PARÁBOLA IX.
|
|
|
- Aarón Villanueva Rojo
- hace 9 años
- Vistas:
Transcripción
1 IX. PARÁBOLA Lugar geométrico de todos los puntos tales que la distancia de éstos a un punto fijo (foco) es siempre la misma a una recta fija (directriz). p = distancia del vértice al foco o del vértice a la directriz Lado recto = LR = 4p 77
2 Una vez que ya observaste los elementos de una parábola (éstos también aparecen en tu formulario), para resolver problemas de parábola tenemos situaciones que estudiar: Dados los elementos de una parábola, encontrar su ecuación. Dada la ecuación de una parábola, encontrar todos sus elementos y graficarla. Prepara tu formulario de geometría analítica y comencemos. A. DADOS LOS ELEMENTOS DE UNA PARÁBOLA, ENCONTRAR SU ECUACIÓN Ejemplo 1.- Halla la ecuación de la parábola que tiene su vértice en el origen y cuyo foco es F(0, ), también encuentra la ecuación de su directriz y la longitud de su lado recto. Solución: A partir de la parábola y cuando ya veamos elipse e hipérbola, lo primero que hacemos es graficar en el plano cartesiano los datos que se nos dan: Con estos datos y con tu formulario podemos decidir qué tipo de parábola es (vertical u horizontal), en tu formulario aparecen 4 parábolas con vértice en el origen que pueden ser: Sin muchos problemas identificamos que el caso que tenemos es de una parábola vertical que abre hacia abajo, es decir su ecuación es: x 4py Ahora recuerda que, al pedirnos una ecuación, lo que debemos dar como resultado es una expresión algebraica con x, y y números igualada a cero. Entonces en nuestro caso hay que encontrar el valor de p de nuestros datos puestos en el plano cartesiano y de tu figura de parábola. p es la distancia que hay del vértice al foco o del vértice a la directriz, o sea, en nuestro caso p=; si sustituimos en nuestra fórmula nos queda: x 4py x x x 4 8y y 8y0 pasando todo a la izquierda, pues la ecuación se da siempre empezando con las x s positivas Bueno, sólo nos falta la ecuación de la directriz y la longitud de su lado recto. Cómo p es la distancia del vértice a la directriz (o del vértice al foco), la directriz se encuentra en: 78
3 Recuerda: que la ecuación de una recta horizontal o vertical es muy fácil de encontrarla, pues sólo indica a qué eje corta y en dónde, y esa será su ecuación. En nuestro caso la ecuación de la directriz es x= ó x =0 Finalmente para el Lado Recto L.R. Observa tu formulario y la fórmula es LR 4p, para corta al eje y en 3 y = 3 ó y 3=0 nuestro caso: LR 4p corta al eje x en x = ó x+=0 Recuerda: el valor absoluto de un número positivo es el mismo número Y el valor absoluto de un número negativo sólo se le quita el signo negativo Además 0 0 y a si no se sabe cómo es a entonces su valor absoluto lo ponemos como a ó cómo a, es decir: a a a a 3 3 en caso de ser positiva ó en caso de ser negativa Si a 4, entonces a puede ser 4 ó a puede ser 4 Ahora sí, volvamos al plano inicial donde colocamos nuestros datos y colocamos lo encontrado se tiene: 79
4 La gráfica final es: Ejemplo.- Halla la ecuación de la parábola con vértice en V(,3) y foco F(5,3). Solución: Como ya se dijo anteriormente, primero representamos nuestros datos en el plano cartesiano: Como podrás observar, la parábola no tiene vértice en el origen, su vértice es V(,3) V(h,k), o sea, h= y k=3, y en tu formulario aparecen 4 tipos de parábolas con vértice V(h,k). En nuestro caso tenemos sin duda podemos ver que se trata de una parábola con vértice V(h,k) y eje focal paralelo al eje x y que abre a la derecha con ecuación: y k 4px h Lado recto igual a 8, se centra en el foco. Observa tu figura de parábola en el formulario, es decir, del foco 4 a la izquierda y 4 a la derecha. Ecuación: x 8 y 0 Directriz: x Lado Recto: LR 8 Bosquejo posible para nuestra parábola Ahora observa y verá que p (distancia del foco al vértice o del vértice a la directriz) toma el valor de 3, por tanto, si sustituimos nuestros valores en la ecuación tenemos: 80
