDAD: Definición de probabilidad Repaso de propiedades de conjuntos (Leyes de Morgan) Probabilidad condicionada Teorema de la probabilidad total
Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis
Tema. Estadístcos unvarados: tendenca central, varabldad, asmetría y curtoss 1. MEDIDA DE TEDECIA CETRAL La meda artmétca La medana La moda Comparacón entre las meddas de tendenca central. MEDIDA DE VARIACIÓ
( ) = ( ) ( ) E X x p. E X Y = E X E Y XY independientes. E X Y E X E Y Cauchy Schwarzt ( ) 2. Pr X a E X a Markov
1 2 Varables aleatoras 2.1 Dscretas 2.1.1 Genércas Esperanza de una v.a. o Valor esperado Propedades de la Esperanza k = ( x ) E X x p EmX+ b = mex + b EK Varanza de una v.a. = K ( + ) = + E X Y E X E
a) Qué población (la de hombres o la de mujeres) presenta un salario medio mayor? b) Qué porcentaje de varones gana más de 900?
EJERCICIO 1. A contnuacón tene dos dstrbucones por sexo y salaro declarado en el prmer empleo tras obtener la lcencatura de un grupo de ttulados por la UNED. Salaro en Hombres en % Mujeres en % < de 600
TEMA 10: ESTADÍSTICA
TEMA 10: La Estadístca es la parte de las matemátcas que se ocupa de recoger, organzar y analzar grandes cantdades de datos para estudar alguna característca de un colectvo. 1. VARIABLES S UIDIMESIOALES
Fundamentos de Física Estadística: Problema básico, Postulados
Fundamentos de Físca Estadístca: Problema básco, Postulados y Formalsmos. Problema básco de la Mecánca Estadístca del Equlbro (MEE) El problema básco de la MEE es la determnacón de la relacón termodnámca
EJERCICIOS DE ESTADÍSTICA BIDIMENSIONAL.
EJERCICIOS DE ESTADÍSTICA BIDIMENSIONAL. 1. Una cofradía de pescadores regstra la cantdad de sardnas que llegan al puerto (X), en klogramos, el preco de la subasta en la lonja (Y), en euros por klo, han
MÉTODOS PARA PROBAR NUMEROS
Capítulo 3 ALEATORIOS MÉTODOS PARA PROBAR NUMEROS III.1 Introduccón Exsten algunos métodos dsponbles para verfcar varos aspectos de la caldad de los números pseudoaleatoros. S no exstera un generador partcular
VARIABLES ALEATORIAS BIDIMENSIONALES. DISTRIBUCIONES
Gestón Aeronáutca: Estadístca Teórca Facultad Cencas Económcas Empresarales Departamento de Economía Aplcada Profesor: Santago de la Fuente Fernández VARIABLES ALEATORIAS BIDIMENSIONALES. DISTRIBUCIONES
Estadística Descriptiva Análisis de Datos
El concepto de Estadístca Estadístca Descrptva Análss de Datos 8.1 INTRODUCCION El orgen de la Estadístca se remonta a dos tpos de actvdades humanas: los juegos de azar y las necesdades de los Estados:
Matemáticas A 4º E.S.O. pág. 1
Matemátcas A º E.S.O. pág. HOJA : ESTADÍSTICA º.- Agrupa en ntervalos y construye una tabla de frecuencas (con la marca de clase ncluda) y la frecuenca absoluta de las sguentes alturas, meddas en centímetros,
Pregunta Hoy está nublado, cuál es la probabilidad de que mañana continúe nublado? cuál es la probabilidad de que está nublado pasado mañana?
