VECTORES EN TRES DIMENSIONES
|
|
|
- Pilar Cabrera González
- hace 9 años
- Vistas:
Transcripción
1 FÍSIC PR TODOS 1 CRLOS JIMENEZ HURNG VECTORES EN TRES DIMENSIONES Los vetoes pueden epesase en funión de oodenadas, de la siguiente manea: a; b; ) o de ota foma: a i + b j + k donde: i, j, k, son vetoes denominados, vetoes unitaios que indian la dieión de los ejes,, espetivamente. a El módulo del veto es igual: a + b + Ejemplo: El módulo del veto: i + j + k Es igual a: α COSENOS DIRECTORES: os α + os β + os θ 1 a os α a osα θ β b SUM DE VECTORES Si se tiene: a1; b1 ; 1) a ; b ; ) Entones: + a + a ; b + b ; + ) Ejemplo: alula el módulo del veto esultante de los siguientes vetoes: ;1; ) 1; 3;1) C 1;1; 1) La esultante de estos vetoes es: R + + C R + 1 1; ; + 1 1) R ; 1; ) También se epesa: R i j k El módulo de la esultante es: R ) R 3 + 1) + ) REST DE VECTORES Si se tiene: a1; b1 ; 1) a ; b ; ) Entones: a a ; b b ; ) Ejemplo: Calula: Si se tiene: 4; 8; 6) 1; 4; ) b os β b osβ os θ osθ α: ángulo que foma el veto on el eje β: ángulo que foma el veto on el eje θ: ángulo que foma el veto on el eje La esta de los vetoes es: 4 1; 8 4; 6 ) 3; 1; 4) También se epesa: 3 i 1 j + 4k El módulo del veto esta es: 3) + 1) + 4)
2 FÍSIC PR TODOS CRLOS JIMENEZ HURNG PRODUCTO DE VECTORES Poduto esala ) l multiplia esalamente dos vetoes, se obtiene omo esultado un númeo. Diho númeo se obtiene multipliando los módulos de los vetoes po el oseno del ángulo que foman dihos vetoes. θ osθ Ejemplo: Si los módulos de los vetoes son 1, 6 el ángulo que foman dihos vetoes es 60º. Calula el poduto esala de ellos. osθ 1)6) os60º 7)0,5) 36 Ejemplo: Si se tiene los vetoes: 1; ; ) 3; 1; ) Calula el poduto esala 1)3) + )-1) + -)) Caso patiula: Cuando dos vetoes son pependiulaes ente sí, el poduto esala de ellos es CERO 0 Ejemplo: Si los vetoes son pependiulaes ente si, halla el valo de a a; ; ) 3; 1; a) Si son pependiulaes, se umple: 0 Osea: a)3) + )-1) + -)a) 0 3a a 0 a Poduto vetoial ) l multiplia vetoialmente dos vetoes se obtiene omo esultado a oto veto. El módulo de ese veto es igual al poduto de los módulos de los vetoes a multiplia po seno del ángulo que foman ente sí. senθ La dieión de diho veto es pependiula al plano que ontiene a los vetoes Si los vetoes son dados de la siguiente foma: 1; ; 3) 4; 5; 6) Su poduto vetoial se detemina así: 6 5 3) i ) j ) k 1 15) i 6 1) j + 5 8) k 3i + 6 j 3k Si se desea alula el módulo del poduto vetoial se poede a efetua así: 3i + 6 j 3k 3 3) + 6) i j k ) 54
3 FÍSIC PR TODOS 3 CRLOS JIMENEZ HURNG Cómo se detemina el veto unitaio de un veto? El veto unitaio de ualquie veto Se epesa de la siguiente manea: u Ejemplo: Paa detemina el veto unitaio del veto: i + j + k, se detemina en pime luga, su módulo: i + j + k Entones: u 3 El veto unitaio del veto, es igual a: i j k u Cómo se detemina la euaión vetoial de un veto? El veto está ente los puntos: ; 4; 1) 6; 3; 5) Su euaión vetoial se obtiene estando el punto del etemo del veto menos el punto del oigen del veto: 6; 3; 5) ; 4; 1) 6 - ; 3-4; 5-1) 4; -1; 4) 4 i j + 4k ; 4; 1) 6; 3; 5) PROLEMS PROPUESTOS 1. Calula la esultante R ) de los siguientes 3 vetoes: i + j 3k i + 3 j + k C 4 i j + k ) R i + 3 j + 3k ) R i + 3 j + k C) R i + 3 j k D) R i + 3 j + k E) R i + 5 j + k.