Examen A del capítulo
|
|
|
- Javier Ortiz de la Cruz
- hace 9 años
- Vistas:
Transcripción
1 Eamen A del capítulo Usar después del capítulo Indica si el sólido es un poliedro. Si es así, halla el número de caras, vértices y aristas Determina si el poliedro es regular y/o conveo Nombra el sólido que puede doblarse de la red En los ejercicios 9 a 3, halla el área de la superficie y el área lateral del sólido. Las pirámides son regulares y los prismas, los conos y los cilindros son rectos. Si es necesario, redondea tus respuestas a dos posiciones decimales cm 3. 9 cm 4 pulg. 6 pulg 6 pulg 5 pies 7 mm 8 mm 4. Halla el área de la superficie yd 8 yd 5 yd 7 m Capítulo Recursos de evaluación
2 Eamen A del capítulo sigue Usar después del capítulo Halla el volumen del sólido. Las pirámides son irregulares y los prismas, los conos y los cilindros son rectos. Si es necesario, redondea tus respuestas a dos posiciones decimales. 4 cm 8 m cm m 6 m 3 pulg 7 yd pulg 6.5 pulg 3 yd m pies pies 9 pies Indica si el par de sólidos rectangulares es semejante. Si el par es semejante, halla el factor de escala cm 30 cm cm 36 cm pies 6 pies 2 pies 6 pies 2 pies 23. Una piscina rectangular mide 25 pies de largo por pies de ancho. El agua de la piscina tiene una profundidad de 4 pies. Cuál es el volumen del agua de la piscina? 24. Un acuario tiene un ancho de 48 pulgadas, una longitud de 30 pulgadas y una profundidad de 6 pulgadas. Otro acuario tiene un ancho de 80 pulgadas y una profundidad de 0 pulgadas. Los dos acuarios son similares. Cuál es la longitud del acuario más grande? Capítulo Recursos de evaluación 235
3 Eamen B del capítulo Usar después del capítulo Describe el sólido. Si es un poliedro, halla el número de caras, vértices y aristas Usa el teorema de Euler para hallar el valor de n. 4. Caras: 8 5. Caras: 9 6. Caras: n Vértices: Vértices: n Vértices: 6 Aristas: n Aristas: 2 Aristas: 24 Halla el área de la superficie y el área lateral del sólido. Las pirámides son regulares y los prismas, los conos y los cilindros son rectos. Si es necesario, redondea tus respuestas a dos posiciones decimales. 4 pies 0 pies 9 pies 6.8 m 3.5 m pulg 9. 8 cm 6 cm 4 yd. 27 pulg 32 m 40 m 20 m Halla dada el área de la superficie S del sólido rectangular. Redondea tu respuesta al metro más cercano. 3. S = 6372 m 2 4. S = 325 m 2 S = m m m 4.5 m 6 m 236 Capítulo Recursos de evaluación
4 Eamen B del capítulo sigue Usar después del capítulo Halla el volumen del sólido. Las pirámides son regulares. Si es necesario, redondea tus respuestas a dos posiciones decimales. 4 cm 9 pulg 8 cm 3 km 2 8 cm pulg 8 m Halla el área de la superficie y el volumen del sólido. Las pirámides son regulares y los prismas, los conos y los cilindros son rectos. Si es necesario, redondea tu respuesta a dos posiciones decimales. 20. m 2. 5 cm 7 m cm m 5 m 8 cm Halla el volumen del sólido. Los cilindros y los prismas son rectos. Si es necesario, redondea tu respuesta a dos posiciones decimales m 0.9 m 5 m 5 pies 0 pies 24. El factor de escala de dos conos es de 2 : 5. El cono más pequeño tiene un área de la superficie de 96π yardas cuadradas. Halla el área de la superficie del cono más grande. Escribe tu respuesta en relación a π pies 2 pies 7 pies 25. El factor de escala de dos esferas es de 3 : La esfera más pequeña tiene un volumen de aproimadamente 54π metros cúbicos. Halla el volumen de la esfera más grande. Escribe tu respuesta en relación a π. Capítulo Recursos de evaluación 237
5 Eamen C del capítulo Usar después del capítulo Describe el sólido. Si es un poliedro, halla el número de caras, vértices y aristas Nombra el sólido que puede doblarse de la red En los ejercicios 6 a 8, halla el área de la superficie y el área lateral del sólido. Si es necesario, redondea tus respuestas a dos posiciones decimales pies 25 pies 6 m 4 yd 7 yd 9 yd 5.5 m 9. Halla el área de la superficie. 75 mm En los ejercicios 0 a 3, halla el volumen del sólido. Las pirámides son regulares y los prismas son rectos. Si es necesario, redondea tus respuestas a dos posiciones decimales cm 7 cm 0 m 6 cm 5.4 m 238 Capítulo Recursos de evaluación
6 Eamen C del capítulo sigue Usar después del capítulo. 9 mm 3. C 5 p pulg mm. 25 mm 20 mm Halla el volumen del sólido. Los cilindros y los prismas son rectos. Si es necesario, redondea tu respuesta a dos posiciones decimales cm 2. pulg 5 pulg cm 6 cm 5 pulg 5 pulg 2. pulg Indica si el par de sólidos rectangulares es semejante. Si el par es semejante, halla el factor de escala pies 3 m 4.5 m 2 pies 4 pies 2 m 3 m 0 pies Una placa de acero tiene una longitud de.5 pies, un ancho de pie y un grosor de } 3 de pulgada. Un taladro hace un agujero en la placa con 4 un diámetro de pulgada. 3 pulg 4 pie.5 pies a. Cuál es el área de la superficie de la placa de acero? Redondea tu respuesta a la pulgada cuadrada más cercana. b. Cuál es el volumen de la placa de acero? Redondea tu respuesta a la pulgada cúbica más cercana. Capítulo Recursos de evaluación 239
