EJERCICIOS DE ESTADÍSTICA BIDIMENSIONAL.
|
|
|
- María Herrera Mora
- hace 9 años
- Vistas:
Transcripción
1 EJERCICIOS DE ESTADÍSTICA BIDIMENSIONAL. 1. Una cofradía de pescadores regstra la cantdad de sardnas que llegan al puerto (X), en klogramos, el preco de la subasta en la lonja (Y), en euros por klo, han elaborado la sguente tabla. X Y 1,80 1,68 1,65 1,3 1,44 1,50 1,0 a. Este relacón entre las dos varables? En caso de estr, eplca razonadamente cómo es dcha relacón. b. Estma el preco de un klo de sardnas s han llegado a la lonja klogramos. a. Para estudar s este relacón entre las varables, calculamos el coefcente de correlacón de Pearson. Tenendo en cuenta que la frecuenca de cada dato es 1, ntroducmos los datos en la calculadora obtenemos que r = 0,97. Por tanto este correlacón negatva mu fuerte. b. Calcularemos la recta de regresón de Y sobre X para estmar el preco de un klo de sardnas. La fórmula de la recta de regresón es pero usaremos la calculadora para epresarla en la forma m n calcular ˆ La ecuacón de la recta es = 0, ,9585 el preco estmado de un klo de sardnas es de 1,54, dato que se puede obtener susttuendo = 1300 en la fórmula anteror o usando la calculadora.
2 . Una empresa de mensajería ha elaborado una tabla que refleja el plazo de entrega, en horas, que anuncaba en sus envíos el plazo real de entrega del msmo. Plazo anuncado Plazo real 5 8 5, ,5 9 a. Cuál es el plazo real estmado s la empresa ha afrmado que se entregará en 15 horas? b. Estma el plazo real de entrega s la empresa se compromete a entregarlo en 1 horas. Dfere el resultado de los que fguran en la tabla? Para realzar las estmacones que se pden en el enuncado, debemos calcular las rectas de regresón. Introducmos los datos en la calculadora, tenendo en cuenta que la frecuenca es 1. a. La recta de regresón de Y sobre X es se puede epresar en la forma m n con la auda de la calculadora. Se obtene que = 0,578 +,1 por tanto la estmacón para = 15 es = 0, ,1 = 10,88 h. El plazo real estmado para un anunco de entrega de 15 horas es de apromadamente 11 horas. b. La recta de regresón de X sobre Y no se puede calcular drectamente en la forma = m + n con la calculadora aunque sí se puede obtener la estmacón pedda con la funcón ˆ. Para calcular la recta de regresón usaremos la ecuacón de la recta. Usando la calculadora, obtenemos que : = 16,5 h 11,75 13,33 h f 374 Por tanto: 7,80 h f ,6 11,75 113,45 f 8 16,5 = 1,86 ( 11,75) = 1,86 5,36. 60,84 Susttuendo por 1, se tene que = 16,96 horas, valor que se puede comprobar con la calculadora. El resultado obtendo dfere bastante de los obtendos en la tabla.
3 3. Se ha realzado un estudo sobre los ngresos mensuales de una famla, X, los metros cuadrados de sus vvendas, Y. X Y [30, 50) [50, 70) [70, 90) [90, 110) [110, 130) [0, 500) [500, 1 000) [1 000, 1 500) [1 500, 000) [ 000, 500) a. Cuántas famlas han partcpado en el estudo? b. Calcula los parámetros de las dstrbucones margnales. c. Calcula el coefcente de Pearson justfca s la correlacón entre las varables es fuerte o débl. d. Con auda de la calculadora, haa las dos rectas de regresón. e. Estma los ngresos de una famla que tene una vvenda de 150 m. f. Estma la superfce de la casa de una famla que tene unos ngresos de 800 mensuales. g. Tene sentdo hacer una estmacón para unos ngresos de 5 000? Justfca tu respuesta. Para efectuar los cálculos precsos, debemos calcular la marca de clase de las dos varables. La tabla que debemos consderar es la sguente: X Y Introducmos los datos en la calculadora para obtener los parámetros que se pden en enuncado.