- Detemine el módulo del veto F, si: F + 3C i + j + k i j + k C i + 3 j k ) 6 ) 6 C) 6 3 D) 6 5 E) 1 3. Si el módulo del veto es igual a 3, alula el módulo del veto : 1; a; a); a; a; 4) ) 4 ) 4 C) 6 D) 6 E) Detemine los valoes de m n si se umple la siguiente elaión: m + nc i j ; i + j + 3k ; C i + j + k Da omo espuesta: m+ n ) 0 ) -1 C) +1 D) + E) - 5. Un veto tiene su oigen en el punto ; -1; -) su etemo fleha) en un punto P ; un segundo veto se iniia en el punto P temina en el punto -3; 1; 3). Calula el módulo del veto esultante de estos dos vetoes. ) 6 ) 3 6 C) 4 6 D) 5 6 E) 6 6
4 FÍSIC PR TODOS 4 CRLOS JIMENEZ HURNG 6. Dos vetoes paten de un mismo punto P uno de ellos temina en el punto 3; -; -1) el oto en el punto ; -4; -). Calula el módulo de la esta de estos vetoes. ) 6 ) C) 3 D) 5 E) 6 7. Calula el veto unitaio del veto. 4; -3; -1) ; 1; 3) a m; n; 4) ; b n; 1; p) 3; p; m) ) 0 ) +1 C) -1 D) + E) Si se tiene: a 3;1; 4) b ; 3;1). Calula: a b ) +7 ) -7 C) -1 D) +1 E) Si los vetoes son pependiulaes ente sí, detemine el valo de a. a; ; 3) ;1; a) ) 0 ) +1 C) -1 D) + E) ) i + j + k ) i + j + k C) i + j k D) i j + k E) i + j + k Calula la esultante de los vetoes, ubiados en el siguiente ubo de unidades de aista. ) i + j + k ) i + 4 j + k C) i + 4 j k D) i 4 j + k E) i 4 j k 9. Si la esultante de los vetoes a ; b es nula, alula: m + n + p. 1. En la figua se tiene a los vetoes ; C pependiulaes ente sí. Indique la epesión oeta que epesente la figua. C ) C ) C C) C D) C E) C 13. Un veto foma 60º on el eje, 10º on el eje, qué ángulo foma diho veto on el eje? ) 30º ) 45º C) 60º D) 10º E) 180º 14. El esultado de efetua el poduto esala de dos vetoes da omo esultado una antidad igual al módulo del poduto vetoial de los mismos vetoes. Qué ángulo foman dihos vetoes? ) 30º ) 37º C) 45º D) 60º E) 90º 15. Qué ángulo foman los vetoes si se sabe que: k i + j
5 FÍSIC PR TODOS 5 CRLOS JIMENEZ HURNG ) 0 ) +1 C) -1 ) 0º ) 45º C) 60º D) + E) - D) 90º E) 10º 19. El veto ubiado en el ubo de aista 16. Qué ángulo foman los vetoes: i + j + k i + j + k ) 30º ) 60º C) 90º D) tg E) tg Calula el poduto vetoial: ; 3;1) 1; ; 1) ) 5; 3; -1) ) 5; -3; -1) C) -5; 3; 1) D) 1; 3; -1) E) 1; -1; 3) 18. En la siguiente figua se tiene un ubo de aista igual a 1, en él dos vetoes. Detemine el poduto esala de dihos vetoes. igual a 1, tiene un módulo igual a 3 3. Detemine su euaión vetoial. ) i + j + k ) i + j + k C) 3 i + 3 j + 3k D) 3 i 3 j + 3k E) 3 i + 3 j + 3k 0. Se sabe que los vetoes son pependiulaes ente sí. Calula: i aj + k i + j + ak ) 3 ) 3 C) 6 D) 6 E) 1
Tensor de inercia. Tensor de inercia. I pzx. I pxx. I pxy. = I pyz. I pxz. I. Leyes de Newton. II. Cinemática
Univesidad Simón Bolíva. ees de Newton. Cinemátia. Dinámia Sist. de atíulas Definiiones a le da le Tenso de ineia a le Es. de agange Tenso de ineia ( + ) Momentos de ineia: (Sieme ositivos) ( + ) Poiedades
EJERCICIOS DEL TEMA VECTORES
EJERCICIOS DEL TEMA VECTORES 1) Considea el vecto w, siguiente: w Dibuja, en cada caso uno de los siguientes casos, un vecto v, que sumado con u dé como esultado w : a) b) c) d) u u u u 2) A la vista de
a) Estudiar su posición relativa en el espacio. b) Calcular las distancias entre ellas. c) Trazar una recta que corte perpendicularmente a ambas.