7 Capítulo, continuación unidades cuadradas ,62.7 cm , 36.3% , 43.2% Eamen estandarizado A. B 2. D 3. C 4. C 5. C 6. B B B 9. A C B. D 3. A 4. D B 50 a. 600 pies 2 b. No; será 2 2 ó 4 veces más grande que el área de ahora. a. 37 pulg b. 3. pulg 2 c..6 pulg d pulg 2 Eamen estandarizado B. C 2. A 3. B 4. B 5. A 6. C D A 9. B B C. A 3. C 4. D B 36 pulg 2 a. 86,400 pies 2 b. No; la razón de la longitud y del ancho del nuevo depósito con respecto al depósito viejo es de 3 : 2, por lo tanto, la razón del área es de 9 : 4. a pulg b. 20. pulg 2 c. 85 pulg d pulg 2 Eamen estandarizado C. B 2. B 3. D 4. A 5. B 6. B C A 9. D C B. C 3. B 4. A D 46 a..25: b. Multiplico el área del parque eistente por el cuadrado de.25; 3, pies 2 a. 4π pulg b. 49π pulg 2 c. 9.6 pulg d..25 pulg 2 Eamen del capítulo de SAT/ACT. C 2. B 3. B 4. D 5. E 6. D C 8 A 9. B A E Evaluación del rendimiento. Si la razón de las longitudes de lado es a : b, entonces la razón de los perímetros es a : b y la razón de las áreas es a 2 : b 2. Si la razón de los perímetros es c : d, entonces la razón de las longitudes de lado es c : d y la razón de las áreas es c 2 : d 2. Si la razón de las áreas es e : f, entonces la razón de las longitudes de lado es Ï } e : Ï } f y la razón de los perímetros es Ï } e : Ï } f. 2. a. 04 yd; 80 yd b. aproimadamente, yd 2 c yd 2 d. aproimadamente 38 yd 2 e. La probabilidad es la razón del tiempo de espera favorable al tiempo de espera máimo; } 5. Capítulo Prueba. 5 caras 2. Revise los bosquejos; 632 cm 2, 440 cm 2 3. Revise los bosquejos; 528 pulg 2, 480 pulg pies 2 ; 8423 pies 2 5. Revise los bosquejos; 420 pies 2, 320 pies m 2 ; 88 m 2 Prueba pulg cm pies ,3.89 m cm 3 Prueba pulg 2 ; pulg pies 2 ; pies cm 2 ; 4,37 cm pies 2, 480 pies cm 2, 80, cm : 7 Eamen A del capítulo. poliedro; 5 caras, 6 vértices, 9 aristas 2. poliedro; 7 caras, 0 vértices, 5 aristas 3. no es un poliedro 4. irregular, cóncavo 5. regular, conveo 6. irregular, conveo prisma triangular pirámide pentagonal cm 2 ; cm ; pulg 2 ; 60 pulg mm 2 ; 4226 mm yd 2 ; 0 yd m m cm pulg yd pulg pies 3 2. semejante, } no es semejante pies pulg Eamen B del capítulo. poliedro; 7 caras, 7 vértices, aristas 2. no es un poliedro 3. poliedro; 0 caras, 6 vértices, 24 aristas pies 2 ; 460 pies m 2 ; m cm 2 ; 37.8 cm pulg 2 ; 3804 pulg yd m 2 ; 920 m m 4. 7 m 34 m 4320 cm 3 RESPUESTAS Recursos de evaluación A9
8 Capítulo, continuación RESPUESTAS 59 pulg km m S m 2, V 5 7 m 3 2. S cm 2, V cm m pies π yd π m 3 Eamen C del capítulo. poliedro; 8 caras, vértices, 8 aristas 2. poliedro; 7 caras, 0 vértices, 5 aristas 3. no es un poliedro 4. prisma heagonal 5. cono pies 2 ; 89 pies m 2 ; 502 m yd 2 ; yd ,67.46 mm cm m mm pulg cm pulg 3 semejante, 2 } 3 semejante, 2 } 5 a. 478 pulg 2 b. 6 pulg 3 Eamen estandarizado A. A 2. B 3. B 4. D 5. C 6. A C B 9. C A B. B 3. C 4. D A B D a. 33,532 pulg 3 b pulg 3 ; no, el volumen es un octavo del volumen mayor porque la razón de los radios es de } al hacer que el radio 2 de los volúmenes sea igual a } a pulg 2 b. 45, pulg 3 c. 53 min d. 98 gal Eamen estandarizado B. C 2. A 3. D 4. B 5. A 6. C B B 9. A D B. B 3. A 4. A D C D a pulg 2 b. No; pulg a pies 2 b c min d. agua: pies 3 ; jarabe: 255 pies 3 Eamen estandarizado C. C 2. B 3. C 4. D 5. C 6. B B A 9. B C A. D 3. B 4. D C D D a. 0, pulg 3 b pulg 3 ; no, el volumen es } del volumen mayor porque la razón 64 de los diámetros es de } al hacer que la razón de 4 los volúmenes sea igual a } a. 604 pies 2 b. 36 pies 3 c. 5 min d L Eamen del capítulo de SAT/ACT. A 2. D 3. B 4. C 5. C 6. D C B 9. B C E Evaluación del rendimiento. Hallo el volumen de un prisma recto o de un cilindro recto multiplicando el área de la base por la atura. Hallo el volumen de una pirámide regular o de un cono recto hallando un tercio del producto del área de la base y la altura. Hallo el área de una esfera hallando cuatro tercios del producto de pi y el cubo del radio. 2. a. 5 pies 3 ; 46 pies 2 b. 3.5 pies 3 c. aproimadamente 744 pulg 3 d. aproimadamente 422 pulg 3 ; 70 pulg 2 e. Resto el volumen de la pirámide que se corta de la pirámide principal. Capítulos 7 a Eamen acumulativo , y 5 0 Ï } Ï } 3, y , y 5 9 Ï } 3 54 pies m B 5 358, AC ø 6.9, BC < m G 5 238, FG < 22, FH < 6 m P < 40.48, m Q < 49.68, PQ < unidades , semejantes X9 y Y9 Z9 20. F G 9. y X9 Z9 2. f5 28 7g 22. [26] A9 B9 C F 222 0G F G Y9 A20 Recursos de evaluación
Examen acumulativo. Nombre Fecha. Halla la longitud de lado desconocida del triángulo rectángulo. Respuestas
PÍTULOS 7 a 2 Eamen acumulativo Usar después de los capítulos 7 a 2 Halla la longitud de lado desconocida del triángulo rectángulo.. 20 2. 06 3. 36 99 85 90 Halla el valor de cada variable. Escribe tus
Examen estandarizado A
Examen estandarizado A Elección múltiple 1. Qué figura es un poliedro? A B 7. Halla el área de la superficie de la pirámide regular. A 300 pies 2 15 pulg B 340 pies 2 C D C 400 pies 2 D 700 pies 2 10 pulg
Geometría Tridimensional. Capítulo de Preguntas. 1. Cuáles son las diferencias entre prismas y pirámides, y entre cilindros y conos?
