LÍMITES DE FUNCIONES. CONTINUDAD
|
|
|
- José Antonio Espejo Lara
- hace 9 años
- Vistas:
Transcripción
1 LÍMITES DE FUNCIONES. CONTINUDAD Signiicado dl it Ejrcicio nº.- Rprsnta gráicamnt y plica l gniicado d la prón: Ejrcicio nº.- Eplica l gniicado d la guint prón y rprséntalo gráicamnt: 9 Ejrcicio nº.- Escrib una dinición para la guint prón y rprséntala gráicamnt: ) Ejrcicio nº.- Da una dinición para sta prón y rprséntala gráicamnt: Ejrcicio nº.- Dado l guint rsultado: plica su gniicado y rprséntalo gráicamnt. Cálculo d its Ejrcicio nº.- Calcula: [ ] log
2 Ejrcicio nº 7.- Obtén l valor d los guints its: Ejrcicio nº 8.- Calcula los guints its: Ejrcicio nº 9.- Halla l it: 9 Ejrcicio nº.- Halla l it: Ejrcicio nº.- Halla los guints its: ln [ ] ) Ejrcicio nº.- Halla los guints its: Ejrcicio nº.- Halla los its: 7 9
3 Ejrcicio nº.- Calcula l it: Ejrcicio nº.- Calcula: Ejrcicio nº.- Calcula los guints its: [ log ] Ejrcicio nº 7.- Calcula los its: Ejrcicio nº 8.- Calcula: Ejrcicio nº 9.- Calcula l guint it: Ejrcicio nº.- Halla l guint it:
4 Ejrcicio nº.- Calcula stos its: 9 Ejrcicio nº.- Calcula los guints its: Ejrcicio nº.- Halla: Ejrcicio nº.- Calcula: 8 7 Ejrcicio nº.- Calcula l it: Ejrcicio nº.- Obtén l valor d los guints its: log Ejrcicio nº 7.- Halla los its:
5 Ejrcicio nº 8.- Calcula stos its: Ejrcicio nº 9.- Halla l valor dl guint it: Ejrcicio nº.- Calcula l guint it: Continuidad Ejrcicio nº.- Estudia la continuidad d la guint unción. Si n algún punto no s continua, indica l tipo d discontinuidad qu hay: Ejrcicio nº.- Halla los valors d a y b para qu la guint unción sa continua: Ejrcicio nº.- Estudia la continuidad d la guint unción: ) ) < < a b a ) < <
6 Ejrcicio nº.- Calcula l valor d a para qu la guint unción sa continua: ) a a ln > Ejrcicio nº.- Estudia la continuidad d la guint unción. En los puntos n los qu no sa continua, indica l tipo d discontinuidad qu prsnta: ) 8 Ejrcicio nº.- Halla l valor d k para qu la guint unción sa continua n : ) k Ejrcicio nº 7.- Estudia la continuidad d la unción: ) ln < < Ejrcicio nº 8.- Calcula los valors d a y b para qu la guint unción sa continua: ) a a b b < Ejrcicio nº 9.- Dada la unción, studia su continuida d. Indica l tipo discontinuidad qu hay n los puntos n los qu no s continua. ) d
7 Ejrcicio nº.- Halla l valor d a para qu la guint unción sa continua: ) a a > Torma d Bolzano Ejrcicio nº.- Dmustra qu la cuación: 7 tin, al mnos, una solución ral. Dtrmina un intrvalo d amplitud mnor qu n l qu s ncuntr la raíz. Ejrcicio nº.- Dmustra qu la cuación tin, al mnos, una solución ral n l intrvalo [, ]. Ejrcicio nº - Halla un intrvalo d amplitud mnor qu n l qu la guint cuación tnga, al mnos, una raíz ral: 7 Ejrcicio nº.- Dada la unción ), ncuntra un intrvalo d amplitud mnor qu n l qu ) corta al j OX. Ejrcicio nº.- Pruba qu la unción ) cos π corta al j OX n l intrvalo [, ]. 7
8 SOLUCIONES LÍMITES Y CONTINUDAD Signiicado dl it Ejrcicio nº.- Rprsnta gráicamnt y plica l gniicado d la prón: Podmos consguir qu sté tan próimo a como quramos dando a valors suicintmnt grands. Con más prción: Dado ε >, podmos ncontrar un númro h tal qu, > h, ntoncs < ε. Rprsntación: Ejrcicio nº.- Eplica l gniicado d la guint prón y rprséntalo gráicamnt: 9 Dado ε >, podmos ncontrar δ > tal qu, y δ < < δ, ntoncs 9 < ε. 8
9 Rprsntación: Ejrcicio nº.- Escrib una dinición para la guint prón y rprséntala gráicamnt: ) Dado un númro k, podmos ncontrar δ tal qu, δ < <, ntoncs ) < k. Rprsntación: Ejrcicio nº.- Da una dinición para sta prón y rprséntala gráicamnt: Dado un númro k, podmos ncontrar δ > tal qu, < < δ, ntoncs > k. 9
10 Rprsntación: Ejrcicio nº.- Dado l guint rsultado: plica su gniicado y rprséntalo gráicamnt. Dado ε >, ist un númro h tal qu, < h, ntoncs < ε. Rprsntación: Cálculo d its Ejrcicio nº.- Calcula: [ ] log [ ] Porqu una ponncial d bas mayor qu s un ininito d ordn suprior a una potncia.