Cadenas de Marov Después de mucho estudo sobre el clma, hemos vsto que s un día está soleado, en el 70% de los casos el día sguente contnua soleado y en el 30% se pone nublado. En térmnos de probabldad,
CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS
CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS Edgar Acuña Fernández Departamento de Matemátcas Unversdad de Puerto Rco Recnto Unverstaro de Mayagüez Edgar Acuña Analss de Regreson Regresón con varables
el blog de mate de aida CS I. Distribuciones de probabilidad. pág. 1
el blog de mate de ada CS I. Dstrbucones de robabldad. ág. EXPERIENTOS Y SUCESOS ALEATORIOS Eermento determnsta es aquel en que se uede redecr el resultado semre que se realce en las msmas condcones. (Ejemlo:
Tema 1.3_A La media y la desviación estándar
Curso 0-03 Grado en Físca Herramentas Computaconales Tema.3_A La meda y la desvacón estándar Dónde estudar el tema.3_a: Capítulo 4. J.R. Taylor, Error Analyss. Unv. cence Books, ausalto, Calforna 997.
TEORÍA DE MUESTREO. (HAMLET Mata Mata prof. Del Tecnologico de El Tigre)
TEORÍA DE MUETREO (HAMLET Mata Mata prof. Del Tecnologco de El Tgre) www.mpagna.cantv.net/hamletmatamata POBLACIÓ Y MUETRA Una poblacón está determnada por sus característcas defntoras. Por lo tanto, el
Regresión Lineal Simple y Correlación
4 Regresón Lneal Smple y Correlacón 4.1. Fundamentos teórcos 4.1.1. Regresón La regresón es la parte de la estadístca que trata de determnar la posble relacón entre una varable numérca, que suele llamarse
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO ESCUELA NACIONAL COLEGIO DE CIENCIAS Y HUMANIDADES PLANTEL SUR ACADEMIA DE MATEMÁTICAS
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO ESCUELA NACIONAL COLEGIO DE CIENCIAS Y HUMANIDADES PLANTEL SUR ACADEMIA DE MATEMÁTICAS GUÍA PARA PREPARAR EL EXAMEN EXTRAORDINARIO DE ESTADISTICA Y PROBABILIDAD
EJERCICIO 1 1. VERDADERO 2. VERDADERO (Esta afirmación no es cierta en el caso del modelo general). 3. En el modelo lineal general
PRÁCTICA 6: MODELO DE REGRESIÓN MÚLTIPLE SOLUCIÓN EJERCICIO. VERDADERO. VERDADERO (Esta afrmacón no es certa en el caso del modelo general. 3. En el modelo lneal general Y =X β + ε, explcar la forma que
Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): Ajustes de Tendencia
Investgacón y Técncas de Mercado Prevsón de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): s de Tendenca Profesor: Ramón Mahía Curso 00-003 I.- Introduccón Hasta el momento,
4ºB ESO Capítulo 12: Estadística LibrosMareaVerde.tk www.apuntesmareaverde.org.es
4ºB ESO Capítulo 1: Estadístca 350 Índce 1. POBLACIÓ Y MUESTRA. VARIABLES ESTADÍSTICAS 1.1. POBLACIÓ 1.. MUESTRA 1.3. IDIVIDUO 1.4. VARIABLE ESTADÍSTICA. TABLAS DE FRECUECIAS.1. FRECUECIA ABSOLUTA.. FRECUECIA
Capacidad de Procesos según ISO 9000 Ing o. Angel Francisco Arvelo
EVALUACION DE LA CAPACIDAD DE CALIDAD DE UN PROCESO INDUSTRIAL METODOS ESTADISTICOS SUGERIDOS POR LA NORMA ISO 9000 ANGEL FRANCISCO ARVELO L. Ingenero Industral Master en Estadístca Matemátca CARACAS,
TEMA. Contenidos UNIDAD I: ESTADÍSTICA DESCRIPTIVA
ANÁLISIS DESCRIPTIVO DE VARIABLES CUANTITATIVAS () Contendos TEMA 4.4. Introduccón 4.5. Dstrbucones de frecuencas de varables cuanttatvas (datos agrupados) 4.6. Propedades de las dstrbucones de varables
VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN
VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN - INTRODUCCIÓN E este tema se tratará de formalzar umércamete los resultados de u feómeo aleatoro Por tato, ua varable aleatora es u valor umérco que correspode
Relaciones entre variables
Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón.