Geometría Tridimensional. Capítulo de Preguntas 1. Cuáles son las diferencias entre prismas y pirámides, y entre cilindros y conos? 2. Qué es volumen y cómo lo encontramos? 3. Cómo se relacionan los volúmenes
Geometría 3D: Preguntas de Capítulo
Geometría 3D: Preguntas de Capítulo 1. Cuáles son las similitudes y diferencias entre los prismas y las pirámides? 2. Cómo se nombran los poliedros? 3. Cómo se encuentra la sección transversal de figuras
Geometría en 3D: Preguntas del Capítulo
Geometría en 3D: Preguntas del Capítulo 1. Cuáles son las similitudes y las diferencias entre prismas y pirámides? 2. Cómo se nombran los poliedros? 3. Cómo encuentras la sección transversal de una figura
SOLUCIONES MINIMOS 2º ESO TEMA 8 CUERPOS GEOMÉTRICOS
SOLUCIONES MINIMOS º ESO TEMA 8 CUERPOS GEOMÉTRICOS Ejercicio nº 1.- Escribe el nombre de cada uno de los elementos de este poliedro: Ejercicio nº.- Cuáles de las siguientes figuras son poliedros? Por
Práctica adicional. Nombre Fecha Clase
Práctica adicional Investigación 1 1. Los cuatro modelos planos de abajo se doblan formando cajas rectangulares. Al doblar el modelo plano iii se forma una caja abierta. Al doblar los otros modelos planos
MYP (MIDDLE YEARS PROGRAMME)
MYP (MIDDLE YEARS PROGRAMME) 2014-2015 Fecha 19/05/2015 APUNTES DE GEOMETRÍA 2º ESO 1. EL TEOREMA DE PITÁGORAS El teorema de Pitágoras establece que en todo triángulo rectángulo, el cuadrado de la hipotenusa
FIGURAS DEL ESPACIO. ÁREAS Y VOLÚMENES
POLIEDROS : Cuerpo sólido limitado por polígonos, llamados caras; en la que algunas de las caras confluyen en líneas rectas, llamadas aristas; y algunas de las aristas confluyen en puntos,llamados vértices.
Cuerpos geométricos. Cuerpos redondos Cuerpos de revolución. Poliedros (más importantes)
Cuerpos geométricos Cuerpos redondos Cuerpos de revolución Poliedros (más importantes) Cuerpo geométrico limitado por caras que son polígonos Cuerpo geométrico que se obtiene a partir de una figura plana
Fórmula de Superficie de Área: Si dos sólidos son similares con un factor de. escala de entonces las áreas de superficie están en una relación de.
Materia: Matemática de Séptimo Tema: Cálculo de Volumen Y si te dieran dos cubos similares y te preguntan cuál es el factor de escala de sus caras? Cómo encontrarías sus áreas de superficie y sus volúmenes?
Examen estandarizado A
ÍTULO Examen estandarizado Usar después del capítulo Elección múltiple 1. Qué enunciado es verdadero? La altura de un paralelogramo es siempre la longitud de uno de sus lados. B Los dos triángulos que
Ámbito científico tecnológico
Dirección Xeral de Educación, Formación Profesional e Innovación Educativa Educación secundaria para personas adultas Ámbito científico tecnológico Educación a distancia semipresencial Módulo Unidad didáctica
IES FONTEXERÍA MUROS. 14-II-2014 Nombre y apellidos:.
