La danza de las rectas.
|
|
|
- María del Carmen Ruiz Roldán
- hace 9 años
- Vistas:
Transcripción
1 La danza de las rectas. Dr. Eduardo Mancera Martínez Universidad Iberoamericana Introducción El uso educativo de dispositivos logrados por el avance tecnológico suele ser un punto de partida para explorar nuevas posibilidades orientadas a la construcción de conocimientos. Pero, también son útiles para revalorar lo que ya se sabe o profundizar en temas conocidos. En efecto, con el empleo de algunos medios los contenidos pueden analizarse desde diferentes perspectivas, utilizando tiempos más cortos y empleando diversas representaciones. Entre este tipo de medios están las calculadoras gráficas. Este documento se ocupa de mostrar como es posible obtener provecho del uso de una calculadora gráfica como la TI 92 Plus o la Voyage 200, para explorar relaciones entre operaciones entre rectas y algunas cónicas, contenidos generalmente abordados en forma independiente. Para muchos las rectas y cónicas son entidades no relacionadas, en cierto modo vecinas, pero de aquellas que no se hablan. Sin embargo, rectas y cónicas o en general polinomios y funciones racionales están muy ligados y pertenecen a un tronco común. A partir de las rectas es posible construir y explicar algunas propiedades de funciones cuyas gráficas se relacionan con cónicas o polinomios. Se trata de hacer una especie de danza con las rectas. Con las calculadoras gráficas podemos aprender a danzar con las rectas, a partir de movimientos o transformaciones sencillas en el plano, con las cuales se puede darles vueltas, moverlas horizontal o verticalmente. Todos estos movimientos pueden formalizarse, pero en este escrito solamente se establecerán intuitivamente. Las afirmaciones que se plantean en lo que sigue están apoyadas en resultados obtenidos en el trabajo de campo de un estudio sobre el desarrollo del pensamiento gráfico de alumnos que inician sus estudios de educación superior, auspiciado por la Universidad Iberoamericana de la Ciudad de México. Se decidió presentar este artículo en un formato de difusión para centrar la atención en los aspectos prácticos y pedagógicos, lo cual es parte esencial de los propósitos de la revista. Se parte de la idea de que se conocen las representaciones algebraicas de las rectas, en particular la forma canónica: f(x)=mx+b, y la forma de graficarlas a partir de dichas expresiones. Además de conocer la forma de expresar algebraicamente algunos movimientos de las gráficas. Por ejemplo, dada f(x) los movimientos horizontales corresponden a f(x-h), los verticales a f(x)+k, reflejar respecto al eje X corresponde con f(x) y con respecto al eje Y es f(-x). Suma y diferencia de rectas Para familiarizarnos con las operaciones de rectas conviene considerar la adición y substracción de funciones lineales. Por ejemplo, si sumamos las rectas f(x)=x+3 y g(x)=x-2, tenemos como resultado otra recta: (f+g)(x)=2x+1, o simplemente: h(x)=2x+1 En la calculadora podemos escribir las ecuaciones y conocer desde varias perspectivas el resultado de sumarlas:
2 La calculadora gráfica permite transitar, en la misma situación, de un lenguaje a otro, del algebraico (a partir de expresiones algebraicas), al geométrico (con las gráficas) y al aritmético (basado en las tabulaciones). De la misma forma se puede hablar de la diferencia: Multiplicando de dos rectas Otra operación interesante es la multiplicación de rectas. Al multiplicar dos rectas no paralelas a los ejes, obtenemos parábolas, consideremos la siguiente multiplicación: Cuando las rectas cortan al eje X en dos puntos distintos las situación es similar, como es natural el signo del producto de las pendientes definirá la orientación de la parábola (hacia arriba o hacia abajo). Este tipo de situaciones, al analizarlas, permite hacer conjeturas relacionadas con la regla de los signos de Descartes, pues se pueden multiplicar rectas que corten en distintas partes al eje de las abscisas:
3 También se le puede dar sentido a las raíces múltiples, como cuando tenemos dos rectas que se cortan en un punto del eje de las abscisas: Nótese que la gráfica nos dice las regiones donde el producto de las ordenadas de los puntos sobre las rectas es positivo o negativo: Esta situación se puede constatar en las tablas generadas por las rectas y la parábola. Cuando la parábola no tiene raíces reales no se podrá expresar como producto de rectas. Esto obliga a enfocar el problema de otra forma. Consideremos la parábola más sencilla: y=x 2. Si se multiplica al término cuadrático por un número mayor que 1 se cierra la parábola, si el número es menor que 1 se abre.
4 Podemos mover a la izquierda o derecha a la parábola y=x 2 : Además podemos mover arriba o abajo a la parábola y=x 2 : Combinando todos lo movimientos podemos describir a cualquier parábola, incluso aquellas sin raíces reales. Multiplicando de más de dos factores que son rectas o parábolas Con este tipo de procedimientos se pueden explorar algunos polinomios para entender su gráfica a partir de lo que se expresa en su expresión algebraica con o sin factorizaciones.
