Tensor de inercia. Tensor de inercia. I pzx. I pxx. I pxy. = I pyz. I pxz. I. Leyes de Newton. II. Cinemática

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tensor de inercia. Tensor de inercia. I pzx. I pxx. I pxy. = I pyz. I pxz. I. Leyes de Newton. II. Cinemática"

Transcripción

1 Univesidad Simón Bolíva. ees de Newton. Cinemátia. Dinámia Sist. de atíulas Definiiones a le da le Tenso de ineia a le Es. de agange Tenso de ineia ( + ) Momentos de ineia: (Sieme ositivos) ( + ) Poiedades del tenso de ineia: ( + ) MC- Dinámia & Euo Casanova, Podutos de ineia: - El valo de las omonentes del tenso de ineia deende de la ubiaión oientaión del sistema de oodenadas usado aa eesalo - El tenso de ineia es simétio T - os momentos de ineia nuna son negativos Univesidad Simón Bolíva MC- Dinámia & Euo Casanova, Tenso de ineia Poiedades del tenso de ineia:. ees de Newton. Cinemátia - Si un ueo aite un eje de simetía mateial geométio, entones los odutos de ineia asoiados a ese eje son nulos. Dinámia Sist. de atíulas Definiiones a le da le Tenso de ineia a le Es. de agange Paa todo valo de eiste un difeenial de masa on ositiva una imagen de ese difeenial on negativa, o lo tanto: 5- Si un ueo aite un lano de simetía mateial geométio, entones los odutos de ineia asoiados al eje nomal de ese lano son nulos Paa todo difeenial de masa on ositiva eiste una imagen de ese difeenial on negativa, o lo tanto: 5

2 Univesidad Simón Bolíva MC- Dinámia & Euo Casanova,. ees de Newton. Cinemátia. Dinámia Sist. de atíulas Definiiones a le da le Tenso de ineia a le Es. de agange Tenso de ineia Poiedades del tenso de ineia: 6- Cálulo de la ineia en un sistema de efeenia aalelo (Teoema de los ejes aalelos o Teoema de Steine ). o ρ Conoida la ineia en el ento de masas ( ), se desea alula la ineia en el unto ( ) + ρ ( ) ( + ) ( ) + ( ) ( + ) + ρ + ρ + ( ρ ) ( + ) + ρ + ρ + ( ρ ) + M ( + ) ( ) + M + ( ) + M + 6 Univesidad Simón Bolíva MC- Dinámia & Euo Casanova, Tenso de ineia Poiedades del tenso de ineia:. ees de Newton. Cinemátia. Dinámia Sist. de atíulas Definiiones a le da le Tenso de ineia a le Es. de agange M + M [( )( )] + M + / ρ + ρ + / ρ + ρ + ρ ρ ρ ρ ( ) + ( + ) ( ) M Note que los valoes mínimos de los momentos de ineia se obtienen aa el ento de masas del ueo. En ualquie oto unto del ueo, los momentos de ineia son maoes, lo que imlia que eseto al ento de masas el ueo ofee la meno esistenia a la otaión! + 7

3 Univesidad Simón Bolíva MC- Dinámia & Euo Casanova,. ees de Newton. Cinemátia. Dinámia Sist. de atíulas Definiiones a le da le Tenso de ineia a le Es. de agange Tenso de ineia Poiedades del tenso de ineia: 7- Cálulo de la ineia en un sistema de efeenia on oientaión difeente (Eesión del tenso de ineia en una base difeente). θ θ θ iˆ os( θ) ˆj os( θ ) kˆ os( θ) Conoida la ineia en el sistema de efeenia ( ), se desea alula la ineia en el sistema ( ) θij A A Definiendo los ángulos ente los ejes de ambas bases se uede esibi: os( θ iˆ ) os( θ) os( θ ˆ ) os( θ ) j os( θ ) os( ) kˆ θ ángulo ente el eje i de la base el eje j de la base (medido en el lano que foman los ejes i j) veto eesado en la base veto eesado en la base i ˆ os( θ )ˆ i + os( θ ) ˆj + os( ) kˆ θ Mati de otaión fomada o los osenos dietoes. Es una mati otogonal T Un veto uede eesase en una u ota base usando las eesiones: ω ω T ( )ω base base T A A A T A 8 Univesidad Simón Bolíva MC- Dinámia & Euo Casanova,. ees de Newton. Cinemátia. Dinámia Sist. de atíulas Definiiones a le da le Tenso de ineia a le Es. de agange Tenso de ineia Poiedades del tenso de ineia: 8- Cálulo de los ejes iniales de ineia aa un unto del ígido Dado que: ω Es osible enonta un sistema de oodenadas on oigen en, en el ual se umla que la antidad angula de movimiento del sistema ( ) tenga la misma dieión sentido que el veto veloidad angula ( )? ω λω [ ] λ ω det λ [ λ] det ω λ esala, Poblema de autovaloes ( λ ) autovetoes ( ω ) Esta euaión genea un olinomio úbio en, uas aíes ( λ ) son los autovaloes, llamados, λ, λ momentos iniales de ineia ( ).,, Cada uno de esos autovaloes tiene asoiado un autoveto ( ω ). Estos tes autovetoes, ω, ω definen los ejes de una base, llamada sistema de oodenadas iniales de ineia en el unto, en la ual todos los odutos de ineia son nulos. λ 9

4 Univesidad Simón Bolíva MC- Dinámia & Euo Casanova,. ees de Newton. Cinemátia. Dinámia Sist. de atíulas Definiiones a le da le Tenso de ineia a le Es. de agange Tenso de ineia Poiedades del tenso de ineia: 8- Piniio de sueosiión Si un ueo está fomado o la unión de o más ueos ígidos, su ineia se uede alula omo la suma de las ineias de ada ueo eseto al mismo unto en el mismo sistema de oodenadas U U i i Usando el Teoema de Steine i i i + / i i [ + / ] i 5 Univesidad Simón Bolíva MC- Dinámia & Euo Casanova,. ees de Newton Tenso de ineia neia de un ilindo eseto a su ento de masa Cilindo de adio, altua densidad unifome ρ. Cinemátia. Dinámia Sist. de atíulas Definiiones a le da le Tenso de ineia a le Es. de agange M ρ π θ dv d d os( θ ) sin( θ ) [ + ] ( + ) ( sin( θ )) π [ ( sin( θ )) + ] π π ( sin( θ )) os(θ ) + π ρ + π ρ d + M ρ d d + ρ d ρ d ( + ) ρdv 5

