Introducción a las Ciencias de la Atmósfera Unidad 3, Parte 1: Humedad

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Introducción a las Ciencias de la Atmósfera Unidad 3, Parte 1: Humedad"

Transcripción

1 Cátra Introucción a la Cincia la Atmófra Introucción a la Cincia la Atmófra Unia 3, Part 1: Huma Ecuación tao ga ial La rlación ntr la prión, la nia y la tmpratura in aa por la cuación tao. En l cao lo ga ial, la cuación tao o ly lo ga ial xpra como P ρrt ino P la prión l air, ρ la nia, R la contant l ga finia como R* / M, ino R* la contant uniral lo ga (R* 8,3143 J kg 1 K 1 ), M l po molcular y T la tmpratura (aboluta). Mzcla ga ial La cuación tao para una mzcla ga ial xpra como P ρrt ino P, ρ y T la prión, nia y tmpratura, rpctiamnt, y la contant mi Ri R m, n on R i la contant caa ga ial, m i u maa y m la maa la mzcla aa por m mi. En una mzcla ga ial cumpl la Ly Dalton, manra tal qu la prión total P in aa por la uma la nominaa prion parcial P i caa ga P Pi. 1

2 Cátra Introucción a la Cincia la Atmófra Air co S fin como air co a la mzcla ga compoición contant finia n cla antrior. Tnino n cunta lo rango tmpratura y prión qu obran n la atmófra, l air co comporta como un ga ial, cuya cuación tao in aa por P ρr T n on R 287 J kg 1 K 1 la contant l ga para l air co. Air húmo S fin como air húmo a la mzcla air co y apor agua, t último también conirao como un ga ial. La cuación tao para l air húmo qua P ρrt n on R ( 1+ 0,608q) R m q, ino m la rlación ntr la maa apor agua m y la maa air húmo m, nominaa huma pcífica. E cir qu, i bin a R la conoc como la contant l ga para l air húmo, u alor ita r una contant ya qu pn l contnio apor agua n l air. La cuación tao para l air húmo pu rcribir como P ρr T n on R la contant l ga para l air co y T ( 1+ 0,608q) T la nominaa tmpratura irtual. Eta última fin ntonc como la tmpratura l air co a la mima prión y nia qu l air húmo conirao. 2

3 Cátra Introucción a la Cincia la Atmófra Saturación S ic qu l air ncuntra aturao cuano l contnio apor agua alcanza l máximo alor qu l air pu contnr. Cuano l air contin una cantia apor mnor a t alor, ét ncuntra no aturao. La prión parcial l apor agua nomina prión o tnión apor, y la rprnta con l ímbolo. El alor la prión apor corrponint a la aturación inica miant l ímbolo. Para l air no aturao, <. Rulta umamnt raro ncontrar air obraturao n la atmófra, n cuyo cao >. El air calint pu contnr mayor apor agua qu l air frío. La cuación Clauiu-Clapyron rprnta la rlación ntr la tmpratura y la prión apor aturación, qu pu cribir n forma aproximaa como 0 xp L R 1 T0 1 T n on 0 0,611 kpa y T K on parámtro contant. R 461 J K 1 kg 1 la contant l ga para l apor agua. En la fórmula utiliza la tmpratura aboluta, xpraa n grao Klin. Dao qu la nub pun tar contituia por gota líquia y crital hilo upnio n l air, bmo conirar aturacion con rpcto al agua y al hilo. Para l cao la aturación con rpcto al agua líquia, utilizamo l calor latnt aporización L L 2,5 106 J kg 1 n la cuación Clauiu-Clapyron, n cuyo cao L / R 5423 K. En l cao conirar la aturación con rpcto al hilo, uamo l calor latnt poición L L 2, J kg 1, n cuyo cao L / R 6139 K. Variabl huma Rlación mzcla 3

4 Cátra Introucción a la Cincia la Atmófra La rlación ntr la maa apor m y la maa air co m tá finia por la rlación mzcla : m m ε P on R ε R apor y l air co. 0,622, cir la rlación ntr la contant lo ga l T q ρ o ino T q ρ ( C) (kpa) (g/kg) (g/kg) (kg/m 3 ) -20 0,127 0,78 0,78 0, ,150 0,92 0,92 0, ,177 1,09 1,09 0, ,209 1,28 1,28 0, ,245 1,51 1,51 0, ,287 1,77 1,76 0, ,335 2,07 2,06 0, ,391 2,41 2,40 0, ,455 2,80 2,80 0, ,528 3,26 3,25 0, ,611 3,77 3,76 0, ,706 4,37 4,35 0, ,814 5,04 5,01 0, ,937 5,80 5,77 0, ,076 6,68 6,63 0, ,233 7,66 7,60 0, ,410 8,78 8,70 0, ,610 10,05 9,95 0, ,835 11,48 11,35 0, ,088 13,09 12,92 0, ,371 14,91 14,69 0, ,688 16,95 16,67 0, ,042 19,26 18,89 0, ,437 21,85 21,38 0, ,878 24,76 24,16 0, ,367 28,02 27,26 0, ,911 31,69 30,72 0, ,514 35,81 34,57 0,

5 Cátra Introucción a la Cincia la Atmófra 36 6,182 40,43 38,86 0, ,921 45,61 43,62 0, ,736 51,43 48,91 0, ,636 57,97 54,79 0, ,627 65,32 61,31 0, ,717 73,59 68,54 0, ,914 82,91 76,56 0, ,228 93,42 85,44 0,08884 Tabla 1 Valor aturación huma para itinto alor ral tmpratura l air, o ino alor ral huma para itinta tmpratura rocío. (Aaptaa Stull, 1995). La rlación mzcla aturación,, fin como pro tomano n lugar n la fórmula. En la Tabla 1 an alguno alor rlación mzcla para l air a nil l mar. Si bin la rlación mzcla xpra n g / g ( cir n gramo apor por gramo air co), la ul xprar n g / kg ( cir, n gramo apor por kilogramo air co). Huma pcífica La rlación ntr la maa apor agua y la maa total air (húmo) nomina huma pcífica q: q m m ε P Al igual qu la rlación mzcla, la huma pcífica xpra n unia g / kg. La huma pcífica aturación obtin utilizano n lugar n la fórmula antrior. La rlación ntr la huma pcífica y la rlación mzcla in aa por q 1+ En la Tabla 1 obra qu << 1 (xprao n g / g), con lo cual pu aproximar batant bin la iguala ntr amba ariabl huma, cir 5

