Repaso de Trigonometría
|
|
|
- Monica Calderón Martínez
- hace 9 años
- Vistas:
Transcripción
1 Repaso de Tigonomeía Raones igonoméicas en un iángulo: REPASO DE TRIGONOMETRÍA Las funciones igonoméicas se oiginaon hisóicamene como elaciones ene las longiudes de los lados de un iángulo ecángulo. Denoemos po el ángulo AOB, a coninuación definimos las funciones igonoméicas seno, coseno, angene, coangene, secane cosecane del ángulo : cosec co sec Raones igonoméicas de algunos ángulos: (adianes (gados / 6 30º / 3 / 3 / 3 / 4 45º / / / 3 60º 3 / / 3 / 90º 0 No eise Idenidades ene las aones igonoméicas: Idenidades ecípocas: cosec sec co Idenidades angene coangene: g co 3 Idenidades de Piágoas: sen + cos ; + g sec ; + cog cosec DIIN/MA/PV /5
2 Funciones igonoméicas: Paa defini las aones igonoméicas hemos abajado sobe iángulos ecángulos, po lo ano sobe ángulos agudos (menoes de 90º. No obsane, las definiciones aneioes se pueden genealia a cualquie ángulo como sigue: Elegimos un puno abiaio P (, en el plano de modo que la semieca OP fome un ángulo con el eje de las, así queda en posición esanda. Denoemos po + la disancia de O a P enonces De ese modo enemos definidas las funciones seno, coseno angene de cualquie valo eal usando las idenidades igonoméicas ecípocas podemos defini secane, cosecane coangene. Definición de las funciones igonoméicas sobe el cículo unidad: El puno abiaio P (, del plano que hemos uiliado paa defini seno, coseno angene de se puede elegi de modo unívoco si nos esingimos a la cicunfeencia de adio con ceno el oigen O. Además, paa cualquie puno de la cicunfeencia unidad + ; con lo cual, cuando P peenece a la cicunfeencia unidad enemos Signo de las funciones igonoméicas: Obsevación: sen( + sen( + 4 sen( + k cos( + cos( + 4 cos( + k DIIN/MA/PV /5
3 Reducción al pime cuadane: sen( cos( sen( cos( sen( + cos( + sen( + cos( + sen( cos( 3 sen( 3 cos( sen( cos( 3 sen( + 3 cos( + Fómulas de los ángulos suma, esa, doble miad: sen( + β cos β + sen β cos( + β cos β sen β + g β g( + β g β sen( cos( cos g( g sen sen( β cos β sen β cos( β cos β + sen β g β g( β + g β sen + cos g + Fómulas del seno el coseno en función de la angene del ángulo miad: Sea + + g Tansfomación de sumas en poducos: + β β + sen β sen cos + β β + cos β cos cos β + β sen β sen cos β + β cos β sen sen DIIN/MA/PV 3/5
4 Algunas aplicaciones de la igonomeía Resolución de iángulos: Teoemas del seno el coseno Hasa el momeno sabemos elaciona mediane las aones igonoméicas ángulos lados de un iángulo ecángulo. Los siguienes eoemas nos popocionan elaciones paa cualquie iángulo. Considéese un iángulo de véices A, B, C lados de longiud a, b, c. Denoemos ambién po A, B C los ángulos que coesponden a los véices A, B C especivamene Teoema del seno: a b sen A sen B c sen C En odo iángulo las longiudes de los lados son popocionales a los senos de los ángulos opuesos. Teoema del coseno: a b b a + c + c bc cos A ac cos B c a + b ab cosc Esos eoemas nos sevián paa esolve iángulos ( es deci, calcula sus es ángulos las longiudes de sus es lados. Paa ello debemos conoce los valoes de es de esos daos. Usaemos el eoema del seno cuando conocamos: a dos lados un ángulo opueso a ellos b dos ángulos cualquie lado. Usaemos el eoema del coseno cuando conocamos: a dos lados el ángulo ene ellos b es lados Númeos complejos: C { + i :, R} Foma igonoméica de un númeo complejo + i : ( + i donde +, [0, A se le llama módulo de a agumeno de. DIIN/MA/PV 4/5