5 Univesidad Simón Bolíva MC- Dinámia & Euo Casanova, Tenso de ineia neia de un ilindo eseto a su ento de masa. ees de Newton. Cinemátia. Dinámia Sist. de atíulas Definiiones a le da le Tenso de ineia a le Es. de agange ( + ) ( os( θ )) π ( os( θ )) π [ + ] ρdv [( os( θ )) + ] + ρ d π M + π ρ d π ρ + ( + ) ( os( θ )) + ( sin( θ )) π ρ d [ ] π ρ d π ρ os(θ ) + ρdv M ( + ) π + ρ d d ρ d d ρ d π π ( os( θ ) sin( θ )) ρdv ( os( θ )sin( θ )) ( os( θ )sin( θ )) ρ d ( sin( θ )) ρ d π ρ d d 5 Univesidad Simón Bolíva MC- Dinámia & Euo Casanova,. ees de Newton. Cinemátia. Dinámia Sist. de atíulas Definiiones a le da le Tenso de ineia a le Es. de agange Tenso de ineia neia de un ilindo eseto a su ento de masa π π ( os( θ ) ) ρdv ( os( θ ) ) os( θ ) ρ d π π sin( θ ) ρ d ( sin( θ ) ) ρdv ( sin( θ ) ) sin( θ ) ρ d π π os( θ ) ρ d ρ d d ρ d d M ( + ) M ( + ) M 5

6 Univesidad Simón Bolíva MC- Dinámia & Euo Casanova, Tenso de ineia neia de una baa un diso. ees de Newton neia de una baa Una baa ideal es un ilindo de adio nulo (). Cinemátia. Dinámia Sist. de atíulas Definiiones a le da le Tenso de ineia a le Es. de agange Baa neia de una diso ( M, ) M Un diso es un ilindo de altua nula () Diso ( M, ) M 5

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR ísia Geneal 1 Poyeto PMME - Cuso 007 Instituto de ísia aultad de Ingenieía UdelaR DINÁMICA DE LA PARTÍCULA MOVIMIENTO CIRCULAR EN UN PLANO VERTICAL abiana Andade Juan Pablo Balaini Pablo Doglio Intoduión:

Más detalles

VECTORES EN TRES DIMENSIONES

VECTORES EN TRES DIMENSIONES FÍSIC PR TODOS 1 CRLOS JIMENEZ HURNG VECTORES EN TRES DIMENSIONES Los vetoes pueden epesase en funión de oodenadas, de la siguiente manea: a; b; ) o de ota foma: a i + b j + k donde: i, j, k, son vetoes

Más detalles

Electrostática. Campo electrostático y potencial

Electrostática. Campo electrostático y potencial Electostática Campo electostático y potencial 1. Caga eléctica Electostática estudio de las cagas elécticas en eposo ++ +- -- epulsión atacción Unidad de caga el electón e 1.602177x 10-19 19 C 1.1 Constituyentes

Más detalles

Solución: Solución: Longitud recorrida por la rueda exterior en una vuelta completa: Longitud recorrida por la rueda interior en una vuelta completa:

Solución: Solución: Longitud recorrida por la rueda exterior en una vuelta completa: Longitud recorrida por la rueda interior en una vuelta completa: .- Si un vehíulo on m. de anho de vía toma una uva de adio m., alula la evoluione o minuto de ada lanetaio del difeenial abiendo que la oona gia a 600..m. Longitud eoida o la ueda exteio en una vuelta

Más detalles

Coulomb. 2.2 La ley de Gauss. Gauss. 2.4 La discontinuidad de E n. conductores.

Coulomb. 2.2 La ley de Gauss. Gauss. 2.4 La discontinuidad de E n. conductores. CAPÍTULO Campo eléctico II: distibuciones continuas de caga Índice del capítulo.1 Cálculo del campo eléctico mediante la ley de Coulomb.. La ley de Gauss..3 Cálculo del campo eléctico mediante la ley de

Más detalles

EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO

EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO Detemina la posición elativa de las siguientes paejas de planos a) 8 ' 4 6 6 b) 6 7 ' 4 c) ' 6 7 d) 4 7 Dado el plano que contenga al punto A(-,, 4), detemina

Más detalles

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO Facultad de iencias uso - SOLUIOS ROLMAS FÍSIA. TMA : AMO LÉTRIO. n los puntos (; ) y (-; ) de un sistema de coodenadas donde las distancias se miden en cm, se sitúan dos cagas puntuales de valoes, y -,

Más detalles

IES Menéndez Tolosa Física y Química - 1º Bach Campo eléctrico I. 1 Qué afirma el principio de conservación de la carga eléctrica?

IES Menéndez Tolosa Física y Química - 1º Bach Campo eléctrico I. 1 Qué afirma el principio de conservación de la carga eléctrica? IS Menéndez Tolosa ísica y Química - º Bach ampo eléctico I Qué afima el pincipio de consevación de la caga eléctica? l pincipio indica ue la suma algebaica total de las cagas elécticas pemanece constante.

Más detalles

GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia

GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia Puebas de Acceso a la Univesidad GEOMETRÍA Junio 94.. Sin esolve el sistema detemina si la ecta x y + = 0 es exteio secante ó tangente a la cicunfeencia (x ) + (y ) =. Razónalo. [5 puntos]. Dadas las ecuaciones

Más detalles

TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES

TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES 1. MOVIMIENTO CIRCULAR UNIFORME (MCU). Es el movimiento de un cuepo cuya tayectoia es una cicunfeencia y su velocidad es constante. 1.1. Desplazamiento angula o

Más detalles

Hoy trataremos algún aspecto del diseño de una vasija o depósito de pared delgada (t/r<10) sometida a presión interna

Hoy trataremos algún aspecto del diseño de una vasija o depósito de pared delgada (t/r<10) sometida a presión interna CAPÍTULO 1 TENSIÓN Ho tataemos algún aspecto del diseño de una vasija o depósito de paed delgada (t/

