EJERCICIOS RESUELTOS TEMA 2

Tamaño: px
Comenzar la demostración a partir de la página:

Download "EJERCICIOS RESUELTOS TEMA 2"

Transcripción

1 EJERCICIOS RESUELTOS TEMA.1. La Moda, para el grupo de Varones de la Tabla 1, es: A) 4,5; B) 17; C) 60.. Con los datos de la Tabla 1, la meda en para las Mujeres es: A) gual a la meda para los Varones; B) mayor que la meda para los Varones; C) menor que la meda para los Varones.3. El Percentl 30, para el grupo de Mujeres en la Tabla 1, es: A) 3; B) 4,3; C) 7,5 Mujeres Varones Tabla 1: Resultados obtendos por un grupo de 60 mujeres y 60 hombres en una prueba de fludez verbal ().4. Según los datos obtendos en las Fguras 1 y, las nñas obtuveron en meda: A) más puntos que los nños; B) los msmos puntos que los nños; C) menos puntos que los nños.5. La medana de las puntuacones obtendas con los datos de la Fgura 1 es: A) 6,5; B) 7,0; C) 8,6.6. El valor de la meda y la medana es: A) el msmo en el caso de la Fgura 1; B) el msmo en el caso de la Fgura ; C) dferente tanto en la Fgura 1 como en la Fgura Fgura 1. Nº nñas de 9 años Fgura. Nº nños de 9 años En las abscsas se clasfca el número de puntos obtendos por cada nña o nño, en un juego de ordenador en una hora. La Fgura 1 corresponde a 15 nñas de nueve años y la Fgura a 10 nños de nueve años. En las ordenadas están las frecuencas de cada ntervalo..7. Con los datos de la Tabla, qué percentl le corresponde a un alumno con una puntuacón de 47?: A) 6; B) 75; C) Con los datos de la Tabla, el valor de la medana es: A) 4; B) 44; C) 50 Tabla : Dstrbucón de frecuencas de las puntuacones obtendas por 80 sujetos en un test de ntelgenca emoconal. Sabemos que la desvacón típca es gual a 5,86. n

2 .9. El P50 de una dstrbucón se corresponde con el: A) Q1; B) D5; C) Q Qué porcentaje de nños de 1 meses de la Tabla 3 tenen menor estatura que un nño de esa edad que mde 80 centímetros? A) 50; B) 90; C) Con los datos de la Tabla 3, cuál es la moda de la dstrbucón? A) 45; B) 74; C) 80 Tabla 3. Estatura en centímetros de nños de 1 meses de edad. Estatura Frecuenca Con los datos de la Fgura 3, la moda de la varable Poder adqustvo es gual a: A) 1 bajo ; B) medo ; C) 3 alto Fgura 3. Poder adqustvo de las famlas que partcpan en una nvestgacón..13. Cuando a un conjunto de puntuacones con meda gual a 5 se les resta una constante gual a 5, las puntuacones resultantes van a tener una meda de: A) 5; B) -5; C) Con los datos de la Tabla 4, el percentl 75 de los nños de la cudad A es gual a: A) 16; B) 14,5; C) 13,5 Cudad A Cudad B Tabla 4: Puntuacones obtendas en un test de apttud numérca por dos grupos de nños de dos cudades dstntas. Los de la cudad A, presentan una meda de 10,75, mentras que en los de la cudad B la desvacón típca es de 5,1.

3 .15. En la Stuacón 1, la dstrbucón de la edad de los sujetos: A) no tene moda; B) tene una moda; C) tene dos modas.16. En la Stuacón 1, el 80% de los sujetos tene una edad menor que: A) 6,5; B) 8; C) 9,5.17. En la Stuacón 1, la edad meda de los sujetos es: A) 5; B) 50; C) 150 Stuacón 1. La gráfca muestra la dstrbucón de la edad () de los 50 sujetos de una nvestgacón. En el eje horzontal, se recogen los límtes exactos de los ntervalos de y en el eje vertcal la frecuenca absoluta acumulada (n a )..18. En la Fgura 4, la moda es gual a: A) 3; B) 6; C) 70 Fgura 4: Número de conductas obsesvas observadas durante un día, en una muestra de n enfermos.19. Un nño de la Tabla 5 con una puntuacón = 1,7 ndca que ese nño tene una ntelgenca emoconal: A) nferor a la meda de su grupo; B) gual a la meda de su grupo; C) superor a la meda de su grupo.0. Con los datos de la Tabla 5, el percentl 75 es: A) 11,5; B) 13,5; C) 15,5 Tabla 5: Puntuacones de nños en un test de ntelgenca emoconal () agrupadas en ntervalos junto con sus frecuencas absolutas (n ) y sus frecuencas absolutas acumuladas (n a ). n n a

4 .1. Atendendo a los datos de la Tabla 6, la medana del tempo de reaccón es: A) 30; B) 347,; C) 360,5... Cuál es la moda de la varable tempo de reaccón según los datos de la Tabla 6? A) 30; B) 340,5; C) 350,5. Tabla 6. Tempo de reaccón de estudantes en una tarea de atencón vsual focalzada. Se calcula que n Tempo de reaccón Frecuenca.3. Atendendo a las dstrbucones de frecuencas de la Fgura 5, en cuál concdrán los valores de meda, medana y moda? A) En la de alumnos de Prmara; B) En la de alumnos de secundara; C) En la de alumnos de Bachllerato. Fgura 5. Dstrbucones de frecuencas obtendas al aplcar una msma prueba de competenca lectora a alumnos de: (a) Prmara, (b) Secundara y (c) Bachllerato..4. En un test los ses prmeros alumnos han obtendo las puntuacones: 5, 10, 15, 16, 9, 10. La medana de estas puntuacones es : A) 15,5; B) 10; C)15.5. Con los datos de la tabla 7, la meda en el grupo no-clínco es gual a: A) 14,5; B) 15,9; C) 18,3.6. Con los datos de la tabla 7, una persona que ha obtendo una puntuacón de 17 en el grupo clínco, qué porcentaje de personas dejaría por debajo de sí?: A) 38,3%; B) 44,0%; C) 5,5% Tabla 7: Dstrbucón de frecuencas relatvas en un cuestonaro de depresón aplcado a 300 personas del grupo clínco (enfermos) y a 00 del grupo no clínco (sanos). p G. clínco G. no clínco 4-8 0,3 0, ,4 0, ,19 0, ,14 0, ,11 0,10.7. Con los datos de la tabla 8, cuál de las sguentes meddas de tendenca central tendrá el valor más alto? A) la meda; B) la medana; C) la moda. 4