5 Muliplicación división en foma igonoméica: Sean ( + i ( + i, enonces (cos( + + i sen( + Poencias de un númeo complejo: (cos( + i sen(, 0 n n [ ( + i ] (cos( n + isen( n Raíces n-ésimas de un númeo complejo: Sea ( + i un númeo complejo no nulo, enonces paa cualquie eneo posiivo n, iene eacamene n aíces n-ésimas w0, w,. w n (es deci, k, k 0,,, n wk se obiene como sigue: w k w n n + k + k cos + i sen, paa k 0,,, n n n DIIN/MA/PV 5/5
Universidad de Antioquia
. Inoducción Funciones igonoméicas de ángulos Insiuo de Maemáicas * Faculad de Ciencias Eacas Nauales Unviesidad de nquioquia Medellín, 5 de julio de 0 La igonomeía es el campo de las maemáicas que iene
Puntos, rectas y planos en el espacio. Posiciones relativas
Maemáicas II Geomeía del espacio Punos, ecas planos en el espacio. Posiciones elaivas Obsevación: La maoía de los poblemas esuelos a coninuación se han popueso en los eámenes de Selecividad. Punos, ecas
Funciones trigonométricas
0 Funciones rigonoméricas Tenemos en el plano R² la circunferencia C de radio con cenro (0,0. En ella disinguimos el puno (,0, que es el puno de inersección dec con el semieje de las x posiivas. Si pariendo
Ángulos, distancias. Observación: La mayoría de los problemas resueltos a continuación se han propuesto en los exámenes de Selectividad.
Geomeía del espacio Ángulos, disancias Obseación: La maoía de los poblemas esuelos a coninuación se han popueso en los eámenes de Seleciidad.. Calcúlese la disancia del oigen al plano que pasa po A(,,
TRIGONOMETRÍA. Estudia las relaciones entre los lados y los ángulos de los triángulos.
TRIGONOMETRÍA Estudia las elaciones ente los lados los ángulos de los tiángulos. Los ángulos en maúsculas. Los lados como el ángulo opuesto, peo en minúsculas. Ángulo. Poción de plano compendida ente dos
Lección 4. Funciones de varias variables. Derivadas. 4. Las reglas de la cadena.
GRADO DE INGENIERÍA AEROESPACIAL. CURSO 11 1. Lección 4. Funciones de aias aiables. Deiadas paciales. 4. Las eglas de la cadena. Las eglas de la cadena nos pemien calcula las deiadas paciales de una función
TEMA 9: FORMAS GEOMÉTRICAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.
2009 TEMA 9: FORMAS GEOMÉTRICAS. Pime Cuso de Educación Secundaia Obligatoia. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/2009 TEMA 09: FORMAS GEOMÉTRICAS. 1. Ideas Elementales de Geometía
Matemáticas II (Bachillerato de Ciencias). Soluciones de los problemas propuestos. Tema 5 63
Maemáicas II (Bacilleao de Ciencias) Soluciones de los poblemas popuesos Tema 6 TMA cuaciones de ecas planos en el espacio Posiciones elaivas Poblemas Resuelos cuaciones de ecas planos Halla, en sus difeenes
Posiciones relativas entre rectas y planos
Maemáicas II Geomeía del espacio Posiciones elaivas ene ecas planos Obsevación: La maoía de los poblemas esuelos a coninuación se han popueso en los eámenes de Selecividad.. Discui según los valoes del
COLEGIO ESTRADA DE MARIA AUXILIADORA CIENCIA, TRABAJO Y VALORES: MI PROYECTO DE VIDA NIVELACION DE MATEMATICAS GRADO DECIMO (10 )
COLEGIO ESTRADA DE MARIA AUILIADORA CIENCIA, TRABAJO VALORES: MI PROECTO DE VIDA NIVELACION DE MATEMATICAS GRADO DECIMO (0 ) Fecha: Nombe del estudiante: N O T A La nivelación es en foma de talle donde
RECONOCER FUNCIONES EXPONENCIALES
RECONOCER FUNCIONES EPONENCIALES REPASO APOO OBJETIVO Una función eponencial es una función de la foma f ( ) = a o y = a, donde a es un númeo eal posiivo (a > ) y disino de (a! ). La función eponencial
Resolución de triángulos rectángulos
Resolución de tiángulos ectángulos Ahoa vamos a aplica las funciones tigonométicas paa esolve tiángulos ectángulos. Resuelve el siguiente tiángulo ectángulo: Ejemplo y 60 Empezamos notando que podemos
Es claro que el coseno de un ángulo agudo (digamos a) es igual al seno de su complemento W), de ahí la palabra coseno (seno del complemento).