Más detalles

Tema 0 Conocimientos previos al curso de Física

Tema 0 Conocimientos previos al curso de Física Tema 0 Conocimientos pevios al cuso de Física Conocimientos básicos de matemáticas Geometía y tigonometía Álgeba vectoial Conocimientos básicos de física Magnitudes y unidades físicas. Sistema Intenacional

Más detalles

CUERPOS REDONDOS. LA ESFERA TERRESTRE

CUERPOS REDONDOS. LA ESFERA TERRESTRE IES PEÑAS NEGRAS. Geometía. º ESO. CUERPOS REDONDOS. LA ESFERA TERRESTRE 1. CUERPOS REDONDOS. Un cuepo edondo es un sólido que contiene supeficies cuvas. Dento de los cuepos edondos los más inteesantes

Más detalles

FÍSICA I TEMA 0: INTRODUCCIÓN

FÍSICA I TEMA 0: INTRODUCCIÓN FÍSICA I TEMA 0: INTRODUCCIÓN 1. Expesa en los sistemas cegesimal, intenacional y técnico el peso y la masa de un cuepo de 80 Kg. de masa. CEGESIMAL Centímeto, gamo y segundo. 80 Kg 80 Kg * 1000 g /Kg

Más detalles

CAPÍTULO 15: TRIÁNGULOS RECTÁNGULOS

CAPÍTULO 15: TRIÁNGULOS RECTÁNGULOS PÍTULO 15: TRIÁNGULOS RETÁNGULOS Dante Gueeo-handuví Piua, 2015 FULTD DE INGENIERÍ Áea Depatamental de Ingenieía Industial y de Sistemas PÍTULO 15: TRIÁNGULOS RETÁNGULOS Esta oba está bajo una licencia

Más detalles

D = 4 cm. Comb. d = 2 mm

D = 4 cm. Comb. d = 2 mm UNIDAD 7 - POBLEMA 55 La figua muesta en foma simplificada el Ventui de un cabuado. La succión geneada en la gaganta, po el pasaje del caudal de aie debe se suficiente paa aspia un cieto caudal de combustible

Más detalles

Hotel Burj Al Arab, Dubai, Emiratos Árabes Unidos

Hotel Burj Al Arab, Dubai, Emiratos Árabes Unidos Hotel Buj Al Aab Dubai Emiato Áabe Unido Pedo ami Bofill-Gaet Poyecto de paametiación Ampliación de Matemática Intoducción Paa ete poyecto e ha ecogido como upeficie el lujoo hotel Buj al Aab de Dubai.

Más detalles

Formulario 1: Teoría de Conjuntos = (1.1) Formulario 2: Propiedades de las Probabilidades y Métodos de Conteo = (2.1)

Formulario 1: Teoría de Conjuntos = (1.1) Formulario 2: Propiedades de las Probabilidades y Métodos de Conteo = (2.1) NVERSDD SMÓN OLÍVR O ROLDDES R NGENEROS FORMLRO Fomulaio : Teoía e ojutos Lees Distibutivas:. Le e omlemetos:. Lees e Moa:. Fomulaio : oieaes e las obabiliaes Métoos e oteo iomas e obabilia: L L L etoes

Más detalles

VECTORES. BIDIMENSIONAL

VECTORES. BIDIMENSIONAL VETORES. IDIMENSIONL 1. Dado los vectores,,, D, E, F y G que se muestran en la figura, determinar el modulo del vector resultante si = 5N y F = 4N. Rpta. R = 17,35N. 2. En el primer cuadrante de un sistema

Más detalles

GALICIA / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO

GALICIA / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO GALICIA / JUNIO 3. LOGSE / FÍSICA / EXAMEN COMPLEO El examen de física de las P.A.U. pesenta dos opciones de semejante nivel de dificultad. Cada opción consta de tes pates difeentes(poblemas, cuestiones

Más detalles

Dinámica de la rotación Momento de inercia

Dinámica de la rotación Momento de inercia Laboatoi de Física I Dinámica de la otación omento de inecia Objetivo Detemina los momentos de inecia de vaios cuepos homogéneos. ateial Discos, cilindo macizo, cilindo hueco, baa hueca, cilindos ajustables

Más detalles

CATALUÑA / JUNIO 02. LOGSE / FÍSICA / EXAMEN COMPLETO

CATALUÑA / JUNIO 02. LOGSE / FÍSICA / EXAMEN COMPLETO Resuelva el poblema P1 y esponda a las uestiones C1 y C Esoja una de las opiones (A o B) y esuelva el poblema P y onteste a las uestiones C3 y C4 de la opión esogida (En total hay que esolve dos poblemas

Más detalles

200. Hallar la ecuación de la simetría ortogonal respecto de la recta:

200. Hallar la ecuación de la simetría ortogonal respecto de la recta: Hoja de Poblemas Geometía IX 200 Halla la ecuación de la simetía otogonal especto de la ecta: SOLUCIÓN n( x a) Sean: - S la simetía otogonal especto de la ecta n ( x a) - P un punto cualquiea cuyo vecto

Más detalles

A r. 1.5 Tipos de magnitudes

A r. 1.5 Tipos de magnitudes 1.5 Tipos de magnitudes Ente las distintas popiedades medibles puede establecese una clasificación básica. Un gupo impotante de ellas quedan pefectamente deteminadas cuando se expesa su cantidad mediante

Más detalles

Al estar la fuerza dirigida hacia arriba y la intensidad del campo eléctrica hacia abajo, la carga de la esfera es negativa:

Al estar la fuerza dirigida hacia arriba y la intensidad del campo eléctrica hacia abajo, la carga de la esfera es negativa: PROLMS CMPO LÉCTRICO. FÍSIC CHILLRTO. Pofeso: Féli Muñoz Jiménez Poblema 1 Detemina la caga de una peueña esfea cagada de 1, mg ue se encuenta en euilibio en un campo eléctico unifome de 000 N /C diigido

Más detalles

Cálculo Diferencial e Integral - Función inversa y límite. Farith J. Briceño N.