5 Tabla 8: Resultados en un test de agudeza vsual () de sete personas en una nvestgacón sobre la mopía. Persona En los datos de la tabla 9, la meda es: A) 36,5; B) 39,5; C) 33,5..9. Atendendo a la tabla 9, el decl es: A) 8,5; B) 30,5; C) 9,5. Tabla 9: Puntuacones de 00 unverstaros en una escala de acttudes agrupadas en ntervalos y las frecuencas absolutas (n ) de cada ntervalo. La varanza de esta dstrbucón es gual a 13,84. n Respecto a la Tabla 10 la dstrbucón: A) no tene moda; B) es unmodal; C) es bmodal..31. Qué percentl corresponde a =4,5 de la dstrbucón de la Tabla 10? A) P10; B) P5; C) P50. Tabla 10. Dstrbucón de las puntuacones obtendas en una muestra de 0 alumnos del prmer curso de la Educacón Segundara Oblgatora, en un test de razonamento abstracto (). p p a , ,15 0, ,5 0, ,5 0, ,16 0, ,06 0, ,0 0, ,01 0,01 5

6 .3. Tenendo en cuenta úncamente los datos de la dstrbucón 3 presentada en la Stuacón, la meda: A) es gual a 4,3; B) es gual a 5; C) no se puede calcular..33. En qué dstrbucón, de las presentadas en la Stuacón, el valor de la moda es menor? A) En la dstrbucón 1; B) En la dstrbucón ; C) En la dstrbucón Atendendo a los datos de la Stuacón, el tercer cuartl de la dstrbucón 1 es: A) 5,96; B) 8,75; C) 75. Stuacón. El número de asgnaturas matrculadas en la UNED por un grupo de 40 estudantes es: :, 6, 3, 4, 4, 6, 5,, 3, 3, 5, 10, 8, 5, 4, 7, 3,, 1, 4, 5, 4, 6, 8, 7, 4, 3,, 7, 9, 4, 1, 6, 3, 5, 4, 3, 5, 5,. Con estos datos pueden realzarse dstntas dstrbucones de frecuencas, como las tres sguentes: Dstrbucón 1 n Dstrbucón n Dstrbucón 3 n 7 o más Qué índce NO es una medda de tendenca central?: A) La Medana; B) La Desvacón meda; C) La Moda..36. En el grupo que recbó tratamento presencal para dejar de fumar, qué índce NO podemos calcular con los datos de la Gráfca 1? A) La meda; B) El prmer cuartl; C) La ampltud sem-ntercuartl..37. Cuál es la medana del número de cgarrllos daros consumdos para el grupo que recbó el tratamento para dejar de fumar en versón telemátca? A) 4,5; B) 6,5; C) Atendendo a los resultados del grupo que recbó tratamento presencal para dejar de fumar mostrados en la Gráfca 1, cuál es la moda del número de cgarrllos daros consumdos?: A) 1; B) 15; C) 19. Fgura 6. Número de cgarrllos daros consumdos después de un tratamento ntensvo para dejar de fumar. 50 partcpantes recberon la modaldad presencal y otros 50 la modaldad telemátca. 6

7 .39. Con los datos de la Fgura 7, cuál es la moda de la varable trastorno pscológco?: A) 45; B) Es amodal; C) Trastorno por estrés postraumátco. Fgura 7. Trastornos pscológcos que presentan las víctmas del 11M según los resultados del proyecto de Apoyo Pscológco a Afectados de Terrorsmo..40. Los percentles son meddas de: A) tendenca central; B) poscón; C) desvacón. 7

8 SOLUCIONES.1. A.. B Mo: Punto medo del ntervalo con mayor frecuenca Mujeres n M Varones n V n M n V , , , , , , , B n M n a P ,5 3,5 3,5 0,8 4, A nñas n n nñas n n nños n n nños n n ,5.5. C 8

9 n n a Md 5,5 5 5,5 3,15 8,65 8, C. Las dos dstrbucones son asmétrcas a smple vsta..7. C n n a La puntuacón =47 está en el ntervalo [45-49]. (P k k L ) n I n c n d (47 44,5) , Por lo tanto, a la puntuacón =47, le corresponde el percentl A n 80 40, por lo que el ntervalo crítco es [40-44] n n a Md L n n nc d I , B.10. C 9

10 Estatura Frecuenca na B.1. B La puntuacón 80 se encuentra en el ntervalo k P L n 80, k I n c n d La moda es el punto medo del ntervalo con mayor frecuenca C.14. B B n n a A.16. C n k nd 50 P 1,5 75 L I 4 14,5 nc 0 La dstrbucón no tene moda (es amodal) dado que todos los ntervalos tenen la msma frecuenca absoluta. En la gráfca de la stuacón 1 se observa que el 80% de los sujetos tene una edad menor que 9,5. Obtendríamos el msmo resultado aplcando la sguente fórmula: 10

11 .17. A P Límtes exactos n n a 9,5 3, ,5 9, ,5 6, ,5 3, ,5 0, L n k n nc d I 6, ,5 n n 9,5 3, ,5 9, ,5 6, ,5 3, ,5 0, n n A La moda es el valor de la varable que más se repte. Así, Mo = 3 dado que 70 enfermos (la mayor frecuenca) muestran 3 conductas obsesvas daras ( = 3)..19. C n , , , , ,5 7 n n , 70 Como 1, 70 es mayor que 10, 70, el nño tene una ntelgenca emoconal superor a la meda de su grupo..0. B n n a

12 P L n k n nc d I 1, ,5.1. B Tempo reaccón n n a Md , , , C..3. B.4. B.5. B Mo 350, 5 Se ordenan las puntuacones: 5, 9, 10, 10, 15, 16 Dado que n=6 es par, la medana es el valor medo de los dos valores centrales Md 10 p p ,08, ,5 5, ,34 5, ,3, ,10 0,60 15,9 p 15, 9.6. A 1

13 .7. A.8. B p n n a , , , , , ( , ) k 38, Para calcular la medana, ordenamos prmero los datos de menor a mayor: 6, 6, 8, 9, 1, 16, 0 Dado que n=7 es mpar, la medana es el valor central, Md=9 La Mo=6 n n , , , , , , , , , ,5.9. C n na , , , , , , , , ,5 8 Dado que el decl es el percentl 0, calculamos drectamente el percentl 0 de la dstrbucón. n k 00 0 nd 6 P 7,5 0 L I 6 9,5 nc 4 13

14 .30. C.31. B.3. C.33. A.34. A k = 5 No es posble su cálculo porque el ntervalo máxmo no tene límte superor. En la dstrbucón 1 la moda es 3,5, mentras que en las dstrbucones y 3 su valor es 4. Dstrbucón 1 n n a Q nk 4075 nd P 4,5 75 L I nc , B.36. A.37. A Nº cgarrllos n n a 1 o más Md, 5 3, 5 3, 5 4, A.39. C.40. B 14

LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA

LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA. LA MEDIANA: Es una medda de tendenca central que dvde al total de n observacones debdamente ordenadas

