Análisis de Decisiones
|
|
|
- Sofia Montes Paz
- hace 8 años
- Vistas:
Transcripción
1 Análisis de Decisiones Facultad de Ciencias Exactas UNCPBA Mg. María Rosa Dos Reis Ambientes de Decisión Toma de decisiones bajo certidumbre: los datos se conocen en forma determinista. P ij = 1 Toma de decisiones bajo riesgo: los datos se pueden describir con distribuciones de probabilidades. 0 < P ij < 1 Toma de decisiones bajo incertidumbre: los datos son ambiguos. P ij desconocida 1
2 Toma de decisiones bajo riesgo Estados de la naturaleza (eventos futuros que no pueden ser controlados por el decisor) probabilidad de ocurrencia p j Criterio de valor esperado VE* i = Maximización Ganancia esperada = máx i {VE i } VE* i = Minimización Costo esperado = mín i {VE i } VE i =a i1 p 1 +a i2 p 2 + +a in p n siendo a ij = retribución de la alternativa i dado el estado j p 1 +p 2 + +p n =1 ; i=1,2,..,m ; (j=1,2,,n) Ejemplo: Decisiones bajo riesgo Se desea invertir U$S en la industria del desarrollo de software durante el próximo año. Se sabe que la inversión puede financiar un empleado durante 12 meses y se debe decidir a qué empresa conviene desarrollarle software, ya que el rendimiento de la inversión está directamente relacionado con las ventas Si se desarrolla para la empresa A y el mercado está a la alza la inversión puede producir un rendimiento neto del 50 %. Si las condiciones del mercado de soft no son favorables (mercado a la baja ) el rendimiento puede ser negativo del 20 % de lo que se invirtió. La empresa B es más segura, garantiza una ganancia del 25 % si el mercado está en alza y sólo de un 5 % si el mercado está en baja. Las nuevas publicaciones en revistas relacionadas al mercado de la producción de software predicen un 60 % de probabilidad de que el mercado esté en alza y un 40 % de probabilidad de que el mercado esté en baja. Determinar cuál es la alternativa que maximiza el rendimiento esperado del inversionista. Representar el problema mediante un árbol de decisiones 2
3 Ejemplo: Decisiones bajo riesgo Rendimientos netos en un año sobre la Inversión ($) Alternativas de Decisión Estados de la naturaleza "a la alza" "a la baja" VE Desarrollar para A Desarrollar para B Probabilidad 0,6 0,4 Representación mediante Árbol de decisión $ 6600 Alza=0,6 $ D1: Desarrollar para A Punto de decisión $ 6600 Baja=0,4 $ Evento aleatorio D1 $ 5100 Alza=0,6 $ 7500 D2: Desarrollar para B Baja=0,4 $
4 Funciones de Utilidad Se ofrece a un individuo la oportunidad de: Aceptar con 50 % de posibilidades de ganar $70000 o nada Recibir $30000 con seguridad Criterio de VE ALTERNATIVA I Criterio de Conveniencia o Utilidad ALTERNATIVA? Diferentes individuos muestran distintas actitudes frente al riesgo. Teoría de Utilidad La Teoría de Utilidad se ocupa de las Preferencias del tomador de decisiones. La Función de utilidad del dinero es una manera de transformar los valores monetarios a una escala numérica apropiada que refleje las preferencias del tomador de decisiones. La determinación de la utilidad es subjetiva, depende de la actitud acerca de aceptar el riesgo. U(M) es la utilidad para la cantidad de dinero M 4
5 Funciones de Utilidad Características de las funciones de Utilidad Indiferencia ante el riesgo: Indica la inexistencia de una actitud ante el riesgo, la función es lineal. Aversión al riesgo: Cuanto mayor sea el capital, menor será la utilidad del dinero (utilidad decreciente). Propensión al riesgo: La utilidad del dinero es menor con relación a la indiferencia, valora poco lo que posee. Propiedad de la función de utilidad del dinero: el tomador de decisiones se muestra indiferente ante dos cursos de acción alternativos si los dos tienen la misma utilidad esperada. Funciones de Utilidad 5
6 Funciones de Utilidad: Ejemplo Contrato A con $ de inversión y resultados N1 = Ganar $ N2 o N3 = Perder todo Contrato B con $ de inversión y resultados N1 o N2= Ganar $ N3 = perder todo Opción de no invertir Probabilidades: P(N1) = 0,50 P(N2) = 0,10 P(N3) = 0,40 En miles de $ N1 N2 N3 VE Orden A B C La decisión que maximiza el rendimiento esperado es la alternativa A Teoría de Utilidad Lotería L (A, B ; p) es un evento aleatorio que tiene dos posibles resultados A y B, los cuales ocurren con probabilidades p y 1-p Aplicación del método de Von Neumann para el cálculo de utilidades Paso 1: Establecer las consecuencias en orden decreciente de deseabilidad: e 1, e 2,, e p Paso 2: Asígnese arbitrariamente valores numéricos finitos u(e 1 ) y u(e p ) a las consecuencias e 1 y e p, respectivamente de tal forma que u(e 1 ) > u(e p ) Paso 3: Para cada consecuencia e j cuya deseabilidad esté entre e 1 y e p, determínese una probabilidad de equivalencia p j, con la propiedad de quien toma las decisiones es indiferente entre obtener e j con certeza y participar en la lotería L (e 1, e p ; p j ) Paso 4: Sea u(e j ) p j * u(e 1 ) + (1-p j ) * u(e p ) la utilidad de la consecuencia e j El método pretende medir la actitud subjetiva de un tomador de decisiones comparando una apuesta entre dos valores extremos y un equivalente monetario. El paso 3 es altamente subjetivo Una utilidad está normalizada si u(e j ) = 1 y u(e p )=0 haciendo a las utilidades idénticas a las probabilidades de equivalencia 6