Es clao que el coseno de un ángulo agudo (digamos a) es igual al seno de su complemento W), de ahí la palaba coseno (seno del complemento). Nota: En adelante escibiemos indistintamente cos a o cos(m(a)),
Trigonometría. Positivo
Seminaio Univesitaio de Ingeso 17 Tigonometía La tigonometía es una de las amas de la matemática, cuyo significado etimológico es la medición de los tiángulos. Se deiva del vocablo giego tigōno: "tiángulo"
- Ángulos positivos. Los que tienen el sentido de giro en contra de la agujas del reloj.
Ángulos. TRIGONOMETRÍA - Ángulo en el plano. Dos semirrectas con un origen común dividen al plano, en dos regiones, cada una de las cuales determina un ángulo ( α, β ). Al origen común se le llama vértice.
. Desarrollando esta ecuación vectorial, obtenemos: a = 3. : a = 2, b =, c = 0, y para w : a = 0, b =, c = -2.
1 Sean los vectoes: v 1 ( 1, 1, 1) v (,, ) y v (, 1, ) Compueba que foman una base de V. Halla las coodenadas especto de dicha base de los vectoes u ( 1,, ) y w ( 1,, 1). Paa ve si son linealmente independientes
Geometría Analítica. Ejercicio nº 1.-
Geomeía Analíica Ejecicio nº.- a Aveigua el puno iméico de A ) con epeco a B ). b Halla el puno medio del egmeno de eemo A ) B ). Ejecicio nº.- a Halla el puno medio del egmeno cuo eemo on A( ) con epeco
1. Dado el triángulo de vértices A(5,2), B(-1,6) y C(3,-2), hallar las ecuaciones de las rectas mediana y mediatriz correspondientes al lado AB.
7 GEOMETRÍ. Dado el iángulo de véice () B(-) C(-) halla la ecuacione de la eca mediana mediaiz coepondiene al lado B. B C Paa calcula la mediana (eca que une el véice opueo al lado B (véice C) con el puno
DIBUJO TÉCNICO BACHILLERATO TEMA 4. TANGENCIAS. Departamento de Artes Plásticas y Dibujo
DIBUJO ÉCNICO BACHILLERAO EMA 4. ANGENCIAS Depaameno de Aes lásicas y Dibujo EMA 4. ANGENCIAS. Los OBJEIVOS geneales que se peende logen los alumnos al acaba el ema son: Conoce las popiedades en las que
Fundamentos Físicos de la Ingeniería Primer Examen Parcial / 15 enero 2004
undamenos ísicos de la ngenieía ime Examen acial / 5 eneo 4. Un ansbodado navega en línea eca con una velocidad consane v = 8 m/s duane 6 s. A coninuación, deiene sus mooes; enonces, su velocidad viene
VECTORES EN TRES DIMENSIONES
FÍSIC PR TODOS 1 CRLOS JIMENEZ HURNG VECTORES EN TRES DIMENSIONES Los vetoes pueden epesase en funión de oodenadas, de la siguiente manea: a; b; ) o de ota foma: a i + b j + k donde: i, j, k, son vetoes
CURVAS PLANAS, ECUACIONES PARAMETRICAS Y COORDENADAS POLARES 2.1 CURVAS PLANAS Y ECUACIONES PARAMETRICAS