º-Halla a y b paa que las ectas siguientes sean paalelas: x+ay - z s 4x y +6 z a ; b- x+y +bz º-Dadas las ectas de ecuaciones x z - y - (x, y,z) (,0,)+ (,,-) a) Estudia su posición elativa en el espacio.
Tema 7 Geometría en el espacio Matemáticas II 2º Bachillerato 1
Tema Geometía en el espacio Matemáticas II º Bachilleato ÁNGULOS EJERCICIO 5 : λ Dados las ectas : λ, s : λ calcula el ángulo que foman: a) s b) s π el plano π : ; i j k a) Hallamos el vecto diecto de
2.5 Vectores cartesianos
.5 VECTORES CRTESINOS 43.5 Vectoes catesianos Las opeaciones del álgeba vectoial, cuando se aplican a la esolución de poblemas en tes dimensiones, se simplifican consideablemente si pimeo se epesentan
CÁLCULO VECTORIAL. Operaciones con vectores libres. , siendo las componentes de ( )
CÁLCULO VECTOIAL Opeaciones con vectoes libes Suma de vectoes libes La suma de n vectoes libes P P P n es un vecto libe llamado esultante = i j k la suma de las componentes espectivas, siendo las componentes
Puntos, rectas y planos en el espacio. Problemas métricos en el espacio
1. Estudia la posición elativa de las ectas y s: x = 2t 1 x + 3y + 4z 6 = 0 : ; s : y = t + 1 2x + y 3z + 2 = 0 z = 3t + 2 Calcula la distancia ente ambas ectas (Junio 1997) Obtengamos un vecto diecto
A continuación obligamos, aplicando el producto escalar, a que los vectores:
G1.- Se sabe que el tiángulo ABC es ectángulo en el vétice C, que petenece a la ecta intesección de los planos y + z = 1 e y 3z + 3 = 0, y que sus otos dos vétices son A( 2, 0, 1 ) y B ( 0, -3, 0 ). Halla
TRANSFORMACIONES GEOMÉTRICAS: Inversión.
PRFESR: FRNCISC MNUEL GLÁN SN JSÉ. TRNSFRMCINES GEMÉTRICS: Invesión. INVERSIÓN siguientes leyes: La invesión es una tansfomaión que se ige po las M' ' 1. Dos puntos invesos y están alineados on un punto
Recursión y Relaciones de Recurrencia. UCR ECCI CI-1204 Matemáticas Discretas Prof. M.Sc. Kryscia Daviana Ramírez Benavides
Reusión y Relaiones de Reuenia UCR ECCI CI-04 Matemátias Disetas Pof. M.S. Kysia Daviana Ramíez Benavides Pogesión Geométia Es una suesión infinita de númeos donde el oiente de ualquie témino (distinto
GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia
Puebas de Acceso a la Univesidad GEOMETRÍA Junio 94.. Sin esolve el sistema detemina si la ecta x y + = 0 es exteio secante ó tangente a la cicunfeencia (x ) + (y ) =. Razónalo. [5 puntos]. Dadas las ecuaciones
MATEMÁTICAS 2º Bach Tema 5: Vectores José Ramón BLOQUE 2: GEOMETRÍA DEL ESPCACIO. Tema 5: Vectores
MATEMÁTICAS º Bach Tema 5: Vectoes José Ramón BLOQUE : GEOMETRÍA DEL ESPCACIO Tema 5: Vectoes MATEMÁTICAS º Bach Tema 5: Vectoes José Ramón Definición de vecto Un sistema de ejes tidimensional se constuye
RELACION DE ORDEN: PRINCIPALES TEOREMAS
RELACION DE ORDEN: PRINCIPALES TEOREMAS Sean a, b, c y d númeos eales; se tiene que:. Si a < b c < d a + c < b + d. Si a 0 a > 0 3. Si a < b -a > -b 4. Si a > 0 a - > 0 ; si a < 0 a - < 0 5. Si 0 < a
Al estar la fuerza dirigida hacia arriba y la intensidad del campo eléctrica hacia abajo, la carga de la esfera es negativa:
PROLMS CMPO LÉCTRICO. FÍSIC CHILLRTO. Pofeso: Féli Muñoz Jiménez Poblema 1 Detemina la caga de una peueña esfea cagada de 1, mg ue se encuenta en euilibio en un campo eléctico unifome de 000 N /C diigido
MAGNITUDES ESCALARES Y VECTORIALES
C U R S O: FÍSIC Mención MTERIL: FM-01 MGNITUDES ESCLRES VECTORILES Sistema intenacional de medidas En 1960, un comité intenacional estableció un conjunto de patones paa estas magnitudes fundamentales.
EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO
EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO Detemina la posición elativa de las siguientes paejas de planos a) 8 ' 4 6 6 b) 6 7 ' 4 c) ' 6 7 d) 4 7 Dado el plano que contenga al punto A(-,, 4), detemina
COLEGIO ESTRADA DE MARIA AUXILIADORA CIENCIA, TRABAJO Y VALORES: MI PROYECTO DE VIDA NIVELACION DE MATEMATICAS GRADO DECIMO (10 )
COLEGIO ESTRADA DE MARIA AUILIADORA CIENCIA, TRABAJO VALORES: MI PROECTO DE VIDA NIVELACION DE MATEMATICAS GRADO DECIMO (0 ) Fecha: Nombe del estudiante: N O T A La nivelación es en foma de talle donde
1. El teorema del binomio. Problemas y soluciones
El teoema del binomio: Poblemas con la solución. El teoema del binomio. Poblemas y soluciones.). Cuántos posibles caminos P Q hay en este caso? P Q.). De cuántas fomas se pudieon epati las medallas en
ECUACIONES DE LA RECTA
Tema 6 Rectas y planos en el espacio- Matemáticas II º Bachilleato TEMA 6 y 7 - RECTAS Y PLANOS EN EL ESPACIO ECUACIONES DE LA RECTA Paa halla la ecuación de una ecta en el espacio necesito: Dos puntos
FÍSICA I TEMA 0: INTRODUCCIÓN
FÍSICA I TEMA 0: INTRODUCCIÓN 1. Expesa en los sistemas cegesimal, intenacional y técnico el peso y la masa de un cuepo de 80 Kg. de masa. CEGESIMAL Centímeto, gamo y segundo. 80 Kg 80 Kg * 1000 g /Kg
. Desarrollando esta ecuación vectorial, obtenemos: a = 3. : a = 2, b =, c = 0, y para w : a = 0, b =, c = -2.
1 Sean los vectoes: v 1 ( 1, 1, 1) v (,, ) y v (, 1, ) Compueba que foman una base de V. Halla las coodenadas especto de dicha base de los vectoes u ( 1,, ) y w ( 1,, 1). Paa ve si son linealmente independientes
IES Menéndez Tolosa Física y Química - 1º Bach Energía potencial y potencial eléctrico I
IS Menéndez Tolosa Física y uímica - º Bach negía potencial y potencial eléctico I Calcula el potencial de un punto de un campo eléctico situado a una distancia de una caga y a una distancia 4 de una caga.
VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES
VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES DEFINICIÓN Un vecto es un segmento oientado. Un vecto AB queda deteminado po dos puntos, oigen A y extemo B. Elementos de un vecto: Módulo de un vecto es la
Práctica 2: Modulaciones analógicas lineales
TEORÍA DE LA COMUNICACIÓN 2009/10 - EPS-UAM Pátia 2: Modulaiones analógias lineales Gupo Puesto Apellidos, nombe Apellidos, nombe Feha El objetivo de esta pátia es familiaiza al alumno on divesas modulaiones
PROBLEMAS CAPÍTULO 5 V I = R = X 1 X
PROBLEMAS APÍULO 5.- En el cicuito de la figua, la esistencia consume 300 W, los dos condensadoes 300 VAR cada uno y la bobina.000 VAR. Se pide, calcula: a) El valo de R,, y L. b) La potencia disipada
La ecuación implicita del plano que pasa por el punto P(1, 0, 1) con vectores AB (2,1,0) y AP (2,0,0) será:
xyz0 1. Dados la ecta : y el punto P(1, 0, 1) exteio a : x y z a) Halla la ecuación en foma geneal del plano que contiene a y a P b) Halla la ecuación (como intesección de dos planos) de la ecta s que
A = A < θ R = A + B + C = C+ B + A. b) RESTA O DIFERENCIA DE VECTORES ANÁLISIS VECTORIAL. Es una operación que tiene por finalidad hallar un
ANÁLISIS VECTORIAL MAGNITUD FÍSICA Es todo aquello que se puede medir. CLASIFICACIÓN DE MAGNITUDES POR NATURALEZA MAGNITUD ESCALAR: Magnitud definida por completo mediante un número y la unidad de medida
Matemáticas 4º ESO Fernando Barroso Lorenzo GEOMETRÍA ANALÍTICA. r r
Fenando Baoso Loenzo GEOMETRÍA ANALÍTICA 1. Dados los vectoes cuyas coodenadas son u = ( 10, 2) y v = (13, 2), calcula el módulo u 43 u 298621 del vecto esultante de la siguiente combinación lineal w =
TEMA10. VECTORES EN EL ESPACIO.