6 Cátra Introucción a la Cincia la Atmófra q Tanto la rlación mzcla como la huma pcífica aturación pnn la prión atmoférica, a ifrncia la prión apor aturación (qu olo pn la tmpratura, r Fa. Clauiu Clapyron). Eto ignifica qu, lo alor prión apor n la Tabla 1 rprntan cantia aboluta mintra qu la otra ariabl huma on ália únicamnt a la prión y nia l air a nil l mar. Lo alor aturación la rlación mzcla y la huma pcífica pun calcular para cualquir otra prión atmoférica mplano la fórmula aa. Huma aboluta A la concntración, ρ, apor agua n air la nomina huma aboluta, y xpra n unia gramo apor por mtro cúbico (g / m 3 ). La huma aboluta ncialmnt una nia parcial, por lo tanto pu r trminaa a partir la prión parcial utilizano la cuación ga ial para l apor agua: ρ R T P ε ρ n on ρ la nia l air co. La nia l air ρ 1,225 kg / m 3 a nil l mar, y aría con la altura, la prión, y la tmpratura acuro con la ly lo ga ial. El alor aturación la huma aboluta, ρ, obtin utituyno n lugar n la cuación antrior. Huma rlatia La rlación ntr l contnio ral apor agua n l air y l contnio máximo (aturación) qu ét poría otnr a la mima tmpratura in aa por la huma rlatia, HR: 6

7 Cátra Introucción a la Cincia la Atmófra HR 100% q q La huma rlatia inica la cantia aporación qu poibl n l air. El air aturao tin HR 100%, y no prmit aporación agua. La Tabla 1 mutra la ariación la rlación mzcla con la HR. E común xprar a la huma HR r rlatia n forma fraccional, n cuyo cao la xpra como r, o a 100%. Cuano l air ncuntra aturao, cir HR 100%, ntonc r 1. Tmpratura punto rocío S nomina tmpratura punto rocío, T, a la tmpratura a la cual l air b r nfriao para tornar aturao a prión contant. Éta pu obtnr la cuación Clauiu-Clapyron (o la Tabla 1) hacino uo n lugar, y T n z T. Lugo, rolino para T obtin: T 1 T0 R L ln 1 Normalmnt, para obtnr la tmpratura rocío conira L L. Si a obtnr la tmpratura l punto carcha bio a la prncia crital hilo n l air, utiliza L L. Si T T, l air ncuntra aturao. La prión l punto rocío (T T ) una mia rlatia la qua l air. T nunca pu r mnor qu T. Si l air nfriao por bajo la tmpratura inicial punto rocío, ntonc la tmpratura l punto rocío iminuy manra tal qu prmanc n too momnto igual a la tmpratura l air, y l xcnt agua conna como rocío, nibla o nub. La rlación ntr la prión l punto rocío y la huma rlatia xpra miant la iguint rlación: 7

8 Cátra Introucción a la Cincia la Atmófra T T 35 log r Tmpratura bulbo húmo Cuano l bulbo un trmómtro rcubirto con una tla humcia con agua pura, torna má frío y aquir una tmpratura mnor qu la tmpratura ral l air T (inicaa por l trmómtro bulbo co) bio al calor latnt aociao con la aporación l agua. El air má co prmit mayor aporación, hacino qu la tmpratura bulbo húmo T cina ignificatiamnt por bajo la tmpratura l air. En l air aturao no hay aporación nta y la tmpratura bulbo húmo iguala a la bulbo co. Para agurar un bun funcionaminto, l bulbo húmo b tnr una buna ntilación ya a hacino circular air a traé él o moino l trmómtro a traé l air. En la tacion mtorológica, n gnral l picrómtro ncuntra montao ntro l abrigo mtorológico y conit n un oport qu otin a lo trmómtro bulbo húmo y bulbo co. Conirmo la tmpratura bulbo húmo T y la rlación mzcla l air qu nul al bulbo húmo tra habr aporao l agua la tla húma. Dbio a qu l calor latnt conumio para la aporación utraío n forma calor nibl a moo nfriaminto, l balanc calor tablc qu: C p ( T T ) L ( ) Si conocn la tmpratura bulbo co y bulbo húmo, y la prión l air P, la rlación mzcla obtin miant: ε c T b P xp 1 T + α β ( T ) T 8

9 Cátra Introucción a la Cincia la Atmófra n on la tmpratura bn r xpraa n C, ε 0,622 g / g, b 1,631 kpa 1, c 17,67, α 243,5 C, y β 4, (g / g)/ C. Conocino, pu obtnr fácilmnt cualquir otra ariabl huma. Agua prcipitabl Si connara l apor agua contnio n una columna atmoférica 1 m 2 cción, l por la maa agua líquia contnia n icha columna xprao n milímtro, inica l alor l agua prcipitabl m. E cir, qu l agua prcipitabl fin como la prcipitación qu rulta connar l contnio total apor agua n una columna atmoférica. Por lo tanto, t parámtro huma contituy una mia l contnio apor agua n la atmófra. La itribución rtical l apor agua pu trminar a partir raioono. Para caa capa z 1 m 2 cción pu trminar l contnio apor agua m: m ρ z z R T m: Intgrano m uprfici hata l top la atmófra obtin l alor m R 1 0 T z Una maa 1 kg agua contnia n una columna un mtro cuarao cción tin un por 1 mm, con lo cual n la cuación arriba m qua xpraa tanto n kg como n mm. Aí fin la unia con la qu ul xprar a la ariabl prcipitación. 9

Determinación de Humedad en la Atmósfera. Desarrollado por Carolina Meruane y René Garreaud DGF Abril 2006

Determinación de Humedad en la Atmósfera. Desarrollado por Carolina Meruane y René Garreaud DGF Abril 2006 Dtrminación d Humdad n la Atmófra Darrollado por Carolina Mruan y Rné Garraud DGF Abril 2006 1. Antcdnt Tórico 1.1 Humdad n la atmófra El air n la atmófra conidra normalmnt como una mzcla d do componnt:

Más detalles

El calor transferido de un fluido a otro a través de la pared de un tubo es: = / r1 r. ) + h

El calor transferido de un fluido a otro a través de la pared de un tubo es: = / r1 r. ) + h INERCAMBIO DE CALOR ENRE DOS FLUIDOS El calor tranfrido d un fluido a otro a travé d la pard d un tubo : πl( - ln( r / r + + hr k h r ( Eta cuación la ba dl diño d intrcambiador d calor tubular. Si dfin

Más detalles

TRABAJO PRACTICO Nº 1 RELACIONES DE PESOS Y VOLUMENES

TRABAJO PRACTICO Nº 1 RELACIONES DE PESOS Y VOLUMENES Ejrcicio Rulto TRABAJO PRACTICO Nº 1 RELACIONES DE PESOS Y VOLUMENES 1.- S dtrminaron la caractrítica mcánica d un trato d arna ncontrándo qu, al obtnr una mutra rprntativa, u volumn ra d 420 cm 3 y u

Más detalles

FUNCIONES EXPONENCIAL, LOGARÍTMICA Y SUS DERIVADAS.