IES FONTEXERÍA MUROS MATEMÁTICAS º E.S.O-A (Desdoble 1) 1º Examen (ª Evaluación) 14-II-014 Nombre y apellidos:. 1. Completa las siguientes definiciones: a) Un poliedro es un cuerpo geométrico tridimensional
Geometría 3-D. Sólidos 3-Dimensional. Slide 1 / 139. Slide 2 / 139. Slide 3 / 139. Tabla de Contenidos. Sólidos 3-Dimensional Redes
Slide 1 / 139 Geometría 3-D Tabla de Contenidos Sólidos 3-Dimensional Redes Volumen Prismas y Cilindros Pirámides, Conos y Esferas Área de la Superficie Prismas Pirámides Cilindros Esferas Más Práctica/Revisión
FICHA TEMA 9: CUERPOS GEOMETRICOS NOMBRE Y APELLIDOS: Ejercicio nº 1.-Escribe el nombre de cada uno de los elementos de este poliedro:
FICHA TEMA 9: CUERPOS GEOMETRICOS CURSO: 2 FECHA: NOMBRE Y APELLIDOS: Ejercicio nº 1.-Escribe el nombre de cada uno de los elementos de este poliedro: Ejercicio nº 2.- Cuáles de las siguientes figuras
Slide 1 / 139. Geometría 3-D
Slide 1 / 139 Geometría 3-D Tabla de Contenidos Sólidos 3-Dimensional Redes Volumen Prismas y Cilindros Pirámides, Conos y Esferas Área de la Superficie Prismas Pirámides Cilindros Esferas Más Práctica/Revisión
Untitled.notebook February 01, Geometría 3 D
Geometría 3 D Tabla de Contenidos Sólidos 3 Dimensional Redes Volumen Prismas y Cilindros Haga clic en el tema para ir a esa sección Pirámides, Conos y Esferas Área de la Superficie Prismas Pirámides Cilindros
VOLÚMENES DE POLIEDROS PRISMA:
VOLÚMENES DE POLIEDROS CONCEPTO: El volumen es la medida de la capacidad que posee un sólido. Todo sólido requiere tres dimensiones: largo, ancho y altura (profundidad ó espesor), es por ello que el volumen
IDEAS PREVIAS. 1. Planos paralelos. 2.Planos perpendiculares
IDEAS PREVIAS 1. Planos paralelos..planos perpendiculares .Planos oblicuos. CUERPO GEOMÉTRICO Un Sólido o Cuerpo Geométrico es una figura geométrica de tres dimensiones (largo, ancho y alto), que ocupa
a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta.
POLIEDROS Ejercicio nº 1.- a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta. b Cuál es la relación llamada fórmula de Euler que hay entre el número de caras,
2º. La diagonal de un cuadrado mide 1 metro. Cuántos centímetros mide el lado?
FIGURAS PLANAS. ÁREAS 1º. De las siguientes ternas de números, cuáles son pitagóricas? (Es decir cumplen el teorema de Pitágoras) a) 3, 4, 5 b) 4, 5, 6 c) 5, 12, 13 d) 6, 8, 14 e) 15, 20, 25 2º. La diagonal
Geometría 3-D. Sólidos 3-Dimensional. Sólidos 3-Dimensional. Slide 2 / 139. Slide 1 / 139. Slide 3 / 139. Slide 4 / 139. Slide 5 / 139.
Slide 1 / 139 Geometría 3-D Tabla de Contenidos Sólidos 3-Dimensional Redes Volumen Prismas y Cilindros Área de la Superficie Prismas Pirámides Cilindros Esferas Más Práctica/Revisión Slide 2 / 139 Pirámides,
TEMA 7: ACTIVIDADES Y AUTOEVALUACIONES RESUELTAS
MÓDULO - Ámbito Científico-Tecnológico TEMA 7: ACTIVIDADES Y AUTOEVALUACIONES RESUELTAS. REPASO A LAS FIGURAS PLANAS ELEMENTALES Actividad (p. 40). Calcula el área de un triángulo equilátero de lado m.
Ejercicios propuestos
Ejercicios propuestos 1. Encuentre el área total y el volumen de un cubo si la diagonal de una de sus caras mide 6 cm. 2. Encuentre el volumen de un cubo si la longitud de su diagonal mayor mide 8 cm.
CAPÍTULO 9: CÍRCULOS Y VOLUMEN
CAPÍTULO 9: CÍRCULOS Y VOLUMEN Fecha: 80 2014 CPM Educational Program. All rights reserved. Core Connections en español, Curso 2 Capítulo 9: Círculos y volumen Fecha: Caja de herramientas 2014 CPM Educational
TEMA 11. ÁREAS, PERÍMETROS Y VOLÚMENES.
TEMA 11. ÁREAS, PERÍMETROS Y VOLÚMENES. CONTENIDOS: 1. PERÍMETROS Y ÁREA DE CUADRILÁTEROS Y TRIÁNGULOS. 1.1. PERÍMETROS Y ÁREAS DE PARALELOGRAMOS. 1.2. PERÍMETRO Y ÁREAS DE TRIÁNGULOS. 1.3. PERÍMETRO Y
ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS BÁSICOS. POLIEDROS REGULARES Y NO REGULARES
ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS BÁSICOS. POLIEDROS REGULARES Y NO REGULARES 1º. Comprueba si se cumple o no la fórmula de Euler en este poliedro. 2º. Rellena la siguiente tabla: Poliedro Caras
Pendientes de Matemáticas de 3º ESO Relación 4. Geometría.
Pendientes de Matemáticas de 3º ESO Relación 4. Geometría. NOMBRE Ejercicio resuelto: Realiza la traslación del triángulo según el vector. 1) Realiza la siguiente traslación utilizando las coordenadas.
CUERPOS GEOMÉTRICOS. Un polígono es una figura compuesta por tres o más segmentos rectos (lados) que cierran una región en el espacio.
CUERPOS GEOMÉTRICOS 07 Comprende que son los cuerpos geométricos e identifica las partes que los componen. En Presentación de Contenidos recuerdan qué son los polígonos para comprender cómo se forman los
CAPÍTULO 9: VOLUMEN Y PORCENTAJES
CAPÍTULO 9: VOLUMEN Y PORCENTAJES Fecha: Caja de herramientas 2014 CPM Educational Program. All rights reserved. 84 Capítulo 9: Volumen y porcentajes Fecha: 85 2014 CPM Educational Program. All rights
11 CONOCER LOS POLIEDROS Y DIFERENCIAR
REPASO Y APOYO OBJETIVO 1 11 CONOCER LOS POLIEDROS Y DIERENCIAR LOS POLIEDROS REGULARES Nombre: Curso: echa: CONCEPTO DE POLIEDRO Vértice Un poliedro es un cuerpo geométrico cuyas caras son polígonos.