TEMA0. VECTORES EN EL ESPACIO..- Coodenadas en el espacio: En el espacio tidimensional, un punto P iene deteminado po tes coodenadas P(x, y, z) que epesentan las distancias diigidas desde los planos de
Repaso de Trigonometría
Repaso de Tigonomeía Raones igonoméicas en un iángulo: REPASO DE TRIGONOMETRÍA Las funciones igonoméicas se oiginaon hisóicamene como elaciones ene las longiudes de los lados de un iángulo ecángulo. Denoemos
MAGNITUDES VECTORIALES:
Magnitudes ectoiales MAGNITUDES VECTORIALES: Índice 1 Magnitudes escalaes ectoiales Suma de ectoes libes Poducto de un escala po un ecto 3 Sistema de coodenadas ectoiales. Vectoes unitaios 3 Módulo de
TEMA 10 :VECTORES EN EL ESPACIO
TEMA 0 :VECTORES EN EL ESPACIO. Coodenadas de un unto en el esacio Vamos a estudia el esacio R. Sus elementos son untos ue eesentaemos mediante tes coodenadas. Paa ello necesitamos fija un sistema de efeencia
CAPÍTULO 15: TRIÁNGULOS RECTÁNGULOS
PÍTULO 15: TRIÁNGULOS RETÁNGULOS Dante Gueeo-handuví Piua, 2015 FULTD DE INGENIERÍ Áea Depatamental de Ingenieía Industial y de Sistemas PÍTULO 15: TRIÁNGULOS RETÁNGULOS Esta oba está bajo una licencia
Unidad 12. Geometría (I).Ecuaciones de recta y plano
Unidad.Geometía (I).Ecuaciones de la ecta el plano Unidad. Geometía (I).Ecuaciones de ecta plano. Intoducción. Espacio fín... Vecto en el espacio. Vecto libe fijo... Opeaciones con vectoes.. Dependencia
ANALISIS VECTORIAL Y TENSORIAL SEMESTRE II/2015 PRACTICA # 3 UNIDAD 2 DIFERENCIACION VECTORIAL y OPERADORES DIFERENCIALES
FACULTAD DE CIENCIAS Y TECNOLOGIA CARRERA DE INGENIERIA CIVIL 0.1 CURVAS EN R 3 ANALISIS VECTORIAL Y TENSORIAL SEMESTRE II/2015 PRACTICA # 3 UNIDAD 2 DIFERENCIACION VECTORIAL y OPERADORES DIFERENCIALES
TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO Geometría lineal Recta y Plano
LA LINEA RECTA: DEFINICIÓN. TALLER VERTICAL DE MATEMÁTICA Recibe el nombe de línea ecta el luga geomético de los puntos tales que, tomados dos puntos cualesquiea distintos P, ) P, ) el valo de la epesión:
MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias
Geometía del espacio: poblemas de ángulos y distancias; simetías MATEMÁTICAS II TEMA 6 Planos y ectas en el espacio Poblemas de ángulos, paalelismo y pependiculaidad, simetías y distancias Ángulos ente
VECTORES, DERIVADAS, INTEGRALES
Física Tema 0-1 º Bachilleato Vectoes, deivadas, integales Tema 0 VECTORES, DERIVADAS, INTEGRALES 1.- Vectoes. Componentes de un vecto.- Suma y difeencia de vectoes 3.- Poducto de un vecto po un númeo
9. NÚMEROS COMPLEJOS EN FORMA POLAR
Númeos Complejos en Foma Pola 9. NÚMEROS COMPLEJOS EN FORMA POLAR Recodemos que en la Unidad vimos que a un númeo complejo podemos expesalo en foma inómica z = a + i donde a, son númeos eales, que se epesenta
9. NÚMEROS COMPLEJOS EN FORMA POLAR
9. NÚMEROS COMPLEJOS EN FORMA POLAR Recodemos que en la Unidad vimos que a un númeo complejo podemos expesalo en foma inómica z = a + i donde a, son númeos eales, que se epesenta gáficamente mediante un