FUNCIONES EXPONENCIAL, LOGARÍTMICA Y SUS DERIVADAS. Prof., Enriqu Matus Nivs Doctorano n Eucación Matmática. FUNCIONES EXPONENCIAL, LOGARÍTMICA Y SUS DERIVADAS. Una función ponncial s aqulla n la qu la variabl stá n l ponnt. Algunos - - -5 jmplos funcions

Más detalles

APÉNCICES APÉNDICE 1 ANEXOS DEL CAPÍTULO 2

APÉNCICES APÉNDICE 1 ANEXOS DEL CAPÍTULO 2 07 APÉNCICES APÉNDICE ANEXOS DEL CAPÍULO ANEXO. Conidér un arrglo como l motrado n la figura A.. Un itma rcib una cantidad d nrgía δq procdnt d un rrvorio a tmpratura r a travé d una part d u frontra qu

Más detalles

Cuestión 1 (10 puntos)

Cuestión 1 (10 puntos) Univridad d Navarra Nafarroako Unibrtitata Ecula Suprior d Ingniro Ingniarin Goi Mailako Ekola ASIGNAURA GAIA rmodinámica º CURSO KURSOA oría (30 punto) IEMPO: 45 minuto Cutión 1 (10 punto) FECHA DAA +

Más detalles

CAPITULO I RELACIONES VOLUMÉTRICAS Y GRAVIMÉTRICAS EN LOS SUELOS 1. ESQUEMA TÍPICO PARA LA REPRESENTACIÓN DE UN SUELO. Fase Gaseosa.

CAPITULO I RELACIONES VOLUMÉTRICAS Y GRAVIMÉTRICAS EN LOS SUELOS 1. ESQUEMA TÍPICO PARA LA REPRESENTACIÓN DE UN SUELO. Fase Gaseosa. CAPITULO I RELACIONE OLUMÉTRICA Y GRAIMÉTRICA EN LO UELO. EQUEMA TÍPICO PARA LA REPREENTACIÓN DE UN UELO OLUMENE PEO a Fa Gaa a Fa Líquia Fa ólia Dn: lun ttal la utra l ul (lun aa. lun la fa ólia la utra

Más detalles

AIRE HUMEDO AIRE HUMEDO

AIRE HUMEDO AIRE HUMEDO AIRE HUMEDO AIRE HUMEDO El air húmdo una mzcla d air co y vapor d agua. El air co una mzcla d ga, cuya compoición química : Nitrogno 78,08% Oxigno 20,95% Argón 0,93% CO2, CO, O2, O3,... 0,03% Otro 0,01%

Más detalles

TERMODINÁMICA APLICADA ANÁLISIS ENERGÉTICO DE VOLÚMENES DE CONTROL

TERMODINÁMICA APLICADA ANÁLISIS ENERGÉTICO DE VOLÚMENES DE CONTROL TERMODINÁMICA APLICADA ANÁLISIS ENERGÉTICO DE VOLÚMENES DE CONTROL Ing. Alx W. Pilco Nuñz Introducción Ilutración d la uprfici d control d un olun d control Tubría Volun d control (VC) Suprfici d control

Más detalles

Tema 2. Amplificadores Operacionales

Tema 2. Amplificadores Operacionales Tma. mplificador Opracional Joaquín aquro Lópz Elctrónica, 007 Joaquín aquro Lópz mplificador Opracional (O): Índic.) Introducción a lo O.) Modlo implificado. Modlo Idal.3) Circuito Linal con O.4.) mplificador

Más detalles

Problemas de difusión

Problemas de difusión Probla d difuión PROBLEMA 1 Un acro contin 8,5 % n po d Ni n l cntro d un grano d F... y 8,8% n l líit dl grano. Si lo do punto tán parado 0 μ ual l flujo d átoo ntr to punto a 0 º?. a 0,65 n Ma Ni 58,71

Más detalles

2. RELACIONES GRAVIMÉTRICAS Y VOLUMÉTRICAS DEL SUELO

2. RELACIONES GRAVIMÉTRICAS Y VOLUMÉTRICAS DEL SUELO Rlacion gravimétrica y volumétrica l ulo romcánica. Capítulo 2 2.. Introucción 2. RELACIONE RAIMÉRICA Y OLUMÉRICA DEL UELO En un ulo itingun tr fa contituynt: la ólia, la líquia y la gaoa. La fa ólia on

Más detalles

MATEMÁTICAS II Curso 09-10

MATEMÁTICAS II Curso 09-10 Solucions trmos una función varias variabls. S va a construir un almacén 500 m volumn con forma parallpípo. El air calint qu prouzca su sistma calfacción ascnrá, lo qu suponrá una péria calor por unia

Más detalles

UNIVERSIDAD NACIONAL DE MAR DEL PLATA FACULTAD DE INGENIERÍA DEPARTAMENTO ELECTRÓNICA

UNIVERSIDAD NACIONAL DE MAR DEL PLATA FACULTAD DE INGENIERÍA DEPARTAMENTO ELECTRÓNICA UNIVESIDAD NAIONAL DE MA DEL PLATA FAULTAD DE INGENIEÍA DEPATAMENTO ELETÓNIA ÁTEDA: Guía N o 6: ÁEA: ONTOL Sitma d ontrol (4E2) para Ingniría Eléctrica/Elctromcánica/Mcánica. OMPENSAIÓN DE SISTEMAS A LAZO

Más detalles

I, al tener una ecuación. diferencial de segundo orden de la forma (1)

I, al tener una ecuación. diferencial de segundo orden de la forma (1) .6. Rducción d ordn d una cuación difrncial linal d ordn dos a una d primr ordn, construcción d una sgunda solución a partir d otra a conocida 9.6. Rducción d ordn d una cuación difrncial linal d ordn

Más detalles

INTEGRACIÓN POR PARTES

INTEGRACIÓN POR PARTES UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE INGENIERA DEPARTAMENTO DE MATEMÁTICA Y ESTADISTICA INTEGRACION INTEGRACIÓN Algunas intgrals qu s nos prsntan nos rsultan un poco compljas, ya por lo

Más detalles

Model de precios rígidos Profesor: J. Marcelo Ochoa Otoño 2007

Model de precios rígidos Profesor: J. Marcelo Ochoa Otoño 2007 . Ba dl modlo Modl d prcio rígido Profor: J. Marclo Ochoa Otoño 2007.. Dmanda Agrgada y Política Montaria El lado d la dmanda dl modlo rum n la iguint cuacion: Curva IS: Y = A0 PMG Ir+Xǫǫr PMG r Rgla d

Más detalles

Problemas Primera Sesión

Problemas Primera Sesión roblema rimera Seión 1. Demuetra que ax + by) ax + by para cualequiera x, y R y cualequiera a, b R con a + b = 1, a, b 0. n qué cao e da la igualdad? Solución 1. Nótee que ax + by ax + by) = a1 a)x + b1

Más detalles

FICHA 10 FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

FICHA 10 FUNCIONES EXPONENCIALES Y LOGARÍTMICAS FICHA FUNCIONES EXPONENCIALES Y LOGARÍTMICAS 1. E poibl mdir la concntración d alcohol n la angr d una prona. Invtigacion médica rcint ugirn qu l rigo R (dado como porcntaj) d tnr un accidnt automovilítico