5 Por ejemplo, consideremos un producto de varias rectas (lo cual puede considerarse como productos de rectas y parábolas, dado que el producto de dos rectas dará una parábola): Es posible analizar el signo del producto para estimar la forma gráfica del producto: El resultado del producto es: Análogamente podemos proceder cuando hay raíces múltiples: Es posible analizar la formación de puntos de inflexión a partir de multiplicar una recta y una parábola sin raíces reales.
6
7 División de rectas En esta breve exposición del manejo de las rectas, concluiremos con la división de 1 rectas, para ello consideremos el caso más sencillo, una hipérbola equilátera: y x Esta se puede multiplicar por un número mayor o menor que 1, mover a la derecha o la izquierda, subir o bajar.
8 Se pueden combinar los movimientos o trasformaciones:
9 Es importante notar que el cociente de dos rectas son movimientos de la hipérbola equilátera: Comentarios finales Hay muchos aspectos que se quedan pendientes pero posteriormente se tratarán en otras oportunidades, queda al lector analizar el papel de las rectas en el análisis de las hipérbolas equiláteras, lo que se obtendría al dividir rectas y parábolas, entre otros temas. El tratamiento de las funciones como el que se sugiere ha tenido muchas ventajas. En principio permite dar sentido a las literales y coeficientes de ciertas funciones, los coeficientes y signos de una expresión algebraica adquieren significado, además de que algunos métodos o imágenes utilizadas en los cursos de cálculo para ver indeterminaciones, límites y continuidad también pueden ser ilustradas ampliamente, no solamente con funciones trucadas, sino también con funciones cuyos coeficientes no son solamente números enteros. La habilidad de estimación adquiere aquí otra connotación particular, desde el momento que es posible hablar de una estimación espacial, relacionada con las formas de gráficas de funciones. También es posible presentar gráficas a los estudiantes y solicitarles que asignen expresiones algebraicas de funciones que tengan gráficas similares, es decir hablamos de estimaciones sobre representaciones algebraicas. Los estudiantes tienen la oportunidad de notar como son los comportamientos asintóticos y algunos métodos para el cálculo de límites o de integración son claros como el hecho de relacionar a las funciones racionales con adiciones de movimientos de hipérbolas equiláteras. Hay muchos tipos de operaciones entre rectas o entre rectas y parábolas o polinomios que merecen tratamiento aparte, pero el alcance del presente artículo no permite abarcar todo, queda solamente esto como muestra de las amplias posibilidades para el aprendizaje de los maestros y los estudiantes a partir del análisis de casos muy sencillos y a partir de objetos poco complicados como la recta. El estudiante se percata constantemente de la jerarquía de las operaciones y la necesidad del uso de paréntesis, así mismo del uso de cantidades negativas, en alguna forma se
10 corrigen ciertos errores algebraicos en la medida que se involucra al estudiante con el análisis de varias combinaciones de rectas. Solamente queda invitar al lector que deje de ser un admirador de la danza de las rectas, para tomar parte activa en el baile y dance con las funciones lineales para obtener resultados interesantes e incluso sorprendentes. Bibliografía: Mancera E.; Notas del curso Métodos Cuantitativos Aplicados a la Economía; Universidad Iberoamericana, México, Rees, P.; Geometría Analítica; Reverté, España, Sánchez - Serrano A.; Representación de curvas problemas y aplicaciones; Escuela Superior de Ingenieros Aeronáuticos, España, Shilov G. E.; Cómo construir gráficas; Temas Matemáticos, Limusa, México, 1976
Si se pueden obtener las imágenes de x por simple sustitución.
TEMA 0: REPASO DE FUNCIONES FUNCIONES: TIPOS DE FUNCIONES Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción,
TEMA 0: REPASO DE FUNCIONES
TEMA 0: REPASO DE FUNCIONES Recordamos que una función real de variable real es una aplicación de un subconjunto de los números reales A en el conjunto de los números reales de forma que a cada elemento
Matemáticas III. Geometría analítica
Matemáticas III. Geometría analítica Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales
Fecha: 29/10/2013 MATEMÁTICAS
Página: 1/5 MATEMÁTICAS Álgebra 1.- Conceptos y operaciones algebraicas fundamentales Terminología Operaciones fundamentales con monomios y polinomios o Reducción de términos semejantes o Suma, resta o
CONTENIDOS MÍNIMOS del ÁREA DE MATEMÁTICAS
Dpto. de Matemáticas IES Las Breñas 4º ESO OPCIÓN B CONTENIDOS MÍNIMOS del ÁREA DE MATEMÁTICAS 1: Números reales. Septiembre-2016 Números no racionales. Expresión decimal - Reconocimiento de algunos irracionales.