Cálculo Diferencial e Integral - Función inversa y límite. Farith J. Briceño N. Cálculo Difeencial e Integal - Función invesa y límite. Faith J. Biceño N. Objetivos a cubi Función inyectiva. Función invesa. De nición fomal de límite. Límites lateales. Cálculo de límites. Código :

Más detalles

Matemáticas III Andalucía-Tech. Integrales múltiples

Matemáticas III Andalucía-Tech. Integrales múltiples Matemátias III Andaluía-Teh Tema 4 Integrales múltiples Índie. Preliminares. Funión Gamma funión Beta. Integrales dobles.. Integral doble de un ampo esalar sobre un retángulo................ Integral doble

Más detalles

Propagación de las ondas

Propagación de las ondas Popagaión de las ondas Popagaión de las ondas 1.1.pdf Fabie Lengonne, 2008-2013 Medios de popagaión Condiiones neesaias Medio mateial Paa popaga una onda sonoa, el medio debe se ompuesto de patíulas mateiales.

Más detalles

TRAZADO DE DIAGRAMA POLAR Y APLICACIÓN DE CRITERIO DE NYQUIST

TRAZADO DE DIAGRAMA POLAR Y APLICACIÓN DE CRITERIO DE NYQUIST TRAZADO DE DIAGRAMA POLAR Y APLICACIÓN DE CRIRIO DE NYQUIST. TRAZADO DE DIAGRAMA POLAR. La función de transferencia P, tendrá el formato dado or la siguiente exresión generalizada: P ± m m P A P + A P

Más detalles

8. Movimiento Circular Uniforme

8. Movimiento Circular Uniforme 8. Movimiento Cicula Unifome En la vida cotidiana e peentan ituacione donde un objeto gia alededo de oto cuepo con una tayectoia cicula. Un ejemplo de ello on lo planeta que gian alededo del ol en obita

Más detalles

1. Propiedades de la Presión Hidrostática.

1. Propiedades de la Presión Hidrostática. Tema. Hidrostátia. Proiedades de la Presión Hidrostátia.. Euaión fundamental de la Hidrostátia.. Presión Hidrostátia en los líquidos. Euaión de equilirio de los líquidos esados. ota ieométria. 4. Suerfiie

Más detalles

9 Cuerpos geométricos

9 Cuerpos geométricos 865 _ 045-056.qxd 7/4/07 1:0 Página 45 Cuepos geométicos INTRODUCCIÓN Los cuepos geométicos están pesentes en múltiples contextos de la vida eal, de aí la impotancia de estudialos. Es inteesante constui

Más detalles

9. NÚMEROS COMPLEJOS EN FORMA POLAR

9. NÚMEROS COMPLEJOS EN FORMA POLAR Númeos Complejos en Foma Pola 9. NÚMEROS COMPLEJOS EN FORMA POLAR Recodemos que en la Unidad vimos que a un númeo complejo podemos expesalo en foma inómica z = a + i donde a, son númeos eales, que se epesenta

Más detalles

9. NÚMEROS COMPLEJOS EN FORMA POLAR

9. NÚMEROS COMPLEJOS EN FORMA POLAR 9. NÚMEROS COMPLEJOS EN FORMA POLAR Recodemos que en la Unidad vimos que a un númeo complejo podemos expesalo en foma inómica z = a + i donde a, son númeos eales, que se epesenta gáficamente mediante un

Más detalles

22.6 Las 3 esferas pequeñas que se muestran en la figura tienen cargas q 1

22.6 Las 3 esferas pequeñas que se muestran en la figura tienen cargas q 1 .6 Ls 3 esfes peueñs ue se muestn en l figu tienen cgs 4 n, -7.8 n y 3.4 n. Hlle el flujo eléctico neto tvés de cd un de ls supeficies ceds S, S, S3, S4 y S5. S S S3 S5 3 S4 4 m S 9 3 Φ.45 m 8.85 9 7.8

Más detalles

PROBLEMAS DE ELECTROESTÁTICA

PROBLEMAS DE ELECTROESTÁTICA PBLMAS D LCTSTÁTICA I CAMP LCTIC N L VACI. Cagas puntuales. Cagas lineales. Cagas supeficiales 4. Flujo le de Gauss 5. Distibuciones cúbicas de caga 6. Tabajo enegía electostática 7. Poblemas Pof. J. Matín

Más detalles

Física 2º Bacharelato

Física 2º Bacharelato Física º Bachaelato Gavitación 19/01/10 DEPARAMENO DE FÍSICA E QUÍMICA Nombe: 1. Calcula la pimea velocidad obital cósmica, es deci la velocidad que tendía un satélite de óbita asante.. La masa de la Luna

Más detalles

Departamento de Física y Química. I. E. S. Atenea (S. S. Reyes, Madrid) Examen de Selectividad de Física. Junio Soluciones

Departamento de Física y Química. I. E. S. Atenea (S. S. Reyes, Madrid) Examen de Selectividad de Física. Junio Soluciones Examen de Selectividad de Física. Junio 2008. Soluciones imea pate Cuestión.- Un cuepo de masa m está suspendido de un muelle de constante elástica k. Se tia veticalmente del cuepo desplazando éste una

Más detalles

RECTAS EN EL PLANO. r datos, podemos dar la ecuación de dicha recta de varias P o Ecuación vectorial

RECTAS EN EL PLANO. r datos, podemos dar la ecuación de dicha recta de varias P o Ecuación vectorial RECTAS EN EL PLANO Ecuación de la ecta La ecuación de una ecta puede dase de difeentes fomas, que veemos a continuación. Conocidos un punto P(p 1, p ) y un vecto de diección d = (d 1, d ) (o sea, un vecto

Más detalles

FÍSICA. PRUEBA ACCESO A LA UNIVERSIDAD +25 TEMA 6. Gravitación

FÍSICA. PRUEBA ACCESO A LA UNIVERSIDAD +25 TEMA 6. Gravitación FÍSIC. PRUEB CCESO L UNIVERSIDD +5 EM 6. Gaitaión La osología es la ienia que exlia el oigen, estutua, eoluión y las leyes que gobienan el Unieso. Las iilizaiones ás antiguas utilizaon los objetos del

Más detalles

PAUTA CONTROL 3 CÁLCULO EN VARIAS VARIABLES, 2014/1

PAUTA CONTROL 3 CÁLCULO EN VARIAS VARIABLES, 2014/1 PAUTA CONTROL CÁLCULO EN VARIAS VARIABLES, 14/1 (1) (a) Demueste que el máximo de la función x y z sobe la esfea x + y + z = a es (a /) y que el mínimo de la función x + y + z sobe la supeficie x y z =

Más detalles

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES DEFINICIÓN Un vecto es un segmento oientado. Un vecto AB queda deteminado po dos puntos, oigen A y extemo B. Elementos de un vecto: Módulo de un vecto es la

Más detalles

HERRAMIENTAS. Qué son los vectores? Matemáticamente: Es la cantidad que tiene magnitud y dirección.