Más detalles

PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES

PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES ) (Part d un problma d Slctividad d Cincias y Tcnología 007) Sa f: R R la función dfinida por f() =. Dtrmina la cuación d la rcta tangnt a la gráfica

Más detalles

CAPITULO 5. ECUACIONES DIFERENCIALES DE ORDEN N 2. 5.1. Introducción. 5.2. Reducción de orden

CAPITULO 5. ECUACIONES DIFERENCIALES DE ORDEN N 2. 5.1. Introducción. 5.2. Reducción de orden APITULO 5. EUAIONES DIFERENIALES DE ORDEN N 5.. Introducción Una cuación difrncial d sgundo ordn s una prsión matmática n la qu s rlaciona una función con sus drivadas primra sgunda. Es dcir, una prsión

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID JUNIO 2008

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID JUNIO 2008 UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID JUNIO El mn pnt o opcion, B. El lumno bá lgi UN Y SÓLO UN ll olv lo cuto jcicio qu cont. No pmit l uó clculo con cpci pntción gáfic. PUNTUCIÓN: L clificción

Más detalles

LÍMITES DE FUNCIONES. CONTINUDAD

LÍMITES DE FUNCIONES. CONTINUDAD LÍMITES DE FUNCIONES. CONTINUDAD Signiicado dl it Ejrcicio nº.- Rprsnta gráicamnt y plica l gniicado d la prón: Ejrcicio nº.- Eplica l gniicado d la guint prón y rprséntalo gráicamnt: 9 Ejrcicio nº.- Escrib

Más detalles

ESTIMACIÓN DE ÁREAS PEQUEÑAS EN LA ENCUESTA INDUSTRIAL DE LA C.A. DE EUSKADI

ESTIMACIÓN DE ÁREAS PEQUEÑAS EN LA ENCUESTA INDUSTRIAL DE LA C.A. DE EUSKADI ESTIMACIÓ DE ÁREAS PEQUEÑAS E LA ECUESTA IDUSTRIAL DE LA C.A. DE EUSKADI EUSKAL ESTATISTIKA ERAKUDEA ISTITUTO VASCO DE ESTADISTICA Donotia-San Sbatián, 000 VITORIA-GASTEIZ Tl.: 945 0 75 00 Faxa: 945 0

Más detalles

Análisis LR(0) Análisis LR(0) Análisis SLR(1) Análisis LR(0) Conflictos LR(0): introducción

Análisis LR(0) Análisis LR(0) Análisis SLR(1) Análisis LR(0) Conflictos LR(0): introducción Análisis LR() Conlictos LR(): introucción Cuano al construir la tala análisis LR() scrita n los puntos antriors no s pu consguir qu sa trminista (porqu n alguna casilla hay más una ión) irmos qu la gramática

Más detalles

Método de los Elementos Finitos para Análisis Estructural. Alisado de tensiones

Método de los Elementos Finitos para Análisis Estructural. Alisado de tensiones Método d los Elmntos Finitos para Análisis Estructural Alisado d tnsions Campo d tnsions Tnsions n cualquir punto dl lmnto, sgún l MEF: = Dε= DBδ Matriz B contin las drivadas d las N: no son continuas

Más detalles

Información adicional sobre cómo usar el soporte de montaje mural (SU-WL500)

Información adicional sobre cómo usar el soporte de montaje mural (SU-WL500) A-D4C-100-31(1) Inormación aicional sobr cómo usar l soport monta mural (SU-WL500) Inormación sobr los molos TV aptos para l soport monta mural: KDL-70XBR7 Para protr l proucto y por motivos suria, Sony

Más detalles

Convocatoria de Febrero 26 de Enero de 2007. Nombre y Apellidos:

Convocatoria de Febrero 26 de Enero de 2007. Nombre y Apellidos: Univrsidad d Vigo Dpartamnto d Matmática Aplicada II E.T.S.I. Minas Cálculo I Convocatoria d Fbrro 6 d Enro d 007 Nombr y Apllidos: DNI: (4.5 p.) ) S considra la función f(x) = x ln(x). (0.5 p.) (a) Calcular

Más detalles

REPRESENTACION GRAFICA.

REPRESENTACION GRAFICA. REPRESENTACION GRAFICA. Calcular puntos notabls así como intrvalos d monotonía y curvatura d: ² - = 0 ; ² = ; = son los valors d qu anulan l dnominador D = R- y () = 0 ; - 4 = 0 ; = 0 posibl ma, min Monotonia:

Más detalles

CAPITULO 3: DIFERENCIACIÓN

CAPITULO 3: DIFERENCIACIÓN CAPITULO 3: DIFERENCIACIÓN 3.1 Cociente de la diferencia En mucho cao, e de interé la taa de cambio en la variable dependiente de una función cuando hay un cambio en la variable independiente. Por ejemplo,

Más detalles

6. Cinética química [ ] 1 ( ) ACTIVIDADES (pág. 145) Para t = 0 s y t = 4 s: mol L. (Cl) = 35,45 u V = 200 ml. Datos: m(nacl) = 3,0 g A r

6. Cinética química [ ] 1 ( ) ACTIVIDADES (pág. 145) Para t = 0 s y t = 4 s: mol L. (Cl) = 35,45 u V = 200 ml. Datos: m(nacl) = 3,0 g A r 6. Cinética química ACTIVIDADS (pág. 45) Dato: m(nacl) 0 g A r (Cl) 545 u V 00 m A r (Na) 99 u Calculamo: M r (NaCl) A r (Cl) A r (Na) M r (NaCl) 545 u 99 u 5844 u M g NaCl m diolucion NaCl g NaCl 000

Más detalles

GENERADORES DE BARRIDO DE TENSIÓN

GENERADORES DE BARRIDO DE TENSIÓN GENERADORES DE BARRDO DE TENSÓN RUTO DE BARRDO TRANSSTORZADO ON ORRENTE ONSTANTE El funconamnto d t crcuto dfn como, la carga un condnador lnalmnt a partr d una funt d corrnt contant. Excpto para valor

Más detalles

La transformada de Laplace

La transformada de Laplace CAPÍTULO 6 La ranformada d Laplac 6.3 Exincia d TL Lo rulado nconrado n la ccion anrior no podrían hacr pnar qu baará cuidar l rango d la variabl para agurar la xincia d la TL d una función; in mbargo,

Más detalles

f (x)dx = f (x) dx. Si la respuesta es afirmativa justifíquese, si es negativa,

f (x)dx = f (x) dx. Si la respuesta es afirmativa justifíquese, si es negativa, CALCULO INTEGRAL.(97).- Sa f() una función tal qu, para cualquira qu sa > s cumpl qu = Pruébs qu, ntoncs, s vrifica qu f( ) = f(), para todo >. f f..(97).- Sa la función f() = -. S pid: a) Hacr un dibujo

Más detalles

Práctico 4: Funciones inversas

Práctico 4: Funciones inversas Práctico 4: Funciones inversas 1. Averiguar acerca e la inyectivia e las siguientes funciones en sus ominios naturales: 1.- y = ax + bx + c con a 6= 0.- y = x + ax + b con a>0.- y = x + ax + b con a