11 Porqu una potncia s un ininito d ordn suprior a un logaritmo. Ejrcicio nº 7.- Obtén l valor d los guints its: Ejrcicio nº 8.- Calcula los guints its: Ejrcicio nº 9.- Halla l it: log log ) ) ) ) ) ) ) 9 ) ) ) ) ) ) ) 9
12 Hallamos los its latrals: ; 8 ) ) ) ) ) ) ) Ejrcicio nº.- Halla l it: 8 8) 8) ) Ejrcicio nº.- Halla los guints its: ln [ ] ) [ ] Porqu una ponncial d bas mayor qu s un ininito d ordn suprior a una potncia. ln ) ln ) Porqu las potncias son ininitos d ordn suprior a los logaritmos. Ejrcicio nº.- Halla los guints its:
13 Ejrcicio nº.- Halla los its: Ejrcicio nº.- Calcula l it: Hallamos los its latrals: Ejrcicio nº.- Calcula: ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ;
14 Ejrcicio nº.- Calcula los guints its: Porqu las potncias son ininitos d ordn suprior a los logaritmos. Ejrcicio nº 7.- Calcula los its: Ejrcicio nº 8.- Calcula: ) ) ) ) ) ) ) ) 8 [ ] log [ ] log
15 Ejrcicio nº 9.- Calcula l guint it: Ejrcicio nº.- Halla l guint it: Ejrcicio nº.- Calcula stos its: ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) 9
16 Ejrcicio nº.- Calcula los guints its: Ejrcicio nº.- Halla: Ejrcicio nº.- Calcula: 9 9 ) b 7 8
17 7 Ejrcicio nº.- Calcula l it: Ejrcicio nº.- Obtén l valor d los guints its: Porqu las potncias son ininitos d ordn suprior a los logartimos. Ejrcicio nº 7.- Halla los its: ) ) ) ) 7 8 ) ) ) ) ) ) ) ) ) log log
18 8 Ejrcicio nº 8.- Calcula stos its: Ejrcicio nº 9.- Halla l valor dl guint it: Hallamos los its latrals: Ejrcicio nº.- Calcula l guint it: 9 ) ) 8 ) ) ) ) ) ) ) 9 ) ) ) ) ;
19 ) ) ) ) Continuidad Ejrcicio nº.- Estudia la continuidad d la guint unción. Si n algún punto no s continua, indica l tipo d discontinuidad qu hay: ) Dominio {, }. ) s continua n {, }. Vamos l tipo d discontinuidad qu prsnta n y n : Discontinuidad vitabl n. ) ) ) ) ) Discontinuidad d salto ininito n. ) ). ) ) ; ) ) ) Hallamos los its latrals: Ejrcicio nº.- Halla los valors d a y b para qu la guint unción sa continua: ) a b a < < Dominio Si y ) s continua, pus stá ormada por uncions continuas. En : 9
20 Para qu ) sa continua n, ha d sr: En : ) ) b a b a ) b a a b a a b ) ) b ) ) 7 7 Para qu ) sa continua n, ha d sr: 8 b a 7 a b 8 b a Unindo las dos condicions antriors, tnmos qu: a b a b b a a a a a a ; b Ejrcicio nº.- Estudia la continuidad d la guint unción: ) < < Dominio Si y ) s continua, pus stá ormada por uncions qu son continuas n los intrvalos corrspondints. En : ) ) ) ) ) s continua n. En :
21 ) ) ) s discontinua n ) ) 7 salto inito.. Hay una discontinuidad d Ejrcicio nº.- Calcula l valor d a para qu la guint unción sa continua: ) a a ln > Dominio Si ) s continua, pus stá ormada por uncions continuas. En : ) a ) ) a ln ) a a ) a Para qu ) sa continua n, ha d sr: a a a a Ejrcicio nº.- Estudia la continuidad d la guint unción. En los puntos n los qu no sa continua, indica l tipo d discontinuidad qu prsnta: ) 8 ) 8 Dominio {, } ) ) ) ) ) s continua n {, }. Vamos l tipo d discontinuidad qu prsnta n y n : ) ). Hallamos los its latrals:
22 ) ; ) Discontinuidad d salto ininito n. ) 7 Discontinuidad vitabl n. Ejrcicio nº.- Halla l valor d k para qu la guint unción sa continua n : ) k Para qu ) sa continua n, ha d tnrs qu: ) ) ) ) k 7 Por tanto, ha d sr k Ejrcicio nº 7.- Estudia la continuidad d la unción: ) ) 7 ) ) ) ln < < Dominio Si y ) s continua, pus stá ormada por uncions continuas. En :
23 ) En : ) ) ) ) ) ) ) ln ) ) s continua n. ) s continua n. Por tanto, ) s continua n. Ejrcicio nº 8.- Calcula los valors d a y b para qu la guint unción sa continua: ) a a b b < Si y ) s continua, pus stá ormada por uncions continuas. En : ) a ) ) a a a b ) a b Para qu ) sa continua, ha d sr: a a b b En : ) a ) ) ) a ) Para qu ) sa continua n, ha d sr: a a a Por tanto, ) srá continua a y b.