Primero vamos a dar algunas definiciones: Poliedros:
VOLUMEN Y si te dieran dos cubos similares y te preguntan cuál es el factor de escala de sus caras? Cómo encontrarías sus áreas de superficie y sus volúmenes? Después de completar éste concepto serás capaz
Figuras de tres dimensiones
Figuras de tres dimensiones Poliedros: cuerpos geométricos limitados por 4 o más superficies planas que son polígonos. Poliedros regulares: todas las caras de igual forma y tamaño. Solo existen 5. Prismas
14 CUERPOS GEOMÉTRICOS. VOLÚMENES
EJERCICIOS PARA ENTRENARSE Poliedros 14.33 Calcula la suma de los ángulos de las caras que concurren en un vértice de los poliedros regulares. Qué observas? TETRAEDO: En un vértice concurren tres triángulos
Geometría en 3-D. 7º Grado. Slide 1 / 135. Slide 2 / 135. Slide 3 / 135. Tabla de Contenidos. Volumen Prismas y Cilindros Pirámides, Conos y Esferas
New Jersey Center for Teaching and Learning Slide 1 / 135 Iniciativa de Matemática Progresiva Este material está disponible gratuitamente en www.njctl.org y está pensado para el uso no comercial de estudiantes
Geometría en el espacio
Geometría en el espacio 3º E.S.O. PARTE TEÓRICA 1.- Define los siguientes conceptos: Poliedro: Vértice de un poliedro: Cara de un poliedro: Arista de un poliedro: Poliedro regular: 2.- Di cuáles son los
Diplomado Mathematiké
Diplomado Mathematiké Certificación de Profesores de Matemáticas 2017-2018 Módulo IX Volumen de Figuras Sólidas Material de Trabajo Mathematiké Una Forma Integral, Inteligente y Creativa de Aprender Matemáticas
CIENCIAS Y TECNOLOGÍA
CIENCIAS Y TECNOLOGÍA PRIMERO GES ACTIVIDADES COMPLEMENTARIAS Primero GES Ciencias y Tecnología. Actividades complementarias Página 1 Primero GES Ciencias y Tecnología. Actividades complementarias Página
Listo para seguir? Intervención de destrezas Cómo estimar y hallar el área
10-1 Listo para seguir? Intervención de destrezas Cómo estimar y hallar el área El área de una figura es la cantidad de superficie que cubre. El área se mide en unidades cuadradas. Estimar el área de una
Módulo diseñado por: Docente María Cristina Marín Valdés
Módulo diseñado por: Docente María Cristina Marín Valdés I.E. Eduardo Fernández Botero Amalfi (Ant) 2018 CONTENIDOS CONTENIDO PÁGINA Concepto de poliedros. 3 Clases de poliedros 3 Teorema de Euler. 4 Áreas
PRISMAS Y CILINDROS. Menú: - Poliedros - Teorema de Euler - Principio de Cavalieri - Prismas: área y volumen - Cilindros: área y volumen
PRISMAS Y CILINDROS OBJETIVO DE LA CLASE: ANALIZAR PRISMAS Y CILINDROS EN CUANTO A SU ÁREA Y VOLUMEN Menú: - Poliedros - Teorema de Euler - Principio de Cavalieri - Prismas: área y volumen - Cilindros:
5to Grado - Geometría, Medidas, y Algebra Estándar Básico 3. Evaluación.
5to Grado - Geometría, Medidas, y Algebra Estándar Básico 3. Evaluación. 5.3.1 Identificar y clasificar triángulos de acuerdo a sus ángulos (agudo, recto, obtuso) y lados (escaleno, isósceles, equilátero).
8vo. Geometría 3-D. Slide 1 / 100. Slide 2 / 100. Slide 3 / 100. Tabla de contenidos. Volumen Prismas y Cilindros Pirámides, conos y esferas.
New Jersey Center for Teaching and Learning Iniciativa de Matemática Progresiva Este material está disponible gratuitamente en ww.njctl.org y está pensado para el uso no comercial de estudiantes y profesores.
Ne w Je rs e y Ce nte r for Te aching and Le arning Iniciativa de Mate mática Progre s iva NJCTL CTL NJEA NJCTL
Slide 1 / 100 New Jersey Center for Teaching and Learning Iniciativa de Matemática Progresiva Este material está disponible gratuitamente en ww.njctl.org y está pensado para el uso no comercial de estudiantes
MATEMÁTICAS 2º E.S.O. TEMA 8 CUERPOS GEOMÉTRICOS.
MATEMÁTICAS 2º E.S.O. TEMA 8 CUERPOS GEOMÉTRICOS. 8.1 Poliedros. 8.2. Prismas. 8.3. Pirámides. 8.4. Poliedros regulares. 8.5. Cilindros. 8.6. Conos. 8.7. Esfera. 1 1. a) Qué es un poliedro? b) Fijándote
EJERCICIO 75. Observa estas tres fotografías e indica si son semejantes entre sí y por qué:
EJERCICIO 74. Cuál es la distancia máxima que se puede recorrer, en una línea recta, dentro de un campo de fútbol cuyas dimensiones son de 90 m de largo por 52 m de ancho? EJERCICIO 75. Observa estas tres
CUERPOS GEOMÉTRICOS. Los cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas.