Más detalles

REGULACIÓN AUTOMATICA (8)

REGULACIÓN AUTOMATICA (8) REGULACIÓN AUOMAICA 8 Repueta en frecuencia Nyquit Ecuela Politécnica Superior Profeor: Darío García Rodríguez -4.-Dada la función de tranferencia de lazo abierto de un itema con imentación unitaria, para

Más detalles

3, Se define la actividad radiactiva como la tasa de desaparición de los núcleos de una muestra: 1, s 10 1,374 10

3, Se define la actividad radiactiva como la tasa de desaparición de los núcleos de una muestra: 1, s 10 1,374 10 Departamento Ciencia. Fíica Ejercicio reuelto TEM 12. Fíica nuclear Problema 15 Una roca contiene do iótopo radiactivo y B de período de emideintegración de 1.6 año y 1. año repectivamente. Cuando la roca

Más detalles

1 5 1 10 2 15 3 20 4 15 1 3 3 5 4 20 1 6 1 10 1 5 5 6 3 2 3 4 3 7 9 16 3x 3 x = + kg 4x = 3x + 3kg x = 3kg 4 4 3 3 x = x + kg 4 4 9 x = (3x) 4 + kg 16 3 x = 3 (4x) 4 + kg 4 3 3 x = x + kg x 4 4 4 3 x =

Más detalles

Universidad Nacional de La Plata Facultad de Ciencias Astronómicas y Geofísicas. INTRODUCCIÓN a las CIENCIAS de la ATMÓSFERA

Universidad Nacional de La Plata Facultad de Ciencias Astronómicas y Geofísicas. INTRODUCCIÓN a las CIENCIAS de la ATMÓSFERA Primer uatrimetre de 2017 Univeridad Nacional de La Plata Facultad de iencia Atronómica y Geofíica INTODUIÓN a la IENIAS de la ATMÓSFEA Práctica 3 : TEMPEATUA y HUMEDAD. Definicione, ecuacione y leye báica

Más detalles

Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real

Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real Ecuela Univeritaria e Ingeniería Técnica grícola e Ciua Real En una etructura e hormigón armao prefabricao, e eea calcular la armaura necearia (longituinal y tranveral) e una viga biapoyaa e m e luz y

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES Matmáticas º Bachillrato. Prosora: María José Sánchz Quvdo REPRESENTACIÓN DE FUNCIONES Para l studio y rprsntación d una unción s sigun los siguints pasos:. Dominio d dinición y d continuidad.. Corts con

Más detalles

Transformaciones Geométricas

Transformaciones Geométricas Tranformacione Geométrica Definición Concepto báico referente a la tranformacione geométrica afine en 2D 3D Tralación Ecalamiento Rotación La tranformacione e utilizan en la aplicacione o como ubrutina

Más detalles

SISTEMAS MUESTREADOS

SISTEMAS MUESTREADOS SISEMAS MUESREADOS DR. ASIL M. AL HADIHI SISEMAS MUESREADOS Mutro d ñal Etudio n frcuncia dl mutro orma dl mutro Rcontrucción idal loquador caual Sitma mutrado écnica d tudio d itma mutrado Rprntación

Más detalles

Solución. Se deriva en forma logarítmica. Se empieza por tomar logaritmos neper1anos en ambos miembros.

Solución. Se deriva en forma logarítmica. Se empieza por tomar logaritmos neper1anos en ambos miembros. . Drivar simplificar: a. S driva n forma logarítmica. S mpiza por tomar logaritmos npranos n ambos mimbros. ln ln Aplicando las propidads d los logaritmos s baja l ponnt. ln ln S drivan los dos mimbros

Más detalles

Tema 1. Termodinámica Estadística. Problemas

Tema 1. Termodinámica Estadística. Problemas ma. rmodinámica Estadística Problmas jrcicios E.- S tin un sistma formado por partículas iguals, con 6 nivls nrgéticos no dgnrados. a) Calcular l númro acto d microstados (M) n los trs casos siguints:

Más detalles

CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS

CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS 14-1 Los tipos d intrés nominals y rals Slid 14.2 Los tipos d intrés xprsados n unidads d la monda nacional s dnominan tipos d intrés nominals. Los

Más detalles

Para que exista límite de una f(x) en un punto han de coincidir los límites laterales en dicho punto.

Para que exista límite de una f(x) en un punto han de coincidir los límites laterales en dicho punto. REPASO LÍMITES º BACH. RECORDAR: Para qu ista límit d una f() n un punto han d coincidir los límits latrals n dicho punto. A fctos dl f() no tnmos n cunta lo qu ocurr actamnt n a, sino n las a proimidads.

Más detalles

PRESIÓN Y ESTÁTICA DE FLUIDOS

PRESIÓN Y ESTÁTICA DE FLUIDOS htt://louyaun.blogot.com/ E-mail: williamcm@hotmail.com louyaun@yahoo.e PRESIÓN Y ESTÁTICA DE FLUIDOS CLASIFICACIÓN DE LA MECÁNICA DE FLUÍDOS Hidrotática Etudio fluido en reoo Hidrodinámica Etudio fluido

Más detalles

Comprensión de la tarjeta de interfaz WAN ISDN BRI (S/T) de 1 puerto (WIC-1B-S/T o WIC36-1B- S/T)

Comprensión de la tarjeta de interfaz WAN ISDN BRI (S/T) de 1 puerto (WIC-1B-S/T o WIC36-1B- S/T) Cmprnión la tarjta intrfaz WAN ISDN BRI (S/T) 1 purt (WIC1BS/T WIC361B S/T) Cntnid Intrducción prrrquiit Rquiit Cmpnt Utilizad Cnvnci Númr l prduct Funci Sprt la platafrma Cnfiguración Infrmación Rlacinada

Más detalles

Algoritmo para Aproximar el Área Bajo la Curva de la Función Normal Estándar

Algoritmo para Aproximar el Área Bajo la Curva de la Función Normal Estándar Algoritmo para Aproimar l Ára Bajo la Curva d la Función Normal Estándar Algoritmo para Aproimar l Ára Bajo la Curva d la Función Normal Estándar M. n C. Víctor Manul Silva García, M. n C. Eduardo Vga

Más detalles

Capítulo 6: Entropía.