24 Ejrcicio nº 9.- Dada la unción, studia su continuida d. Indica l tipo discontinuidad qu hay n los puntos n los qu no s continua. ) d ) Dominio {, } ) ) ) ) ) s continua n {, }. Vamos qu tipo d discontinuidad qu prsnta n y n : ) Discontinuidad vitabl n. ) ). Hallamos los its latrals: ) ; ) Discontinuidad d salto ininito n. Ejrcicio nº.- Halla l valor d a para qu la guint unción sa continua: ) a a > Si la unción s continua, pus stá ormada por uncions continuas. En : ) ) a ) a a ) a Para qu ) sa continua n, ha d sr: a a a a
25 Torma d Bolzano Ejrcicio nº.- Dmustra qu la cuación: 7 tin, al mnos, una solución ral. Dtrmina un intrvalo d amplitud mnor qu n l qu s ncuntr la raíz. Condramos la unción ) 7, qu s continua por sr polinómica. Tantando, ncontramos qu ) ; ). Es dcir: ) s continua n [, ] ) gno d ) gno d Por l torma d Bolzano, sabmos qu ist, al mnos, un c, ) tal qu c). La raíz d la cuación s c. Ejrcicio nº.- Dmustra qu la cuación tin, al mnos, una solución ral n l intrvalo [, ]. Condramos la unción ), continua n, pus s suma d uncions continuas. En particular, srá continua n [, ]. Por otra part, tnmos qu: ) ) < gno d > ) gno d ) Por l torma d Bolzano, podmos asgurar qu ist, al mnos, un c, ) tal qu c). La raíz d la cuación s c. Ejrcicio nº - Halla un intrvalo d amplitud mnor qu n l qu la guint cuación tnga, al mnos, una raíz ral: 7
26 Condramos la unción ) 7, continua por sr polinómica. Tantando, ncontramos qu ) ; ). Es dcir: ) s continua n [, ] ) gno d ) gno d Por l torma d Bolzano, sabmos qu ist, al mnos, un c, ) tal qu c). La raíz d la cuación s c. Ejrcicio nº.- Dada la unción ), ncuntra un intrvalo d amplitud mnor qu n l qu ) corta al j OX. ) s continua n, pus s una unción polinómica. Tantando, ncontramos qu ), ). Es dcir: ) s continua n [, ] ) gno d ) gno d Por l torma d Bolzano, podmos asgurar qu ist, al mnos, un c, ) tal qu c). ) cortará al j OX n c. Ejrcicio nº.- Pruba qu la unción ) cos π corta al j OX n l intrvalo [, ]. ) s una unción continua n, pus s suma d uncions continuas. En particular, srá continua n [, ]. Por otra part: ) ) < > gno d ) gno d ) Por l torma d Bolzano, podmos asgurar qu ist, al mnos, un c, ) tal qu c). ) cortará al j OX n c.
Tema 8 Límites Matemáticas II 2º Bachillerato 1. EJERCICIO 1 : Da una definición para estas expresiones y represéntalas gráficamente: c) 2.