FUNCIÓN POLINOMIAL. Ing. Caribay Godoy
FUNCIÓN POLINOMIAL OBJETIVOS Definir una función polinomial. Reconocer la función constante, lineal y cuadrática como casos particulares de una función polinomial Identificar el coeficiente principal de
CÁLCULO DIFERENCIAL E INTEGRAL I FUNCIONES
CÁLCULO DIFERENCIAL E INTEGRAL I FUNCIONES 1. Funciones Una función consta de dos conjuntos, llamados dominio y contradominio, y de una regla de correspondencia que permite asociarle a cada elemento del
Proyecto Guao FUNCIÓN CUADRÁTICA O DE SEGUNDO GRADO.
FUNCIÓN CUADRÁTICA O DE SEGUNDO GRADO. Las funciones cuadráticas son más que curiosidades algebraicas, son ampliamente usadas en la ciencia, los negocios, y la ingeniería. La parábola con forma de U puede
1.1 Definición de una función de variable real Dominio Rango 1.2 Representación grafica de funciones Grafica de una función 1.2.
1.1 Definición de una función de variable real 1.1.1 Dominio 1.1.2 Rango 1.2 Representación grafica de funciones 1.2.1 Grafica de una función 1.2.2 Criterio de la recta vertical 1.3 Tipos de funciones
CM2 ENRICH CREUS CARNICERO Nivel 2
CM ENRICH CREUS CARNICERO Nivel Unidad Cónicas Conocimientos previos CONOCIMIENTOS PREVIOS PARA CÓNICAS Antes de comenzar con el Trabajo Práctico, necesitás repasar algunas cuestiones como: ) graficar
Factorización ecuación identidad condicional término coeficiente monomio binomio trinomio polinomio grado ax3
Factorización Para entender la operación algebraica llamada factorización es preciso repasar los siguientes conceptos: Cualquier expresión que incluya la relación de igualdad (=) se llama ecuación. Una
CM2 ENRICH CREUS CARNICERO Nivel 2
CM ENRICH CREUS CARNICERO Nivel Unidad Cónicas Conocimientos previos CONOCIMIENTOS PREVIOS PARA CÓNICAS Antes de comenzar con el Trabajo Práctico N, necesitás repasar algunas cuestiones como: ) graficar
Por qué expresar de manera algebraica?
Álgebra 1 Sesión No. 2 Nombre: Fundamentos de álgebra. Parte II. Objetivo: al finalizar la sesión, el estudiante conocerá e identificará las expresiones racionales, las diferentes formas de representar
ESCRITURA Y GRAFICACIÓN DE ECUACIONES LINEALES EN UNA SUPERFICIE PLANA
ESCRITURA Y GRAFICACIÓN DE ECUACIONES LINEALES EN UNA SUPERFICIE PLANA La pendiente es un número que indica lo inclinado (o plano) de una recta, al igual que su dirección (hacia arriba o hacia abajo) de
V. DISCUSIÓN DE ECUACIONES ALGEBRAICAS
V. DISCUSIÓN DE ECUACIONES ALGEBRAICAS A. ANÁLISIS DE UNA ECUACIÓN En la geometría analítica hay dos problemas por resolver: 1. Dada la ecuación de una curva construir una gráfica.. Dadas algunas condiciones
FUNCIONES CUADRÁTICAS
FUNCIONES ELEMENTALES FUNCIONES CUADRÁTICAS. La función f() = La función cuadrática más sencilla es f() = cuya gráfica es: -3 - - -0'5 0 0'5 3 f() = 9 4 0'5 0 0'5 4 9 Características generales Su dominio
Propedéutico de Matemáticas
Propedéutico de Matemáticas TEMARIO DEL MODULO I, ARITMÉTICA Y ALGEBRA CAPÍTULO 1: CONCEPTOS ELEMENTALES DE ARITMÉTICA Número primo absoluto o simple. Número compuesto. Múltiplo. Submúltiplo, factor o
MINISTERIO DE EDUCACIÓN PÚBLICA DIRECCIÓN DE GESTIÓN Y EVALUACIÓN DE LA CALIDAD Departamento de Evaluación Académica y Certificación
MINISTERIO DE EDUCACIÓN PÚBLICA DIRECCIÓN DE GESTIÓN Y EVALUACIÓN DE LA CALIDAD Departamento de Evaluación Académica y Certificación Número de ítems por habilidades generales del Programa de estudio Pruebas
Respuestas faltantes en ejercicios edición 2007 Sección 4.4: Superficie cuadráticas de revolución Ejercicio 4-1