CUERPOS GEOMÉTRICOS CUERPOS GEOMÉTRICOS.- Los cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas. Clasificamos, en el siguiente esquema, los cuerpos geométricos: POLIEDROS.-
Geometría. Cuerpos Geométricos. Trabajo
Geometría Cuerpos Geométricos Trabajo CUERPOS GEOMÉTRICOS 1. Clasifique los cuerpos geométricos. Dos grupos de sólidos geométricos del espacio presentan especial interés: 1.1. Poliedros: Aquellos cuerpos
ESQUEMA GENERAL DE LA CLASIFICACIÓN DE LOS CUERPOS GEOMÉTRICOS REGULARES ESFERA
ESQUEMA GENERAL DE LA CLASIFICACIÓN DE LOS CUERPOS GEOMÉTRICOS POLIEDROS REGULARES Tetraedro ( 4 triángulos equiláteros) Hexaedro o cubo( 6 cuadrados) Octaedro( 8 triángulos equiláteros) Dodecaedro ( 12
Geometría del espacio
Áreas y volumenes de cuerpos geométricos Un poliedro es un cuerpo geométrico que está limitado por cuatro o más polígonos. Los elementos de un poliedro son: Caras del poliedro: son los polígonos que lo
GUIA DE TRABAJO Materia: Matemáticas. Tema: Geometría 20 Sólidos semejantes. Fecha: Profesor: Fernando Viso
GUIA DE TRABAJO Materia: Matemáticas. Tema: Geometría 20 Sólidos semejantes. Fecha: rofesor: Fernando Viso Nombre del alumno: Sección del alumno: CONDICIONES: Trabajo individual. Sin libros, ni cuadernos,
Cuerpos Geométricos. 100 Ejercicios para practicar con soluciones. 1 Indica cuáles de las siguientes figuras son prismas y cuáles son pirámides.
Cuerpos Geométricos. 100 Ejercicios para practicar con soluciones 1 Indica cuáles de las siguientes figuras son prismas y cuáles son pirámides. a) b) c) Prisma es un poliedro que tiene por caras dos bases
MATEMÁTICAS 2º DE ESO LOE
MATEMÁTICAS º DE ESO LOE TEMA XII: POLIEDROS Y CUERPOS REDONDOS Poliedros: o Elementos. o Tipos. Poliedros regulares. Cubos. Prismas: elementos, clases. Pirámides: elementos, clases. Áreas laterales y
Diagonal: es un segmento que une dos vértices no consecutivos del poliedro. Puede trazarse en una misma cara o entre distintas caras.
CLASIFICASION DE CUERPOS GEOMETRICOS 1 2 Cuerpos Geométrico s Ángulo diedro: es el ángulo formado por dos caras del poliedro. El ángulo formado por tres o más caras que concurren en un vértice, se denomina
PARA TENER EN CUENTA: 1000cc=1litro 1 pulgada=2,54 cm. Relaciones métricas de superficies y capacidad de los cuerpos regulares.
PARA TENER EN CUENTA: 1000cc=1litro 1 pulgada=2,54 cm. Relaciones métricas de superficies y capacidad de los cuerpos regulares. Ejercicios de aplicación. 1.-Se tiene un cubo de lado 10 cm. Calcule 1.1.-
Figura plana Área Ejemplo Cuadrado. Área =
ersión: Septiembre 01 Áreas y volúmenes Por Sandra Elvia Pérez Márquez Áreas de figuras planas Las aplicaciones de las figuras planas requieren, por lo general, conocer (o calcular) dos características
10 VOLUMEN DE CUERPOS GEOMÉTRICOS
10 OLUMEN DE CUERPOS GEOMÉTRICOS 10.1.- OLUMEN DE UN CUERPO. OLUMEN, CAPACIDAD Y MASA. DENSIDAD DE UN CUERPO. 10.2.- OLUMEN DE UN ORTOEDRO Y DEL CUBO. 10..- OLUMEN DE PRISMAS Y CILINDROS. 10.4.- OLUMEN
TEMA 9: CUERPOS GEOMÉTRICOS
1 TEMA 9: CUERPOS GEOMÉTRICOS CUERPOS GEOMETRICOS En nuestro entorno observamos continuamente objetos de diversas formas: pelotas, botes, cajas, pirámides, etc. Todos estos objetos son cuerpos geométricos.
TEMA 5. Geometría. Teoría. Matemáticas
1 La Geometría trata sobre las formas y sus propiedades. A su vez, se puede dividir en: Geometría plana: trata de las figuras en el plano, (dos dimensiones) Geometría tridimensional: trata de figuras en
9-1 Cómo desarrollar fórmulas para triángulos y cuadriláteros (págs )
Vocabulario ángulo central de un polígono regular.... 601 apotema............................... 601 centro de un círculo..................... 600 centro de un polígono regular........... 601 círculo.................................
Tema 8: Cuerpos geométricos. Matemáticas Específicas para Maestros 1º Grado en Educación Primaria
Tema 8: Cuerpos geométricos Matemáticas Específicas para Maestros 1º Grado en Educación Primaria Definiciones Cuerpos geométricos Poliedros. Elementos. Clasificaciones: o Poliedros cóncavos y convexos.
TEMA 6 SEMEJANZA. APLICACIONES -
TEMA 6 SEMEJANZA. APLICACIONES - 1. SEMEJANZA: ESCALAS LECCIÓN I ESCALA: es el cociente entre cada longitud de reproducción (mapa, plano, maqueta) y la correspondiente longitud en la realidad. Es, por
REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA EDUCACIÓN. liceo BRICEÑO MENDEZ S0120D0320
TRANSFORMAR: a. 250 Km a m b. 34,23 dm a Km c. ¾ Kg a mg d. 0,025 m 3 a cm 3 e. 0,00056 Km a m f. 1,973 cm 2 a mm 2 g. 1834 min a horas. h. 1834 min a horas. i. 6800 l a ml j. 1000 m 3 a Kl k. 20 3 ton
Se dice que un poliedro es regular cuando sus caras son polígonos regulares iguales y sus ángulos poliedros tienen el mismo número de caras.