Tm Límits Mtmátics II º Bchillrto TEMA LIMITES CÁLCULO DE LÍMITES EJERCICIO : D un dinición pr sts prons y rprséntls gráicmnt: ) ) 9 6 c) ) ) Cundo s proim, l unción s hc muy grnd ) Cundo s proim, l unción
TEMA 11 LÍMITES, CONTINUIDAD Y ASÍNTOTAS
Tma Límits, continuidad y asíntotas Matmáticas I º Bachillrato TEMA LÍMITES, CONTINUIDAD ASÍNTOTAS CÁLCULO GRÁFICO DE LÍMITES EJERCICIO : Sobr la gráfica d f), halla : 8 8 8 f f c) f f ) f f f c) f f )
7 L ímites de funciones. Continuidad
7 L ímits d funcions. Continuidad Página 05 f () = + Pinsa y ncuntra límits a) + ; + ; + + ; ; ; ; 9 0; 0; 0 ) 0; 0; 0 f ) + ; + ; 0 g) + ; + h) ; f () = a) 0 0, Página 0 a) a) f () = ; f () = ; f () =
TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS
TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS 8. LÍMITE DE UNA FUNCIÓN 8.. LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límit d una función n un punto f () = l S l: El it cuando tind a c d f() s l c Significa:
EJERCICIOS RESUELTOS TEMA 1: PARTE 3
Ejrcicios rsultos Tma part III): Límits d uncions º BCN EJERCICIOS RESUELTOS TEMA : PARTE 3 LÍMITES DE FUNCIONES. CONTINUIDAD Ejrcicios rsultos Tma part III): Límits d uncions º BCN ) Dada la guint unción:
LÍMITES, CONTINUIDAD, ASÍNTOTAS 11.1 LÍMITE DE UNA FUNCIÓN LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Límite de una función en un punto
LÍMITES, CONTINUIDAD, ASÍNTOTAS. LÍMITE DE UNA FUNCIÓN.. LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límit d una función n un punto f ) = l S l: El it cuando tind a c d f) s l c Significa: l s l valor al qu s aproima
ASÍNTOTAS Y RAMAS INFINITAS Cálculo y representación
LÍMITES Cálculo y rprsntación...... 7. 8. - + + - - + + - + - ( + ) - + + - - + + 9. + - +. + - + - 9. + -. + + + - +. + + +. + + + -. +. + - ASÍNTOTAS Y RAMAS INFINITAS Cálculo y rprsntación. y = - +.
PROBLEMAS DE LÍMITES DE FUNCIONES (Por métodos algebraicos) Observación: Algunos de estos problemas provienen de las pruebas de Selectividad.
Funcions Límits y continuidad PROBLEMAS DE LÍMITES DE FUNCIONES Por métodos algbraicos Obsrvación: Algunos d stos problmas provinn d las prubas d Slctividad Si ist l it d una función f cuando a, y si f
TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES.
TEMA DERIVADAS Y APLICACIONES MATEMÁTICAS I º Bach. TEMA INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. Tasa d variación mdia. Cálculo y signiicado EJERCICIO : Considramos la unción:. Halla la tasa
DERIVADAS. Las gráficas A, B y C son las funciones derivadas de las gráficas 1, 2 y 3, pero en otro orden. = 0 utilizando la definición.
DERIVADAS Dinición d drivada Ejrcicio nº.- Las gráicas A, B y C son las uncions drivadas d las gráicas, y, pro n otro ordn. Cuál s la drivada d cual? Justiica tus rspustas. Ejrcicio nº.- Calcula la drivada
REPRESENTACIÓN DE FUNCIONES
Matmáticas º Bachillrato. Prosora: María José Sánchz Quvdo REPRESENTACIÓN DE FUNCIONES Para l studio y rprsntación d una unción s sigun los siguints pasos:. Dominio d dinición y d continuidad.. Corts con
Ejercicios 17/18 Lección 6. Funciones Calcula el dominio de definición y el recorrido de las funciones siguientes a) p(x) = x(x + 1)(x + 2)
Ejrcicios 7/8 Lcción 6 Funcions Dtrmina los intrvalos d gno constant d la función f() + 6 + Calcula l dominio d dfinición y l rcorrido d las funcions guints p() ( + )( + ) 7 f ( ) 0 + 0 7 d) ) h( ) 9 9+
Ejercicios 16/17 Lección 6. Funciones Calcula el dominio de definición y el recorrido de las funciones siguientes a) p(x) = x(x + 1)(x + 2)
Ejrcicios 6/7 Lcción 6. Funcions.. Dtrmina los intrvalos d gno constant d la función f() + 6 +. Calcula l dominio d dfinición y l rcorrido d las funcions guints p() ( + )( + ) 7 f ( ) 0 + 0 7 d) ) h( )
PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES
PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES ) (Part d un problma d Slctividad d Cincias y Tcnología 007) Sa f: R R la función dfinida por f() =. Dtrmina la cuación d la rcta tangnt a la gráfica
( ) 1. Halla el dominio de continuidad y clasifica las discontinuidades de las siguientess funciones: x 1. x 4. = x 2. = x. b) f ( x) x 4x.