Editorial Mc Graw Hill. Edición 007 Respuestas faltantes en ejercicios edición 007 Sección 4.4: Superficie cuadráticas de revolución Ejercicio 4- R r + x + y Ejercicio 4-3 + R x + y + z Ecuaciones: x +
CBC. Matemática (51) universoexacto.com 1
CBC Matemática (51) universoexacto.com 1 PROGRAMA ANALÍTICO 1 :: UNIDAD 1 Números Reales y Coordenadas Cartesianas Representación de los números reales en una recta. Intervalos de Distancia en la recta
DEPARTAMENTO DE MATEMÁTICAS PRUEBA EXTAORDINAORIA DE SEPTIEMBRE DE 2014
IES SAN BENITO DEPARTAMENTO DE MATEMÁTICAS PRUEBA EXTAORDINAORIA DE SEPTIEMBRE DE 2014 3º DE ESO PRUEBA EXTAORDINAORIA DE SEPTIEMBRE DE 2014: La prueba escrita constará de un número de preguntas no superior
Programa de preparación para exámenes de ubicación
GUÍA PARA EL EXAMEN DE UBICACIÓN DE MATEMÁTICAS TECNOLÓGICO DE MONTERREY INSTRUCCIONES Este examen debe ser presentado antes de las inscripciones, por los alumnos de primer ingreso que provengan de preparatorias
INDICE Capitulo 1. Ecuaciones Fundamentos Teóricos Capitulo 2. Polinomios
INDICE Prólogo X Introducción XI Capitulo 1. Ecuaciones 1 Revisión de Álgebra Elemental 1 1. Conceptos Básicos 1 1.a. Expresión algebraica 1, 1.b. Valor numérico de un polinomio 2 2. Operaciones con Polinomios
RESOLUCIÓN DE SISTEMAS DE ECUACIONES E INECUACIONES CON DOS INCÓGNITAS. Prof. Esther Morales
1 U N E X P O UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA ANTONIO JOSÉ DE SUCRE VICE-RECTORADO PUERTO ORDAZ DEPARTAMENTO DE ESTUDIOS GENERALES SECCIÓN DE MATEMÁTICA RESOLUCIÓN DE SISTEMAS DE ECUACIONES
UNIDAD DE APRENDIZAJE V
UNIDAD DE APRENDIZAJE V Saberes procedimentales Emplea de manera sistemática conceptos algebraicos, geométricos, trigonométricos y de geometría analítica. Relaciona la ecuación de segundo grado en dos
Universidad Icesi Departamento de Matemáticas y Estadística
Universidad Icesi Departamento de Matemáticas Estadística Solución del segundo eamen parcial del curso Algebra funciones Grupo: Diecisiete Período: Final del año 00 Prof: Rubén D. Nieto C. PUNTO. Se da
PLAN DE MEJORAMIENTO GRADO NOVENO. Comprensión de las expresiones algebraicas como estructuras matemáticas aplicables al desarrollo científico.
PLAN DE MEJORAMIENTO GRADO NOVENO INSTITUCIÓN EDUCATIVA LOMA HERMOSA DOCENTE: WÍLMAR ALONSO RAMÍREZ G. Refuerzo matemáticas 2011, grado 9 o Fecha: 25/07/2011. PRIMER PERÍODO: Competencias: Comprensión
Docente Matemáticas. Marzo 11 de 2013
Geometría Analítica Ana María Beltrán Docente Matemáticas Marzo 11 de 2013 1 Geometría Analítica Definición 1. Un lugar geométrico es el conjunto de todos los puntos del plano que tienen una característica
Grafique, clasifique determinando el dominio y el rango de las siguientes funciones x. 10. x x 3
Grafique, clasifique determinando el dominio y el rango de las siguientes funciones... f ( ) f ( ) f ( ) 3. 3 f ( ) 4. 3 f ( ) 3 5. f ( ) 6. 4 f ( ) 7. 5 3 8. 3 f ( ) ( ) f ( ) 9. 6.. 3. f ( ) f ( ) f
Dpto. de Matemáticas IES Las Breñas CONTENIDOS MÍNIMOS del ÁREA DE MATEMÁTICAS Septiembre 2.016
Dpto. de Matemáticas IES Las Breñas CONTENIDOS MÍNIMOS del ÁREA DE MATEMÁTICAS Septiembre 2.016 4º ESO OPCIÓN A U1: Estadística. Estadística. Nociones generales - Individuo, población, muestra, caracteres,
MATEMÁTICAS. PRIMERO DE E.S.O.
MATEMÁTICAS. PRIMERO DE E.S.O. Unidad 1: Números naturales. Potencias y raíces. Números naturales. Representación geométrica. Operaciones. Sistema de numeración decimal. Operaciones combinadas. Jerarquía.
Resumen anual de Matemática 1ª Convocatoria: jueves 24 de noviembre, 2016 Octavo nivel 2ª Convocatoria: miércoles 1 de febrero, 2017 broyi.jimdo.