4 a. El número de famlas que han partcpado en el estudo es de 7. b. Los parámetros de las dstrbucones margnales son: = 1 061,59 75,66 m 605,7 c. El coefcente de correlacón de Pearson es r = correlacón entre las dos varables es fuerte postva. 8,08 m = 0,68 por tanto la d. Calculamos las dos rectas de regresón. Puesto que nos dcen que calculemos las rectas de regresón con la auda de la calculadora, calcularemos prmero la covaranza las varanza de X e Y.. r = ,77 = r = 0, ,7 8, ,7 788,49. La recta de regresón de Y sobre X es. Susttuendo los valores obtendos en los apartados anterores, se tene que: 75,66 = 11557,7 ( 1 061,59) = 0,03 + 4, ,77. La recta de regresón de X sobre Y es. Susttuendo los valores obtendos en los apartados anterores, se tene que: 1 061,59 = 11557,7 ( 75,66) = 14,66 47, ,49 e. Los ngresos estmados de una famla con una vvenda de 150 m se calculan con la recta de regresón de X sobre Y o usando drectamente la funcón ˆ 150 : ˆ 150 = 14, ,59 = 151,47 (Obtenendo drectamente con la calculadora sale que los ngresos son de ,80. La dferenca es grande debdo a los redondeos que se han do hacendo con los cálculos ntermedos). Por tanto la renta estmada para una famla con una casa de 150 m es de 151,47. f. La superfce de la casa de una famla con unos ngresos de 800 mensuales se calcula con la recta de regresón de Y sobre X o drectamente con la funcón de la calculadora ˆ 800 : ˆ 800 = 0, ,18 67,78 m Por tanto la superfce estmada para una renta de 800 es de 67,78 m.
5 g. La estmacón para una renta de no será fable puesto que está lejos del rango que toma la renta de las famlas (entre ) por tanto no tene sentdo hacerla.
TEMA 10: ESTADÍSTICA
TEMA 10: La Estadístca es la parte de las matemátcas que se ocupa de recoger, organzar y analzar grandes cantdades de datos para estudar alguna característca de un colectvo. 1. VARIABLES S UIDIMESIOALES
Bloque 5. Probabilidad y Estadística Tema 2. Estadística descriptiva Ejercicios resueltos
Bloque 5. Probabldad y Estadístca Tema. Estadístca descrptva Ejerccos resueltos 5.-1 Dada la sguente tabla de ngresos mensuales, calcular la meda, la medana y el ntervalo modal. Ingresos Frecuenca Menos
Relaciones entre variables
Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón.
Tema 1.3_A La media y la desviación estándar
Curso 0-03 Grado en Físca Herramentas Computaconales Tema.3_A La meda y la desvacón estándar Dónde estudar el tema.3_a: Capítulo 4. J.R. Taylor, Error Analyss. Unv. cence Books, ausalto, Calforna 997.
Medidas de centralización
1 Meddas de centralzacón Meda Datos no agrupados = x X = n = 0 Datos agrupados = x X = n = 0 Medana Ordenamos la varable de menor a mayor. Calculamos la columna de la frecuenca relatva acumulada F. Buscamos
PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE 25 AÑOS MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES
PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE AÑOS EXÁMENES PROPUESTOS Y RESUELTOS DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES CONVOCATORIAS DE --- F Jménez Gómez Este cuaderno
a) Qué población (la de hombres o la de mujeres) presenta un salario medio mayor? b) Qué porcentaje de varones gana más de 900?
EJERCICIO 1. A contnuacón tene dos dstrbucones por sexo y salaro declarado en el prmer empleo tras obtener la lcencatura de un grupo de ttulados por la UNED. Salaro en Hombres en % Mujeres en % < de 600
Facultad de Ingeniería División de Ciencias Básicas Coordinación de Ciencias Aplicadas Departamento de Probabilidad y Estadística
Facultad de Ingenería Dvsón de Cencas Báscas Coordnacón de Cencas Aplcadas Departamento de Probabldad y Estadístca Probabldad y Estadístca Prmer Eamen Fnal Tpo A Semestre: 00- Duracón máma:. h. Consderar
REGRESION LINEAL SIMPLE
REGREION LINEAL IMPLE Jorge Galbat Resco e dspone de una mustra de observacones formadas por pares de varables: (x 1, y 1 ) (x, y ).. (x n, y n ) A través de esta muestra, se desea estudar la relacón exstente
Correlación y regresión lineal simple
. Regresón lneal smple Correlacón y regresón lneal smple. Introduccón La correlacón entre dos varables ( e Y) se refere a la relacón exstente entre ellas de tal manera que a determnados valores de se asocan
Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1
Escuela de Ingenería Comercal Ayudantía # 01, Conceptos Generales, Modelo de Regresón Profesor: Carlos R. Ptta 1 1 [email protected] Escuela de Ingenería Comercal Ayudantía 01 Parte 01: Comentes Señale
Efectos fijos o aleatorios: test de especificación
Cómo car?: Montero. R (2011): Efectos fjos o aleatoros: test de especfcacón. Documentos de Trabajo en Economía Aplcada. Unversdad de Granada. España Efectos fjos o aleatoros: test de especfcacón Roberto
VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL.
VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL. Concepto de varable aleatora. Se llama varable aleatora a toda aplcacón que asoca a cada elemento del espaco muestral de un expermento, un número real.
MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas
Unversdad de Cádz Departamento de Matemátcas MATEMÁTICAS para estudantes de prmer curso de facultades y escuelas técncas Tema 13 Dstrbucones bdmensonales. Regresón y correlacón lneal Elaborado por la Profesora
CAPITULO CUATRO MEDIDAS DE DISPERSION, ASIMETRIA Y CURTOSIS
CAPITULO CUATRO MEDIDAS DE DISPERSION, ASIMETRIA Y CURTOSIS El conocmento de las meddas de centralzacón no es sufcente para caracterzar completamente a una dstrbucón por ejemplo: s las edades medas de
PRACTICA 4. Asignatura: Economía y Medio Ambiente Titulación: Grado en ciencias ambientales Curso: 2º Semestre: 1º Curso
PRACTICA 4 Asgnatura: Economía y Medo Ambente Ttulacón: Grado en cencas ambentales Curso: º Semestre: 1º Curso 010-011 Profesora: Inmaculada C. Álvarez Ayuso [email protected] PREGUNTAS TIPO TEST
Análisis de Regresión y Correlación
1 Análss de Regresón y Correlacón El análss de regresón consste en emplear métodos que permtan determnar la mejor relacón funconal entre dos o más varables concomtantes (o relaconadas). El análss de correlacón
T. 9 El modelo de regresión lineal
1 T. 9 El modelo de regresón lneal 1. Conceptos báscos sobre el análss de regresón lneal. Ajuste de la recta de regresón 3. Bondad de ajuste del modelo de regresón Modelos predctvos o de regresón: la representacón
VARIABLES ALEATORIAS BIDIMENSIONALES. DISTRIBUCIONES
Gestón Aeronáutca: Estadístca Teórca Facultad Cencas Económcas Empresarales Departamento de Economía Aplcada Profesor: Santago de la Fuente Fernández VARIABLES ALEATORIAS BIDIMENSIONALES. DISTRIBUCIONES
REGRESION Y CORRELACION
nav Estadístca (complementos) 1 REGRESION Y CORRELACION Fórmulas báscas en la regresón lneal smple Como ejemplo de análss de regresón, descrbremos el caso de Pzzería Armand, cadena de restaurantes de comda
IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas
IES Menéndez Tolosa (La Línea) Físca y Químca - 1º Bach - Gráfcas 1 Indca qué tpo de relacón exste entre las magntudes representadas en la sguente gráfca: La gráfca es una línea recta que no pasa por el
Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): Ajustes de Tendencia
Investgacón y Técncas de Mercado Prevsón de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): s de Tendenca Profesor: Ramón Mahía Curso 00-003 I.- Introduccón Hasta el momento,
LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA
LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA. LA MEDIANA: Es una medda de tendenca central que dvde al total de n observacones debdamente ordenadas
Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio.
Tema 9 - Estadístca - Matemátcas B 4º E.S.O. 1 TEMA 9 - ESTADÍSTICA 9.1 DOS RAMAS DE LA ESTADÍSTICA 9.1.1 - INTRODUCCIÓN La estadístca tene por objeto el desarrollo de técncas para el conocmento numérco
Análisis de error y tratamiento de datos obtenidos en el laboratorio
Análss de error tratamento de datos obtendos en el laboratoro ITRODUCCIÓ Todas las meddas epermentales venen afectadas de una certa mprecsón nevtable debda a las mperfeccones del aparato de medda, o a
Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos.