º Bacillrato d CCNN. Halla l dominio d continuidad y claica las discontinuidads d las guintss uncions: a b c ln d g i j 7 k l 8 m 6 n 6 o p q r s t u v w y z ln. Halla l dominio d continuidad y claica
RESUMEN DE FUNCIONES. LIMITE Y CONTINUIDAD
RESUMEN DE FUNCIONES. LIMITE Y CONTINUIDAD DEFINICIÓN DE FUNCIÓN REAL DE VARIABLE REAL Una unción ral d variabl ral s una aplicación d un subconjunto D d los númros rals n un subconjunto I d los númros
RESUMEN DE CARACTERÍSTICAS DE LAS FUNCIONES REALES. CONTINUIDAD
RESUMEN DE CARACTERÍSTICAS DE LAS FUNCIONES REALES. CONTINUIDAD. ACOTACIÓN DE FUNCIONES COTA SUPERIOR KR s cota suprior d f( ) D s f( ) K Cualquir nº mayor qu una cota suprior también s una cota suprior.
lm í d x = lm í ln x + x 1 H = lm í x + e x 2
Autovaluación Página 8 Calcula los siguints límits: a) lm í c m b) lm í ccotg m c) lm í sn d) lm í ( ) / 8 ln 8 8 ln ( cos ) 8 a) lm í 8 c ln ln H ( / ) lm í ( )ln 8 ln m lm í 8 H lm í / 8 b) lm í 8 dcotg
lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas y x 12x 2 y log 2 x ln x e e y ln 1 x
. Drivar las siguints funcions simplificar l rsultado n la mdida d lo posibl. ) 4) 7) ) 4 5 5 5 7 5) 8) ) 5 6) 5 9) 4 5 0) ) 7 ) ) 4) 4 5) 6) 7) 8) 9) ) 5) 0) 4 ln ) ln log 6) ln 8) ln ) 9) ) 5) 4) 7)
El área del rectángulo será A = p q, donde p 0,2 es variable y q depende de p. ( ) ( ) ( )
Cálculo difrncial. Matmáticas II Curso 03/4 Opción A Ejrcicio. Sa la parábola (Puntuación máima: puntos) y 4 4 y un punto ( p, q ) sobr lla con 0 p. Formamos un rctángulo d lados parallos a los js con
REPRESENTACION GRAFICA.
REPRESENTACION GRAFICA. Calcular puntos notabls así como intrvalos d monotonía y curvatura d: ² - = 0 ; ² = ; = son los valors d qu anulan l dnominador D = R- y () = 0 ; - 4 = 0 ; = 0 posibl ma, min Monotonia:
CALCULO GRADO EN INGEN. INFORM. DEL SOFTWARE EJERCICIOS RESUELTOS DEL TEMA 1
Manul José Frnándz [email protected] CALCULO GRADO EN INGEN. INFORM. DEL SOFTWARE. - EJERCICIOS RESUELTOS DEL TEMA Dmostrar aplicando l principio d inducción las rlacions siguints: a a n n n... n n N b n n!
LÍMITE DE FUNCIONES. lim. lim. lim. LÍMITE DE UNA FUNCIÓN CUANDO x + LÍMITE FINITO. DEFINICIÓN
LÍMITE DE FUNCIONES LÍMITE DE UNA FUNCIÓN CUANDO LÍMITE FINITO. DEFINICIÓN Cuando la función pud comportars d divrsas manras: f l Al aumntar los valors d, los valors d f s aproiman a un cirto númro l.
Límites finitos cuando x: ˆ
. Límits latrals its al infinito 7 FIGURA.3 3 3 La gráfica d = >. (b) La cuación () no s aplica a la fracción original. Ncsitamos un n l dnominador, no un 5. Para obtnrlo multiplicamos por >5 l numrador
Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b
Matmáticas Emprsarials I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES Drivabilidad ( ) b si S09. La función f ( ) s continua y drivabl n = : a( ) si a) Si a = y b = b) Si a = y b = 5 c) Nunca pud sr
Calcula el volumen del cono circular recto más grande que está inscrito en una esfera de radio R. Por lo tanto el volumen del cono es: π V
Apllidos Nombr: N.P. : Ejrcicio. (,5 puntos) Calcula l volumn dl cono circular rcto más grand qu stá inscrito n una sra d radio. D acurdo con la igura adjunta, s aprcia qu l radio d la bas dl cono s: La
Representación de Funciones.