Resumen anual de Matemática 1ª Convocatoria: jueves 4 de noviembre, 016 Octavo nivel ª Convocatoria: miércoles 1 de febrero, 017 broyi.jimdo.com Contenidos Los números... Objetivo 1... El conjunto de los
13. Utilizar la fórmula del término general y de la suma de n términos consecutivos
Contenidos mínimos 3º ESO. 1. Contenidos. Bloque I: Aritmética y álgebra. 1. Utilizar las reglas de jerarquía de paréntesis y operaciones, para efectuar cálculos con números racionales, expresados en forma
8.1. Traslación de puntos. Investigación: Figuras en movimiento CONDENSADA
LECCIÓN CONDENSADA 8.1 Traslación de puntos En esta lección trasladarás figuras en el plano de coordenadas definirás una traslación al describir cómo afecta un punto general (, ) Una regla matemática que
REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL
REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL CORRESPONDENCIA. Se llama CORRESPONDENCIA entre dos conjuntos A y B a toda ley que asocia elementos del conjunto A con elementos del conjunto B. Se
DISTRIBUCIÓN DE CONOCIMIENTOS PARA LOS COLEGIOS TECNICOS PROFESIONALES ASIGNATURA MATEMÁTICA PARA EL AÑO 2016 UNICAMENTE
MINISTERIO DE EDUCACIÓN PÚBLICA DESPACHO DEL VICEMINISTERIO ACADÉMICO DIRECCIÓN DE DESARROLLO CURRICULAR DEPARTAMENTO DE TERCER CICLO Y EDUCACIÓN DIVERSIFICADA TELÉFONO 22231810 APARTADO 10 087-1 000 SAN
MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA. 1) Determinar k y h para que las rectas kx+2y-h=0, 4x+ky-2=0, se corten en un punto.
MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA ) Determinar k y h para que las rectas kxy-h=0, 4xky-=0, se corten en un punto ) La recta r: 5 x y 9 = 0, corta a la recta y = x en el punto A Obtener la ecuación
FUNCIONES ELEMENTALES Y PROPIEDADES
. NOCIONES INTRODUCTORIAS.. Concepto de función. Dominio e Imagen. Una función es una relación entre dos variables, de forma que a cada valor de la variable independiente x, le asocia un único valor de
Matemáticas. para administración y economía Ernest F. Haeussler, Jr.* Richard S. Paul
Matemáticas para administración y economía Ernest F. Haeussler, Jr.* Richard S. Paul Unidad I (Capítulos 3 y 5 del texto) Funciones y Gráficas 1.1 Definición y notación de función. 1.2 Dominio y rango
ORIENTACIONES DE MATEMÁTICAS CONTENIDOS MÍNIMOS DE MATEMÁTICAS
IES SAN BENITO ORIENTACIONES DE MATEMÁTICAS MATEMÁTICAS 1º ESO MATERIALES Cuaderno de clase Actividades de Matemáticas (actividades realizadas durante el curso). Libro de texto. Otros materiales que sirvan
Guía N 1 Introducción a las Matemáticas
Glosario: Guía N 1 Introducción a las Matemáticas - Aritmética: Es la rama de las matemáticas que se dedica al estudio de los números y sus propiedades bajo las operaciones de suma, resta, multiplicación
el blog de mate de aida 4º ESO: apuntes de funciones elementales pág. 1
el blog de mate de aida 4º ESO: apuntes de funciones elementales pág. 1 FUNCIONES LINEALES 1.- FUNCIÓN CONSTANTE Una función constante es aquella en la cual el valor de la variable dependiente siempre
No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano.
FUNCIONES GRAFICAS No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano. INTÉRVALOS Un intervalo es el conjunto de todos los números reales entre dos números
CENTRO DE BACHILLERATO TECNOLÓGICO INDUSTRIAL Y DE SERVICIOS NO. 21 GUIA DE ESTUDIO PARA EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA
CENTRO DE BACHILLERATO TECNOLÓGICO INDUSTRIAL Y DE SERVICIOS NO. 21 GUIA DE ESTUDIO PARA EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA TEMARIO DEL CURSO I. Sistemas de coordenadas rectángulares y polares
página 19 GEOMETRÍA ANALÍTICA
página 19 GEOMETRÍA ANALÍTICA página 0 3.1 GRÁFICAS Y TABULACIONES En Matemáticas, para toda operación existe su inversa, la cual permite ir en sentido contrario, o sea permite regresar a los valores originales.
PLANIFICACIÓN ANUAL NM2 SEGUNDO MEDIO
PLANIFICACIÓN ANUAL NM2 SEGUNDO MEDIO OBJETIVOS FUNDAMENTALES CONTENIDO MÍNIMOS SUGERENCIAS DE ACTIVIDADES Los alumnos y las alumnas desarrollarán la capacidad de : 1- (O.C). Conocer y utilizar conceptos
Función Cuadrática (II)
Función Cuadrática (II) Otras formas de expresar la función cuadrática. Una función cuadrática puede escribirse en forma polinómica, canónica o factorizada. Forma Canónica En dicha expresión intervienen
DEPARTAMENTO DE MATEMÁTICAS CURSO
1º ESO. Contenidos mínimos. 1. La recta numérica. Representación de números naturales en la recta 2. Suma y resta. Propiedades y relaciones 3. Multiplicación. Propiedades 4. División exacta. Relaciones
TEMARIO PRUEBA DE SÍNTESIS MATEMÁTICA SÉPTIMO BÁSICO
SÉPTIMO BÁSICO Operatoria con fracciones y números decimales. Adición y sustracción con números enteros. Problemas que involucran números enteros. Cálculo de porcentajes. Expresar porcentajes como fracción
Prólogo... xi Al estudiante... xv Prólogo a la edición en español... xvii
ÍNDICE Prólogo... xi Al estudiante... xv Prólogo a la edición en español... xvii 1 Los números reales... 1 1.1 QUÉ ES EL ÁLGEBRA?... 1 1.2 LOS NÚMEROS REALES POSITIVOS... 10 Números reales y sus propiedades...