ANÁLISIS EXPLORATORIO DE DATOS
ANÁLISIS EXPLORATORIO DE DATOS 1. INTRODUCCIÓN HISTÓRICA 2 1.1 La Estadístca como cenca 2 1.2 Algunos problemas que resuelve la Estadístca 2 2. INTRODUCCIÓN A LA ESTADÍSTICA 3 2.1. Concepto y Objetvo de
CARTAS DE CONTROL. Han sido difundidas exitosamente en varios países dentro de una amplia variedad de situaciones para el control del proceso.
CARTAS DE CONTROL Las cartas de control son la herramenta más poderosa para analzar la varacón en la mayoría de los procesos. Han sdo dfunddas extosamente en varos países dentro de una ampla varedad de
CESMA BUSINESS SCHOOL
CESMA BUSINESS SCHOOL MATEMÁTICAS FINANCIERAS. TEMA 4 RENTAS y MÉTODOS DE AMORTIZACIÓN Javer Blbao García 1 1.- Introduccón Defncón: Conjunto de captales con vencmentos equdstantes de tempo. Para que exsta
4. REPRESENTACIONES GRÁFICAS PARA DATOS CATEGÓRICOS.
4. REPRESETACIOES GRÁFICAS PARA DATOS CATEGÓRICOS. Cuando se manejan fenómenos categórcos, se pueden agrupar las observacones en tablas de resumen, para después representarlas en forma gráfca como dagramas
Elaboración de Tablas ó Cuadros. La elaboración de tablas o cuadros, facilita el análisis y la presentación de la información.
Elaboracón de Tablas ó Cuadros La elaboracón de tablas o cuadros, faclta el análss la presentacón de la nformacón. Para elaborar los cuadros, se debe, antes que todo, dentfcar las varables, característcas
Regresión Cuantílica o Quantile Regression
Regresón Cuantílca o Quantle Regresson A. Cameron and P. rved, (005), Macroeconometrcs, Methods and Applcatons, Cambrdge Unversty Press. R. Koenker, (005), Quantle Regresson, Econometrc Socety Monographs
Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión
Modelos de Regresó E muchos problemas este ua relacó herete etre dos o más varables, resulta ecesaro eplorar la aturaleza de esta relacó. El aálss de regresó es ua técca estadístca para el modelado la
ELECTROSTÁTICA. CAMPO ELÉCTRICO EN EL VACÍO.
ELECTROSTÁTICA. CAMPO ELÉCTRICO EN EL VACÍO..- PERSPECTIVA HISTÓRICA MATERIA { MOLÉCULAS } { ÁTOMOS}, sendo los átomos y/o moléculas estables por la nteraccón electromagnétca. Desde la perspectva electromagnétca
ESTADÍSTICA poblaciones
ESTADÍSTICA Es la parte de las Matemátcas que estuda el comportameto de las poblacoes utlzado datos umércos obtedos medate epermetos o ecuestas. ESTADÍSTICA La Estadístca tee dos ramas: La Estadístca descrptva:
Centro de Masa. Sólido Rígido
Centro de Masa Sóldo Rígdo El centro de masa de un sstema de partículas es un punto en el cual parecería estar concentrada toda la masa del sstema. En un sstema formado por partículas dscretas el centro
Medidas de Tendencia Central y de Variabilidad
Meddas de Tendenca Central y de Varabldad Contendos Meddas descrptvas de forma: curtoss y asmetría Meddas de tendenca central: meda, medana y moda Meddas de dspersón: rango, varanza y desvacón estándar.
Regresión y correlación simple 113
Regresón y correlacón smple 113 Captulo X ANALISIS DE REGRESION Y CORRELACION El análss de regresón consste en emplear métodos que permtan determnar la mejor relacón funconal entre dos o más varables concomtantes
Glosario básico. de términos estadísticos
Glosaro básco de térmnos estadístcos Lma, mayo de 2006 CREDITOS Dreccón y Supervsón Lupe Berrocal de Montestruque Drectora Técnca del Centro de Investgacón y Desarrollo Responsable del documento Hermna
Organización y resumen de datos cuantitativos
Organzacón y resumen de datos cuanttatvos Contendos Organzacón de datos cuanttatvos: dagrama de tallos y hojas, tablas de frecuencas. Hstogramas. Polígonos. Ojvas ORGANIZACIÓN Y RESUMEN DE DATOS CUANTITATIVOS
CAPITULO 3.- ANÁLISIS CONJUNTO DE DOS VARIABLES. 3.1 Presentación de los datos. Tablas de doble entrada.