T 5 Rprsntación d Funcions EJERCICIOS DE DESARROLLO 1- Elmntos Fundamntals para la Construcción d Curvas 1 Halla l dominio d stas funcions: a 5 + 7 + b d y g + 5 5 + = ln + + 1 ln +1 = y ( ) f ( ) Halla
REGLA DE L HÔPITAL PARA EL CÁLCULO DE LÍMITES
Matmáticas II Rgla d L Hôpital REGLA DE L HÔPITAL PARA EL CÁLCULO DE LÍMITES Obsrvación: La mayoría d los problmas rsultos a continuación s han propusto n los ámns d Slctividad.. Dada la función: 8 f (
Definición de derivada
Dfinición d drivada. Halla, utilizando la dfinición, la drivada d la función f ( ) n l punto =. Compruba aplicando las rglas d drivación qu tu rsultado s corrcto. f ( ) f () La drivada pdida val: f ()
CAPITULO 5. ECUACIONES DIFERENCIALES DE ORDEN N 2. 5.1. Introducción. 5.2. Reducción de orden
APITULO 5. EUAIONES DIFERENIALES DE ORDEN N 5.. Introducción Una cuación difrncial d sgundo ordn s una prsión matmática n la qu s rlaciona una función con sus drivadas primra sgunda. Es dcir, una prsión
Opción A Ejercicio 1 opción A, modelo Septiembre 2011
IES Fco Ayala d Granada Sptimbr d 0 (Modlo ) Grmán-Jsús Rubio Luna UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO 0-0 MATEMÁTICAS II Opción A Ejrcicio opción A, modlo Sptimbr 0 k si
Para que exista límite de una f(x) en un punto han de coincidir los límites laterales en dicho punto.
REPASO LÍMITES º BACH. RECORDAR: Para qu ista límit d una f() n un punto han d coincidir los límits latrals n dicho punto. A fctos dl f() no tnmos n cunta lo qu ocurr actamnt n a, sino n las a proimidads.
I.E.S. Historiador Chabás -1- Juan Bragado Rodríguez. Ejemplo 1. 3x 4x si x 2 f(x) en todos sus puntos. Estudiar la derivabilidad de la función
Los límits qu intrvinn n los problmas qu gun, s han rsulto con la calculadora cuando su compljidad lo ha rqurido. En las funcions dfinidas a trozos, cuando studimos la drivabilidad n un punto, la función
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 5: INTEGRALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 9 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejrcicio, Opción A Junio, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción A Rsrva, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción
Estas pruebas permiten verificar que la población de la cual proviene una muestra tiene una distribución especificada o supuesta.
PRUEBAS DE BONDAD DE AJUSTE Estas prubas prmitn vrificar qu la población d la cual provin una mustra tin una distribución spcificada o supusta. Sa X: variabl alatoria poblacional f 0 (x) la distribución
TEMA 2: CONTINUIDAD DE FUNCIONES
TEMA : CONTINUIDAD DE FUNCIONES 1. Continuidad de una función en un punto Entre las primeras propiedades de las funciones aparece el concepto de continuidad. Durante mucho tiempo fue asumida como una idea
TEMA 5. Límites y continuidad de funciones Problemas Resueltos
Matmáticas Aplicadas a las Cincias Socials II Solucions d los problmas propustos Tma 7 Cálculo d its TEMA Límits y continuidad d funcions Problmas Rsultos Para la función rprsntada n la figura adjunta,
Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos
Matmáticas II TEMA 8 Drivadas Torma Rgla d L Hôpital Problmas Propustos Drivada d una función n un punto Utilizando la dfinición, calcula la drivada d f ( ) n l punto = Utilizando la dfinición, halla la
Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos
Matmáticas II TEMA 8 Drivadas. Torma. Rgla d L Hôpital Problmas Propustos Drivada d una función n un punto. Utilizando la dfinición, calcula la drivada d f ( ) n l punto. +. Utilizando la dfinición, halla
Soluciones a los ejercicios propuestos Unidad 1. El conjunto de los números reales Matemáticas aplicadas a las Ciencias Sociales I
Solucions a los jrcicios propustos Unidad. El conjunto d los númros rals Matmáticas aplicadas a las Cincias Socials I NÚMEROS RACIONALES Y NÚMEROS IRRACIONALES. Dtrmina si los siguints númros son o no
si x 0 ( 1) es discontinua en x=2. Calcula b. tiene una solución comprendida entre 1 y 2. Por qué?. x 1 x si x (
ANÁLISIS MATEMÁTICO Continuidad y drivabilidad d funcions si = 0 - Estudia la continuidad d la función f ( ) = si o sn si (, π / ) si π / < 0 - Dtrmina los valors d a y d b para qu sa continua la función:
105 EJERCICIOS de DERIVABILIDAD 2º BACH.
105 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad: 1. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).