ESTADÍSTICA I. Recuerda: Poblacón: Es el conjunto de todos los elementos que cumplen una determnada propedad, que llamamos carácter estadístco. Los elementos de la poblacón se llaman ndvduos. Muestra:
TÉCNICAS AUXILIARES DE LABORATORIO
TÉCNICAS AUXILIARES DE LABORATORIO I.- ERRORES 1.- Introduccón Todas las meddas epermentales venen afectadas de una mprecsón nherente al proceso de medda. Puesto que en éste se trata, báscamente, de comparar
1.- Una empresa se plantea una inversión cuyas características financieras son:
ESCUELA UNIVERSITARIA DE ESTUDIOS EMPRESARIALES. Departamento de Economía Aplcada (Matemátcas). Matemátcas Fnanceras. Relacón de Problemas. Rentas. 1.- Una empresa se plantea una nversón cuyas característcas
Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis
Tema. Estadístcos unvarados: tendenca central, varabldad, asmetría y curtoss 1. MEDIDA DE TEDECIA CETRAL La meda artmétca La medana La moda Comparacón entre las meddas de tendenca central. MEDIDA DE VARIACIÓ
Solución: Se denomina malla en un circuito eléctrico a todas las trayectorias cerradas que se pueden seguir dentro del mismo.
1 A qué se denomna malla en un crcuto eléctrco? Solucón: Se denomna malla en un crcuto eléctrco a todas las trayectoras cerradas que se pueden segur dentro del msmo. En un nudo de un crcuto eléctrco concurren
Medidas de Tendencia Central y de Variabilidad
Meddas de Tendenca Central y de Varabldad Contendos Meddas descrptvas de forma: curtoss y asmetría Meddas de tendenca central: meda, medana y moda Meddas de dspersón: rango, varanza y desvacón estándar.
PREGUNTAS TIPO TEST Y EJERCICIOS PRÁCTICOS PROPUESTOS EN EXÁMENES DE LOS CAPÍTULOS 2, 3 Y 4 (DISTRIBUCIONES DE FRECUENCIAS UNIDIMENSIONALES )
TUTORÍA DE ITRODUCCIÓ A LA ESTADÍSTICA. (º A.D.E.) e-mal: [email protected] PREGUTAS TIPO TEST Y EJERCICIOS PRÁCTICOS PROPUESTOS E EXÁMEES DE LOS CAPÍTULOS, Y 4 (DISTRIBUCIOES DE FRECUECIAS UIDIMESIOALES
Oferta de Trabajo Parte 2. Economía Laboral Julio J. Elías LIE - UCEMA
Oferta de Trabajo Parte 2 Economía Laboral Julo J. Elías LIE - UCEMA Curva de oferta de trabajo ndvdual Consumo Salaro por hora ($) G w=$20 F w=$25 25 Curva de Oferta de Trabajo Indvdual w=$14 20 14 w
1. Lección 7 - Rentas - Valoración (Continuación)
Apuntes: Matemátcas Fnanceras 1. Leccón 7 - Rentas - Valoracón (Contnuacón) 1.1. Valoracón de Rentas: Constantes y Dferdas 1.1.1. Renta Temporal y Pospagable En este caso, el orgen de la renta es un momento
UN ANÁLISIS DE LAS DECISIONES DE FORMACIÓN DE HOGAR, TENENCIA Y DEMANDA DE SERVICIOS DE VIVIENDA DE LOS JÓVENES ESPAÑOLES *
UN ANÁLISIS DE LAS DECISIONES DE FORMACIÓN DE HOGAR, TENENCIA Y DEMANDA DE SERVICIOS DE VIVIENDA DE LOS JÓVENES ESPAÑOLES * Mª Consuelo Colom, Rosaro Martínez y Mª Cruz Molés WP-EC 2000-02 Correspondenca:
Tema 4: Variables aleatorias
Estadístca 46 Tema 4: Varables aleatoras El concepto de varable aleatora surge de la necesdad de hacer más manejables matemátcamente los resultados de los expermentos aleatoros, que en muchos casos son
CAPITULO 3.- ANÁLISIS CONJUNTO DE DOS VARIABLES. 3.1 Presentación de los datos. Tablas de doble entrada.