CURVAS PLANAS, ECUACIONES PARAMETRICAS Y COORDENADAS POLARES.1 CURVAS PLANAS Y ECUACIONES PARAMETRICAS Hasa ahora conocemos la represenación de una grafica mediane una ecuación con dos variables. En ese
SENO Y COSENO PARA UN ÁNGULO EN EL PLANO CARTESIANO
SENO Y COSENO PARA UN ÁNGULO EN EL PLANO CARTESIANO Sugeencias paa quien impate el cuso: Se espea que con la popuesta didáctica pesentada en conjunción con los apendizajes que sobe el estudio de la tigonometía
RELACION DE ORDEN: PRINCIPALES TEOREMAS
RELACION DE ORDEN: PRINCIPALES TEOREMAS Sean a, b, c y d númeos eales; se tiene que:. Si a < b c < d a + c < b + d. Si a 0 a > 0 3. Si a < b -a > -b 4. Si a > 0 a - > 0 ; si a < 0 a - < 0 5. Si 0 < a
1. Dado el triángulo de vértices A(5,2), B(-1,6) y C(3,-2), hallar las ecuaciones de las rectas mediana y mediatriz correspondientes al lado AB.
CURSO / FICH BLOQUE. GEOMETRÍ. Dado el iángulo de véice () B(-) C(-) halla la ecuacione de la eca mediana mediaiz coepondiene al lado B. B C Paa calcula la mediana (eca que une el véice opueo al lado B
TRIGONOMETRÍA FUNCIONES DE MÁS DE 90 GRADOS página 1
TRIGONOMETRÍA FUNCIONES DE MÁS DE 90 GRADOS página 1 página 2 SEGUNDO BIMESTRE 1 FUNCIONES DE MAS DE 90 GRADOS 1.1 CONCEPTOS Y DEFINICIONES Los valoes de las funciones tigonométicas solamente eisten paa
UNIDAD 4: CIRCUNFERENCIA CIRCULO:
UNIDD 4: CIRCUNFERENCI CIRCULO: CONTENIDO: I. CONCEPTO DE CIRCUNFERENCI: Es una cuva ceada y plana cuyos puntos equidistan de un punto llamado cento. Una cicunfeencia se denota con la expesión: O C, y
RESUMEN Y EJERCICIOS DE TRIGONOMETRÍA II
RESUMEN Y EJERCICIOS DE TRIGONOMETRÍA II Como ya sabemos, uno de los objetivos es que, conocidas las razones trigonométricas (a partir de ahora RT) de unos pocos ángulos, obtener las RT de una gran cantidad
TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES
TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES 1. MOVIMIENTO CIRCULAR UNIFORME (MCU). Es el movimiento de un cuepo cuya tayectoia es una cicunfeencia y su velocidad es constante. 1.1. Desplazamiento angula o
A continuación obligamos, aplicando el producto escalar, a que los vectores:
G1.- Se sabe que el tiángulo ABC es ectángulo en el vétice C, que petenece a la ecta intesección de los planos y + z = 1 e y 3z + 3 = 0, y que sus otos dos vétices son A( 2, 0, 1 ) y B ( 0, -3, 0 ). Halla
7.1 RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO
Tema 7: Trigonometría Matemáticas B 4º ESO TEMA 7 TRIGONOMETRÍA 7.0 UNIDADES DE MEDIDAS DE ÁNGULOS 4º 7.0. GRADOS SEXAGESIMALES Grados, minutos y segundos : grado 60 minutos, minuto 60 segundos 4º 7.0.
Tema 8. Funciones vectoriales de variable real.