CAPÍTULO II Teoremas de conservación
eoeas de onsevaión CPÍULO II eoeas de onsevaión Fundaento teóio I.- Leyes de ewton Ia.- Piea ley Un uepo soetido a una fueza neta nula, F n 0, se ueve de foa que su antidad de oviiento, p v, peanee onstante
Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO
Facultad de iencias uso - SOLUIOS ROLMAS FÍSIA. TMA : AMO LÉTRIO. n los puntos (; ) y (-; ) de un sistema de coodenadas donde las distancias se miden en cm, se sitúan dos cagas puntuales de valoes, y -,
UNIDAD 4: CIRCUNFERENCIA CIRCULO:
UNIDD 4: CIRCUNFERENCI CIRCULO: CONTENIDO: I. CONCEPTO DE CIRCUNFERENCI: Es una cuva ceada y plana cuyos puntos equidistan de un punto llamado cento. Una cicunfeencia se denota con la expesión: O C, y
Guía Regla de la Cadena(1 er Orden)
UNIVERSIDAD DE CHILE CÁLCULO EN VARIAS VARIABLES PROFESOR: MARCELO LESEIGNEUR AUXILIARES: ALFONSO TORO - SEBASTIÁN COURT Guía Regla de la Cadena1 e Oden 1. Sean f : R R y g : R R dos funciones difeenciables.
Ejemplos 2. Cinemática de los Cuerpos Rígidos
Ejemplos. Cinemática de los Cuepos Rígidos.1. Rotación alededo de un eje fijo.1.** El bloque ectangula ota alededo de la ecta definida po los puntos O con una velocidad angula de 6,76ad/s. Si la otación,
A r. 1.5 Tipos de magnitudes
1.5 Tipos de magnitudes Ente las distintas popiedades medibles puede establecese una clasificación básica. Un gupo impotante de ellas quedan pefectamente deteminadas cuando se expesa su cantidad mediante
PROBLEMAS DE ELECTROESTÁTICA
PBLMAS D LCTSTÁTICA I CAMP LCTIC N L VACI. Cagas puntuales. Cagas lineales. Cagas supeficiales 4. Flujo le de Gauss 5. Distibuciones cúbicas de caga 6. Tabajo enegía electostática 7. Poblemas Pof. J. Matín
12 Cuerpos. en el espacio. 1. Elementos básicos en el espacio. Dibuja a mano alzada un punto, una recta, un romboide y un cubo.
12 uepos en el espacio 1. Elementos básicos en el espacio ibuja a mano alzada un punto, una ecta, un omboide y un cubo. P I E N S A Y A L U L A Recta Punto Romboide ubo ané calculista 489,6 : 7,5 = 65,28;
TEORÍA DE CAMPOS Y OPERADORES DIFERENCIALES. PROBLEMAS RESUELTOS
TEORÍA DE CAMPOS Y OPERADORES DIFERENCIALES. PROBLEMAS RESUELTOS 1. Dado un campo vectoial v = ( x + y ) i + xy j + ϕ( x, y, k en donde ϕ es una función tal que sus deivadas paciales son las funciones
UNIDAD 7 Problemas métricos
Pág. 1 e x = 11 + 4l x = 11 9l 1 1 : y = + l : y = l z = 7 + l z = 7 7l a) Halla las istancias ente los puntos e cote e 1 y con π: x y + z 4 = 0. b) Halla el ángulo e 1 con. c) Halla el ángulo e 1 con
La ecuación implicita del plano que pasa por el punto P(1, 0, 1) con vectores AB (2,1,0) y AP (2,0,0) será:
xyz0. Dados la ecta : y el punto P(, 0, ) exteio a : x y z a) Halla la ecuación en foma geneal del plano que contiene a y a P b) Halla la ecuación (como intesección de dos planos) de la ecta s que pasa
ECUACIONES DE LA RECTA