5 y k 4p x h V(, 3) y3 43 x Desarrollando: y 6 y 9 1x 4 y x y y x y Finalmente, grafiquemos nuestra parábola: B. DADA LA ECUACIÓN DE UNA PARABOLA, ENCONTRAR TODOS SUS ELEMENTOS Como podrás ver en tu formulario, la parábola tiene una ecuación ordinaria 4 x h p y k para el caso de las verticales, y una general x Dx Ey F 0, D, E, F. Análogamente para las horizontales su ecuación ordinaria y k 4p x h y su ecuación general y Dx Ey F 0. Ejemplo 1.- Hallar todos los elementos de la parábola cuya ecuación es x 8x 5y 4 0 Como verás, es una parábola vertical pues es x la que está al cuadrado (para las horizontales y está al cuadrado) La ecuación está en forma general x 8x 5 y 4 0, hay que convertirla a la forma ordinaria 4 vértice, T.C.P. Recuerda que: al dar una ecuación se iguala a cero y se empieza, en este caso, con la variable de mayor exponente. D E x h p y k, pues de ésta forma es más fácil ver las coordenadas del V h k. Para convertir de la forma general a la ordinaria siempre se completa un F 81
6 x 8x 5y 4 0 se toma el término cuadrático y el término lineal x 8 x 5 y 4 se toma el término lineal, se divide por (siempre) y se 8 eleva al cuadrado (siempre) x 8x 16 5 y 4 16 x 4 5 y 0 como ves, la ecuación ya tomó la forma 4 por el signo menos. esto ya es un T.C.P. x h p y k, es decir, que abre hacia abajo x 4 5 y 0 x 4 5 y 4 h 4p k V(4, 4) 5 p 4 Ahora pongamos en el plano cartesiano los elementos que tenemos el lado recto es: 5 LR 4p se deja un espacio en blanco para completar el T.C.P. recuerda que en una ecuación lo que se realice de un lado se tiene que hacer también del otro factorizamos el número (coeficiente) sea cual sea de y, en éste caso p 5 p 4 4 Foco por debajo del vértice, pues ya sabemos que es vertical y abre hacia abajo. 8
7 como el lado recto debe estar centrado en el foco, entonces hay 5 a la izquierda y 5 a la 5 3 derecha, o sea 4 ; 4 Asíntota y
Introducción La Circunferencia Parábola Elipse Hiperbola. Conicas. Hermes Pantoja Carhuavilca
Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Matematica I Contenido 1 Introducción 2 La Circunferencia 3 Parábola 4 Elipse 5 Hiperbola Objetivos Se persigue que el estudiante:
Es el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado foco y de una recta llamada directriz.
UNIDAD IV: LA PARABOLA. 4.1. Caracterización geométrica. 4.1.1. La parábola como lugar geométrico. Es el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado foco y de una recta
3. La circunferencia.
UNIDAD 8: RESOLVAMOS CON GEOMETRÍA ANALITICA. 3. La circunferencia. Objetivos conceptuales. Definir el concepto de circunferencia. Objetivos procedimentales. Calular el radio, el centro, algunos puntos
Guía de Estudio Algebra y Trigonometría Para Ciencias Agropecuarias
Guía de Estudio Para Ciencias Agropecuarias Unidad: Geometría Analítica Los siguientes ejercicios están relacionados con los principales temas de Geometría Analítica e involucra todos los conocimientos
TEMA 7: CÓNICAS CIRCUNFERENCIA. A partir de esta ecuación podemos hallar el centro y el radio sin más que deshacer los cambios:
TEMA 7: CÓNICAS CIRCUNFERENCIA Se define la circunferencia como el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado centro. A dicha distancia se le llama radio de la circunferencia.
La representación gráfica de una función cuadrática es una parábola.
Función Cuadrática A la función polinómica de segundo grado +bx+c, siendo a, b, c números reales y, se la denomina función cuadrática. Los términos de la función reciben los siguientes nombres: La representación
SUPERFICIES CUÁDRICAS
SUPERFICIES CUÁDRICAS Un cuarto tipo de superficie en el espacio tridimensional son las cuádricas. Una superficie cuádrica en el espacio es una ecuación de segundo grado de la forma Ax + By + Cz + Dx +
Proyecto. Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas. Geometría Analítica. Isidro Huesca Zavaleta
Geometría Analítica Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas Isidro Huesca Zavaleta La Integración de dos Ciencias La Geometría Analítica nació de la integración de dos ciencias
Profesorado de Nivel Medio y Superior en Biología Matemática - 1º Cuatrimestre Año 2013 FUNCIÓN CUADRÁTICA
Matemática - º Cuatrimestre Año 0 FUNCIÓN CUADRÁTICA Hemos definido anteriormente la función lineal como una función f: R R de la forma f()a+b con a R y b R, que se representa en el plano mediante una
Academia de Matemáticas T.M Geometría Analítica Página 1
INSTITUTO POLITECNICO NACIONAL CENTRO DE ESTUDIOS CIENTIFICOS Y TECNOLOGICOS 10. CARLOS VALLEJO MÁRQUEZ PROBLEMARIO DE GEOMETRIA ANALITICA Distancia entre puntos 1.- Determina la distancia entre los puntos
Geometría Analítica Agosto 2016
Laboratorio #1 Distancia entre dos puntos I.- Demostrar que los puntos dados no son colineales. 1) A (0, 5), B(3, 1), C( 11, 27) 2) A (1, 4), B( 2, 10), C(5, 5) II.- Demostrar que los puntos dados forman
La parábola. La parábola como lugar geométrico.