Página 127. Página 128
Soluciones de las actividades Página 15 1. La clasificación de las funciones es: a) Función algebraica racional polinómica de grado. b) Función algebraica racional polinómica de grado. c) Función trascendente.
Ministerio de Educación Pública Dirección de Gestión y Evaluación de la Calidad Departamento de Evaluación Académica y Certificación.
Matemáticas Distribución de ítems para la prueba nacional Modalidad Académica (Diurnos Nocturnos) Convocatorias 016 ESTIMADO DOCENTE: En la modalidad de colegios académico, la Prueba de Bachillerato 016
Respuestas ejercicios edición 2007 Sección 3.3: Transformación de coordenadas Ejercicio 3-1
Editorial Mc Graw Hill. Edición 007 Respuestas ejercicios edición 007 Sección 3.3: Transformación de coordenadas Ejercicio 3-1 a) Simetría respecto de ambos ejes y respecto del origen. b) Simetría respecto
1 Con juntos de Números: Axiomas 1
ÍNDICE 1 Con juntos de Números: Axiomas 1 LOS CONJUNTOS EN EL ALGEBRA. 1-1 Los conjuntos y sus relaciones, 1.1-2 Conjuntos y variables, 6. AXIOMAS DE LOS NUMEROS REALES. 1-3 Orden en el conjunto de los
DEFINICIÓN : f es una función de R en R si a cada número real, x Dom, le hace corresponder un único número real, f(x):
1 FUNCIONES ELEMENTALES CONCEPTO DE FUNCIÓN DEFINICIÓN : f es una función de R en R si a cada número real, x Dom, le hace corresponder un único número real, f(x): Lo denotamos por : f : Dom -----> R x
La representación gráfica de una función cuadrática es una parábola.
Función Cuadrática A la función polinómica de segundo grado +bx+c, siendo a, b, c números reales y, se la denomina función cuadrática. Los términos de la función reciben los siguientes nombres: La representación
EJE N 3 : ECUACION LINEAL, CUADRATICA Y SISTEMA DE ECUACIONES
TALLER DE INGRESO 018 EJE N : ECUACION LINEAL, CUADRATICA Y SISTEMA DE ECUACIONES ECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA 1) Halla el valor de x a) b) c) d) e) f) g) h) i) j) k) l) m) n) ) Resolver
Ordenada en el origen: Es el valor de la función cuando la variable x es 0 También llamado corte con el eje de ordenadas o corte Oy.
Función polinómica: La función polinómica está compuesta por una serie de operaciones; sumas, restas, productos potencias. Todas ellas están perfectamente definidas en el conjunto de los números reales.
Tema 5: Funciones. Límites de funciones
Tema 5: Funciones. Límites de funciones 1. Concepto de función Una aplicación entre dos conjuntos y es una transformación que asocia a cada elemento del conjunto un único elemento del conjunto. Una función
Criterios de evaluación 3º de ESO. Matemáticas Orientadas a las Enseñanzas Aplicadas
CONCRECCIÓN de los CRITERIOS de EVALUACIÓN MATEMÁTICAS APLICADAS º ESO Teniendo en cuenta los criterios de evaluación correspondientes a esta materia, se realizan a continuación una concreción de dichos
Guía de estudio Nº 3: Ejercicios propuestos sobre Lugares geométricos. Secciones cónicas
U.C.V. Facultad de Ingeniería CÁLCULO I (5) Guía de estudio Nº : Ejercicios propuestos sobre Lugares geométricos. Secciones cónicas.- Determine la ecuación del lugar geométrico de los puntos (, ) del plano
Expresión decimal. Aproximación y estimación. Notación científica. Polinomios. Divisibilidad de polinomios. Regla de Ruffini.
Otras páginas Matemáticas 5º Matemáticas I. Bloque I: ARITMÉTICA Y ÁLGEBRA Los números reales Los números reales, concepto y características. Estructura algebraica, orden, representación en la recta real
Para responder al problema planteado utilizar el programa GeoGebra siguiendo estos pasos: Abrir el programa graficador.
FUNCIÓN CUADRÁTICA Profesora: Nilda H. González Área: Matemática Tema: Variación del gráfico según su fórmula Destinatarios: 3º año, Secundaria Básica Objetivos de la actividad: Que los alumnos logren:
DISTRIBUCIÓN SEGÚN HABILIDADES GENERALES Y ESPECÍFICAS Prueba 2. El desarrollo de estos temas los puede encontrar oprimiendo el siguiente botón.