Introduccón a la Estadístca Empresaral Capítulo - Análss conjunto de dos varables Jesús ánchez Fernández CAPITULO - AÁLII COJUTO DE DO VARIABLE Presentacón de los datos Tablas de doble entrada En el capítulo
ACTIVIDADES INICIALES
Soluconaro 7 Números complejos ACTIVIDADES INICIALES 7.I. Clasfca los sguentes números, dcendo a cuál de los conjuntos numércos pertenece (entendendo como tal el menor conjunto). a) 0 b) 6 c) d) e) 0 f)
FIABILIDAD (V): COMPARACIÓN (NO PARAMÉTRICA) DE MUESTRAS
FIABILIDAD (V): COMPARACIÓN (NO PARAMÉTRICA) DE MUESTRAS Autores: Ángel A Juan Pérez (ajuanp@uocedu), Rafael García Martín (rgarcamart@uocedu) RELACIÓN CON OTROS MATH-BLOCS Este math-block forma parte
Matemáticas aplicadas a las ciencias sociales Estadística y Probabilidad 1º de bachillerato
Departamento de Matemátcas Matemátcas aplcadas a las cencas socales Estadístca y Probabldad º de bachllerato Matemátcas aplcadas a las cencas socales I, pág. de 48 Departamento de Matemátcas TEMA : ESTADÍSTICA
Análisis de Weibull. StatFolio de Muestra: Weibull analysis.sgp
Análss de Webull Resumen El procedmento del Análss de Webull está dseñado para ajustar una dstrbucón de Webull a un conjunto de n observacones. Es comúnmente usado para analzar datos representando tempos
Economía de la Empresa: Financiación
Economía de la Empresa: Fnancacón Francsco Pérez Hernández Departamento de Fnancacón e Investgacón de la Unversdad Autónoma de Madrd Objetvo del curso: Dentro del contexto de Economía de la Empresa, se
Modelos de elección simple y múltiple. Regresión logit y probit. Modelos multilogit y multiprobit.
Modelos de eleccón smple y múltple. Regresón logt y probt. Modelos multlogt y multprobt. Sga J.Muro(14/4/2004) 2 Modelos de eleccón dscreta. Modelos de eleccón smple. Modelos de eleccón múltple. Fnal J.Muro(14/4/2004)
Regresión y correlación Tema 8. 1.1 Contraste sobre β 1.2 Regresión en formato ANOVA. 2. Correlación. Contraste sobre ρ xy
Unversdad Autónoma de Madrd 1 Regresón y correlacón Tema 8 1. Regresón lneal smple 1.1 Contraste sobre β 1. Regresón en formato ANOVA. Correlacón. Contraste sobre ρ xy Análss de Datos en Pscología II Tema
DEPARTAMENTO DE INDUSTRIA Y NEGOCIO UNIVERSIDAD DE ATACAMA COPIAPO - CHILE
DEPATAMENTO DE NDUSTA Y NEGOCO UNESDAD DE ATACAMA COPAPO - CHLE ESSTENCA EN SEE, PAALELO, MXTO Y SUPEPOSCÓN En los sguentes 8 crcutos calcule todas las correntes y ajes presentes, para ello consdere los
CAPITULO 7. METODOLOGÍA DEL PLAN DE PENSIONES ALTERNATIVO. Como se explica en el capítulo 4, una anualidad es una serie de pagos que se realizan
CAPITULO 7. METODOLOGÍA DEL PLAN DE PENSIONES ALTERNATIVO 7. Anualdad de Vda Como se elca en el caítulo 4, una anualdad es una sere de agos que se realzan durante un temo determnado, nombrándose a esta
MODELOS DE ELECCIÓN BINARIA
MODELOS DE ELECCIÓN BINARIA Econometría I UNLP http://www.econometra1.depeco.econo.unlp.edu.ar/ Modelos de Eleccón Bnara: Introduccón Estamos nteresados en la probabldad de ocurrenca de certo evento Podemos
LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION
Unversdad Católca Los Ángeles de Chmbote LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION 1. DEFINICION: Las meddas estadístcas
PARÁMETROS DE UNA DISTRIBUCIÓN DE PROBABILIDAD DISCRETA Media aritmética: μ = x
Dstrbucones de Probabldad dscretas-bn1b DISTRIBUIONES DISRETAS DE PROBABILIDAD Dstrbucones dscretas son aquellas en las que la varable sólo puede tomar valores aslados. Ejemplo: lanzar una moneda ( valores:
Tema 4. Números Complejos
Tema. Números Complejos. Números complejos...... Defncón de números complejo..... Conjugado y opuesto de números complejos..... Representacón gráfca de los complejos.... Operacones con complejos..... Suma
Rentas financieras. Unidad 5
Undad 5 Rentas fnanceras 5.. Concepto de renta 5.2. Clasfcacón de las rentas 5.3. Valor captal o fnancero de una renta 5.4. Renta constante, nmedata, pospagable y temporal 5.4.. Valor actual 5.4.2. Valor
Cálculo y EstadísTICa. Primer Semestre.