La parábola. La parábola como lugar geométrico. La parábola es el lugar geométrico que se forma con todos los puntos que se encuentran a la misma distancia de un punto fijo llamado foco y de una recta
ÁLGEBRA VECTORIAL Y MATRICES. Ciclo 02 de Circunferencia.
ÁLGEBRA VECTORIAL Y MATRICES. Ciclo 02 de 2012. Circunferencia. Elementos de la circunferencia. El segmento de recta es una cuerda. El segmento de recta es una cuerda que pasa por el centro, por lo tanto
Ecuaciones Lineales en Dos Variables
Ecuaciones Lineales en Dos Variables Una ecuación lineal en dos variables tiene la forma general a + b + c = 0; donde a, b, c representan números reales las tres no pueden ser iguales a cero a la misma
Funciones y sus gráficas
y sus gráficas Marzo de 2006 Índice 1 polinómicas función constante función lineal función afín función cuadrática 2 racionales función de proporcionalidad inversa función racional 3 exponenciales 4 Ejemplos
EJERCICIOS RESUELTOS DE CÓNICAS
EJERCICIOS RESUELTOS DE CÓNICAS 1. Hallar la ecuación de la circunferencia que tiene: a) el centro en el punto (, 5) y el radio es igual a 7. b) un diámetro con extremos los puntos (8, -) y (, 6). a) La
No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano.
FUNCIONES GRAFICAS No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano. INTÉRVALOS Un intervalo es el conjunto de todos los números reales entre dos números
En la notación C(3) se indica el valor de la cuenta para 3 kilowatts-hora: C(3) = 60 (3) = 1.253
Eje temático: Álgebra y funciones Contenidos: Operatoria con expresiones algebraicas Nivel: 2 Medio Funciones 1. Funciones En la vida diaria encontramos situaciones en las que aparecen valores que varían
Función lineal Ecuación de la recta
Función lineal Ecuación de la recta Función constante Una función constante toma siempre el mismo valor. Su fórmula tiene la forma f()=c donde c es un número dado. El valor de f() en este caso no depende
Tema 7: Geometría Analítica. Rectas.
Tema 7: Geometría Analítica. Rectas. En este tema nos centraremos en estudiar la geometría en el plano, así como los elementos que en este aparecen como son los puntos, segmentos, vectores y rectas. Estudiaremos
LA ECUACIÓN CUADRÁTICA
INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: MATEMÁTICAS DOCENTE: EDISON MEJIA MONSALVE TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N 0 FECHA DURACION 3
MATEMÁTICAS UNIDAD 4 GRADO 10º. Cónicas y repaso de funciones
1 Franklin Eduardo Pérez Quintero MATEMÁTICAS UNIDAD 4 GRADO 10º Cónicas y repaso de funciones 1 Franklin Eduardo Pérez Quintero LOGRO: Reconoce la formación y características básicas de las secciones
DE LA GRÁFICA A LA EXPRESIÓN ALGEBRAICA
De la gráfica a la expresión algebraica DE LA GRÁFICA A LA EXPRESIÓN ALGEBRAICA Rectas, Parábolas, Hipérbolas, Exponenciales Logarítmicas LA RECTA Comencemos localizando el punto donde la recta corta al
La definición de una parábola es el conjunto de puntos equidistantes de un punto llamado foco y una línea llamada la directriz.
Materia: Matemática de 5to Tema: La Parábola Marco Teórico Cuando se trabajaste con parábolas en el pasado probablemente estés acostumbrado a ver la parábola en forma de vértice y analizado el gráfico
FUNCIONES CUADRÁTICAS
FUNCIONES CUADRÁTICAS A la función polinómica de segundo grado f(x) = ax 2 + bx + c, siendo a, b, c, números reales y a 0 se la denomina función cuadrática. Dominio de una función cuadrática es el conjunto
Inecuaciones con valor absoluto
Inecuaciones con valor absoluto El valor absoluto de un número real a se denota por a y está definido por: Propiedades a a si a si a 0 a < 0 i a y b son números reales y n es un número entero, entonces:
PARÁBOLA UNIDAD IX IX.1 DEFINICIÓN DE PARÁBOLA
PARÁBOLA UNIDAD IX IX.1 DEFINICIÓN DE PARÁBOLA La parábola se define como el lugar geométrico de los puntos que equidistan de un punto fijo en el plano llamado foco de una recta también fija en el plano
13 FUNCIONES LINEALES Y CUADRÁTICAS
3 FUNCINES LINEALES CUADRÁTICAS EJERCICIS PARA ENTRENARSE Definición y caracterización de una función lineal 3.8 Una función viene dada por la siguiente tabla. x 0 3 y 0 3 6 9 Expresa la función mediante
Función cuadrática. Ecuación de segundo grado completa
Función cuadrática Una función cuadrática es aquella que puede escribirse como una ecuación de la forma: f(x) = ax 2 + bx + c donde a, b y c (llamados términos) son números reales cualesquiera y a es distinto
7. Cónicas. Propiedades métricas y ópticas
Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 49 7. Cónicas. Propiedades métricas y ópticas Cónicas Círcunferencias, elipses, parábolas, e hipérbolas son llamadas secciones cónicas
5x + 4y 20 = 0! 5 ( x) + 4 ( y) 20 = 0! 5x 4y 20 = 0. al origen O. En resumen, la ecuación 5x + 4y 20 = 0 no tiene ninguna simetría.