Más detalles

INTRODUCCIÓN. Técnicas estadísticas

INTRODUCCIÓN. Técnicas estadísticas Tema : Estadístca Descrptva Undmensonal ITRODUCCIÓ Fenómeno determnsta: al repetrlo en déntcas condcones se obtene el msmo resultado. (Ejemplo: lómetros recorrdos en un ntervalo de tempo a una velocdad

Más detalles

Tema 1: Estadística Descriptiva Unidimensional

Tema 1: Estadística Descriptiva Unidimensional Fenómeno determnsta: al repetrlo en déntcas condcones se obtene el msmo resultado. Fenómeno aleatoro: no es posble predecr el resultado. La estadístca se ocupa de aquellos fenómenos no determnstas donde

Más detalles

Medidas de centralización

Medidas de centralización 1 Meddas de centralzacón Meda Datos no agrupados = x X = n = 0 Datos agrupados = x X = n = 0 Medana Ordenamos la varable de menor a mayor. Calculamos la columna de la frecuenca relatva acumulada F. Buscamos

Más detalles

GUÍA DE APOYO AL APRENDIZAJE N 2

GUÍA DE APOYO AL APRENDIZAJE N 2 GUÍA E APOYO AL APREIZAJE Meddas de Tendenca Central ó de Resumen Las meddas de resumen son valores de la varable que permten resumr la normacón que hay en una tabla undamentalmente estas meddas se usan

Más detalles

MEDIDAS DESCRIPTIVAS

MEDIDAS DESCRIPTIVAS Tema 2: MEDIDAS DESCRIPTIVAS DE LOS DATOS 1. MEDIDAS DE CETRALIZACIÓ: Meda Medana Moda Cuantles Otras 2. MEDIDAS DE DISPERSIÓ: Desvacón típca Varanza Rango Otras 3. MEDIDAS DE FORMA: Asmetría Apuntamento

Más detalles

SEMANA 5 MEDIDAS DE TENDENCIA CENTRAL Y POSICIÓN

SEMANA 5 MEDIDAS DE TENDENCIA CENTRAL Y POSICIÓN Estadístca SEMANA 5 MEDIDAS DE TENDENCIA CENTRAL Y POSICIÓN LOGRO DE APRENDIZAJE: Al fnalzar la sesón, el estudante estará en la capacdad de calcular e nterpretar meddas de tendenca central y poscón de

Más detalles

Descripción de una variable

Descripción de una variable Descrpcón de una varable Tema. Defncones fundamentales. Tabla de frecuencas. Datos agrupados. Meddas de poscón Meddas de tendenca central: meda, medana, moda Ignaco Cascos Depto. Estadístca, Unversdad

Más detalles

2 Dos tipos de parámetros estadísticos

2 Dos tipos de parámetros estadísticos Dos tpos de parámetros estadístcos Págna 198 1. Calcula la meda, la medana y la moda de cada una de estas dstrbucones estadístcas: a) 4, 5, 6, 6, 6, 6, 7, 11, 1, 17 b), 1, 6, 9,, 8, 9,, 14, c), 3, 3, 3,

Más detalles

Estadística Unidimensional: SOLUCIONES

Estadística Unidimensional: SOLUCIONES 4ª SesónFecha: Estadístca Undmensonal: SOLUCIOES Varables estadístca dscreta 1 Con los datos del ejercco de Pág 19 nº 3 determna: a) Tabla de Frecuencas b) Dagrama de barras Gráfco acumulado c) Meddas

Más detalles

Población 1. Población 1. Población 2. Población 2. Población 1. Población 1. Población 2. Población 2. Frecuencia. Frecuencia

Población 1. Población 1. Población 2. Población 2. Población 1. Población 1. Población 2. Población 2. Frecuencia. Frecuencia MAT-3 Estadístca I Tema : Meddas de Dspersón Facltador: Félx Rondón, MS Insttuto Especalzado de Estudos Superores Loyola Introduccón Las meddas de tendenca central son ndcadores estadístcos que resumen

Más detalles

Capítulo III Medidas de posición y de dispersión

Capítulo III Medidas de posición y de dispersión Capítulo III Meddas de poscón y de dspersón Introduccón Hasta ahora, para descrbr un conjunto de datos, se han empleado tablas y gráfcos. Estos son útles para dar rápdamente una vsón general del comportamento

Más detalles

ESTADÍSTICA. x es el cociente entre la frecuencia absoluta del valor

ESTADÍSTICA. x es el cociente entre la frecuencia absoluta del valor el blog de mate de ada: ESTADÍSTICA pág. 1 ESTADÍSTICA La estadístca es la cenca que permte acer estudos de grandes poblacones escogendo sólo un pequeño grupo de ndvduos, lo que aorra tempo y dnero. Poblacón

Más detalles

Medidas de Variabilidad

Medidas de Variabilidad Meddas de Varabldad Una medda de varabldad es un ndcador del grado de dspersón de un conjunto de observacones de una varable, en torno a la meda o centro físco de la msma. S la dspersón es poca, entonces

Más detalles

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio.

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio. Tema 9 - Estadístca - Matemátcas B 4º E.S.O. 1 TEMA 9 - ESTADÍSTICA 9.1 DOS RAMAS DE LA ESTADÍSTICA 9.1.1 - INTRODUCCIÓN La estadístca tene por objeto el desarrollo de técncas para el conocmento numérco

Más detalles

ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR FUNDAMENTOS DE MATEMÁTICAS

ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR FUNDAMENTOS DE MATEMÁTICAS IES ÍTACA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR FUNDAMENTOS DE MATEMÁTICAS HOJA 18: ESTADÍSTICA 1. El número de hermanos de los alumnos de una clase es el sguente: 1 3 1 1 1 1 1 1 1 1 3 1 3 5 a)

Más detalles

el blog de mate de aida CSI: Estadística unidimensional pág. 1

el blog de mate de aida CSI: Estadística unidimensional pág. 1 el blog de mate de ada CSI: Estadístca undmensonal pág. ESTADÍSTICA La estadístca es la cenca que permte hacer estudos de grandes poblacones escogendo sólo un pequeño grupo de ndvduos, lo que ahorra tempo

Más detalles

EJERCICIOS RESUELTOS TEMA 3.

EJERCICIOS RESUELTOS TEMA 3. INTRODUCCIÓN AL ANÁLII DE DATO EJERCICIO REUELTO TEMA 3. 3.1. La ampltud total de la dstrbucó de frecuecas de la tabla 1. es: A) 11; B) 1; C). Tabla 1. Estatura e cetímetros de ños de 1 meses de edad.