Tem 8. Funciones vecoiles de vile el. 8.1 Cuvs ecuciones pméics. Cálculo en pméics. 8. Funciones vecoiles: límie, coninuidd, deivción e inegción. 8.3 Cuvs en coodends poles. Aneo: cónics. E. U. Poliécnic
Interferencia. Intensidad luminosa. Evaluamos los promedios*. Coseno cuadrado 8/15/2017. Seno cuadrado. Producto. Para una onda plana monocromática
8/5/7 Inefeencia Inensidad luminosa. Veemos más adelane que la enegía es popocional al cuadado de la ampliud de una onda. En el ópico (35-7 nm las fecuencias de oscilación son gandes (~ 4 Hz. No hay deeco
Apuntes de Trigonometría Elemental
Apuntes de Tigonometía Elemental José Antonio Salgueio González IES Bajo Guadalquivi - ebija ii Agadecimientos A Rocío, que con su apoyo hace posible la ealización de este poyecto 1 Índice geneal Agadecimientos
Guía de Reforzamiento N o 2
Guía de Reforzamiento N o Teorema de Pitágoras y Trigonometría María Angélica Vega Guillermo González Patricio Sepúlveda 19 de Enero de 011 1 TEOREMA DE PITÁGORAS B a c C b A El Teorema de Pitágoras afirma
Onda Incidente. Dirección de propagación T T. Pt Wi. A e =
.5 BEU EFEC beua efeciva Áea efeciva Una anena con modo ecepo ya sea en la foma de un alambe abeua, aeglos, baa dielécica, ec., se usa paa capa o ecibi ondas elecomagnéicas y eae poencia de ella como se
TEMA 1. NÚMEROS REALES Y COMPLEJOS
TEMA 1. NÚMEROS REALES Y COMPLEJOS 1.1 DEFINICIÓN AXIOMATICA DE LOS NÚMEROS REALES 1.1.1 Axiomas de cuerpo En admitimos la existencia de dos operaciones internas la suma y el producto, con estas operaciones
( ) [ ab, ] definidas como ( ) ( ) ( ) 1.2. Curvas paramétricas. funciones continuas de R R para un intervalo. Definición.
1.. urvas paraméricas. Definición. Sean x 1, x,, xn funciones coninuas de R R para un inervalo [ ab, ] definidas como con [ a, b]. ( ( ( x1 = f1, x = f,, xn = fn El conjuno de punos ( x1, x,, xn = ( f1(,
Forman base cuando p 0 y 1.
1 VECTORES: cuestiones y problemas Preguntas de tipo test 1. (E11). Los vectores u = (p, 0, p), v = (p, p, 1) y w = (0, p, ) forman una base de R : a) Sólo si p = 1 b) Si p 1 c) Ninguna de las anteriores,
94' = 1º 34' 66.14'' = 1' 6.14'' +
UNIDAD : Trigonometría I. INTRODUCCIÓN. SISTEMAS DE MEDIDAS DE ÁNGULOS Trigonometría proviene del griego: trigonos (triángulo) y metrón (medida). También a veces se usa el término Goniometría, que proviene
TRIGONOMETRÍA. Si se divide un grado en, 60 partes iguales, cada una de ellas representa a un minuto,.
TRIGONOMETRÍA CPR. JORGE JUAN Xuvia-Naón Un ángulo es la egión del plano limitada po dos semiectas secantes. Las dos semiectas se llaman lados del ángulo y el punto donde éstas se cotan se denomina vétice
FRANCISCO JAVIER GARCÍA CAPITÁN
MÁXIMOS SIN DERIVDS FRNCISCO JVIER GRCÍ CPITÁN Resumen Este atículo eune vaios ejemplos de cómo calcula extemos sin necesidad de usa el cálculo difeencial Solo usaemos conocidas desigualdades ente las
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 25
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 5 La Trigonometría es el estudio de la relación entre las medidas de los lados y los ángulos del triángulo. Ángulos En este
Ángulos en la circunferencia
MT-22 Clase Ángulos en la cicunfeencia pendizajes espeados Identifica los elementos de un cículo y una cicunfeencia. Calcula áeas y peímetos del secto y segmento cicula. Reconoce tipos de ángulos en la
INTRODUCCIÓN 1. CLASIFICACIÓN DE LOS TRIÁNGULOS 2. DEFINICIÓN DE ÁNGULO 3. MEDIDAS DE ÁNGULOS 4. RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO
TRIGONOMETRÍA INTRODUCCIÓN 1. CLASIFICACIÓN DE LOS TRIÁNGULOS. DEFINICIÓN DE ÁNGULO 3. MEDIDAS DE ÁNGULOS 4. RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO Interpretación geométrica de las razones trigonométricas
Ejercicios de Trigonometría
Ejercicios de Trigonometría. Halla la altura de un edificio que proyecta una sombra de 56 m a la misma hora que un árbol de m proyecta una sombra de m.. En un mapa, la distancia entre La Coruña y Lugo
TRAZADOS ELEMENTALES DE RECTAS TANGENTES A CIRCUNFERENCIAS
EMA 5 - ANGENCIAS, ENLACES Y CURVAS ÉCNICAS RAZADS ELEMENALES DE RECAS ANGENES A CIRCUNFERENCIAS 1. aza la eca angene a la cicunfeencia de ceno po el puno de ella, así como las ecas angenes paalelas a
Apuntes Trigonometría. 4º ESO.