HERRAMIENTAS. Qué son los vectores? Matemáticamente: Es la cantidad que tiene magnitud y dirección. Y ALGUNAS HERRAMIENTAS MATEMATICAS Qué son los vectoes? Mateáticaente: Es la cantidad que tiene agnitud y diección. Físicaente: Es la cantidad que podeos eplea paa descibi algunos paáetos físicos. Qué

Más detalles

6 DINAMICA DEL CUERPO RIGIDO

6 DINAMICA DEL CUERPO RIGIDO 6 DINAMICA DEL CUERPO RIGIDO 6. CINEMATICA 6.. Configuracion de un Cuerpo Rígido: Angulos de Euler Un cuerpo rígido se puede entender como una distribución continua de materia que se subdivide en pequeños

Más detalles

TEMA 10 INTRODUCCIÓN A LA TRANSFERENCIA DE MATERIA Ecuaciones de velocidad de transferencia de materia TRANSFERENCIA DE MATERIA. Qué es?

TEMA 10 INTRODUCCIÓN A LA TRANSFERENCIA DE MATERIA Ecuaciones de velocidad de transferencia de materia TRANSFERENCIA DE MATERIA. Qué es? Tema 0. ITROUCCIÓ TRFERECI E MTERI Ingenieía Químia 0/ TEM 0 ITROUCCIÓ TRFERECI E MTERI Euaiones de veloidad de tansfeenia de mateia. ITROUCCIÓ. TRPORTE MOECUR E MTERI.. ifusión.. Conentaión, veloidad

Más detalles

CAPÍTULO III EL POTENCIAL ELÉCTRICO. El trabajo que se realiza al llevar la carga prueba positiva

CAPÍTULO III EL POTENCIAL ELÉCTRICO. El trabajo que se realiza al llevar la carga prueba positiva Tópicos de Electicidad y Magnetismo J.Pozo y.m. Chobadjian. CPÍTULO III EL POTENCIL ELÉCTICO.. Definición de difeencia de potencial El tabajo ue se ealiza al lleva la caga pueba positiva del punto al punto

Más detalles

IES Menéndez Tolosa Física y Química - 1º Bach Energía potencial y potencial eléctrico I

IES Menéndez Tolosa Física y Química - 1º Bach Energía potencial y potencial eléctrico I IS Menéndez Tolosa Física y uímica - º Bach negía potencial y potencial eléctico I Calcula el potencial de un punto de un campo eléctico situado a una distancia de una caga y a una distancia 4 de una caga.

Más detalles

2.1. Potencia. cc A. Potencia de un punto respecto. de una circunferencia. 2. Potencia 2.1. Potencia. ccc Definición

2.1. Potencia. cc A. Potencia de un punto respecto. de una circunferencia. 2. Potencia 2.1. Potencia. ccc Definición 02 otenia Existen oneptos geométios, que eniean un ieto gado de omplejidad si se ven sólo desde su intepetaión matemátia, y que sin embago, mediante su apliaión y tazado sobe el plano, posibilitan una

Más detalles

TEMA 2. CAMPO GRAVITATORIO.

TEMA 2. CAMPO GRAVITATORIO. EA. CAPO GAVIAOIO. 1.- LEYES DE KEPLE..- LEY DE GAVIACIÓN UNIVESAL 3.- CAPO GAVIAOIO EESE. 4.- ENEGIA POENCIAL GAVIAOIA. 5.- APLICACIÓN AL ESUDIO DE LOS SAÉLIES. 1.- LEYES DE KEPLE. A Kele (1571-1630)

Más detalles

Tema 3. TRABAJO Y ENERGÍA

Tema 3. TRABAJO Y ENERGÍA Tema 3. TRABAJO Y ENERGÍA Físia, J.. Kane, M. M. Sternheim, Reverté, 989 Tema 3 Trabajo y Energía Cap.6 Trabajo, energía y potenia Cap. 6, pp 9-39 TS 6. La arrera Cap. 6, pp 56-57 . INTRODUCCIÓN: TRABAJO

Más detalles

TEMA 1: DEFINICIÓN Y FUNDAMENTOS DE ANTENAS

TEMA 1: DEFINICIÓN Y FUNDAMENTOS DE ANTENAS TEMA 1: DEFINICIÓN Y FUNDAMENTOS DE ANTENAS 1. Intoducción y definición de antena.. Tipos de antenas y bandas de fecuencia de adio. 3. Fundamentos de adiación y de popagación. 4. Distibución de coiente

Más detalles

GEOMETRÍA ANALÍTICA EN EL ESPACIO

GEOMETRÍA ANALÍTICA EN EL ESPACIO GEOMETRÍ NLÍTI EN EL ESPIO PRODUTO ESLR a b a b cosx (uando sepamos el ángulo que foman a y b). a ba b a b a b (uando sepamos las coodenadas de a y b ). uando los ectoes son pependiculaes su poducto escala

Más detalles

Semana 6. Razones trigonométricas. Semana Ángulos: Grados 7 y radianes. Empecemos! Qué sabes de...? El reto es...

Semana 6. Razones trigonométricas. Semana Ángulos: Grados 7 y radianes. Empecemos! Qué sabes de...? El reto es... Semana Ángulos: Gados 7 adianes Razones tigonométicas Semana 6 Empecemos! Continuamos en el estudio de la tigonometía. Esta semana nos dedicaemos a conoce halla las azones tigonométicas: seno, coseno tangente,

Más detalles

Hidrostática y Fluidos Ideales.