Capítulo 6: Entropía. Capítulo 6: Entropía. 6. La deigualdad de Clauiu La deigualdad de Clauiu no dice que la integral cíclica de δq/ e iempre menor o igual que cero. δq δq (ciclo reverible) Dipoitivo cíclico reverible Depóito

Más detalles

7 FUNCIÓN DE TRANSFERENCIA SISTEMAS DE PRIMER ORDEN

7 FUNCIÓN DE TRANSFERENCIA SISTEMAS DE PRIMER ORDEN DINÁMIA ONTROL DE PROESOS 7 FUNIÓN DE TRANSFERENIA SISTEMAS DE PRIMER ORDEN Introucción Trabajar en el omio e Laplace no olamente e útil para la reolución matemática e ecuacione o que e preta epecialmente

Más detalles

Opción A Ejercicio 1 opción A, modelo Septiembre 2011

Opción A Ejercicio 1 opción A, modelo Septiembre 2011 IES Fco Ayala d Granada Sptimbr d 0 (Modlo ) Grmán-Jsús Rubio Luna UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO 0-0 MATEMÁTICAS II Opción A Ejrcicio opción A, modlo Sptimbr 0 k si

Más detalles

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.. FUNCIÓN EXPONENCIAL n Hmos stado manjando n st trabajo prsions dl tipo n dond s una variabl llamada bas n una constant llamada ponnt, si intrcambiamos d lugar

Más detalles

26 EJERCICIOS de LOGARITMOS

26 EJERCICIOS de LOGARITMOS 6 EJERCICIOS d LOGARITMOS Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii) Corts con los js. iv) Intrvlos d crciminto.

Más detalles

7 L ímites de funciones. Continuidad

7 L ímites de funciones. Continuidad 7 L ímits d funcions. Continuidad Página 05 f () = + Pinsa y ncuntra límits a) + ; + ; + + ; ; ; ; 9 0; 0; 0 ) 0; 0; 0 f ) + ; + ; 0 g) + ; + h) ; f () = a) 0 0, Página 0 a) a) f () = ; f () = ; f () =

Más detalles

REFRACTARIOS Y HORNOS ///// Problemas de combustibles. Combustión -----------------// HOJA 1.

REFRACTARIOS Y HORNOS ///// Problemas de combustibles. Combustión -----------------// HOJA 1. REFRACTARIOS Y HORNOS ///// Problema de combutible. Combutión -----------------// HOJA 1. P1.- Un combutible que contiene un 80 % de butano y un 20 % de propano, e quema con un 20 % de exceo del aire teórico

Más detalles

TEMA 5: INTEGRAL INDEFINIDA

TEMA 5: INTEGRAL INDEFINIDA MATEMÁTIAS II TEMA : INTEGRAL INDEFINIDA. Primitiva d una función El objtivo d st tma s l studio dl procso contrario al d drivación. Si drivamos la función partimos d f tnmos y dirmos qu s una primitiva

Más detalles

ELEMENTOS DEL MOVIMIENTO

ELEMENTOS DEL MOVIMIENTO 1 ELEMENTOS DEL MOVIMIENTO Poición 1.- Ecribe el vector de poición y calcula u módulo correpondiente para lo iguiente punto: P1 (4,, 1), P ( 3,1,0) y P3 (1,0, 5); La unidade de la coordenada etán en el

Más detalles

GF3003 Ciencias Atmosféricas. Laura Gallardo Klenner Departamento de Geofísica de la Universidad de Chile Primavera 2010

GF3003 Ciencias Atmosféricas. Laura Gallardo Klenner Departamento de Geofísica de la Universidad de Chile Primavera 2010 GF3003 Ciencia Atmoférica Laura Gallardo Klenner Departamento de Geofíica de la Univeridad de Chile Primavera 2010 HOY: Termodinámica (3) Nube y precipitación Entropía y ecuación de Clauiu- Clapeyron Qué

Más detalles

Departamento de Ingenierías Eléctrica y Electrónica Universidad del Norte

Departamento de Ingenierías Eléctrica y Electrónica Universidad del Norte chritianq@uninorte.edu.co Departamento de Ingeniería Eléctrica y Electrónica Univeridad del Norte El problema má importante de lo itema de control lineal tiene que ver con la etabilidad. Un itema de control

Más detalles

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13 º Bachillrato: jrcicios modlo para l amn d las lccions, y 3 Sa la unción F ( ) t dt a) Calcular F (), studiar l crciminto d F() y hallar sus máimos y mínimos. b) Calcular F () y studiar la concavidad y

Más detalles

Para hallar la solución homogénea se hacen la siguientes consideraciones: 0, d dx

Para hallar la solución homogénea se hacen la siguientes consideraciones: 0, d dx Elaborao or: Jonn Coquuanca Lizarraga. Rsolvr: 5 5 4 3 Solución: la solución la ED sta aa or, g Para allar la solución omogéna s acn la siguints consiracions: 0, ED orn surior Alicacions Q D m 5 : D D

Más detalles

Análisis esquemático simplificado de una torre de enfriamiento.

Análisis esquemático simplificado de una torre de enfriamiento. Análisis esquemático simplificado de una torre de enfriamiento. En el diagrama el aire con una humedad Y 2 y temperatura t 2 entra por el fondo de la torre y la abandona por la parte superior con una humedad

Más detalles

Tema 4. Amplificador Operacional. Ingeniería Eléctrica y Electrónica

Tema 4. Amplificador Operacional. Ingeniería Eléctrica y Electrónica 1 Tma 4. Amplificador Opracional 2 El Amplificador Opracional: modlo implificado, modlo idal, límit d opración Índic alimntación dl amplificador opracional Montaj linal: amplificador inror, guidor d tnión,

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. CURSO 007-008 CONVOCATORIA: SEPTIEMBRE TECNOLOGÍA INDUSTRIAL II Lo alumno deberán elegir una de la do opcione. Cada ejercicio vale,5 punto. La pregunta del

Más detalles

PROPIEDADES ELEMENTALES

PROPIEDADES ELEMENTALES Capítulo 1 PROPIEDADES ELEMENTALES Problema e Geotecnia y Cimiento 6 Capítulo 1 - Propieae elementale NOMENCLATURA UTILIZADA PARA LA RESOLUCIÓN DE LOS PROBLEMAS DE PROPIEDADES ELEMENTALES olúmene Suelo

Más detalles

Apuntes de Matemática Discreta 12. Ecuaciones Diofánticas

Apuntes de Matemática Discreta 12. Ecuaciones Diofánticas Apuntes e Matemática Discreta 2. Ecuaciones Diofánticas Francisco José González Gutiérrez Cáiz, Octubre e 2004 Universia e Cáiz Departamento e Matemáticas ii Lección 2 Ecuaciones Diofánticas Contenio 2.

Más detalles

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b Matmáticas Emprsarials I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES Drivabilidad ( ) b si S09. La función f ( ) s continua y drivabl n = : a( ) si a) Si a = y b = b) Si a = y b = 5 c) Nunca pud sr

Más detalles

El resultado se expresa mediante una cantidad seguida de la unidad elegida. La cantidad representa el número de veces que se repite la unidad.