Apuntes Trigonometría. 4º ESO. Conceptos previos: Notación: En un triángulo, los vértices se denotan con letras mayúsculas (A, B y C). Los lados se denotan con la letra minúscula del vértice opuesto al
TRAZADOS ELEMENTALES DE RECTAS TANGENTES A CIRCUNFERENCIAS
EMA 5 - ANGENCIAS, ENLACES Y CURVAS ÉCNICAS RAZADS ELEMENALES DE RECAS ANGENES A CIRCUNFERENCIAS 1. aza la eca angene a la cicunfeencia de ceno po el puno de ella, así como las ecas angenes paalelas a
( ) m / s en un ( ) m. Después de nadar ( ) m / s. a) Cuáles
CINEMÁTICA: MOVIMIENTO TRIDIMENSIONAL, DATOS EN FUNCIÓN DEL TIEMPO. Una cucaracha sobre una mesa se arrasra con una aceleración consane dada por: a (.3ˆ i. ˆ j ) cm / s. Esa sale desde un puno ( 4, ) cm
b 11 cm y la hipotenusa
. RESOLUCIÓN DE TRIÁNGULOS RECTÁNGULOS UNIDAD : Trigonometría II Resolver un triángulo es conocer la longitud de cada uno de sus lados y la medida de cada uno de sus ángulos. En el caso de triángulos rectángulos,
130 Matemáticas I. Parte IV. I.T.I. en Electricidad. Prof: Jos Antonio Abia Vian
30 Maemáicas I Pare IV Cálculo inegral en IR 3 Maemáicas I : Cálculo inegral en IR Tema Cálculo de primiivas. Primiiva de una función Definición 55.- Diremos ue la función F coninua en [a, b], es una primiiva
CAPÍTULO 15: TRIÁNGULOS RECTÁNGULOS
PÍTULO 15: TRIÁNGULOS RETÁNGULOS Dante Gueeo-handuví Piua, 2015 FULTD DE INGENIERÍ Áea Depatamental de Ingenieía Industial y de Sistemas PÍTULO 15: TRIÁNGULOS RETÁNGULOS Esta oba está bajo una licencia
ECUACIONES DE LA RECTA
Tema 6 Rectas y planos en el espacio- Matemáticas II º Bachilleato TEMA 6 y 7 - RECTAS Y PLANOS EN EL ESPACIO ECUACIONES DE LA RECTA Paa halla la ecuación de una ecta en el espacio necesito: Dos puntos
RESUMEN DE TRIGONOMETRÍA
RESUMEN DE TRIGONOMETRÍA Definición: Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas se las llama lados del ángulo. El origen común es el vértice.
Derivadas de funciones trigonométricas y sus inversas
Deivadas de funciones tigonométicas y sus invesas Las funciones tigonométicas se definen a pati de un tiángulo ectángulo como sigue: sin α y csc α y y cos α x sec α x α x tan α y x cot α x y Como puedes
TEMA10. VECTORES EN EL ESPACIO.