DISTRIBUCIÓN SEGÚN HABILIDADES GENERALES Y ESPECÍFICAS Prueba 2 El desarrollo de estos temas los puede encontrar oprimiendo el siguiente botón. http://www.costarica.elmaestroencasa.com/e-books/elmec/bach-a-tu-medida-2/matematica-a-tu-medida-02-2017.pdf
Unidad 2. FUNCIONES Conceptos
Unidad 2. FUNCIONES Competencia específica a desarrollar Comprender el concepto de función real y tipos de funciones, así como estudiar sus propiedades y operaciones. Función 2.1. Conceptos Se puede considerar
Capítulo 1. Numeración 1 Variables... 2 Números naturales... 2 Números enteros... 3 Números reales Ejercicios Orden y valor absoluto...
ÍNDICE Capítulo 1. Numeración 1 Variables... 2 Números naturales... 2 Números enteros... 3 Números reales... 3 Ejercicios... 5 Orden y valor absoluto... 6 Ejercicios... 7 Suma de números reales... 9 Reglas
5.1 DISTINTOS TIPOS DE FUNCIONES LINEALES
Tema 5 : Funciones elementales - Matemáticas B 4º E.S.O. 1 TEMA 5 FUNCIONES ELEMENTALES 5.1 DISTINTOS TIPOS DE FUNCIONES LINEALES 3º 5.1.1 - FUNCIONES DE PROPORCIONALIDAD: y = mx Las funciones de proporcionalidad
01. Dados varios números, los clasifica en los distintos campos numéricos. 02. Interpreta raíces y las relaciona con su notación exponencial.
2.6 Criterios específicos de evaluación. 01. Dados varios números, los clasifica en los distintos campos numéricos. 02. Interpreta raíces y las relaciona con su notación exponencial. 03. Conoce la definición
Matemáticas. Sesión #5. Función lineal y cuadrática.
Matemáticas Sesión #5. Función lineal y cuadrática. Contextualización En esta sesión aprenderás a interpretar el concepto de función, para que sirve trabajar con funciones, que datos maneja y como se le
TEMA 1: INTRODUCCIÓN AL CÁLCULO
TEMA 1: INTRODUCCIÓN AL CÁLCULO FMIBII Biomedical engineering degree Cristina Sánchez López de Pablo Universidad San Pablo CEU Madrid Índice de contenidos TEMA 1: INTRODUCCIÓN AL CÁLCULO 1. Gráficas La
UNIDAD 1: DIVISIBILIDAD Y NÚMEROS ENTEROS
UNIDAD 1: DIVISIBILIDAD Y NÚMEROS ENTEROS 1. *Representar números enteros sobre la recta numérica, compararlos y ordenarlos. 2. *Sumar y restar números enteros teniendo en cuenta el signo que presentan.
MATEMÁTICAS CONTENIDOS MÍNIMOS
1º ESO. 1. La recta numérica. Representación de números naturales en la recta 2. Suma y resta. Propiedades y relaciones 3. Multiplicación. Propiedades 4. División exacta. Relaciones con la multiplicación.
Geometría Analítica. Ecuación de una recta que pasa por un punto y tiene una pendiente dada:
Geometría Analítica Definición de línea recta: Llamamos línea recta al lugar geométrico de los puntos tales que tomados dos puntos diferentes cualesquiera y del lugar, el valor de la pendiente m calculado
DE LA GRÁFICA A LA EXPRESIÓN ALGEBRAICA
De la gráfica a la expresión algebraica DE LA GRÁFICA A LA EXPRESIÓN ALGEBRAICA Rectas, Parábolas, Hipérbolas, Exponenciales Logarítmicas LA RECTA Comencemos localizando el punto donde la recta corta al
FUNCIONES DE PROPORCIONALIDAD: y = mx. Su pendiente es 0. La recta y = 0 coincide con el eje
Funciones elementales - Matemáticas B 4º E.S.O. FUNCIONES ELEMENTALES DISTINTOS TIPOS DE FUNCIONES LINEALES FUNCIONES DE PROPORCIONALIDAD: y = mx FUNCIÓN CONSTANTE: y = n Las funciones de proporcionalidad
Preparación matemática para la física universitaria
Preparación matemática para la física universitaria Este curso cubre los siguientes temas. Usted puede personalizar la gama y la secuencia de este curso para satisfacer sus necesidades curriculares. Plan
Prueba de Septiembre 2012/13
Contenidos 1º Bach. Matemáticas Aplicadas a las C. Sociales I Prueba de Septiembre 2012/13 Aritmética y Álgebra. - El número real. La recta real. - El número irracional. Ejemplos de especial interés, 2,.