Geometría Analítica; C. H. Lehmann. Ejercicio, grupo, capítulo II, página 0.. Discute la ecuación + 0 = 0, estudiando las intersecciones, las simetrías la etensión. Después traza la grá ca correspondiente.
FUNDAMENTOS DEL ÁLGEBRA. Folleto De Trabajo Para La Clase ECUACIONES LINEALES EN DOS VARIABLES
FUNDAMENTOS DEL ÁLGEBRA Folleto De Trabajo Para La Clase ECUACIONES LINEALES EN DOS VARIABLES NOMBRE ID SECCIÓN SALÓN Prof. Eveln Dávila Contenido TEMA: Ecuaciones Lineales En Dos Variables... Solución
Se llama lugar geométrico a un conjunto de puntos que cumplen una cierta propiedad.
LUGARES GEOMÉTRICOS. CÓNICAS. 9.1 LUGARES GEOMÉTRICOS Se llama lugar geométrico a un conjunto de puntos que cumplen una cierta propiedad. Llamando X(,) a las coordenadas del punto genérico aplicando analíticamente
UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO PLANTEL IGNACIO RAMÍREZ CALZADA DE LA ESCUELA PREPARATORIA PROBLEMARIO GEOMETRÍA ANALÍTICA
UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO PLANTEL IGNACIO RAMÍREZ CALZADA DE LA ESCUELA PREPARATORIA PROBLEMARIO GEOMETRÍA ANALÍTICA ELABORO: ING. ROBERTO MERCADO DORANTES SEPTIEMBRE 2008 Sistemas coordenados
GIMNASIO VIRTUAL SAN FRANCISCO JAVIER Valores y Tecnología para la Formación Integral del Ser Humano UNIDAD I FUNCIONES
UNIDAD I FUNCIONES Una función es una correspondencia entre dos conjuntos, que asocia a cada elemento del primer conjunto exactamente un elemento del otro conjunto. Una función f definida entre dos conjuntos
LA CIRCUNFERENCIA. La circunferencia es la sección producida por un plano perpendicular al eje.
LA CIRCUNFERENCIA La circunferencia es la sección producida por un plano perpendicular al eje. β = 90º La circunferencia es un caso particular de elipse. Se llama circunferencia al lugar geométrico de
Universidad de la Frontera. Geometría Anaĺıtica: Departamento de Matemática y Estadística. Cĺınica de Matemática. J. Labrin - G.
Universidad de la Frontera Departamento de Matemática y Estadística Cĺınica de Matemática 1 Geometría Anaĺıtica: J. Labrin - G.Riquelme 1. Los puntos extremos de un segmento son P 1 (2,4) y P 2 (8, 4).
Fabio Prieto Ingreso 2003
Fabio Prieto Ingreso 00. INECUACIONES CON UNA VARIABLE.. Inecuación lineal Llamaremos desigualdad lineal de una variable a cualquier epresión de la forma: a + b > 0 o bien a + b < 0 o bien a + b 0 o bien
FUNCIONES REALES DE VARIABLE REAL.