Temas 6 y 7 Rectas y planos en el espacio- Matemáticas II º Bachilleato TEMA 6 y 7 - RECTAS Y PLANOS EN EL ESPACIO ECUACIONES DE LA RECTA Paa halla la ecuación de una ecta en el espacio necesito: Dos puntos
Física 2º Bacharelato
Física º Bachaelato Gavitación 19/01/10 DEPARAMENO DE FÍSICA E QUÍMICA Nombe: 1. Calcula la pimea velocidad obital cósmica, es deci la velocidad que tendía un satélite de óbita asante.. La masa de la Luna
RECTAS EN EL ESPACIO
IES Pade Poeda (Guadi UNIDAD 9 GEOMETRÍA AFÍN RETAS EN EL ESPAIO. EUAIONES DE LA RETA Una ecta queda deteminada po Un punto A ( a a a Un ecto de diección ( A ( A; se le llama deteminación lineal de la
TRIGONOMETRÍA FUNCIONES DE MÁS DE 90 GRADOS página 1
TRIGONOMETRÍA FUNCIONES DE MÁS DE 90 GRADOS página 1 página 2 SEGUNDO BIMESTRE 1 FUNCIONES DE MAS DE 90 GRADOS 1.1 CONCEPTOS Y DEFINICIONES Los valoes de las funciones tigonométicas solamente eisten paa
Cinemática y Dinámica
Cinemátia Dinámia ademia Univesitaia Guillemo Sole - Ingenieía e Idiomas - Cinemátia Dinámia 1. Movimiento Retilíneo. Veloidad aeleaión de un movimiento etilíneo (Método analítio). O P Posiión de una patíula
2.1. Potencia. cc A. Potencia de un punto respecto. de una circunferencia. 2. Potencia 2.1. Potencia. ccc Definición
02 otenia Existen oneptos geométios, que eniean un ieto gado de omplejidad si se ven sólo desde su intepetaión matemátia, y que sin embago, mediante su apliaión y tazado sobe el plano, posibilitan una
EJERCITACIÓN PARA EXAMEN DE MATEMATICA MAYORES DE 25 AÑOS SIN CICLO MEDIO COMPLETO. PRACTICO 3 Función Lineal Rectas Noviembre 2011
EJERCITACIÓN PARA EXAMEN DE MATEMATICA MAYORES DE 5 AÑOS SIN CICLO MEDIO COMPLETO PRACTICO Función Lineal Rectas Noviembe RECORDAR: Una unción lineal es de la oma popiedad que los cocientes incementales:
2λ λ. La ecuación del plano que buscamos es p: 5x 2y + 2z
Poducto escala 060 Halla la ecuación de la ecta que cota a y s pependiculamente. x = 1 x = 6 µ : y = 11+ s: y = + µ z = 1+ z = + µ Hallamos un punto P y un punto Q s de modo que el vecto PQ sea pependicula
SENO Y COSENO PARA UN ÁNGULO EN EL PLANO CARTESIANO
SENO Y COSENO PARA UN ÁNGULO EN EL PLANO CARTESIANO Sugeencias paa quien impate el cuso: Se espea que con la popuesta didáctica pesentada en conjunción con los apendizajes que sobe el estudio de la tigonometía
DEPARTAMENTO DE GEOMETRÍA ANALÍTICA
DEPARTAMENTO DE GEOMETRÍA ANALÍTICA SERIE No. 4 010 - CURVAS 1. Obtener una ecuación vectorial de la curva que se obtiene por el desplazamiento de un punto tal que su abscisa es -5 mientras que su cota
Es claro que el coseno de un ángulo agudo (digamos a) es igual al seno de su complemento W), de ahí la palabra coseno (seno del complemento).
Es clao que el coseno de un ángulo agudo (digamos a) es igual al seno de su complemento W), de ahí la palaba coseno (seno del complemento). Nota: En adelante escibiemos indistintamente cos a o cos(m(a)),
El radio de una circunferencia mide 1,25 cm. Halla el ángulo que forman las tangentes a la circunferencia desde un punto situado a 4,8 cm del centro.