Más detalles

INICIACIÓN A LA ESTADÍSTICA. ACTIVIDADES DE AUTOEVALUACIÓN DE LA UNIDAD ESTADÍSTICA. (SOLUCIONES)

INICIACIÓN A LA ESTADÍSTICA. ACTIVIDADES DE AUTOEVALUACIÓN DE LA UNIDAD ESTADÍSTICA. (SOLUCIONES) ACTIVIDADES DE AUTOEVALUACIÓ DE LA UIDAD ESTADÍSTICA. (SOLUCIOES) 1. D, en cada caso, cuál es la varable que se quere estudar y especfca de qué tpo es: Tempo dedcado a las tareas doméstcas por parte de

Más detalles

ESTADÍSTICA. Definiciones

ESTADÍSTICA. Definiciones ESTADÍSTICA Defncones - La Estadístca es la cenca que se ocupa de recoger, contar, organzar, representar y estudar datos referdos a una muestra para después generalzar y sacar conclusones acerca de una

Más detalles

Cálculo y EstadísTICa. Primer Semestre.

Cálculo y EstadísTICa. Primer Semestre. Cálculo y EstadísTICa. Prmer Semestre. EstadísTICa Curso Prmero Graduado en Geomátca y Topografía Escuela Técnca Superor de Ingeneros en Topografía, Geodesa y Cartografía. Unversdad Poltécnca de Madrd

Más detalles

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis Tema. Estadístcos unvarados: tendenca central, varabldad, asmetría y curtoss 1. MEDIDA DE TEDECIA CETRAL La meda artmétca La medana La moda Comparacón entre las meddas de tendenca central. MEDIDA DE VARIACIÓ

Más detalles

Tema 6. Estadística descriptiva bivariable con variables numéricas

Tema 6. Estadística descriptiva bivariable con variables numéricas Clase 6 Tema 6. Estadístca descrptva bvarable con varables numércas Estadístca bvarable: tpos de relacón Relacón entre varables cuanttatvas Para dentfcar las característcas de una relacón entre dos varables

Más detalles

a) Qué población (la de hombres o la de mujeres) presenta un salario medio mayor? b) Qué porcentaje de varones gana más de 900?

a) Qué población (la de hombres o la de mujeres) presenta un salario medio mayor? b) Qué porcentaje de varones gana más de 900? EJERCICIO 1. A contnuacón tene dos dstrbucones por sexo y salaro declarado en el prmer empleo tras obtener la lcencatura de un grupo de ttulados por la UNED. Salaro en Hombres en % Mujeres en % < de 600

Más detalles

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO PLANTEL IGNACIO RAMÍREZ C. DE LA ESCUELA PREPARATORIA

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO PLANTEL IGNACIO RAMÍREZ C. DE LA ESCUELA PREPARATORIA UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO PLANTEL IGNACIO RAMÍREZ C. DE LA ESCUELA PREPARATORIA PROBLEMARIO DE ESTADÍSTICA MÓDULO I. REPRESENTACIÓN DE DATOS MÓDULO II. MEDIDAS DE TENDENCIA CENTRAL ELABORADO

Más detalles

DATOS AGRUPADOS POR INTERVALOS DE CLASE

DATOS AGRUPADOS POR INTERVALOS DE CLASE 3. Datos agrupados por ntervalo (Varable contnua) Generalmente los datos se agrupan por medo de ntervalos de clase, los cálculos son una aproxmacón a la realdad, se faclta los cálculos. En la agrupacón

Más detalles

Tema 8 - Estadística - Matemáticas CCSSI 1º Bachillerato 1

Tema 8 - Estadística - Matemáticas CCSSI 1º Bachillerato 1 Tema 8 - Estadístca - Matemátcas CCSSI 1º Bachllerato 1 TEMA 8 - ESTADÍSTICA 8.1 NOCIONES GENERALES DE ESTADÍSTICA 8.1.1 INTRODUCCIÓN Objetvo: La estadístca tene por objeto el desarrollo de técncas para

Más detalles

5.0 ESTADÍSTICOS PARA DATOS AGRUPADOS.

5.0 ESTADÍSTICOS PARA DATOS AGRUPADOS. 5.0 ESTADÍSTICOS PARA DATOS AGRUPADOS. Para organzar los datos a medda que el número de observacones crece, es necesaro condensar más los datos en tablas apropadas, a fn de presentar, analzar e nterpretar

Más detalles

TRABAJO 1: Variables Estadísticas Unidimensionales (Tema 1).

TRABAJO 1: Variables Estadísticas Unidimensionales (Tema 1). TRABAJO 1: Varables Estadístcas Undmensonales (Tema 1). Técncas Cuanttatvas I. Curso 2016/2017. APELLIDOS: NOMBRE: GRADO: GRUPO: DNI (o NIE): A: B: C: D: En los enuncados de los ejerccos que sguen aparecen

Más detalles

ESTADÍSTICA UNIDIMENSIONAL

ESTADÍSTICA UNIDIMENSIONAL ESTADÍSTICA UNIDIMENSIONAL La estadístca undmensonal trata de resumr la nformacón contenda en una tabla que contene nformacón de una sola varable en unos pocos números. Las meddas de poscón pueden ser:

Más detalles

Medidas de Tendencia Central y de Variabilidad

Medidas de Tendencia Central y de Variabilidad Meddas de Tendenca Central y de Varabldad Contendos Meddas descrptvas de forma: curtoss y asmetría Meddas de tendenca central: meda, medana y moda Meddas de dspersón: rango, varanza y desvacón estándar.

Más detalles

Estadística. Problemas de Estadística 1º Ciclo ESO Departamento de Matemáticas Raúl González Medina

Estadística. Problemas de Estadística 1º Ciclo ESO Departamento de Matemáticas  Raúl González Medina 1 Estadístca 01.- Indca que varables son cualtatvas y cuales cuanttatvas: a) Comda Favorta. b) Profesón que te gusta. c) Número de goles marcados por tu equpo favorto en la últma temporada. d) Número de

Más detalles

Bloque 5. Probabilidad y Estadística Tema 2. Estadística descriptiva Ejercicios resueltos

Bloque 5. Probabilidad y Estadística Tema 2. Estadística descriptiva Ejercicios resueltos Bloque 5. Probabldad y Estadístca Tema. Estadístca descrptva Ejerccos resueltos 5.-1 Dada la sguente tabla de ngresos mensuales, calcular la meda, la medana y el ntervalo modal. Ingresos Frecuenca Menos

Más detalles

Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma

Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma Estadístca Tema 1: Estadístca Descrptva Undmensonal Undad 2: Meddas de Poscón, Dspersón y de Forma Área de Estadístca e Investgacón Operatva Lceso J. Rodríguez-Aragón Septembre 2010 Contendos...............................................................