Hidrostática y Fluidos Ideales. Hidostática y Fluidos Ideales. Intoducción a la Física Ambiental. Tema 5. Tema IFA5. (Pof. M. RAMOS Tema 5.- Hidostática y Fluidos Ideales. Hidostática: Pesión. Distibución de pesiones con la pofundidad:

Más detalles

( ) ( ) V. 2 situación descrita = 7, V P. ; En la figura representamos la. Los datos que proporciona el problema son: q 1 = q 2 = 2C; d = a = 6m; = 3m

( ) ( ) V. 2 situación descrita = 7, V P. ; En la figura representamos la. Los datos que proporciona el problema son: q 1 = q 2 = 2C; d = a = 6m; = 3m A ontinuaión inluimo alguna ueba euelta on el oóito de failita y oienta al ofeoado y al alumnado de Fíia de º de bahilleato obe la ueba de aeo. Aimimo que uedan evi de efeenia a la eneñanza, aotando un

Más detalles

El método de las imágenes

El método de las imágenes El método de las imágenes Antonio González Fenández Dpto. de Física Aplicada III Univesidad de Sevilla Sinopsis de la pesentación El teoema de unicidad pemite enconta soluciones po analogías con poblemas

Más detalles

FLUJO POTENCIAL BIDIMENSIONAL (continuación)

FLUJO POTENCIAL BIDIMENSIONAL (continuación) Pof. ALDO TAMBURRINO TAVANTZIS Pof. ALDO TAMBURRINO TAVANTZIS FLUJO POTENCIAL BIDIMENSIONAL (continuación) RESUMEN DE LA CLASE ANTERIOR Si un flujo es iotacional, V 0, entonces eiste una función escala

Más detalles

PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES

PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES.- Halla dos númeos que sumados den cuo poducto sea máimo. Sean e los númeos buscados. El poblema a esolve es el siguiente: máimo Llamamos p al poducto de los dos

Más detalles

CURSO 2004-2005 - CONVOCATORIA: Junio

CURSO 2004-2005 - CONVOCATORIA: Junio ubomisión de mateia de Físia de º De ahilleato Coodinaión P..U. 005-006 PU D CCO L UNIVIDD. LOG L.O.G... FÍIC CUO 00-005 - CONVOCOI: Junio OLUCION De las dos opiones popuestas, sólo hay que desaolla una

Más detalles

Dinámica Relativista

Dinámica Relativista Dináia Relatiista Debido a que las leyes de las físia deben se inaiantes fente a tansfoaiones de Loentz, se deben genealiza las leyes de Newton y las Definiiones de enegía y oentu tal que sean opatibles

Más detalles

. Desarrollando esta ecuación vectorial, obtenemos: a = 3. : a = 2, b =, c = 0, y para w : a = 0, b =, c = -2.

. Desarrollando esta ecuación vectorial, obtenemos: a = 3. : a = 2, b =, c = 0, y para w : a = 0, b =, c = -2. 1 Sean los vectoes: v 1 ( 1, 1, 1) v (,, ) y v (, 1, ) Compueba que foman una base de V. Halla las coodenadas especto de dicha base de los vectoes u ( 1,, ) y w ( 1,, 1). Paa ve si son linealmente independientes

Más detalles

UN CACHITO DE LA ALHAMBRA

UN CACHITO DE LA ALHAMBRA UN CACHITO DE LA ALHAMBRA Se llama mosaico a todo ecubimiento del plano mediante piezas llamadas teselas que no pueden supeponese, ni puede deja huecos sin ecubi y en el que los ángulos que concuen en

Más detalles

BLOQUE II. Geometría. 10. Elementos en el plano 11. Triángulos 12. Los polígonos y la circunferencia 13. Perímetros y áreas

BLOQUE II. Geometría. 10. Elementos en el plano 11. Triángulos 12. Los polígonos y la circunferencia 13. Perímetros y áreas LOQUE II Geometía 0. Elementos en el plano. Tiángulos. Los polígonos y la cicunfeencia. Peímetos y áeas 0 Elementos en el plano. Elementos básicos en el plano Dibuja una ecta y contesta a las siguientes

Más detalles

EQUILIBRIO QUÍMICO QCA 01

EQUILIBRIO QUÍMICO QCA 01 1.- En un reiiente de 1L, a 000, se introduen 6 1 10-3 moles de CO y una ierta antidad de H, roduiéndose la reaión: H (g) + CO (g) H O(g) + CO(g) Si uando se alanza el equilibrio, la resión total es de

Más detalles

q v De acuerdo con esto la fuerza será: F qv B o bien F q v B sen 2 q v B m R R qb

q v De acuerdo con esto la fuerza será: F qv B o bien F q v B sen 2 q v B m R R qb Un imán es un cuepo capaz de atae al hieo y a algunos otos mateiales. La capacidad de atacción es máxima en dos zonas z extemas del imán a las que vamos a llama polos ( y ). i acecamos dos imanes, los

Más detalles

CONTENIDO SISTEMA DE PARTÍCULAS. Definición y cálculo del centro de masas. Movimiento del centro de masas. Fuerzas internas y fuerzas externas

CONTENIDO SISTEMA DE PARTÍCULAS. Definición y cálculo del centro de masas. Movimiento del centro de masas. Fuerzas internas y fuerzas externas COTEIDO Defncón y cálculo del cento de masas ovmento del cento de masas Fuezas ntenas y fuezas enas Enegía cnétca de un sstema de patículas Teoemas de consevacón paa un sstema de patículas B. Savon /.A.

Más detalles

SOFTWARE EDUCATIVO PARA EL ANÁLISIS Y DISEÑO DE ELEMENTOS DE CONCRETO REFORZADO. Delma V. Almada Navarro y Humberto López Salgado

SOFTWARE EDUCATIVO PARA EL ANÁLISIS Y DISEÑO DE ELEMENTOS DE CONCRETO REFORZADO. Delma V. Almada Navarro y Humberto López Salgado SOFTWARE EDUCATIVO PARA EL ANÁLISIS Y DISEÑO DE ELEMENTOS DE CONCRETO REFORZADO Delma V. Almada Navao y Humbeto López Salgado Depto. de Ingenieía Civil, ITESM Ave. Eugenio Gaza Sada Su 50 Aulas IV, e piso.

Más detalles

Para aprender Termodinámica resolviendo problemas GASES REALES.