Cálculo y EstadísTICa. Prmer Semestre. EstadísTICa Curso Prmero Graduado en Geomátca y Topografía Escuela Técnca Superor de Ingeneros en Topografía, Geodesa y Cartografía. Unversdad Poltécnca de Madrd
PRECIOS MEDIOS ANUALES DE LAS TIERRAS DE USO AGRARIO (METODOLOGÍA)
SECREARÍA ENERAL ÉCNICA MINISERIO DE ARICULURA, ALIMENACIÓN Y MEDIO AMBIENE SUBDIRECCIÓN ENERAL DE ESADÍSICA PRECIOS MEDIOS ANUALES DE LAS IERRAS DE USO ARARIO (MEODOLOÍA) OBJEIVO: Desde 1983 el Mnstero
Programa de Asesor Financiero (PAF) Nivel I
Programa de Asesor Fnancero (PAF) Nvel I MÓDULO 1_Fundamentos de la Inversón SOLUCIÓN_CUESTIONARIOS DEL LIBRO Capítulos 1-3: CAPITALIZACIÓN Y DESCUENTO Capítulo 4: TIPOS DE INTERÉS Y RENTABILIDAD Capítulo
6.1 EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS
TEMA NÚMEROS COMPLEJOS. EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS DEFINICIONES Al resolver ecuacones del tpo : x + = 0 x = ± que no tene solucón en los números reales. Los números complejos nacen del deseo
La adopción y uso de las TICs en las Microempresas Chilenas
Subdreccón Técnca Depto. Investgacón y Desarrollo Estadístco Subdreccón de Operacones Depto. Comerco y Servcos INFORME METODOLÓGICO DISEÑO MUESTRAL La adopcón y uso de las TICs en las Mcroempresas Clenas
CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS
CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS Edgar Acuña Fernández Departamento de Matemátcas Unversdad de Puerto Rco Recnto Unverstaro de Mayagüez Edgar Acuña Analss de Regreson Regresón con varables
MATEMÁTICA DE LAS OPERACIONES FINANCIERAS I
MATEMÁTICA DE LAS OPERACIONES FINANCIERAS I CURSO 0/04 PRIMERA SEMANA Día 7/0/04 a las 6 horas MATERIAL AUXILIAR: Calculadora fnancera DURACIÓN: horas. a) Captal fnancero aleatoro: Concepto. Equvalente
Guía de Electrodinámica
INSTITITO NACIONAL Dpto. de Físca 4 plan electvo Marcel López U. 05 Guía de Electrodnámca Objetvo: - econocer la fuerza eléctrca, campo eléctrco y potencal eléctrco generado por cargas puntuales. - Calculan
Fertilidad e Ingresos
Prelmnar. Los comentaros son muy benvendos. Fertldad e Ingresos Evdenca causal basada en varacones exógenas en el número de hjos Resumen José María Cabrera * Juno 2011 Trataremos de dentfcar y estmar el
Perturbación de los valores propios simples de matrices de polinomios dependientes diferenciablemente de parámetros
Perturbacón de los valores propos smples de matrces de polnomos dependentes dferencablemente de parámetros M Isabel García-Planas 1, Sona Tarragona 2 1 Dpt de Matemàtca Aplcada I, Unverstat Poltècnca de
Organización y resumen de datos cuantitativos
Organzacón y resumen de datos cuanttatvos Contendos Organzacón de datos cuanttatvos: dagrama de tallos y hojas, tablas de frecuencas. Hstogramas. Polígonos. Ojvas ORGANIZACIÓN Y RESUMEN DE DATOS CUANTITATIVOS
ESTADÍSTICA DESCRIPTIVA Métodos Estadísticos Aplicados a las Auditorías Sociolaborales
ESTADÍSTICA DESCRIPTIVA Métodos Estadístcos Aplcados a las Audtorías Socolaborales Francsco Álvarez González http://www.uca.es/serv/fag/fct/ [email protected] Bajo el térmno Estadístca Descrptva
GANTT, PERT y CPM INDICE
GANTT, PERT y CPM INDICE 1 Antecedentes hstórcos...2 2 Conceptos báscos: actvdad y suceso...2 3 Prelacones entre actvdades...3 4 Cuadro de prelacones y matrz de encadenamento...3 5 Construccón del grafo...4
2.2 TASA INTERNA DE RETORNO (TIR). Flujo de Caja Netos en el Tiempo
Evaluacón Económca de Proyectos de Inversón 1 ANTECEDENTES GENERALES. La evaluacón se podría defnr, smplemente, como el proceso en el cual se determna el mérto, valor o sgnfcanca de un proyecto. Este proceso
Análisis de la Varianza de dos factores con replicaciones: Caso Balanceado (Scheffé, 1959)
Modelo Lneal 03 Ana M Banco 1 Análss de la Varanza de dos factores con replcacones: Caso Balanceado cheffé, 1959 En este eemplo nos nteresa el tempo de coagulacón en mnutos del plasma sanguíneo para 3
Media es la suma de todas las observaciones dividida por el tamaño de la muestra.