Más detalles

Tema 1: Análisis de datos unidimensionales

Tema 1: Análisis de datos unidimensionales Tema : Análss de datos undmensonales. Varables estadístcas undmensonales. Representacones gráfcas.. Característcas de las dstrbucones de frecuencas undmensonales.. Varables estadístcas undmensonales. Representacones

Más detalles

TEMA 10: ESTADÍSTICA

TEMA 10: ESTADÍSTICA TEMA 10: La Estadístca es la parte de las matemátcas que se ocupa de recoger, organzar y analzar grandes cantdades de datos para estudar alguna característca de un colectvo. 1. VARIABLES S UIDIMESIOALES

Más detalles

DISTRIBUCIONES BIDIMENSIONALES

DISTRIBUCIONES BIDIMENSIONALES Matemátcas 1º CT 1 DISTRIBUCIONES BIDIMENSIONALES PROBLEMAS RESUELTOS 1. a) Asoca las rectas de regresón: y = +16, y = 1 e y = 0,5 + 5 a las nubes de puntos sguentes: b) Asgna los coefcentes de correlacón

Más detalles

4º DE ESO MATEMÁTICAS-B CURSO UNIDAD 14: ESTADÍSTICA

4º DE ESO MATEMÁTICAS-B CURSO UNIDAD 14: ESTADÍSTICA UNIDAD 14: ESTADÍSTICA INTRODUCCIÓN La presenca de la Estadístca es habtual en multtud de contextos de la vda real: encuestas electorales, sondeos de opnón, etc. La mportanca de la Estadístca en la socedad

Más detalles

Además podemos considerar diferentes tipos de medidas de resumen. Entre ellas tenemos:

Además podemos considerar diferentes tipos de medidas de resumen. Entre ellas tenemos: MEDIDAS DE POSICIÓN Y DISPERSIÓN Estadístca En la clase anteror vmos como resumr la nformacón contenda en un conjunto de datos medante tablas y gráfcos. En esta clase vamos a ver como resumrlos medante

Más detalles

Media es la suma de todas las observaciones dividida por el tamaño de la muestra.

Media es la suma de todas las observaciones dividida por el tamaño de la muestra. Estadístcos Los estadístcos son valores calculados con los datos de una varable cuanttatva y que mden alguna de las característcas de la dstrbucón muestral. Las prncpales característcas son: tendenca central,

Más detalles

DEPARTAMENTO DE MATEMÁTICAS

DEPARTAMENTO DE MATEMÁTICAS . INTRODUCCIÓN En la socedad de la nformacón en la que vvmos resulta mprescndble dsponer de técncas y conceptos que permtan extraer, de manera fable y senclla, nformacón relevante de dferentes conjuntos

Más detalles

Ejercicio nº 1. a) Elabora una tabla de frecuencias. b) Representa gráficamente la distribución.

Ejercicio nº 1. a) Elabora una tabla de frecuencias. b) Representa gráficamente la distribución. Ejercco nº En una empresa de teleonía están nteresados en saber cuál es el número de aparatos teleóncos (ncludos teléonos móvles) que se tene en las vvendas. Se hace una encuesta y, hasta ahora, han recbdo

Más detalles

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos.

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos. ESTADÍSTICA I. Recuerda: Poblacón: Es el conjunto de todos los elementos que cumplen una determnada propedad, que llamamos carácter estadístco. Los elementos de la poblacón se llaman ndvduos. Muestra:

Más detalles

ESTADISTÍCA. 1. Población, muestra e individuo. 2. Variables estadísticas. 3. El proceso que se sigue en estadística

ESTADISTÍCA. 1. Población, muestra e individuo. 2. Variables estadísticas. 3. El proceso que se sigue en estadística ESTADISTÍCA. Poblacón, muestra e ndvduo Las característcas de una dstrbucón se pueden estudar drectamente sobre la poblacón o se pueden nferr a partr de l estudo de una muestra. Poblacón estadístca es

Más detalles

3. VARIABLES ALEATORIAS.

3. VARIABLES ALEATORIAS. 3. VARIABLES ALEATORIAS. Una varable aleatora es una varable que toma valores numércos determnados por el resultado de un epermento aleatoro (no hay que confundr la varable aleatora con sus posbles valores)

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA Introduccón La estadístca es una rama de las matemátcas que trata de la recogda, ordenacón, análss y presentacón adecuada de datos recogdos sobre certa poblacón (no necesaramente

Más detalles

Tema 8: Estadística en una variable (unidimensional)

Tema 8: Estadística en una variable (unidimensional) Matemátcas aplcadas a las Cencas Socales I lasmatematcas.eu Tema 8: Estadístca en una varable Tema 8: Estadístca en una varable (undmensonal) 1. Introduccón Se desconocen con exacttud los orígenes de la

Más detalles

Práctica 3. Media, mediana y moda.

Práctica 3. Media, mediana y moda. Práctca 3. Meda, ana y moda. La presente práctca, te permtrá estudar las das de tendenca central menconadas, a partr de los sguentes datos que corresponden a la estatura de estudantes, ncaremos la práctca.

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA Tema ESTADÍSTICA DESCRIPTIVA 1.- DISTRIBUCIOES UIDIMESIOALES. CÁLCULO DE PARÁMETROS PARÁMETROS DE CETRALIZACIÓ En la búsqueda de la concrecón y la smplcacón, la normacón recogda en una tabla o gráca estadístca

Más detalles

LISTA DE TALLERES DE ESTADÍSTICA

LISTA DE TALLERES DE ESTADÍSTICA 1 LISTA DE TALLERES DE ESTADÍSTICA Nº Tema Págnas Calfcacón 1 Conceptos fundamentales de estadístca 2 2 Tablas de frecuenca 3,4,5 3 Meddas de tendenca central 6,7,8 Evaluacón 9 4 Gráfcos estadístcos 10,11,12

Más detalles

Variables Aleatorias

Variables Aleatorias Varables Aleatoras VARIABLES ALEATORIAS. Varable aleatora. Tpos.... Dstrbucón de probabldad asocada a una varable aleatora dscreta... 4. Funcón de dstrbucón. Propedades... 5 4. Funcón de densdad... 7 5.

Más detalles

E.U.I.T.I. Bilbao. Asignatura: MÉTODOS ESTADÍSTICOS DE LA INGENIERÍA

E.U.I.T.I. Bilbao. Asignatura: MÉTODOS ESTADÍSTICOS DE LA INGENIERÍA E.U.I.T.I. Blbao Asgnatura: MÉTODOS ESTADÍSTICOS DE LA INGENIERÍA E.U.I.T.I. Blbao Asgnatura: MÉTODOS ESTADÍSTICOS DE LA INGENIERÍA TEMA 2: ESTADÍSTICA DESCRIPTIVA 1. RESUMEN Métodos para resumr y descrbr

Más detalles

1. Concepto y origen de la estadística Conceptos básicos Tablas estadísticas: recuento Representación de graficas...

1. Concepto y origen de la estadística Conceptos básicos Tablas estadísticas: recuento Representación de graficas... TEMA. ESTADÍSTICA DESCRIPTIVA.. Concepto y orgen de la estadístca..... Conceptos báscos..... Tablas estadístcas: recuento..... Representacón de grafcas.... 6.. Varables cualtatvas... 6.. Varables cuanttatvas