Para aprender Termodinámica resolviendo problemas GASES REALES. Fato de ompesibilidad. GASES REAES. El fato de ompesibilidad se define omo ( ) ( ) la pesión, la tempeatua y la natualeza de ada gas. Euaión de van de Waals. ( ) z = eal = eal y es funión de a euaión de

Más detalles

1. MEDIDA DE ÁNGULOS ENTRE RECTAS Y PLANOS.

1. MEDIDA DE ÁNGULOS ENTRE RECTAS Y PLANOS. IES Pae Poea (Guaix) UNIDAD 0: GEOMETRÍA MÉTRICA Si sólo tenemos en cuenta las elaciones existentes ente los puntos el espacio y los ectoes e V, la geometía estingiá su estuio a las posiciones elatias

Más detalles

LA LEY DE COULOMB COMO CASO PARTICULAR DE LA LEY DE GAUSS

LA LEY DE COULOMB COMO CASO PARTICULAR DE LA LEY DE GAUSS LA LY D COULOMB COMO CASO PATICULA D LA LY D GAUSS Una caga eléctica genea un campo eléctico cuyas líneas de fueza son adiales ue pemiten conclui ue el vecto de intensidad de campo eléctico ti hay desde

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 QUÍMICA TEMA 5: EQUILIBRIO QUÍMICO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 QUÍMICA TEMA 5: EQUILIBRIO QUÍMICO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 013 QUÍMICA TEMA 5: EQUILIBRIO QUÍMICO Junio, Ejeriio 3, Oión B Junio, Ejeriio 6, Oión B Reserva 1, Ejeriio 5, Oión B Reserva, Ejeriio 3, Oión A Reserva 3, Ejeriio

Más detalles

Fluidos: generalidades y definiciones.

Fluidos: generalidades y definiciones. Fluidos: genealidades y definiciones. Intoducción a la Física Ambiental. Tema 4. Tema 4. IFA (Pof. RAMOS) 1 Tema 4.- Fluidos Genealidades y Definiciones. El fluido como medio continuo. Mecánica de los

Más detalles

EJERCICIOS TEMA 9: ELEMENTOS MECÁNICOS TRANSMISORES DEL MOVIMIENTO

EJERCICIOS TEMA 9: ELEMENTOS MECÁNICOS TRANSMISORES DEL MOVIMIENTO EJECICIOS TEMA 9: ELEMENTOS MECÁNICOS TANSMISOES DEL MOVIMIENTO 1. Dos uedas de ficción gian ente sí sin deslizamiento. Sabiendo que la elación de tansmisión vale 1/5 y que la distancia ente ejes es de

Más detalles

MODELADO CINEMATICO Y DINAMICO DE UN ROBOT MÓVIL OMNI-DIRECCIONAL.

MODELADO CINEMATICO Y DINAMICO DE UN ROBOT MÓVIL OMNI-DIRECCIONAL. MODEADO INEMATIO Y DINAMIO DE UN OBOT MÓVI OMNI-DIEIONA. V. F. Muñoz Matínez, G. Gil-Gómez y A. Gaía eezo. Instituto Andaluz de Automátia Avanzada y obótia. Dpto. Ingenieía de Sistemas y Automátia. Univesidad

Más detalles

Tema 1: Electrostática * Ley de Coulomb y campo eléctrico. - Ley de Coulomb - Concepto y definición de campo eléctrico * Distribuciones de carga.

Tema 1: Electrostática * Ley de Coulomb y campo eléctrico. - Ley de Coulomb - Concepto y definición de campo eléctrico * Distribuciones de carga. Tema : lectostática * Ley de oulomb y campo eléctico. - Ley de oulomb - oncepto y definición de campo eléctico * Distibuciones de caga. Aplicaciones -Dipolo - Hilo - Anillo -Disco * Flujo eléctico. Ley

Más detalles

Posiciones relativas entre rectas y planos

Posiciones relativas entre rectas y planos Maemáicas II Geomeía del espacio Posiciones elaivas ene ecas planos Obsevación: La maoía de los poblemas esuelos a coninuación se han popueso en los eámenes de Selecividad.. Discui según los valoes del

Más detalles

3.3.- Cálculo del campo eléctrico mediante la Ley de Gauss

3.3.- Cálculo del campo eléctrico mediante la Ley de Gauss Lección 1. Campo Electostático en el vacío: Conceptos y esultados fundamentales 17..- Cálculo del campo eléctico mediante la Ley de Gauss La Ley de Gauss pemite calcula de foma sencilla el campo eléctico

Más detalles

MOVIMIENTO CIRCULAR UNIFORME (MCU) = t

MOVIMIENTO CIRCULAR UNIFORME (MCU) = t U S O: FÍSIA Mención MATEIAL: FM-08 MOVIMIENTO IULA UNIFOME (MU) Una partícula se encuentra en movimiento circular, cuando su trayectoria es una circunferencia, como, por ejemplo, la trayectoria descrita

Más detalles

Elementos de geometría en el espacio

Elementos de geometría en el espacio Elemento de geometía en el epacio 1 Elemento de geometía en el epacio Elemento báico del epacio Lo elemento báico del epacio on: punto, denominado con leta mayúcula, po ejemplo P. ecta, denominado con

Más detalles

Facultad de C. E. F. y N. Departamento de FÍSICA Cátedra de FÍSICA II SOLENOIDE

Facultad de C. E. F. y N. Departamento de FÍSICA Cátedra de FÍSICA II SOLENOIDE U N IV ESID A D NACIONA de CÓ DO BA Facultad de C. E. F. y N. Depatamento de FÍSICA Cáteda de FÍSICA II caeas: todas las ingenieías auto: Ing. ubén A. OCCHIETTI Capítulo VI: Campo Magnético: SOENOIDE El

Más detalles

El campo electrostático

El campo electrostático 1 Fenómenos de electización. Caga eléctica Cuando un cuepo adquiee po fotamiento la popiedad de atae pequeños objetos, se dice que el cuepo se ha electizado También pueden electizase po contacto con otos

Más detalles

Física: Torque y Momento de Torsión

Física: Torque y Momento de Torsión Física: Torque y Momento de Torsión Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Relación entre cantidades angulares y traslacionales. En un cuerpo que rota alrededor de un origen O, el punto

Más detalles

I. Objetivos. II. Introducción.

I. Objetivos. II. Introducción. Universidad de Sonora División de Ciencias Exactas y Naturales Departamento de Física Laboratorio de Mecánica II Práctica #: Dinámica rotacional: Cálculo del Momento de Inercia I. Objetivos. Medir el momento

Más detalles

TALLER 3 GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA

TALLER 3 GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA TALLER GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA. 0- Pofeso: Jaime Andés Jaamillo González (jaimeaj@conceptocomputadoes.com) Pate del mateial ha sido tomado de documentos

Más detalles

BOLETÍN DE PROBLEMAS. LUZ y ÓPTICA

BOLETÍN DE PROBLEMAS. LUZ y ÓPTICA sapee aude http://www.iesniolasopenio.og/isia.htm Ronda de las Huetas. Éija. e-mail: em@eija.og BOLETÍN DE PROBLEMAS. LUZ y ÓPTICA. Un ayo de luz blana inide desde el aie sobe una lámina de idio on un

Más detalles

MAGNITUDES ESCALARES Y VECTORIALES

MAGNITUDES ESCALARES Y VECTORIALES C U R S O: FÍSIC Mención MTERIL: FM-01 MGNITUDES ESCLRES VECTORILES Sistema intenacional de medidas En 1960, un comité intenacional estableció un conjunto de patones paa estas magnitudes fundamentales.