TÉCNICO SUPERIOR UNIVERSITARIO EN ENERGÍAS RENOVABLES ÁREA CALIDAD Y AHORRO DE ENERGÍA EN COMPETENCIAS PROFESIONALES
TÉCNICO SUPERIOR UNIVERSITARIO EN ENERGÍAS RENOVABLES ÁREA CALIDAD Y AHORRO DE ENERGÍA EN COMPETENCIAS PROFESIONALES ASIGNATURA DE FUNCIONES MATEMÁTICAS 1. Competencias Plantear y solucionar problemas
Definición: Se llama pendiente de una recta a la tangente de un ángulo de inclinación formado por el eje X y la
Geometría Analítica Preliminares Identidades Trigonométricas Definición: Se llama pendiente de una recta a la tangente de un ángulo de inclinación formado por el eje X y la recta, tal que, esto es Recta
2.2 Rectas en el plano
2.2 Al igual que ocurre con el punto, en geometría intrínseca, el concepto de recta no tiene definición, sino que constituye otro de sus conceptos iniciales, indefinibles. Desde luego se trata de un conjunto
6. PROGRAMACIÓN DEL CURSO 4º A DE E. S. O.
6. PROGRAMACIÓN DEL CURSO 4º A DE E. S. O. 6.1 OBJETIVOS GENERALES DEL CURSO Reconocer las diferentes clases de números, y operar correctamente con ellos. Aplicaciones aritméticas. Conocer y manejar la
Preparación para Álgebra 1 de Escuela Superior
Preparación para Álgebra 1 de Escuela Superior Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales
OBJETIVOS MÍNIMOS OPCIÓN B
OBJETIVOS MÍNIMOS OPCIÓN B 1. Reconocer las nomenclaturas de los distintos conjuntos numéricos N, Z, Q, I, R. Identificar los distintos números con el menor conjunto numérico al que pertenecen. 2. Realizar
INGENIERÍA EN MECATRÓNICA EN COMPETENCIAS PROFESIONALES
INGENIERÍA EN MECATRÓNICA EN COMPETENCIAS PROFESIONALES ASIGNATURA DE FUNCIONES MATEMÁTICAS PROPÓSITO DE APRENDIZAJE DE LA ASIGNATURA CUATRIMESTRE El alumno desarrollará modelos matemáticos empleando las
TÉCNICO SUPERIOR UNIVERSITARIO EN PROCESOS INDUSTRIALES ÁREA SISTEMAS DE GESTIÓN DE LA CALIDAD EN COMPETENCIAS PROFESIONALES
TÉCNICO SUPERIOR UNIVERSITARIO EN PROCESOS INDUSTRIALES ÁREA SISTEMAS DE GESTIÓN DE LA CALIDAD EN COMPETENCIAS PROFESIONALES ASIGNATURA DE FUNCIONES MATEMÁTICAS 1. Competencias Plantear y solucionar problemas
La Ecuación de la circunferencia en la forma ordinaria con centro en el origen.
Geometría analítica TEMA 1: LA CIRCUNFERENCIA 1. ECUACIÓN DE LA CIRCUNFERENCIA CON CENTRO EN EL ORIGEN La Ecuación de la circunferencia en la forma ordinaria con centro en el origen. Sea P(X, Y) un punto
EV ALU ACIÓN EXTRAO RDIN ARI A DE SEPTIEMBRE CURSO Contenidos para la Prueba de Septiembre MATEMÁTICAS I.
EV ALU ACIÓN EXTRAO RDIN ARI A DE SEPTIEMBRE CURSO 2014-2015. Contenidos para la Prueba de Septiembre MATEMÁTICAS I. UNIDAD 1: NÚMEROS REALES Números racionales, irracionales y reales. Ordenación en el
Ax + By + C = 0. Que también puede escribirse como. ax + by + c = 0 y que se conoce como: la ecuación general de la línea recta
ECUACIÒN DE LA RECTA La idea de línea recta es uno de los conceptos intuitivos de la Geometría (como son también el punto y el plano). La recta se puede entender como un conjunto infinito de puntos alineados
Unidad 6 GEOMETRIA ANALITICA
Profesor: Blas Torres Suárez. Versión.0 Unidad 6 GEOMETRIA ANALITICA Competencias a desarrollar: Determinar distancia y el punto medio de entre dos puntos dados Encontrar la ecuación de una recta si se
Versión en formato pdf. No. de horas/ semana: 10 Duración semanas: 16 Total de horas: 160 No. De créditos: 0 Prerrequisitos: Ninguno.
Versión en formato pdf Nombre de la Materia: Clave: No. de horas/ semana: 10 Duración semanas: 16 Total de horas: 160 No. De créditos: 0 Prerrequisitos: Ninguno Objetivo: MATEMÁTICAS BÁSICAS PR000-T Es
APUNTES ACERCA DE LA ECUACIÓN DE LA RECTA
Introducción APUNTES ACERCA DE LA ECUACIÓN DE LA RECTA Se denomina solución de una ecuación al valor o conjunto de valores de la(s) incógnita(s) que verifican la igualdad. Así por ejemplo decimos que x
Bloque 1. Contenidos comunes. (Total: 2 sesiones)
4º E.S.O. OPCIÓN B 1.1.1 Contenidos 1.1.1.1 Bloque 1. Contenidos comunes. (Total: 2 sesiones) Planificación y utilización de procesos de razonamiento y estrategias de resolución de problemas tales como