Más detalles

Unidad 9. Estadística

Unidad 9. Estadística a las Enseñanzas Académcas Págna 9 El valor de las muestras. Un curoso epermento Quénes crees que obtendrán mejores resultados? Es decr, en general las meddas de las muestras de A, se parecerán más a μ

Más detalles

ESTADÍSTICA DESCRIPTIVA Métodos Estadísticos Aplicados a las Auditorías Sociolaborales

ESTADÍSTICA DESCRIPTIVA Métodos Estadísticos Aplicados a las Auditorías Sociolaborales ESTADÍSTICA DESCRIPTIVA Métodos Estadístcos Aplcados a las Audtorías Socolaborales Francsco Álvarez González http://www.uca.es/serv/fag/fct/ francsco.alvarez@uca.es Bajo el térmno Estadístca Descrptva

Más detalles

Matemáticas A 4º E.S.O. pág. 1

Matemáticas A 4º E.S.O. pág. 1 Matemátcas A º E.S.O. pág. HOJA : ESTADÍSTICA º.- Agrupa en ntervalos y construye una tabla de frecuencas (con la marca de clase ncluda) y la frecuenca absoluta de las sguentes alturas, meddas en centímetros,

Más detalles

INSTRUCCIONES.- CONTESTE CADA UNO DE LOS SIGUIENTES PROBLEMAS COMPROBANDO SU RESPUESTA MEDIANTE EL PROCEDIMIENTO, DE LO CONTRARIO SERÁ ANULADO.

INSTRUCCIONES.- CONTESTE CADA UNO DE LOS SIGUIENTES PROBLEMAS COMPROBANDO SU RESPUESTA MEDIANTE EL PROCEDIMIENTO, DE LO CONTRARIO SERÁ ANULADO. INSTRUCCIONES.- CONTESTE CADA UNO DE LOS SIGUIENTES PROBLEMAS COMPROBANDO SU RESPUESTA MEDIANTE EL PROCEDIMIENTO, DE LO CONTRARIO SERÁ ANULADO. I.- RELACIONE AMBOS COLUMNAS Y SELECIONE LA RESPUESTA CORRECTA

Más detalles

LECTURA 03: DISTRIBUCIONES DE FRECUENCIAS (PARTE II)

LECTURA 03: DISTRIBUCIONES DE FRECUENCIAS (PARTE II) LECTURA 03 DISTRIBUCIONES DE FRECUENCIAS (PARTE II) DISTRIBUCIONES DE FRECUENCIAS EN INTERVALOS DE CLASE Y DISTRIBUCIONES DE FRECUENCIAS POR ATRIBUTOS O CATEGORÍAS TEMA 6 DISTRIBUCIÓN DE FRECUENCIAS EN

Más detalles

Tema 1 Descripción de datos: Estadística descriptiva unidimensional Estadística descriptiva

Tema 1 Descripción de datos: Estadística descriptiva unidimensional Estadística descriptiva Descrpcón de datos: Estadístca descrptva undmensonal Estadístca descrptva Objetvos: Ordenar, clasfcar, resumr grandes conjuntos de datos de modo que puedan ser fáclmente nterpretables Defncones báscas:

Más detalles

Maestría en Administración. Medidas Descriptivas. Formulario e Interpretación. Dr. Francisco Javier Cruz Ariza

Maestría en Administración. Medidas Descriptivas. Formulario e Interpretación. Dr. Francisco Javier Cruz Ariza Maestría en Admnstracón Meddas Descrptvas Formularo e Interpretacón Dr. Francsco Javer Cruz Arza A contnuacón mostramos el foco de atencón de las dstntas meddas que abordaremos en el presente manual. El

Más detalles

ESTADÍSTICA (GRUPO 12)

ESTADÍSTICA (GRUPO 12) ESTADÍSTICA (GRUPO 12) CAPÍTULO II.- ANÁLISIS DE UNA CARACTERÍSTICA (DISTRIBUCIONES UNIDIMENSIONALES) TEMA 7.- MEDIDAS DE CONCENTRACIÓN. DIPLOMATURA EN CIENCIAS EMPRESARIALES UNIVERSIDAD DE SEVILLA 1.

Más detalles

4 E.M. Curso: NOMBRE: 4º. Colegio SSCC Concepción - Depto. de Matemáticas. Guía N. Unidad de Aprendizaje: Estadísticas

4 E.M. Curso: NOMBRE: 4º. Colegio SSCC Concepción - Depto. de Matemáticas. Guía N. Unidad de Aprendizaje: Estadísticas Curso: Colego SSCC Concepcón - Depto. de Matemátcas Undad de Aprendzaje: Estadístcas Capacdades/Destreza/Habldad: Raconamento Matemátco/ Comprensón, Aplcacón/ Valores/ Acttudes: Respeto, Soldardad, Responsabldad

Más detalles

Estadísticos muéstrales

Estadísticos muéstrales Estadístcos muéstrales Una empresa dedcada al transporte y dstrbucón de mercancías, tene una plantlla de 50 trabajadores. Durante el últmo año se ha observado que 5 trabajadores han faltado un solo día

Más detalles

Población y Muestra, Variables Estadísticas, Diagramas y Medidas de Centralización en 3º de ESO

Población y Muestra, Variables Estadísticas, Diagramas y Medidas de Centralización en 3º de ESO 43 ANEXO 1: Tablas facltadas al alumnado Las sguentes tablas serán rellenadas por parte de los grupos de estudantes que se realzarán en el aula, tal y como se comenta en el presente trabajo. Tabla de

Más detalles

UNIVERSIDAD DE SONORA

UNIVERSIDAD DE SONORA UNIVERSIDAD DE SONORA Dvsón de Cencas Exactas y Naturales Departamento de Matemátcas Estadístca Aplcada a las Lcencaturas: Admnstracón, Contaduría e Inormátca Admnstratva. Fascículo II: Estadístca Descrptva

Más detalles

Para construir un diagrama de tallo y hoja seguimos los siguientes pasos:

Para construir un diagrama de tallo y hoja seguimos los siguientes pasos: UNIDAD 2: Gráfcos estadístcos Los gráfcos muestran vsualmente y de forma rápda la dstrbucón de los datos y sus prncpales característcas, consttuyen un mportante complemento en la presentacón de la nformacón.

Más detalles

INSTITUCIÓN EDUCATIVA NORMAL SUPERIOR DE QUIBDÓ MATEMÁTICA -- GUÍA DE ESTADÍSTICA 904 Y 905

INSTITUCIÓN EDUCATIVA NORMAL SUPERIOR DE QUIBDÓ MATEMÁTICA -- GUÍA DE ESTADÍSTICA 904 Y 905 Marcosapb Matemátca Estadístca 904 y 905 -- 013 INSTITUCIÓN EDUCATIVA NORMAL SUPERIOR DE QUIBDÓ Docente: MARCOSAPB MATEMÁTICA -- GUÍA DE ESTADÍSTICA 904 Y 905 Investgacón: para determnar el peso promedo

Más detalles

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio.