Introduccón a la Estadístca Empresaral Capítulo - Análss conjunto de dos varables Jesús ánchez Fernández CAPITULO - AÁLII COJUTO DE DO VARIABLE Presentacón de los datos Tablas de doble entrada En el capítulo
Aproximación a la distribución normal: el Teorema del Límite Central
Aproxmacó a la dstrbucó ormal: el Teorema del Límte Cetral El teorema del límte cetral establece que s se tee varables aleatoras, X, X,..., X, depedetes y co détca dstrbucó de meda µ y varaza σ, a medda
EJERCICIOS RESUELTOS TEMA 2
EJERCICIOS RESUELTOS TEMA.1. La Moda, para el grupo de Varones de la Tabla 1, es: A) 4,5; B) 17; C) 60.. Con los datos de la Tabla 1, la meda en para las Mujeres es: A) gual a la meda para los Varones;
Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1
Escuela de Ingenería Comercal Ayudantía # 01, Conceptos Generales, Modelo de Regresón Profesor: Carlos R. Ptta 1 1 cptta@spm.uach.cl Escuela de Ingenería Comercal Ayudantía 01 Parte 01: Comentes Señale
Diseño de la Muestra. Introducción. Tipo de muestreo y estratificación
Dseño de la Muestra A Introduccón Sguendo las orentacones dadas por la Ofcna Estadístca de la Unón Europea (EUROSTAT) se a selecconado una muestra probablístca representatva de la poblacón de los ogares
ESTADISTICA APLICADA A LA EDUCACIÓN
UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA FACULTAD DE EDUCACIÓN DEPARTAMENTO DE MÉTODOS DE INVESTIGACIÓN Y DIAGNÓSTICO EN EDUCACIÓN I Grados de Educacón Socal y Pedagogía ESTADISTICA APLICADA A LA
ESTADÍSTICA BIDIMENSIONAL ÍNDICE GENERAL
ESTADÍSTICA BIDIMESIOAL ÍDICE GEERAL 1.-Varable Estadístca Bdmensonal. Tablas de frecuenca... 1.1.- Concepto de varable estadístca bdmensonal. Eemplos.... 1..-Tablas bdmensonales de frecuencas. Tablas
Análisis de Regresión y Correlación
1 Análss de Regresón y Correlacón El análss de regresón consste en emplear métodos que permtan determnar la mejor relacón funconal entre dos o más varables concomtantes (o relaconadas). El análss de correlacón
UNIVERSIDAD DE SONORA
UNIVERSIDAD DE SONORA Dvsón de Cencas Exactas y Naturales Departamento de Matemátcas Estadístca Aplcada a las Lcencaturas: Admnstracón, Contaduría e Inormátca Admnstratva. Fascículo II: Estadístca Descrptva
Cuaderno de actividades 4º ESO
Estadístca Undmensonal 1 Conceptos báscos. Cuaderno de actvdades º ESO Cualquer elemento o ente que sea portador de nformacón sobre alguna propedad en la cual se está nteresado se denomna ndvduo. El conjunto
UNA FORMA GRÁFICA DE ENSEÑANZA: APLICACIÓN AL DUOPOLIO DE. Dpto. de Métodos Cuantitativos e Informáticos. Universidad Politécnica de Cartagena.
UNA FORMA GRÁFICA DE ENSEÑANZA: APLICACIÓN AL DUOPOLIO DE COURNOT. Autores: García Córdoba, José Antono; josea.garca@upct.es Ruz Marín, Manuel; manuel.ruz@upct.es Sánchez García, Juan Francsco; jf.sanchez@upct.es