Estadístcos Los estadístcos son valores calculados con los datos de una varable cuanttatva y que mden alguna de las característcas de la dstrbucón muestral. Las prncpales característcas son: tendenca central,
-.GEOMETRÍA.- a) 37 cm y 45 cm. b) 16 cm y 30 cm. En estos dos, se dan la hipotenusa y un cateto, y se pide el otro cateto:
-.GEOMETRÍA.- Ejercco nº 1.- Calcula el lado que falta en este trángulo rectángulo: Ejercco nº 2.- En los sguentes rectángulos, se dan dos catetos y se pde la hpotenusa (s su medda no es exacta, con una
CÁLCULO DE LA TASA INTERNA DE RETORNO DE LA EDUCACIÓN EN COLOMBIA *
CÁLCULO DE LA TASA INTERNA DE RETORNO DE LA EDUCACIÓN EN * INTRODUCCIÓN Helmuth Yesd Aras Gómez ** Álvaro Hernando Chaves Castro *** El efecto de la educacón sobre el desarrollo económco tradconalmente
Métodos específicos de generación de diversas distribuciones discretas
Tema 3 Métodos específcos de generacón de dversas dstrbucones dscretas 3.1. Dstrbucón de Bernoull Sea X B(p). La funcón de probabldad puntual de X es: P (X = 1) = p P (X = 0) = 1 p Utlzando el método de
Determinación de Puntos de Rocío y de Burbuja Parte 1
Determnacón de Puntos de Rocío y de Burbuja Parte 1 Ing. Federco G. Salazar ( 1 ) RESUMEN El cálculo de las condcones de equlbro de fases líqudo vapor en mezclas multcomponentes es un tema de nterés general
62 EJERCICIOS de NÚMEROS COMPLEJOS
6 EJERCICIOS de NÚMEROS COMPLEJOS. Resolver las sguentes ecuacones en el campo de los números complejos: a x -x+=0 (Soluc: ± b x +=0 (Soluc: ± c x -x+=0 (Soluc: ± d x -x+=0 (Soluc: ± e x -6x +x-6=0 (Soluc:,
LA EFICIENCIA RELATIVA DE LASCOMPAÑÍAS DE TRANSPORTE
LA EFICIENCIA RELATIVA DE LASCOMPAÑÍAS DE TRANSPORTE AEREO. María Belén Rey Legdos. Departamento de Economía Aplcada II. Facultad de CC Económcas. Unversdad Complutense de Madrd. 1. Introduccón. El objetvo
3. ASOCIACIÓN ENTRE DOS VARIABLES CUALITATIVAS
1. INTRODUCCIÓN Este tema se centra en el estudio conjunto de dos variables. Dos variables cualitativas - Tabla de datos - Tabla de contingencia - Diagrama de barras - Tabla de diferencias entre frecuencias
DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID
DELTA MATE OMAÓN UNETAA / Gral. Ampuda, 6 8003 MADD EXÁMEN NTODUÓN A LA ELETÓNA UM JUNO 008 El examen consta de ses preguntas. Lea detendamente los enuncados. tene cualquer duda consulte al profesor. Todas
1. Números imaginarios. Números complejos en forma binómica página 115. 2. Representación gráfica de los números complejos página 116
Números complejos E S Q U E M A D E L A U N I D A D. Números magnaros. Números complejos en forma bnómca págna. Representacón gráfca de los números complejos págna 6.. Suma de números complejos págna 8.