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio. Tema 9 - Estadístca - Matemátcas B 4º E.S.O. 1 TEMA 9 - ESTADÍSTICA 9.1 DOS RAMAS DE LA ESTADÍSTICA 9.1.1 - INTRODUCCIÓN Objetvo: La estadístca tene por objeto el desarrollo de técncas para el conocmento

Más detalles

Organización y resumen de datos cuantitativos

Organización y resumen de datos cuantitativos Organzacón y resumen de datos cuanttatvos Contendos Organzacón de datos cuanttatvos: dagrama de tallos y hojas, tablas de frecuencas. Hstogramas. Polígonos. Ojvas ORGANIZACIÓN Y RESUMEN DE DATOS CUANTITATIVOS

Más detalles

LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION

LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION Unversdad Católca Los Ángeles de Chmbote LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION 1. DEFINICION: Las meddas estadístcas

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA Estadístca descrptva. ESTADÍSTICA DESCRIPTIVA POBLACIÓN Y MUESTRA. VARIABLES ESTADÍSTICAS DISTRIBUCIÓN DE FRECUENCIAS DE UNA MUESTRA AGRUPACIÓN DE DATOS REPRESENTACIONES GRÁFICAS DE LAS MUESTRAS PRINCIPALES

Más detalles

4. REPRESENTACIONES GRÁFICAS PARA DATOS CATEGÓRICOS.

4. REPRESENTACIONES GRÁFICAS PARA DATOS CATEGÓRICOS. 4. REPRESETACIOES GRÁFICAS PARA DATOS CATEGÓRICOS. Cuando se manejan fenómenos categórcos, se pueden agrupar las observacones en tablas de resumen, para después representarlas en forma gráfca como dagramas

Más detalles

Elaboración de Tablas ó Cuadros. La elaboración de tablas o cuadros, facilita el análisis y la presentación de la información.

Elaboración de Tablas ó Cuadros. La elaboración de tablas o cuadros, facilita el análisis y la presentación de la información. Elaboracón de Tablas ó Cuadros La elaboracón de tablas o cuadros, faclta el análss la presentacón de la nformacón. Para elaborar los cuadros, se debe, antes que todo, dentfcar las varables, característcas

Más detalles

1. ESTADÍSTICA DESCRIPTIVA.

1. ESTADÍSTICA DESCRIPTIVA. Departamento de Matemátcas http://www.colegovrgendegraca.org/eso/dmate.htm Estadístca descrptva 1. ESTADÍSTICA DESCRIPTIVA. 1.1. Introduccón. En general, cuando se va a estudar un determnado colectvo,

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Unversdad de Cádz Departamento de Matemátcas MATEMÁTICAS para estudantes de prmer curso de facultades y escuelas técncas Tema 13 Dstrbucones bdmensonales. Regresón y correlacón lneal Elaborado por la Profesora

Más detalles

Tema 4: Variables aleatorias

Tema 4: Variables aleatorias Estadístca 46 Tema 4: Varables aleatoras El concepto de varable aleatora surge de la necesdad de hacer más manejables matemátcamente los resultados de los expermentos aleatoros, que en muchos casos son

Más detalles

PyE_ EF1_TIPO1_

PyE_ EF1_TIPO1_ UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE PROBABILIDAD Y ESTADÍSTICA PRIMER EAMEN FINAL RESOLUCIÓN SEMESTRE

Más detalles

Variables Aleatorias. Variables Aleatorias. Variables Aleatorias. Objetivos del tema: Al final del tema el alumno será capaz de:

Variables Aleatorias. Variables Aleatorias. Variables Aleatorias. Objetivos del tema: Al final del tema el alumno será capaz de: Varables Aleatoras Varables Aleatoras Objetvos del tema: Concepto de varable aleatora Al fnal del tema el alumno será capaz de: Varables aleatoras dscretas y contnuas Funcón de probabldad Funcón de dstrbucón

Más detalles

4ºB ESO Capítulo 12: Estadística LibrosMareaVerde.tk www.apuntesmareaverde.org.es

4ºB ESO Capítulo 12: Estadística LibrosMareaVerde.tk www.apuntesmareaverde.org.es 4ºB ESO Capítulo 1: Estadístca 350 Índce 1. POBLACIÓ Y MUESTRA. VARIABLES ESTADÍSTICAS 1.1. POBLACIÓ 1.. MUESTRA 1.3. IDIVIDUO 1.4. VARIABLE ESTADÍSTICA. TABLAS DE FRECUECIAS.1. FRECUECIA ABSOLUTA.. FRECUECIA

Más detalles

1. Variable aleatoria. Clasificación

1. Variable aleatoria. Clasificación Tema 7: Varable Aleatora Undmensonal 1. Varable aleatora. Clasfcacón. Caracterzacón de una varable aleatora. Varable Aleatora dscreta. Varable Aleatora contnua 3. Característcas de una varable aleatora.

Más detalles

ESTADÍSTICA 4º ESO A) INICIACIÓN A LA ESTADÍSTICA 1.- QUÉ ES LA ESTADÍSTICA?

ESTADÍSTICA 4º ESO A) INICIACIÓN A LA ESTADÍSTICA 1.- QUÉ ES LA ESTADÍSTICA? ESTADÍSTICA 4º ESO A) INICIACIÓN A LA ESTADÍSTICA 1.- QUÉ ES LA ESTADÍSTICA? La Estadístca es la rama de las Matemátcas que se ocupa del estudo de una determnada característca en una poblacón, recogendo

Más detalles

EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA

EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA . El Método de Dferencas Fntas El Método consste en una aproxmacón de las dervadas parcales por expresones algebracas con los valores de

Más detalles

UNIVERSIDAD DE SONORA

UNIVERSIDAD DE SONORA UNIVERSIDAD DE SONORA Dvsón de Cencas Exactas y Naturales Departamento de Matemátcas Estadístca Aplcada a las Lcencaturas: Admnstracón, Contaduría e Inormátca Admnstratva. Fascículo II: Estadístca Descrptva

Más detalles

TEMA 5. ANÁLISIS DE UNA VARIABLE (III). MEDIDAS DE ASIMETRÍA, CURTOSIS Y CONCENTRACIÓN

TEMA 5. ANÁLISIS DE UNA VARIABLE (III). MEDIDAS DE ASIMETRÍA, CURTOSIS Y CONCENTRACIÓN DEPARTAMENTO DE ECONOMÍA GENERAL Y ETADÍTICA UNIDAD DOCENTE DE ETADÍTICA Y ECONOMETRÍA UNIVERIDAD DE HUELVA ANÁLII ETADÍTICO DEL TURIMO I 200-200200 DIPLOMATURA EN TURIMO TEMA 5 ANÁLII DE UNA VARIABLE