FUNCIONES REALES DE VARIABLE REAL. CORRESPONDENCIA. Se llama CORRESPONDENCIA entre dos conjuntos A y B a toda ley que asocia elementos del conjunto A con elementos del conjunto B. Se denota por : A B A
ACADEMIA DE FÍSICO-MATEMÁTICAS MATEMÁTICAS III CICLO ESCOLAR TERCER SEMESTRE G E O M É T R Í A GUÍA A N A L Í T I C A
CENTRO DE ESTUDIOS DE BACHILLERATO LIC. JESÚS REYES HEROLES ACADEMIA DE FÍSICO-MATEMÁTICAS MATEMÁTICAS III CICLO ESCOLAR TERCER SEMESTRE GEOMETRÍA G E O M É T R Í A GUÍA ANALÍTICA A N A L Í T I C A G U
UNIDAD IV DISTANCIA ENTRE DOS PUNTOS
UNIDAD IV DISTANCIA ENTRE DOS PUNTOS Dados los puntos: P(x1, y1) y Q(x2, y2), del plano, hallemos la distancia entre P y Q. Sin pérdida de generalidad, tomemos los puntos P y Q, en el primer cuadrante
UNPSJB - Facultad Ciencias Naturales - Asignatura: Matemática 1 Ciclo Lectivo: 2014 CONICAS
Asignatura: Matemática 1 Ciclo Lectivo: 014 CONICAS La superficie que se muestra en la figura se llama doble cono circular recto, o simplemente cono. Es la superficie tridimensional generada por una recta
O -2-1 1 2 X -1- -2- de coordenadas, y representamos los números sobre cada eje, eligiendo en ambos ejes la misma unidad, como muestra la figura.
MATEMÁTICA I Capítulo 1 GEOMETRÍA Plano coordenado Para identificar cada punto del plano con un par ordenado de números, trazamos dos rectas perpendiculares que llamaremos eje y eje y, que se cortan en
LUGARES GEOMÉTRICOS. CÓNICAS
9 LUGARES GEOMÉTRICOS. CÓNICAS Página PARA EMPEZAR, RELEXIONA Y RESUELVE Cónicas abiertas: parábolas e hipérbolas Completa la siguiente tabla, en la que α es el ángulo que forman las generatrices con el
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN DESIGUALDADES
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN DESIGUALDADES Al inicio del Capítulo, estudiamos las relaciones de orden en los número reales y el signi cado de expresiones como a
#Desarrollo. Evaluación Actividad:2 Producto: Investigación. Puntaje: Saberes. Investiga la aplicación de la parábola en su entorno.
#Desarrollo Actividad: En equipo, investiga cinco aplicaciones de la parábola, describe cada una de ellas, añade las imágenes correspondientes y entrega un reporte escrito a tu profesor. El reporte deberá
INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA
INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA Los hombres y pueblos en decadencia viven acordándose de dónde vienen; los hombres geniales y pueblos fuertes sólo necesitan saber
IX. LA PARÁBOLA 9.1. LA PARÁBOLA COMO LUGAR GEOMÉTRICO 9.2. CONSTRUCCIÓN DE UNA PARÁBOLA CON REGLA Y COMPÁS
IX LA PARÁBOLA 9 LA PARÁBOLA COMO LUGAR GEOMÉTRICO Definición: Se llama parábola al lugar geométrico de un punto P que se mueve en un plano, en forma tal que su distancia a un punto fijo F (llamado foco)
SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES
SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES RELACIONES BINARIAS PAR ORDENADO Es un arreglo de dos elementos que tienen un orden determinado donde a es llamada al primera componente y b es llamada la
Trabajo 2. Jonathan A. Trejos O. El primer problema es uno típico de teoría de números, en el cual se puede apreciar la simetría.
Trabajo Jonathan A. Trejos O. 1 Primer problema El primer problema es uno típico de teoría de números, en el cual se puede apreciar la simetría. Enunciado 1 Halle y pruebe una bonita fórmula para el producto
La recta se define como el lugar geométrico de todos los puntos de un plano que al tomarse de dos en dos se obtiene la misma pendiente.
Formas de la ecuación de una recta. Hasta el momento, se han dado algunas características de la recta tales como la distancia entre dos puntos, su pendiente, su ángulo de inclinación, relación entre ellas,
UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES
UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES En la Sección anterior se abordó contenidos relacionados con las funciones y gráficas, continuamos aprendiendo más sobre funciones; en la presente unidad abordaremos
CBC. Matemática (51) universoexacto.com 1
CBC Matemática (51) universoexacto.com 1 PROGRAMA ANALÍTICO 1 :: UNIDAD 1 Números Reales y Coordenadas Cartesianas Representación de los números reales en una recta. Intervalos de Distancia en la recta
ESCRITURA Y GRAFICACIÓN DE ECUACIONES LINEALES EN UNA SUPERFICIE PLANA
ESCRITURA Y GRAFICACIÓN DE ECUACIONES LINEALES EN UNA SUPERFICIE PLANA La pendiente es un número que indica lo inclinado (o plano) de una recta, al igual que su dirección (hacia arriba o hacia abajo) de
Distancia entre un punto y una recta
Distancia entre un punto una recta Frecuentemente en geometría nos encontramos con el problema de calcular la distancia desde un punto a una recta. Distancia de un punto a una recta La fórmula para calcular
Guía de algunas Aplicaciones de la Derivada
Guía de algunas Aplicaciones de la Derivada 1.1. Definiciones Básicas. Recordemos que : 1. Recta Tangente y Normal La ecuación de la recta tangente a la curva y = en el punto P = (x 0, y 0 ) es de la forma:
INECUACIONES Y VALOR ABSOLUTO
INECUACIONES Y VALOR ABSOLUTO U.C.V. F.I.U.C.V. CÁLCULO I (051) - TEMA 1 Pág.: 1 de 3 1. Resuelva las siguientes ecuaciones: a. 4 3x = 5 b. x + 1x + = 3 c. x + 1x + 4 = 10 d. x 1 + = 4 e. x + 3 = 4 f.