LOS POLIEDROS: El cubo, la pirámide, la esfera, el cilindro... son figuras sólidas. Observando tales figuras, vemos que algunos sólidos, como el cubo y la pirámide, tienen su superficie exterior formada
Perímetros, áreas y volúmenes de figuras y cuerpos geométricos.
Perímetros, áreas y volúmenes de figuras y cuerpos geométricos. Perímetros y áreas de polígonos Triángulo El triángulo es un polígono con tres lados P = b + c + d ( Perímetro es igual a la suma de las
1 Indica, en la ilustración, dos edificios que sean poliedros y tengan formas diferentes. PÁGINA 186
PÁGINA 186 En la Casa de la Cultura se ha montado una exposición fotográfica. En ella se recogen modernos edificios en los que los poliedros y los cuerpos de revolución han sido elevados a la categoría
Trabajo de Investigación Cuerpos Geométricos
Saint George s College Área de Matemáticas y sus Aplicaciones Tercera Unidad Trabajo de Investigación Cuerpos Geométricos Integrantes: -Stefan Jercic -Ignacio Larrain -Cristian Majluf Curso: 10 E Profesora:
12.1 EJERCICIOS MA.912.G.7.2, MA.912.G.7.3, MA.912.G.7.1
FLORIDA 12 12.1 EJERCICIOS Área superficial y volumen de sólidos MA.912.G.7.2, MA.912.G.7.3, MA.912.G.7.1 PRÁCTICA HOMEWORK KEY 1. VOCABULARIO Nombra cinco sólidos platónicos y da el número de caras de
TEMA 7 Las formas y las medidas que nos rodean. 2. Repaso a las figuras planas elementales
TEMA 7 Las formas y las medidas que nos rodean 1. Introducción 1.1. Qué es la geometría? Es una rama de la matemática que se ocupa del estudio de las propiedades de las figuras geométricas en el plano
1. Potencias de exponente natural y entero. Solución: a) 8 b) 8 c) 8 d) 8. Solución: Solución: a) 2 5 b) 2 1 c) 2 0 d) 2 5
Potencias y radicales 1. Potencias de exponente natural y entero Calcula mentalmente las siguientes potencias: a) b) ) c) d) ) P I E N S A Y C A L C U L A a) 8 b) 8 c) 8 d) 8 1 Calcula mentalmente los
Programa Entrenamiento MT-22
Programa Entrenamiento MT- SOLUCIONARIO Guía de ejercitación avanzada SGUICEN0MT-A6V TABLA DE CORRECCIÓN Guía de ejercitación ÍTEM ALTERNATIVA HABILIDAD D E B 4 C 5 C Comprensión 6 B 7 E Comprensión 8
EXAMEN A: Ejercicio nº 1.- Página 1 de 25 Indica el valor de los ángulos señalados en cada figura: Ejercicio nº 2.- La siguiente figura es una esfera de centro C y radio 3 unidades. Cómo definirías dicha
CUERPOS GEOMÉTRICOS (CONCEPTOS BÁSICOS)
CUERPOS GEOMÉTRICOS (CONCEPTOS BÁSICOS) Los cuerpos geométricos ocupan un lugar en el espacio. Hay cuerpos de forma regular, en los que pueden medirse 3 dimensiones: largo, ancho y alto. Con estas se puede
MÓDULO Nº 3. Nivelación. Matemática Módulo Nº3. Contenidos. Polígonos Circunferencia y Círculo Volúmenes
MÓDULO Nº 3 Nivelación Matemática 2005 Módulo Nº3 Contenidos Polígonos Circunferencia y Círculo Volúmenes Nivelación Polígonos Polígono Regular: Son aquellos polígonos que tienen todos sus lados y ángulos
UNIDAD 6 La semejanza y sus aplicaciones
Pág. 1 de 5 I. Manejas la semejanza de figuras (mapas, planos, maquetas) para obtener medidas, incluidas áreas y volúmenes, de una a partir de la otra? 1 uáles de estas figuras son semejantes? Justifícalo
Factor. 8vo. Geometría 3-D. 1 Vocabulario. Slide 2 / 100. Slide 1 / 100. Slide 3 / 100. Slide 4 / 100. Slide 5 / 100.
Slide / 00 New Jersey Center for Teaching and Learning Iniciativa de Matemática Progresiva Este materi está disponible gratuitamente en ww.njctl.org y está pensado para el uso no comerci de estudiantes
PÁGINA 98. a) Tetraedro = 2 Cubo = 2 Octaedro = 2 Dodecaedro = 2 Icosaedro = 2
PÁGINA 98 Pág. 1 1 Haz una tabla con el número de caras, vértices y aristas de los cinco poliedros regulares. a) Comprueba que los cinco cumplen la fórmula de Euler. [Recuerda: c + v = a + ]. b) Comprueba
Examen de Mitad de Periodo, MM-111
Examen de Mitad de Periodo, MM-111 arlos ruz October 27, 2015 Nombre: Registro Estudiantil: Instrucciones: Resuelva cada ejercicios de forma clara honesta y ordenada mostrando todo su procedimiento de
1. Completa la siguiente tabla y comprueba que se cumple la relación de Euler (C+V=A+2):
Cuerpos geométricos- 1 1. Completa la siguiente tabla y comprueba que se cumple la relación de Euler (C+V=A+2): Cuerpo Caras Vértices Aristas Tetraedro Cubo Octaedro Dodecaedro Icosaedro Pirámide cuadrada
UNIDAD 11 Figuras en el espacio
Pág. 1 de 5 I. Conoces de cursos anteriores los poliedros regulares y algunas de sus características. Has reforzado ese conocimiento y lo has ampliado a los poliedros semirregulares? 1 Dibuja, a partir
Contenido. Tema 11. Geometría en el espacio. 1. Poliedros Regulares o sólidos Platónicos Teorema de Euler Prismas...