Más detalles

Distribuciones estadísticas unidimensionales

Distribuciones estadísticas unidimensionales Dstrbucones estadístcas undmensonales ESTADÍSTICA Estuda los métodos ara recoger, organzar y analzar nformacón, con la fnaldad de descrbr un fenómeno que se está estudando y obtener conclusones. TÉRMIOS

Más detalles

SEGUNDA PARTE RENTAS FINANCIERAS

SEGUNDA PARTE RENTAS FINANCIERAS SEGUNDA PARTE RENTAS FINANCIERAS 5 INTRODUCCIÓN A LA TEORÍA DE RENTAS 5.1 CONCEPTO: Renta fnancera: conjunto de captales fnanceros cuyos vencmentos regulares están dstrbudos sucesvamente a lo largo de

Más detalles

ESTADÍSTICA DESCRIPTIVA I

ESTADÍSTICA DESCRIPTIVA I ESTADÍSTICA DESCRIPTIVA I 1.- DISTRIBUCIONES UNIDIMENSIONALES. CONCEPTOS GENERALES. La estadístca se puede dvdr en dos partes: Estadístca descrptva o deductva. Estadístca nferencal o nductva. La estadístca

Más detalles

Distribuciones de Probabilidad PREGUNTAS MÁS FRECUENTES

Distribuciones de Probabilidad PREGUNTAS MÁS FRECUENTES Repaso de º de Bachllerato Dstrbucones de robabldad REGUNTAS MÁS FRECUENTES. Qué es una funcón dstrbucón de probabldad? Se trata de un reparto del valor, que es la probabldad máxma, entre todos los posbles

Más detalles

UNIDAD 1. Estadística descriptiva.

UNIDAD 1. Estadística descriptiva. UNIDAD 1 Estadístca descrptva. 8 Desde hace muchos años, la estadístca ha tendo presenca en todos los ámbtos de estudo: economía, admnstracón, ngenería, etc. La estadístca descrptva es una rama de las

Más detalles

Inferencia en Regresión Lineal Simple

Inferencia en Regresión Lineal Simple Inferenca en Regresón Lneal Smple Modelo de regresón lneal smple: Se tenen n observacones de una varable explcatva x y de una varable respuesta y, ( x, y)(, x, y),...,( x n, y n ) el modelo estadístco

Más detalles

7ª SESIÓN: Medidas de concentración

7ª SESIÓN: Medidas de concentración Curso 2006-2007 7ª Sesón: Meddas de concentracón 7ª SESIÓN: Meddas de concentracón. Abrr el rograma Excel. 2. Abrr el lbro utlzado en las ráctcas anterores. 3. Insertar la Hoja7 al fnal del lbro. 4. Escrbr

Más detalles

Análisis de Weibull. StatFolio de Muestra: Weibull analysis.sgp

Análisis de Weibull. StatFolio de Muestra: Weibull analysis.sgp Análss de Webull Resumen El procedmento del Análss de Webull está dseñado para ajustar una dstrbucón de Webull a un conjunto de n observacones. Es comúnmente usado para analzar datos representando tempos

Más detalles

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA PROBABILIDAD Y ESTADÍSTICA 1. S A es un suceso de probabldad 0.3, la probabldad de su suceso contraro es: a) 0. b) 1.0 c) 0.7 (Convocatora juno 006. Eamen tpo H) S A es un suceso, la probabldad de su suceso

Más detalles

CARTAS DE CONTROL. Han sido difundidas exitosamente en varios países dentro de una amplia variedad de situaciones para el control del proceso.

CARTAS DE CONTROL. Han sido difundidas exitosamente en varios países dentro de una amplia variedad de situaciones para el control del proceso. CARTAS DE CONTROL Las cartas de control son la herramenta más poderosa para analzar la varacón en la mayoría de los procesos. Han sdo dfunddas extosamente en varos países dentro de una ampla varedad de

Más detalles

Figura 1

Figura 1 5 Regresón Lneal Smple 5. Introduccón 90 En muchos problemas centífcos nteresa hallar la relacón entre una varable (Y), llamada varable de respuesta, ó varable de salda, ó varable dependente y un conjunto

Más detalles

ESTADÍSTICA BIDIMENSIONAL

ESTADÍSTICA BIDIMENSIONAL el blog de mate de ada CI: Estadístca bdmensonal Pág. 1 ETADÍTICA BIDIMEIOAL La estadístca bdmensonal es la cenca que se ocupa de determnar s este relacón o no entre dos varables. Ejemplos: - Horas de

Más detalles

PREGUNTAS TIPO TEST Y EJERCICIOS PRÁCTICOS PROPUESTOS EN EXÁMENES DE LOS CAPÍTULOS 2, 3 Y 4 (DISTRIBUCIONES DE FRECUENCIAS UNIDIMENSIONALES )

PREGUNTAS TIPO TEST Y EJERCICIOS PRÁCTICOS PROPUESTOS EN EXÁMENES DE LOS CAPÍTULOS 2, 3 Y 4 (DISTRIBUCIONES DE FRECUENCIAS UNIDIMENSIONALES ) TUTORÍA DE ITRODUCCIÓ A LA ESTADÍSTICA. (º A.D.E.) e-mal: mozas@el.uned.es PREGUTAS TIPO TEST Y EJERCICIOS PRÁCTICOS PROPUESTOS E EXÁMEES DE LOS CAPÍTULOS, Y 4 (DISTRIBUCIOES DE FRECUECIAS UIDIMESIOALES

Más detalles

Apéndice A: Metodología para la evaluación del modelo de pronóstico meteorológico

Apéndice A: Metodología para la evaluación del modelo de pronóstico meteorológico Apéndce A: Metodología para la evaluacón del modelo de pronóstco meteorológco Apéndce A: Metodología para la evaluacón del modelo de pronóstco meteorológco Tabla de contendos Ap.A Apéndce A: Metodología

Más detalles

-.GEOMETRÍA.- a) 37 cm y 45 cm. b) 16 cm y 30 cm. En estos dos, se dan la hipotenusa y un cateto, y se pide el otro cateto:

-.GEOMETRÍA.- a) 37 cm y 45 cm. b) 16 cm y 30 cm. En estos dos, se dan la hipotenusa y un cateto, y se pide el otro cateto: -.GEOMETRÍA.- Ejercco nº 1.- Calcula el lado que falta en este trángulo rectángulo: Ejercco nº 2.- En los sguentes rectángulos, se dan dos catetos y se pde la hpotenusa (s su medda no es exacta, con una

Más detalles

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso CURSO ITERACIOAL: COSTRUCCIÓ DE ESCEARIOS ECOÓMICOS ECOOMETRÍA AVAZADA Instructor: Horaco Catalán Alonso Modelo de Regresón Lneal Smple El modelo de regresón lneal representa un marco metodológco, que

Más detalles