TEMA0. VECTORES EN EL ESPACIO..- Coodenadas en el espacio: En el espacio tidimensional, un punto P iene deteminado po tes coodenadas P(x, y, z) que epesentan las distancias diigidas desde los planos de
9. NÚMEROS COMPLEJOS EN FORMA POLAR
Númeos Complejos en Foma Pola 9. NÚMEROS COMPLEJOS EN FORMA POLAR Recodemos que en la Unidad vimos que a un númeo complejo podemos expesalo en foma inómica z = a + i donde a, son númeos eales, que se epesenta
Puntos, rectas y planos en el espacio. Problemas métricos en el espacio
1. Estudia la posición elativa de las ectas y s: x = 2t 1 x + 3y + 4z 6 = 0 : ; s : y = t + 1 2x + y 3z + 2 = 0 z = 3t + 2 Calcula la distancia ente ambas ectas (Junio 1997) Obtengamos un vecto diecto
9. NÚMEROS COMPLEJOS EN FORMA POLAR
9. NÚMEROS COMPLEJOS EN FORMA POLAR Recodemos que en la Unidad vimos que a un númeo complejo podemos expesalo en foma inómica z = a + i donde a, son númeos eales, que se epesenta gáficamente mediante un
TRIGONOMETRÍA. Proviene del griego TRIGONOS (triángulo) y METRÍA (medida).
Colegio Diocesano Asunción de Nuesta Señoa Ávila Tema 6 El cálculo de distancias se fundamenta en la semejanza de tiángulos ectángulos. Desde hace siglos los astónomos, sobe todo los hindús, tataon de
VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES
VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES DEFINICIÓN Un vecto es un segmento oientado. Un vecto AB queda deteminado po dos puntos, oigen A y extemo B. Elementos de un vecto: Módulo de un vecto es la
Vectores. 2)Coordenadas y base Combinación lineal Vectores linealmente dependiente Bases. Bases canónica
Vectores 1) Vectores en R 2 Vector fijo en el plano Elementos de un vector fijo ( módulo, dirección, sentido, origen y extremo) Vectores equipolentes Vector libres Propiedad fundamental de los vectores
TRIGONOMETRÍA (Resumen) Definiciones generales (válidas para cualquier ángulo de cualquier cuadrante) y r. cosec. sec. cotg x +
TRIGONOMETRÍA (Resumen) Definiiones en tiángulos etángulos ateto opuesto sen ateto ontiguo os ateto opuesto tg ateto ontiguo ose ateto opuesto se ateto ontiguo ateto ontiguo otg ateto opuesto Razones de
Unidad 9 Funciones exponenciales, logarítmicas y trigonométricas
Unidad 9 Funciones eponenciales, logarímicas y rigonoméricas PÁGINA 177 SOLUCIONES 1. En cada uno de los res casos: a) Domf = Imf = Esricamene creciene en odo su dominio. No acoada. Simérica respeco al
Tema 1, 2 y 3. Magnitudes. Cinemática.
IES Pedo de Tolosa. SM de Valdeiglesias. 1 Tema 1, y 3. Magniudes. Cinemáica. MAGNITUDES FÍSICAS. LIBRO Pág. 1 Y 13. Recueda: magniud es cualquie popiedad de un cuepo o de un fenómeno físico que se pueda
Semana 6. Razones trigonométricas. Semana Ángulos: Grados 7 y radianes. Empecemos! Qué sabes de...? El reto es...
Semana Ángulos: Gados 7 adianes Razones tigonométicas Semana 6 Empecemos! Continuamos en el estudio de la tigonometía. Esta semana nos dedicaemos a conoce halla las azones tigonométicas: seno, coseno tangente,
F. Trig. para ángulos de cualquier magnitud
F. Tig. paa ángulos de cualquie magnitud Ahoa vamos a utiliza la ciuncfeencia unitaia paa descubi algunas popiedades de las funciones tigonométicas. Empezamos con las funciones sin cos. Al vaia el valo