Más detalles

F. Trig. para ángulos de cualquier magnitud

F. Trig. para ángulos de cualquier magnitud F. Tig. paa ángulos de cualquie magnitud Ahoa vamos a utiliza la ciuncfeencia unitaia paa descubi algunas popiedades de las funciones tigonométicas. Empezamos con las funciones sin cos. Al vaia el valo

Más detalles

CÁLCULO VECTORIAL I. B, es un nuevo vector que se define del siguiente modo: Si A ybson (LI), entonces el vector A. B se caracteriza por:

CÁLCULO VECTORIAL I. B, es un nuevo vector que se define del siguiente modo: Si A ybson (LI), entonces el vector A. B se caracteriza por: PRODUCTO VECTORIAL DE DOS VECTORES El producto vectorial de dos vectores A y, y escribimos A, es un nuevo vector que se define del siguiente modo: Si A yson (LI), entonces el vector A se caracteriza por:

Más detalles

2.4 La circunferencia y el círculo

2.4 La circunferencia y el círculo UNI Geometía. La cicunfeencia y el cículo. La cicunfeencia y el cículo JTIVS alcula el áea del cículo y el peímeto de la cicunfeencia. alcula el áea y el peímeto de sectoes y segmentos ciculaes. alcula

Más detalles

Núcleo e Imagen de una Transformación Lineal

Núcleo e Imagen de una Transformación Lineal Núleo e Imagen de una Transformaión Lineal Departamento de Matemátias CCIR/ITESM 8 de junio de Índie 7.. Núleo de una transformaión lineal................................. 7.. El núleo de una matri la

Más detalles

Radiación electromagnética

Radiación electromagnética C A P Í T U L O Radiaión eletromagnétia.1. ENUNCIADOS Y SOLUCIONES DE LOS PROBLEMAS 1. El ampo elétrio de una onda eletromagnétia plana en el vaío viene dado, en unidades del sistema internaional (SI),

Más detalles

CURSO CERO DE FÍSICA ELECTROSTÁTICA

CURSO CERO DE FÍSICA ELECTROSTÁTICA CURSO CERO DE FÍSIC ELECTROSTÁTIC Depatamento de Física CURSO CERO DE FÍSIC.UC3M ELECTROSTÁTIC CONTENIDO Caga eléctica. Fuezas ente cagas elécticas: Ley de Coulomb. Campo eléctico. Tabajo y enegía: Potencial

Más detalles

BLOQUE 1. CAMPO GRAVITATORIO

BLOQUE 1. CAMPO GRAVITATORIO Contenidos básios Físia º Bahilleato BLOQUE. CAMPO GRAVITATORIO Copénio postula el sistema helioéntio, manteniendo óbitas iulaes. Galileo on su telesopio justifia el sistema helioéntio manteniendo óbitas

Más detalles

Tema 6: Semejanza en el Plano.

Tema 6: Semejanza en el Plano. Tema 6: Semejanza en el Plano. 6.1 Semejanza de Polígonos. Definiión 6..1.- Cuatro segmentos a, b, y d son proporionales si se umple la siguiente igualdad: a =. A ese oiente omún se le llama razón de proporionalidad.

Más detalles

Mm R 2 v= mv 2 R 24 5,98 10

Mm R 2 v= mv 2 R 24 5,98 10 POBLEMAS CAMPO GAVIAOIO. FÍSICA ºBO 1. Un satélite artificial describe una órbita circular alrededor de la ierra. En esta órbita la energía mecánica del satélite es 4,5 x 10 9 J y su velocidad es 7610

Más detalles

ÁNGULOS Y LONGITUDES DE ARCO

ÁNGULOS Y LONGITUDES DE ARCO I.E LEÓN XIII EL PEÑOL MATEMÁTICA GRADO: 0 TALLER Nº: EMETRE I ÁNGULO Y LONGITUDE DE ARCO REEÑA HITÓRICA Un Poblema de Ángulos en la Antigüedad. El matemático giego Eatostenes (apox 76 9 a.c.) midió la

Más detalles

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro LISTA DE SÍMBOLOS Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro 2.1.1 Rigidez Flexiva que Difiere en dos Ejes x- Desplazamiento

Más detalles

NOCIONES DE TRIGONOMETRÍA

NOCIONES DE TRIGONOMETRÍA Ejeiios de Tigonometí http://pi-tgos.esp.st NOCIONES DE TRIGONOMETRÍA L Tigonometí tiene po ojeto l esoluión de tiángulos, es dei, onoe los vloes de sus tes ldos de sus tes ángulos. P esolve un tiángulo

Más detalles

Puntos, rectas y planos en el espacio. Problemas métricos en el espacio

Puntos, rectas y planos en el espacio. Problemas métricos en el espacio 1. Estudia la posición elativa de las ectas y s: x = 2t 1 x + 3y + 4z 6 = 0 : ; s : y = t + 1 2x + y 3z + 2 = 0 z = 3t + 2 Calcula la distancia ente ambas ectas (Junio 1997) Obtengamos un vecto diecto

Más detalles

LA PARTÍCULA SOBRE UNA ESFERA

LA PARTÍCULA SOBRE UNA ESFERA Fundaentos de Quíica Teóica LA PARTÍCULA SOBRE UNA ESFERA E odeo de una patícua oviéndose en una configuación de esfea pefecta, es deci, a una distancia fija de un cento dado, peo en tes diensiones, es

Más detalles