AYUDAS SOBRE LA LINEA RECTA
AYUDAS SOBRE LA LINEA RECTA AYUDA : Grafiquemos la función Solución: Se debe escoger algunos números que representan a la variable x, para obtener el valor de la variable y respectivamente así: El proceso:
1. dejar a una lado de la igualdad la expresión que contenga una raíz.
1. Resuelve las siguientes ecuaciones reales: Solución x 1 + x = 0 ; 3 x = 3 ; ln(x 1) + 4 = ln 3 Ecuaciones con raíces: No todas las ecuaciones de este tipo son sencillas de resolver, pero podemos intentar
7.FUNCIÓN REAL DE VARIABLE REAL
7.FUNCIÓN REAL DE VARIABLE REAL 7.1 CONCEPTOS PREVIOS Dados dos conjuntos A={ 1,, 3,...} y B={y 1, y, y 3,...}, el par ordenado ( m, y n ) indica que el elemento m del conjunto A está relacionado con el
GEOMETRIA ANALITICA CUADERNO DE EJERCICIOS EL MATERIAL QUE SE PRESENTA EN ESTE CUADERNO DE EJERCICIOS CORRESPONDE AL PROGRAMA VIGENTE DEL CURRICULUM
GEOMETRIA ANALITICA CUADERNO DE EJERCICIOS EL MATERIAL QUE SE PRESENTA EN ESTE CUADERNO DE EJERCICIOS CORRESPONDE AL PROGRAMA VIGENTE DEL CURRICULUM DEL BACHILLERATO DE LA U.A.E.M. PRESENTA EJERCICIOS
LA CIRCUNFERENCIA. x y r. (x h) (y k) r. d(p; 0) x y r. d(p; C) (x h) (y k) r. Definición. Ecuación de la circunferencia. Geometría Analítica 3
Definición LA CIRCUNFERENCIA Se llama circunferencia a la sección cónica generada al cortar un cono recto con un plano perpendicular al eje del cono. La circunferencia es el lugar geométrico de todos los
CENTRO REGIONAL UNIVERSITARIO BARILOCHE TALLER DE MATEMATICA INGRESO 2016 LIC. ENFERMERÍA PRACTICO UNIDAD 3
PRACTICO UNIDAD 3 Nota: Los ejercicios propuestos en los prácticos deben servirle para afianzar y practicar temas. Si nota que algunos ejercicios ya los sabe hacer bien, continúe con otros que le impliquen
Ejemplo Traza la gráfica de los puntos: ( 5, 4), (3, 2), ( 2, 0), ( 1, 3), (0, 4) y (5, 1) en el plano cartesiano.
Plano cartesiano El plano cartesiano se forma con dos rectas perpendiculares, cuyo punto de intersección se denomina origen. La recta horizontal recibe el nombre de eje X o eje de las abscisas y la recta
Parciales Matemática CBC Parciales Resueltos - Exapuni.
Parciales Matemática CBC 2012 Parciales Resueltos - Exapuni www.exapuni.com.ar Compilado de primeros parciales del 2012 Parcial 1 1) Sea. Hallar todos los puntos de la forma, tales que la distancia entre
NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : GEOGRAFÍA AYUD. C. ESCOBEDO C. AÑO : 2009 GEOMETRÍA ANALÍTICA
UNIVERSIDAD DE CHILE FACULTAD DE ARQUITECTURA Y URBANISMO ESCUELA DE GEOGRAFÍA DEPARTAMENTO DE CIENCIAS DE LA CONSTRUCCIÓN ASIGNATURA : MATEMATICAS MATERIAL DE APOYO NIVEL : 1er. AÑO PROF. L. ALTIMIRAS
INSTITUTO VALLADOLID PREPARATORIA Página 11 GEOMETRÍA ANALÍTICA
INSTITUTO VALLADOLID PREPARATORIA Página 11 GEOMETRÍA ANALÍTICA Página 1 CONCEPTOS PRELIMINARES CONCEPTOS PRELIMINARES.1 GRÁFICAS Y TABULACIONES En Matemáticas, para toda operación existe su inversa, la
Inecuaciones: Actividades de recuperación.