T: TRIGNMETRÍ 1º T 7. RESLUIÓN E TRIÁNGULS RETÁNGULS L TNGENTE UN IRUNFERENI El adio de una cicunfeencia mide 1, cm. Halla el ángulo que foman las tangentes a la cicunfeencia desde un punto situado a cm
MAGNITUDES ESCALARES Y VECTORIALES
U R S O: FÍSI OMÚN MTERIL: F-01 Sistema intenacional de medidas MGNITUDES ESLRES VETORILES En 1960, un comité intenacional estableció un conjunto de patones paa estas magnitudes fundamentales. El sistema
Selectividad Septiembre 2009 SEPTIEMBRE 2009
Selectividad Septiembe 9 OPCIÓN A PROBLEMAS SEPTIEMBRE 9 1.- Sea la función f () =. + 1 a) Halla el dominio, intevalos de cecimiento y dececimiento, etemos elativos, intevalos de concavidad y conveidad,
TEMA 9: FORMAS GEOMÉTRICAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.
2009 TEMA 9: FORMAS GEOMÉTRICAS. Pime Cuso de Educación Secundaia Obligatoia. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/2009 TEMA 09: FORMAS GEOMÉTRICAS. 1. Ideas Elementales de Geometía
a) Concepto Es toda acción de capaz de cambiar el estado de reposo o movimiento de un cuerpo, o de producir en el alguna deformación.
FUERZAS 1- NAURALEZA DE LAS FUERZAS a) Concepto Es toda acción de capaz de cambia el estado de eposo o movimiento de un cuepo, o de poduci en el alguna defomación. b) Caácte vectoial Los efectos de una
Complejos, C. Reales, R. Fraccionarios
NÚMEROS COMPLEJOS Como ya sabemos, conocemos distintos cuerpos numéricos en matemáticas como por ejemplo el cuerpo de los números racionales, irracionales, enteros, negativos,... Sin embargo, para completar
PRUEBA DE ACCESO A LA UNIVERSIDAD ENUNCIADO Y RESOLUCIÓN
Puebas de selectividad PRUEBA DE ACCESO A LA UNIVERSIDAD.004 ENUNCIADO Y RESOLUCIÓN Instucciones: a)duación: 1 hoa y 0 minutos. b) Tienes que elegi ente ealiza únicamente los cuato ejecicios de la Opción
Cátedra de Física 1. Autor: Ing. Ricardo Minniti. Sábado 10 de Febrero de 2007 Página 1 de 14. Índice
Cáteda de Física Índice Figua - Enunciado Solución Ecuación - Momento de inecia definición Figua - Sistema de estudio 3 Ecuación - Descomposición del momento de inecia3 Figua 3 - Cálculo del momento de
SOLUCIONES rectas-planos
SOLUCIONES ectas-planos x + y z. Ecuación de la ecta que pasa po A(,, ) y se apoya en las ectas x y + z x z + s y 4 y. Ecuación de la ecta que pasa po (,, ) es paalela al plano π x + y 4z + y está en x
BLOQUE II GEOMETRÍA. Resolución a) Para que los tres vectores formen una base, han de ser L.I. Veámoslo:
II BLOQUE II GEOMETRÍA Página 6 Considera los vectores u(3,, ), v ( 4, 0, 3) y w (3,, 0): a) Forman una base de Á 3? b) Halla m para que el vector (, 6, m) sea perpendicular a u. c) Calcula u, ì v y (
GRÁFICA DE LAS FUNCIONES TRIGONOMÉTRICAS
FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS GRADO: 10 TALLER Nº: 6 SEMESTRE 1 GRÁFICA DE LAS FUNCIONES TRIGONOMÉTRICAS RESEÑA HISTÓRICA Leonhad Eule, (1707-1783) Fue un matemático
RECTAS EN EL ESPACIO.
IES Pade Poeda (Guadi UNI 9 GEOETRÍ FÍN RETS EN EL ESPIO EUIONES E L RET Una ecta queda deteminada po Un punto ( a a a Un ecto de diección ( ( ; se le llama deteminación lineal de la ecta Si X ( es un
FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS
FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS Los ángulos: Se pueden medi en: GRADOS RADIANES: El adián se define como el ángulo que limita un aco cuya longitud es igual al adio del aco. Po tanto, el ángulo, α,
3.3.- Cálculo del campo eléctrico mediante la Ley de Gauss
Lección 1. Campo Electostático en el vacío: Conceptos y esultados fundamentales 17..- Cálculo del campo eléctico mediante la Ley de Gauss La Ley de Gauss pemite calcula de foma sencilla el campo eléctico