I, al tener una ecuación. diferencial de segundo orden de la forma (1)
.6. Rducción d ordn d una cuación difrncial linal d ordn dos a una d primr ordn, construcción d una sgunda solución a partir d otra a conocida 9.6. Rducción d ordn d una cuación difrncial linal d ordn
TABLA DE DERIVADAS. g f
TABLA DE DERIVADAS Funcions:, g (continn a la ) Númro: k ) y = k y = 0 ) y = y = ) y = ± g y = ± g ) y = k y = k ) y = g y = g + g 6) y = g ' g g' g y = 7) y = k k y = k 8) y = k y = k L k 9) y = y = 0)
I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS
Eamn Parcial. Análisis. Matmáticas II. Curso 010-011 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Curso 010-011 19-XI-010 MATERIA: MATEMÁTICAS II INSTRUCCIONES
98 EJERCICIOS de DERIVABILIDAD 2º BACH.
98 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad: 1. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).
EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL
EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL. Calcular los dominios d dfinición d las siguints funcions: a) f( ) 6 b) f( ) c) f( ) ln d) f( ) arctg 3 4 ) f( ) f) f( ) 5 g) f( ) sn 9 h) 4 4
Matemáticas II (Bachillerato de Ciencias). Soluciones de los problemas propuestos. Tema 8
Matmáticas II (Bacillrato d Cincias) Solucions d los problmas propustos Tma 8 7 TEMA 8 Drivadas Tormas Rgla d L Hôpital Problmas Rsultos Drivada d una función n un punto Utilizando la dfinición, calcula
Unidad 11 Derivadas 4
Unidad 11 rivadas SOLUCIONES 1. La solución n cada caso s:. Las drivadas son: f ( ) f () a) [ f () f () lím f (6 ) f (6) 9 b) f (6) lím lím 5 f (0 ) f (0) c) [ f (0) f (0) lím. En cada caso: a) f() no
2x 1. (x+ 1) e + 1 2x. 3.- Derivabilidad de una función. 6x 5, si2 x 4
º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II FICHA TEMA 7.- FUNCIONES. DERIVADAS Y APLICACIONES (PROFESOR: RAFAEL NÚÑEZ) -----------------------------------------------------------------------------------------------------------------------------------------------------------------.-
ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. 1. a) Halla los valores de los coeficientes b, c y d para que la gráfica de la función
ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA CMS05. a) Halla los valors d los coficints b, c y d para qu la gráfica d la función y b c d cort al j OY n l punto (0, ), pas por l punto (, ) y, n s punto,
TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE
TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE PROBLEMAS RESUELTOS + Dada F() =, escriba la ecuación de la secante a F que une los puntos (, F( )) y 4 (, F()). Eiste un punto c en el intervalo [, ]
al siguiente límite si existe: . Se suele representar por ( x )
UNIDAD : DERIVADAS. DERIVADA DE UNA FUNCIÓN EN UN PUNTO. DERIVADAS LATERALES Dfiici.- S llama drivada d ua fuci f u puto d abscisa al siguit it si ist: f f ' sigifica lo mismo. f. S sul rprstar por f D
EJERCICIOS UNIDAD 2: DERIVACIÓN (II)
IES Padr Povda (Guadi) EJERCICIOS UNIDAD : DERIVACIÓN (II) 3 (03-M4-B-) (5 puntos) Condra la función f : R R dada por f ( ) = + a + b+ c Dtrmina a, b y c sabindo qu la rcta normal a la gráfica d f n l
1. LÍMITE DE UNA FUNCIÓN REAL
ACTIVIDAD ACADEMICA: CÁLCULO DIFERENCIAL DOCENTE: LIC- ING: ROSMIRO FUENTES ROCHA UNIDAD Nº : LÍMITES Y CONTINUIDAD DE FUNCIONES REALES Comptncias Utilizar técnicas d aproimación n procsos numéricos infinitos
DERIVADAS. TÉCNICAS DE DERIVACIÓN
DERIVADAS. TÉCNICAS DE DERIVACIÓN Página 5 REFLEXIONA Y RESUELVE Tangentes a una curva y f () 5 5 9 4 Halla, mirando la gráfica y las rectas trazadas, f'(), f'(9) y f'(4). f'() 0; f'(9) ; f'(4) 4 Di otros
1.-PROCEDIMIENTO PARA EL CÁLCULO DE LÍMITES. Límites cuando
-PROCEDIMIENTO PARA EL CÁLCULO DE LÍMITES El cálculo d límits cuando Límits cuando a R a R s raliza sustituyndo por a Si st valor s un númro ral ntoncs ya stá calculado y st límit s único, pro n algunos
( ) 2. 1. Calcula las siguientes integrales. Soluciones. 1 x. arctan. x 4x + 13. sen x dx. x 2. 11arctan. x dx + 2. e x. e arctan e. e dx.