Inecuaciones: Actividades de recuperación. 1.- Escribe la inecuación que corresponde a los siguientes enunciados: a) El perímetro de un triángulo equilátero es menor que 4. (x = lado del triángulo) b)
EJERCICIOS PROPUESTOS
EJERCICIOS PROPUESTOS ) Se dan los siguientes puntos por sus coordenadas: A(3, 0), B(, 0), C(0, ) y sea P un punto variable sobre el eje. i) Hallar la ecuación de la recta (AC) y de la recta (r) perpendicular
Inecuaciones lineales y cuadráticas
Inecuaciones lineales y cuadráticas 0.1. Inecuaciones lineales Una inecuación lineal tiene la forma ax + b < 0 ó ax + b > 0 ó ax + b 0 ó ax + b 0. El objetivo consiste en hallar el conjunto solución de
LA PARABOLA. R(-a, y) P (x, y) con el origen del sistema de coordenadas cartesianas y el eje de la parábola con el
LA PARABOLA Señor... cuando nos equivoquemos, concédenos la voluntad de rectificar; y cuando tengamos razón... no permitas que nos hagamos insufribles para el prójimo. Marshall En la presente entrega,
GEOMETRÍA ANALÍTICA LA CIRCUNFERENCIA
LA CIRCUNFERENCIA CONTENIDO. Ecuación común de la circunferencia Ejemplos. Ecuación general de la circunferencia. Análisis de la ecuación. Ejercicios Estudiaremos cuatro curvas que por su importancia aplicaciones
Problema a) En un triángulo rectángulo OAB una recta r paralela a la hipotenusa corta a los catetos OA y OB en los puntos A y B respectivamente.
Problema 717.- a) En un triángulo rectángulo OAB una recta r paralela a la hipotenusa corta a los catetos OA y OB en los puntos A y B respectivamente. Hallar el lugar geométrico de los puntos comunes a
Capitulo IV - Inecuaciones
Capitulo IV - Inecuaciones Definición: Una inecuación es una desigualdad en las que hay una o más cantidades desconocidas (incógnita) y que sólo se verifica para determinados valores de la incógnita o
Manual de teoría: Funciones Matemática Bachillerato
Manual de teoría: Funciones Matemática Bachillerato Realizado por José Pablo Flores Zúñiga Funciones: José Pablo Flores Zúñiga Página 1 Contenido: ) Funciones.1 Conceptos Básicos de Funciones. Función
Revisora: María Molero
57 Capítulo 5: INECUACIONES. Matemáticas 4ºB ESO 1. INTERVALOS 1.1. Tipos de intervalos Intervalo abierto: I = (a, b) = {x a < x < b}. Intervalo cerrado: I = [a, b] = {x a x b}. Intervalo semiabierto por
CONICAS Y LUGARES GEOMÉTRICOS ( problemas resueltos)
CONICAS Y LUGARES GEOMÉTRICOS ( problemas resueltos) Ejercicio nº 1.- Escribe la ecuación de la circunferencia con centro en el punto (, 3) que es tangente a la recta 3 4 + 5 = 0. El radio, R, de la circunferencia
UNIDAD V LA PARÁBOLA
UNIDAD LA PARÁBOLA OBJETIO PARTICULAR Al concluir la unidad, el alumno identificará y aplicará las propiedades relacionadas con el lugar geométrico llamado parábola, determinando los distintos parámetros,
Funciones: raíz cuadrada, potencia, exponencial y logaritmo
Funciones: raíz cuadrada, potencia, exponencial y logaritmo Función raíz cuadrada La función raíz cuadrada de un número, es el número mayor o igual que cero, que elevado al cuadrado se obtiene el primer
Funciones Cuadráticas en una Variable Real
en una Variable Real Carlos A. Rivera-Morales Precálculo I Tabla de Contenido Contenido adrática : Contenido Discutiremos: qué es una función cuadrática : Contenido Discutiremos: qué es una función cuadrática
MUNICIPIO DE MEDELLÍN GRADO 10 CONCEPTOS BÁSICOS DE TRIGONOMETRÍA
CONCEPTOS BÁSICOS DE TRIGONOMETRÍA ÁREA MATEMÁTICAS PERÍODO 01 FECHA: 13 de enero de 2014 LOGROS: MUNICIPIO DE MEDELLÍN GRADO 10 Construir y clasificar los diferentes tipos de ángulos, expresando su medida
Desigualdades con Valor absoluto
Resolver una desigualdad significa encontrar los valores para los cuales la incógnita cumple la condición. Para ver ejemplos de las diferentes desigualdades que hay, haga Click sobre el nombre: Desigualdades
NOCIONES PRELIMINARES (*) 1
CONJUNTOS NOCIONES PRELIMINARES (*) 1 Conjunto no es un término definible, pero da idea de una reunión de cosas ( elementos ) que tienen algo en común. En matemática los conjuntos se designan con letras
PAU Madrid. Matemáticas II. Año Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos.