Tema 11. Geometría en el espacio Contenido 1. Poliedros Regulares o sólidos Platónicos... 2 2. Teorema de Euler... 3 3. Prismas... 3 4. Pirámides... 5 5. Cilindro... 7 6. Cono... 8 7. Esfera... 9 8. Coordenadas
2 Calcula la superficie total de cada cuerpo:
8 Pág. Calcula la superficie total de cada cuerpo: A cm B C D cm A Área lateral πrh π,5 5π Área bases (πr ) π,5,5π Área total 5π +,5π 7,5π 86, B Área lateral πrg π 5 5π Área base πr π 9π Área total 5π
Indicar y Justificar la verdad (V) o falsedad (F) de las siguientes afirmaciones:
GEOMETRÍ DEL ESIO ompetencias: Reconoce a la recta y el plano en R. Describir las posiciones relativas entre dos planos y entre una recta y un lano. Describir el Teorema de las tres perpendiculares. Definir
Mapa conceptual. Programa Acompañamiento CUERPOS GEOMÉTRICOS. Matemática
Programa Acompañamiento Matemática Cuadernillo de ejercitación Ejercitación Área y volumen de sólidos Mapa conceptual Tienen CUERPOS GEOMÉTRICOS Figuras geométricas que ocupan un lugar en el espacio. Se
SÓLIDOS EN EL ESPACIO TRIDIMENSIONAL
G3D1: Sólidos convexos y cóncavos SÓLIDOS EN EL ESPACIO TRIDIMENSIONAL Pon tres ejemplos de objetos cotidianos que sean convexos: Pon tres ejemplos de objetos cotidianos que sean cóncavos: G3D2: Caracterización
EJERCICIOS MÓDULO 4. Geometría plana. 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9?
Seminario Universitario Matemática EJERCICIOS MÓDULO 4 Geometría plana 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9? ) Cuántos lados tiene un polígono en el cual la suma de
Geometría en 3D. Problemas del capítulo. 1. Cuáles son las diferencias entre prismas y pirámides, y entre cilindros y conos?
Geometría en 3D. Problemas del capítulo 1. Cuáles son las diferencias entre prismas y pirámides, y entre cilindros y conos? 2. Qué es volumen y cómo lo encontramos? 3. Cómo se relacionan los volúmenes
VOLUMENES DE CUERPOS GEOMETRICOS
PreUnAB VOLUMENES DE CUERPOS GEOMETRICOS Clase # 20 Octubre 2014 CONCEPTOS PREVIOS Volumen: El volumen es una magnitud definida como la extensión en tres dimensiones de un cuerpo en el espacio. Es, por
Geometría. 8º Básico. Clase 1 Unidad 3
Geometría 8º Básico Clase 1 Unidad 3 Lámina 1a Clase 1 Cálculo mental diario a) 12 10 : 2 = b) 10 2 + 7 5 = c) 16:2 2 6 = d) 44 : 4 4:2 = e) - 15 + 3 5 = f) 1 + 6 6 = g) 15 - (2 8) = h) - 2 5-10 = i) 15
UNIDAD 6 La semejanza y sus aplicaciones
Pág. 1 de 5 I. Manejas la semejanza de figuras (mapas, planos, maquetas) para obtener medidas, incluidas áreas y volúmenes, de una a partir de la otra? 1 uáles de estas figuras son semejantes? Justifícalo
EJERCICIOS DE MATEMÁTICAS PARA ALUMNOS CON LAS MATEMÁTICAS DE 2º E.S.O. PENDIENTES 2º PARCIAL
de º de E.S.O. (º Parcial) EJERCICIOS DE MATEMÁTICAS PARA ALUMNOS CON LAS MATEMÁTICAS DE º E.S.O. PENDIENTES º PARCIAL Fecha tope para entregarlos: 17 de abril de 015 Examen el 3 de abril de 015 I.E.S.
POLIEDROS, PRISMAS Y PIRÁMIDES
POLIEDROS, PRISMAS Y PIRÁMIDES 1. Completa la siguiente tabla. 2. Indica si son verdaderas o falsas (V o F) las siguientes afirmaciones. a) La suma de las caras y los vértices del cubo es 12. b) El menor
PARA TENER EN CUENTA: 1000cc=1litro 1 pulgada=2,54 cm. Formula general de Simpson Cavalieri: H 6
PARA TENER EN CUENTA: 1000cc=1litro 1 pulgada=2,54 cm. Formula general de Simpson Cavalieri: H V= ( Si + Ss + 4Sm) 6 Ejercicios de aplicación. 1.-Se tiene un cubo de lado 10 cm. Calcule 1.1.- La superficie
TEMA 4. Geometría. Teoría. Matemáticas
1 1.- Rectas y ángulos La geometría se basa en tres conceptos fundamentales que forman parte del espacio geométrico, es decir, el conjunto formado por todos los puntos: El punto La recta El plano Partiendo
5to Parcial de Geometría Euclidiana. 2) Sea p un polígono tal que se puede descomponer en n polígonos simples
5to Parcial de Geometría Euclidiana AREAS y VOLUMENES Definición 55 (Área) Se define el área como una función A definida del conjunto de todos los polígonos P en R + (A : P R + ), con las siguientes propiedades:
CUERPOS. Poliedros: Aquellos cuerpos geométricos totalmente limitados por polígonos, como por ejemplo, el prisma, la pirámide; etc.
CUERPOS Los cuerpos geométricos ocupan un lugar en el espacio. Hay cuerpos de forma regular, en los que pueden medirse 3 dimensiones: largo, ancho y alto. Con estas se puede calcular el volumen del mismo