Albrto Entro Cond Mait Gonzálz Juarrro Intgral indfinida Cálculo d primitivas Calcula las siguints intgrals Solucions A d A d + + + ln( + + ) A d arctan + A sn sn d A d ln ( ) 6A d cos tan + arctan + ln(
4.2. Continuidad de una función en un punto. (A) Una función f es continua en un punto x=a, cuando se cumplen las siguientes condiciones:
4. CONTINUIDAD DE UNA FUNCIÓN. 4.. Noción intuitiva de continuidad de una unción en un punto. La mayor parte de las unciones que manejamos a nivel elemental, presentan en sus gráicas una propiedad característica
Tema 13. Aplicaciones de las derivadas
Tma 3. Aplicacions d las drivadas. Monotonía. Crciminto y dcrciminto d una función.... Etrmos rlativos... 3 3. Optimización... 6. Curvatura... 7 5. Puntos d Inflión... 8 6. Propidads d las funcions drivabls,
. La tasa de variación media es la pendiente del segmento AB, siendo A(a, f(a) ) y B(b, f(b) ) dos puntos de la gráfica de la función:
º BACHILLERATO D MATEMÁTICAS CC SS TEMA 4.- FUNCIONES. DERIVACIÓN.- CONCEPTO DE DERIVADA Tasa d variación mdia S llama tasa d variación mdia d una función f n l intrvalo [a, b] al cocint. La tasa d variación
FUNCIONES EXPONENCIAL, LOGARÍTMICA Y SUS DERIVADAS.
Prof., Enriqu Matus Nivs Doctorano n Eucación Matmática. FUNCIONES EXPONENCIAL, LOGARÍTMICA Y SUS DERIVADAS. Una función ponncial s aqulla n la qu la variabl stá n l ponnt. Algunos - - -5 jmplos funcions
III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS
III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.. FUNCIÓN EXPONENCIAL n Hmos stado manjando n st trabajo prsions dl tipo n dond s una variabl llamada bas n una constant llamada ponnt, si intrcambiamos d lugar
REPRESENTACIÓN DE FUNCIONES 11.1 ELEMENTOS FUNDAMENTALES PARA LA CONSTRUCCIÓN DE CURVAS
REPRESENTACIÓN DE FUNCIONES 11.1 ELEMENTOS FUNDAMENTALES PARA LA CONSTRUCCIÓN DE CURVAS DOMINIO - Polinomio : D = R - Cocientes : D = R {puntos que anulan el denominador} - Raíces de índice par : D = {Lo
SOLUCIONARIO. UNIDAD 13: Introducción a las derivadas ACTIVIDADES-PÁG Las soluciones aparecen en la tabla.
UNIA : Introducción a las drivadas ACTIVIAES-PÁG. 0. Las solucions aparcn n la tabla. [0, ] [, 6] a) f () = b) f () = + c) f () = 9 d) f () = 7, 6 8, 67. El valor d los límits s: f ( h) f () a) lím 6 h
2º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II FICHA TEMA 6.- FUNCIONES. LÍMITES Y CONTINUIDAD PROFESOR: RAFAEL NÚÑEZ
º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II FICHA TEMA.- FUNCIONES. LÍMITES CONTINUIDAD PROFESOR: RAFAEL NÚÑEZ -----------------------------------------------------------------------------------------------------------------------------------------------------------------.-
2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13
º Bachillrato: jrcicios modlo para l amn d las lccions, y 3 Sa la unción F ( ) t dt a) Calcular F (), studiar l crciminto d F() y hallar sus máimos y mínimos. b) Calcular F () y studiar la concavidad y
Límites y continuidad
Límites y continuidad.. Límites El ite por la izquierda de una función f en un punto 0, denotado como 0 f() es el valor al que se aproima f() cuando se acerca hacia 0 por la izquierda. De igual forma,
UNIDAD 9: INTRODUCCIÓN A LAS DERIVADAS
UNIDAD 9: INTRODUCCIÓN A LAS DERIVADAS. DERIVADA DE UNA FUNCIÓN EN UN PUNTO. DERIVADAS LATERALES Dfiici.- S llama drivada d ua fuci f u puto d abscisa al siguit límit si ist: f f ' lím sigifica lo mismo.