PAU Madrid. Matemáticas II. Año 22. Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos. Se considera una varilla AB de longitud 1. El extremo A de esta varilla recorre completamente la circunferencia
GEOMETRÍA ANALÍTICA: CÓNICAS
GEOMETRÍA ANALÍTICA: CÓNICAS 1.- GENERALIDADES Se define lugar geométrico como el conjunto de puntos que verifican una propiedad conocida. Las cónicas que estudiaremos a continuación se definen como lugares
PENDIENTE MEDIDA DE LA INCLINACIÓN 2.1.2 2.1.4
PENDIENTE MEDIDA DE LA INCLINACIÓN 2.1.2 2.1.4 Los alumnos utilizaron la ecuación = m + b para graficar rectas describir patrones en los cursos anteriores. La Lección 2.1.1 es un repaso. Cuando la ecuación
Guía de Matemática Tercero Medio
Guía de Matemática Tercero Medio Aprendizaje Esperado: 1. Plantean y resuelven problemas que involucran ecuaciones de segundo grado; explicitan sus procedimientos de solución y analizan la existencia y
Circunferencia. Circunferencia centrada en el origen C(0,0)
Circunferencia Se llama circunferencia al lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado centro. El radio de la circunferencia es la distancia de un punto cualquiera de
PARÁBOLA. 1) para la parte positiva: 2) para la parte negativa: 3) para la parte positiva: 4) para la parte negativa:
Página 90 5 LA PARÁBOLA 5.1 DEFINICIONES La parábola es el lugar geométrico 4 de todos los puntos cuyas distancias a una recta fija, llamada, y a un punto fijo, llamado foco, son iguales entre sí. Hay
Aplicación: cálculo de áreas XII APLICACIÓN: CÁLCULO DE ÁREAS
XII APLICACIÓN: CÁLCULO DE ÁREAS El estudiante, hasta este momento de sus estudios, está familiarizado con el cálculo de áreas de figuras geométricas regulares a través del uso de fórmulas, como el cuadrado,
ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS
ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS Ejercicio 1 De la función se sabe que tiene un máximo en, y que su gráfica corta al eje OX en el punto de abscisa y tiene un punto de inflexión en el punto
Cada función polinomial genera distintas gráficas en el plano cartesiano. Hay casos especiales de la función polinomial general.
UNIDAD I. FUNCIONES Y RELACIONES.5. Funciones algebraicas: Polinomiales. Las expresiones algebraicas pueden clasificarse en monomios, binomios, trinomios y polinomios. Monomios. Expresiones de un término.
Teoría Tema 6 Ecuaciones de la recta
página 1/14 Teoría Tema 6 Ecuaciones de la recta Índice de contenido Base canónica en dos dimensiones como sistema referencial...2 Ecuación vectorial de la recta...4 Ecuación paramétrica de la recta...6
La variable independiente x es aquella cuyo valor se fija previamente. La variable dependiente y es aquella cuyo valor se deduce a partir de x.
Bloque 8. FUNCIONES. (En el libro Temas 10, 11 y 12, páginas 179, 197 y 211) 1. Definiciones: función, variables, ecuación, tabla y gráfica. 2. Características o propiedades de una función: 2.1. Dominio
Gráficas de funciones
Apuntes Tema 1 Gráficas de funciones 1.1 Gráficas de funciones a) Función constante: f(x) = k b) Recta vertical: x = k c) Función lineal: f(x) = mx Todas pasan por el origen O(0, 0). 2 d) Función afín:
Titulo: COMO GRAFICAR UNA FUNCION RACIONAL Año escolar: 4to. año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo electrónico:
CENTRO DE BACHILLERATO DEPARTAMENTO DE MATEMATICAS
CENTRO DE BACHILLERATO DEPARTAMENTO DE MATEMATICAS Al concluir la unidad, el alumno conocerá y aplicará las propiedades relacionadas con el lugar geométrico llamado circunferencia, determinando los distintos
Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio
Función Cuadrática: Es toda función de la forma: f() = a ² + b + c con a, b, c números Reales Puede suceder que b ó c sean nulos, por ej: f() = ½ ² + 5 f() = 5 ² ¾ Pero a no puede ser = 0, de los contrario
CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E1300, 29-OCTUBRE-1996. (1) 2x 3 > 4.
CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E1300, 9-OCTUBRE-199 1) 3 > 4. +1 ) Sea la función 3 si 1 a + b si 1 . Encontrar los valores de a, b, c para que la función
Ecuaciones Cuadráticas Las ecuaciones cuadráticas se pueden resolver por el método de factorización o utilizando la fórmula cuadrática.
Ejemplos de Ecuaciones Cuadráticas e Inecuaciones Cuadráticas Ecuaciones Cuadráticas Las ecuaciones cuadráticas se pueden resolver por el método de factorización o utilizando la fórmula cuadrática. El