ESTADISTICA APLICADA A LA EDUCACIÓN
UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA FACULTAD DE EDUCACIÓN DEPARTAMENTO DE MÉTODOS DE INVESTIGACIÓN Y DIAGNÓSTICO EN EDUCACIÓN I Grados de Educacón Socal y Pedagogía ESTADISTICA APLICADA A LA
IMPACTO DEL MICROCRÉDITO SOBRE LA POBREZA DEL INGRESO: UN ESTUDIO EN MERCADOS DE CRÉDITO URBANOS EN MÉXICO. Miguel Niño Zarazúa *
IMPACTO DEL MICROCRÉDITO SOBRE LA POBREZA DEL INGRESO: UN ESTUDIO EN MERCADOS DE CRÉDITO URBANOS EN MÉXICO Mguel Nño Zarazúa Resumen Este estudo presenta una estmacón del mpacto del mcrocrédto sobre la
ANÁLISIS DE DATOS MULTIDIMENSIONALES
AÁLISIS DE DATOS MULTIDIMESIOALES ITRODUCCIÓ DISTRIBUCIÓ DE FRECUECIAS MULTIDIMESIOAL DISTRIBUCIOES MARGIALES DISTRIBUCIOES CODICIOADAS IDEPEDECIA ESTADÍSTICA ESTUDIO AALÍTICO DE DISTRIBUCIOES MULTIDIMESIOALES
Glosario básico. de términos estadísticos
Glosaro básco de térmnos estadístcos Lma, mayo de 2006 CREDITOS Dreccón y Supervsón Lupe Berrocal de Montestruque Drectora Técnca del Centro de Investgacón y Desarrollo Responsable del documento Hermna
4. REPRESENTACIONES GRÁFICAS PARA DATOS CATEGÓRICOS.
4. REPRESETACIOES GRÁFICAS PARA DATOS CATEGÓRICOS. Cuando se manejan fenómenos categórcos, se pueden agrupar las observacones en tablas de resumen, para después representarlas en forma gráfca como dagramas
Trabajo y Energía Cinética
Trabajo y Energía Cnétca Objetvo General Estudar el teorema de la varacón de la energía. Objetvos Partculares 1. Determnar el trabajo realzado por una fuerza constante sobre un objeto en movmento rectlíneo..
CORRELACION Y REGRESION
CORRELACION Y REGREION Jorge Galbat Resco e dspone de una muestra de observacones formadas por pares de varables: (x 1, y 1 ), (x, y ),.., (x n, y n ) A través de esta muestra, se desea estudar la relacón
315 M de R Versión 1 Segunda Parcial 1/8 Lapso 2008/2
5 M de R Versón Segunda Parcal /8 Lapso 8/ UNIVERSIDAD NACIONAL AIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA MODELO DE RESPUESTA ASIGNATURA: Investgacón de Operacones I CÓDIGO: 5 MOMENTO: Segunda Parcal
4 Contraste de hipótesis en el modelo de regresión múltiple
4 Contraste de hpótess en el modelo de regresón múltple Ezequel Urel Unversdad de Valenca Versón: 9-13 4.1 El contraste de hpótess: una panorámca 1 4.1.1 Formulacón de la hpótess nula y de la hpótess alternatva
LA FINANCIACION DE PROVEEDORES Y LA GESTION DE STOCKS. UNA VISION CONJUNTA.
LA FINANCIACION DE PROVEEDORES Y LA GESTION DE STOCKS. UNA VISION CONJUNTA. Lucía Isabel García Cebrán Departamento de Economía y Dreccón de Empresas Unversdad de Zaragoza Gran Vía, 2 50.005 Zaragoza (España)
Fugacidad. Mezcla de gases ideales
Termodnámca del equlbro Fugacdad. Mezcla de gases deales rofesor: Alí Gabrel Lara 1. Fugacdad 1.1. Fugacdad para gases Antes de abarcar el caso de mezclas de gases, debemos conocer como podemos relaconar
EXPERIMENTACIÓN COMERCIAL(I)
EXPERIMENTACIÓN COMERCIAL(I) En un expermento comercal el nvestgador modfca algún factor (denomnado varable explcatva o ndependente) para observar el efecto de esta modfcacón sobre otro factor (denomnado