El resultado se expresa mediante una cantidad seguida de la unidad elegida. La cantidad representa el número de veces que se repite la unidad. LA MEDIDA Magnitudes físicas Todas las propiedades que podemos medir se denominan magnitudes. Para medir una magnitud hay que determinar previamente una cantidad de esta, llamada unidad. Al medir, se comparan

Más detalles

Tema Nro. 4 2º Ley de la Termodinámica

Tema Nro. 4 2º Ley de la Termodinámica PET 206 P1 TERMODINAMICA Tma Nro. 4 2º Ly d a Trmodinámica Ing. Ocar Varga Antzana 1. TRODUCCIÓN La 2º Ly d a Trmodinámica: baa n principio d a conrvación d a nrgía, utiiza para abr o prdcir a dircción

Más detalles

2º de Bachillerato. 3. Calcular la variación de entalpía de la reacción de combustión del etanol a partir de la tabla de entalpías de formación

2º de Bachillerato. 3. Calcular la variación de entalpía de la reacción de combustión del etanol a partir de la tabla de entalpías de formación Química TEM 3 º d achillrato Trmoquímica. La ntalpía d combustión dl butano s d º 875,8 /mol. Si qurmos calntar l air d una habitación d xx3 m con una stua d butano, dsd º hasta 5º, qué masa d butano dbrmos

Más detalles

Soluciones a los ejercicios propuestos Unidad 1. El conjunto de los números reales Matemáticas aplicadas a las Ciencias Sociales I

Soluciones a los ejercicios propuestos Unidad 1. El conjunto de los números reales Matemáticas aplicadas a las Ciencias Sociales I Solucions a los jrcicios propustos Unidad. El conjunto d los númros rals Matmáticas aplicadas a las Cincias Socials I NÚMEROS RACIONALES Y NÚMEROS IRRACIONALES. Dtrmina si los siguints númros son o no

Más detalles

FÍSICA II. Guía De Problemas Nº5: Transmisión del Calor

FÍSICA II. Guía De Problemas Nº5: Transmisión del Calor Unvrdad Naconal dl Nordt Facultad d Ingnría Dpartamnto d Fíco-uímca/Cátdra Fíca II FÍSICA II Guía D Problma Nº5: Tranmón dl Calor 1 PROBLEMAS RESUELTOS 1 - Una barra d cobr d cm d dámtro xtror tn n u ntror

Más detalles

( ) 2. 1. Calcula las siguientes integrales. Soluciones. 1 x. arctan. x 4x + 13. sen x dx. x 2. 11arctan. x dx + 2. e x. e arctan e. e dx.

( ) 2. 1. Calcula las siguientes integrales. Soluciones. 1 x. arctan. x 4x + 13. sen x dx. x 2. 11arctan. x dx + 2. e x. e arctan e. e dx. Albrto Entro Cond Mait Gonzálz Juarrro Intgral indfinida Cálculo d primitivas Calcula las siguints intgrals Solucions A d A d + + + ln( + + ) A d arctan + A sn sn d A d ln ( ) 6A d cos tan + arctan + ln(

Más detalles

XIV.- ALIMENTACIÓN AL RODETE CÁMARA ESPIRAL

XIV.- ALIMENTACIÓN AL RODETE CÁMARA ESPIRAL XIV.- ALIMENTACIÓN AL OETE CÁMAA ESPIAL XIV..- IMENSIONAMIENTO PAA TUBINAS FANCIS (ELECTOCONSULT) c [m/s] 0,44 5,4 nq Figura 4.. Vlocia ntraa n la spiral n función la vlocia spcífica n s. Figura 4.. Esquma

Más detalles

Instituto de Física Facultad de Ingeniería Universidad de la República

Instituto de Física Facultad de Ingeniería Universidad de la República Intituto e Fíica Faculta e Ingeniería Univeria e la República VERSIÓN Solucione por verión, al final. PRIMER PARCIAL - Fíica General 8 e Mayo e 006 g = 9,8 m/ Pregunta Un equiaor e lanza por una rampa

Más detalles

FÍSICA NUCLEAR - CUESTIONES Y EJERCICIOS

FÍSICA NUCLEAR - CUESTIONES Y EJERCICIOS I.E.S BERIZ DE SUBI Dpto. Fíica y Quíica FÍSIC UCLER - CUESIOES Y EJERCICIOS PROBLEMS. Dtrina l núro atóico y l núro áico d cada uno d lo iótopo qu 8 rultará dl U al itir ucivant 9 do partícula alfa y

Más detalles

Laboratorio 6. Calor diferencial de solución

Laboratorio 6. Calor diferencial de solución Laboratorio 6. Calor diferencial de olución Objetivo Determinar la olubilidad del ácido oxálico a diferente temperatura. Calcular el calor diferencial de la olución aturada. Teoría Uno de lo cao má imple

Más detalles

CADET 3 ISO madera 3 tramos 3 NORM 8/2 ISO madera 2 tramos 4 ALU 3 ISO aluminio 3 tramos 5 ALU 2 ISO aluminio 2 tramos 6

CADET 3 ISO madera 3 tramos 3 NORM 8/2 ISO madera 2 tramos 4 ALU 3 ISO aluminio 3 tramos 5 ALU 2 ISO aluminio 2 tramos 6 Índic Escalras scamotabls AET 3 IO madra 3 tramos 3 NORM 8/2 IO madra 2 tramos 4 ALU 3 IO aluminio 3 tramos 5 ALU 2 IO aluminio 2 tramos 6 Escalras d tijra ZX E TEO 7 ZX E ARE 8 ZX E TERRAZA 9 Escalras

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos OPCIÓN A

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos OPCIÓN A I.E.S. CSTELR DJOZ PRUE DE CCESO (LOGSE) UNIVERSIDD DE LERES JUNIO (RESUELTOS po nonio Mnguiano) MTEMÁTICS II Timpo máimo: hoas minuos Consa mana claa aonaa una las os opcions popusas. Caa cusión s punúa

Más detalles

LEY DE GAUSS. A v. figura 5.1

LEY DE GAUSS. A v. figura 5.1 LY D GAUSS 5.1 INTRODUCCION. l campo eléctrico producido por objeto cargado etático puede obtenere por do procedimiento equivalente: mediante la ley de Coulomb o mediante la ley de Gau, ley debida a Karl

Más detalles

ACTUACIONES DE MOTORES

ACTUACIONES DE MOTORES MOORES DE URBINA DE GAS A. G. Riva 5. AUAIONES DE MOORES Empuj otal El mpuj total l mpuj darrollado n la tobra d alida dl motor. Et incluy ambo, l mpuj gnrado por la cantidad d moviminto d lo ga d cap

Más detalles

Instituto de Física Facultad de Ingeniería Universidad de la República

Instituto de Física Facultad de Ingeniería Universidad de la República Intituto de Fíica Facultad de Ingeniería Univeridad de la República do. PARCIAL - Fíica General 9 de noviembre de 007 VERSIÓN El momento de inercia de una efera maciza de maa M y radio R repecto de un

Más detalles

3. SISTEMAS DE REFRIGERACIÓN Y BOMBA DE CALOR

3. SISTEMAS DE REFRIGERACIÓN Y BOMBA DE CALOR . SISEMAS DE REFRIGERACIÓN Y BOMBA DE CALOR INRODUCCIÓN La rfrigraión mpla para xtrar alor d un rinto, diipándolo n l mdio ambint. Como ta pud r también la dfiniión dl nfriaminto omún, priarmo un poo má:

Más detalles

Se comprime aire, inicialmente a 17ºC, en un proceso isentrópico a través de una razón de

Se comprime aire, inicialmente a 17ºC, en un proceso isentrópico a través de una razón de Ejemplo 6-9 Se comprime aire, inicialmente a 7ºC, en un proceo ientrópico a travé de una razón de preión de 8:. Encuentre la temperatura final uponiendo calore epecífico contante y calore epecífico variable,

Más detalles

Variación n de las temperaturas en el ciclo

Variación n de las temperaturas en el ciclo Análisis térmico t de la inyección Variación n de las temperaturas en el ciclo Juan de Juanes Márquez M Sevillano Interés s del control de temperatura del molde Una de los parámetros más m s importantes

Más detalles

MECÁNICA DE FLUIDOS DEFINICIONES Y PROPIEDADES

MECÁNICA DE FLUIDOS DEFINICIONES Y PROPIEDADES José Agüera Soriano 2011 1 MECÁNICA DE FLUIDOS DEFINICIONES Y PROPIEDADES José Agüera Soriano 2011 2 DEFINICIONES Y CONCEPTOS PRELIMINARES SISTEMA FLUJO PROPIEDADES DE UN FLUIDO VISCOSIDAD DE TURBULENCIA

Más detalles

ENERGÍA (I) CONCEPTOS FUNDAMENTALES

ENERGÍA (I) CONCEPTOS FUNDAMENTALES ENERGÍA (I) CONCEPTOS UNDAMENTALES IES La Magdalena. Avilé. Aturia La energía e una magnitud de difícil definición, pero de gran utilidad. Para er exacto, podríamo decir que má que de energía (en entido

Más detalles

Cálculo: Polinomio de Taylor

Cálculo: Polinomio de Taylor Cálculo: Polinomio de Taylor Antonio Garvín Curso 04/05 El polinomio de Taylor Nos detendremos especialmente en el teorema de Taylor, justificando la introducción del polinomio de Taylor como la mejor

Más detalles

6.3 Existencia de TL C1 s 1 2 D. 2 s 1 D

6.3 Existencia de TL C1 s 1 2 D. 2 s 1 D 6.3 Exincia d TL 355 p Ejmplo 6..8 Calcular L. p L L n o C C p p : Podmo aplicar, nonc, la fórmula para lo xponn r ngaivo qu cumplan < r

Más detalles

de perfil, y se halla la tercera proyección tanto del punto P como de la recta r. La proyección r corta a los planos de proyección en H r

de perfil, y se halla la tercera proyección tanto del punto P como de la recta r. La proyección r corta a los planos de proyección en H r Actividad SISTEMA IÉRICO II TEMA 9 Paa eolve eta actividad, emo de tene en cuenta lo iguiente: o ecta on paalela en el epacio, i u poyeccione obe lo do plano de poyección también lo on.. Sea el punto P(-P

Más detalles

PROBLEMAS DE CALOR Intercambio de calor

PROBLEMAS DE CALOR Intercambio de calor PROBLEMAS DE CALOR Intrcabio d calor En los problas d calor, considraos un sista ADIABÁTICO, no xist intrcabio d calor con l xtrior. Y, por lo tanto, la nrgía quda íntgrant n l sista 1 Probla.- Calcular

Más detalles

P t. Primer Semestre 2010 PAUTA AYUDANTÍA 7 DINÁMICA DE FLUIDOS. Loa fluidos se pueden clasificar de las siguientes maneras:

P t. Primer Semestre 2010 PAUTA AYUDANTÍA 7 DINÁMICA DE FLUIDOS. Loa fluidos se pueden clasificar de las siguientes maneras: Unieridad Técnica Federico Santa María Introducción a la Mecánica de Fluido y Calor Prier Seetre 00 Profeor: Rodrigo Suárez yudante: Macarena Molina PUT YUDNTÍ 7 DINÁMIC DE FLUIDOS Loa fluido e pueden

Más detalles

CIDEAD. 2º Bachillerato.3º Trimestre.Tecnología Industrial II Tema 9.- Acción proporcional, integral y derivativo de un sistema de control.

CIDEAD. 2º Bachillerato.3º Trimestre.Tecnología Industrial II Tema 9.- Acción proporcional, integral y derivativo de un sistema de control. Dearrollo del tema.. El regulador. 2. Acción proporcional 3. Acción integral 4. Acción derivativa. . El regulador. El regulador contituye el elemento fundamental en un itema de control, pue determina el

Más detalles

ANEJO 7º Cálculo simplificado de secciones en Estado Límite de Agotamiento frente a solicitaciones normales.

ANEJO 7º Cálculo simplificado de secciones en Estado Límite de Agotamiento frente a solicitaciones normales. ANEJO 7º Cálculo simpliicao sccions n Estao Límit Agotaminto rnt a solicitacions normals.. Alcanc En st Anjo s prsntan órmulas simpliicaas para l cálculo (imnsionaminto o comprobación sccions rctangulars

Más detalles

OBJETIVO: Estudio del crecimiento de la ciudad de Río Grande después de la década del 40 y su avance sobre el área de marismas cercanas al Río.

OBJETIVO: Estudio del crecimiento de la ciudad de Río Grande después de la década del 40 y su avance sobre el área de marismas cercanas al Río. CLASE 2 EVALUACIÓN ALICIA YANET BLESSIO ELABORACIÓN DE CASO PERSONAL OBJETIVO: Etudio dl crciminto d la ciudad d Río Grand dpué d la década dl 40 y u avanc obr l ára d marima crcana al Río. Aplicación

Más detalles

MICROECONOMÍA. EQUILIBRIO GENERAL Y ECONOMÍA DE LA INFORMACIÓN. Tema 3 LA ECONOMÍA DE LA INFORMACIÓN. 3.1 Conceptos básicos 3.

MICROECONOMÍA. EQUILIBRIO GENERAL Y ECONOMÍA DE LA INFORMACIÓN. Tema 3 LA ECONOMÍA DE LA INFORMACIÓN. 3.1 Conceptos básicos 3. MCROCONOMÍ. QULRO GNRL Y CONOMÍ D L NORMCÓN Tma 3 L CONOMÍ D L NORMCÓN 3.1 Concptos básicos 3.2 l risgo moral rnano rra Tallo Olga María Rorígz Rorígz http://bit.ly/8l8dd 1 Contratos contingnts: spcifican

Más detalles

2. En el punto x = 0, f ( x) a) Un mínimo local. b) Un máximo local. c) Ninguna de las anteriores. Solución:

2. En el punto x = 0, f ( x) a) Un mínimo local. b) Un máximo local. c) Ninguna de las anteriores. Solución: Análisis Matmático (Matmáticas Emprsarials II) PROBLEMAS DE FUNCIONES DE UNA VARIABLE. Pguntas d tipo tst. (J). La función f ( ) ln: a) Tin puntos stacionarios (o críticos, s dcir, puntos cuya primra drivada

Más detalles