7 Resolución, aplicando el método de Von Newmann para definir una función de utilidad 1º) > > 0 > > º) U( ) = 1 U( ) = 0 3º) Para sacar la utilidad de cada uno de los valores intermedios, U(e j ), se le pregunta al tomador de decisiones: con qué probabilidad aceptaría participar en una lotería donde puede ganar $ (con probabilidad p) o perder $ (con probabilidad 1-p), teniendo e j $ seguros en su poder? Se define: U(e j )=p*u( )+(1-p)*u( ) =p*1+(1-p)*0=p El tomador de decisiones asigna las probabilidades de indiferencia entre ambas alternativas para cada uno de los posibles e j : p( ) = 0,90 p(0) = 0,75 p( ) = 0,65 VALORES DE UTILIDAD El valor esperado de la lotería será *0,9+( )*0,1= valor esperado > pago seguro Matriz de utilidades para el tomador de decisiones: N1 N2 N3 VE i Orden A ,5 3 B 0,9 0,9 0,65 0,80 1 C 0,75 0,75 0,75 0,75 2 El orden determinado por la matriz de utilidades es B, C y A. La elección del tomador de decisiones es B ya que es la opción que maximiza su utilidad esperada 7
8 Utilidad Calculamos la curva de indiferencia para determinar la aversión / propensión al riesgo del tomador de decisiones = * p + ( ) * (1-p) // es el equivalente monetario cierto = * p * p = * p / = p 0,56 = p ( ) Para p=0,56 el valor esperado de la lotería iguala el pago seguro de Continua calculando para todos los valores p( ) = 1 p( ) = 0,56 p(0) = 0,33 p( ) = 0,20 p( ) = 0 Resultado juego equitativo Vs. Evaluación subjetiva del juego AVERSIÓN 1,2 Función de Utilidad 1 0,8 0,6 0,4 Utilidad Indiferencia Logarítmica (Utilidad) 0, ,2 Valor Monetario 8
9 Equivalente de Certeza: Cantidad en $ que tiene una utilidad igual a la esperada para esa decisión. VE (A) = 0.50 En base a la curva VE (B) = 0.80 se determinan los valores VE (C) = 0.75 EC A $ EC B $ EC C = $ 0 Beneficio por riesgo: cantidad por la que la ganancia esperada en $ de esa decisión excede al equivalente de certeza de la decisión. BR A = $ $ = $ BR B = $ $ = $ BR C = $ 0 Esperanza y Varianza de variables aleatorias discretas La esperanza matemática de una variable aleatoria discreta que puede tomar valores x i con probabilidad p i se define como: μ = E X = i x i p i ; i = 1,2,3,. La varianza de una variable aleatoria discreta se define como: σ 2 = V X = E X 2 (E X ) 2 Coeficiente de Variación CV = σ μ 100 9
Modelando las Preferencias
Teoría de Decisiones Modelando las Preferencias Cuánto riesgo estamos dispuestos a asumir? Depende de la actitud frente al riesgo del decisor. Se propone el empleo de conceptos de la Teoría de la Utilidad
FINANZAS CORPORATIVAS
FINANZAS CORPORATIVAS RIESGO Y RENDIMIENTO JOSÉ IGNACIO A. PÉREZ HIDALGO Licenciado en Ciencias en la Administración de Empresas Universidad de Valparaíso, Chile TOMA DE DECISIONES Certeza: resultado real
EL RIESGO Y LA INCERTIDUMBRE
INTRODUCCIÓN Nos enfrentamos ante una situación de riesgo e incertidumbre cuando nuestras proyecciones realizadas en el flujo de caja son inciertas, con lo cual se corre el peligro de que si las condiciones
incertidumbre y riesgo Begoña Vitoriano Villanueva
Teoría de la Decisión: Decisión con incertidumbre y riesgo Begoña Vitoriano Villanueva Teoría de la decisión: Introducción Decisión: elegir lo mejor entre lo posible Definir lo mejor y lo posible Lo mejor:
Parte I. Tema I: TEORÍA DE LA DECISIÓN CON INCERTIDUMBRE: UTILIDAD ESPERADA
Economía de la información y la incertidumbre 3er curso (1º Semestre) Grado en Economía Parte I. Tema I: TEORÍA DE LA DECISIÓN CON INCERTIDUMBRE: UTILIDAD ESPERADA Bibliografía recomendada: Nicholson,
UNIDAD IV: MODELOS BAJO CONDICIONES DE RIESGO
Ubicación dentro del Programa Unidad V Modelos bajo condiciones de Riesgo UNIDAD IV: MODELOS BAJO CONDICIONES DE RIESGO 1.. Ventajas y desventajas. 2. Aversión al riesgo. Función Utilidad del Dinero. Modelo
Capítulo 4 La decisión de inversión en condiciones de riesgo e incertidumbre
PARTE I: La decisión de inversión Capítulo 4 La decisión de inversión en condiciones de riesgo e incertidumbre 4.1 Incertidumbre y riesgo en la selección de proyectos de inversión 4.2 Información requerida
UNLPam - Fac. Cs. Econ. y Jur.
Bibliografía Anderson, Sweeney y Williams; Introducción a los modelos cuantitativos para Administración. Grupo Editorial Iberoamérica. Eppen, Gould, Schmidt, Moore, Weatherford; Investigación de Operaciones
Análisis de. Análisis de. Decisiones:
Análisis de : Tablas de Pagos y Árboles de Decisión Fragoso Iñiguez I Marisol Salazar Rosales Leandro Julián Noviembre, 06 Tablas de Pagos Una situación de decisión en condiciones de incertidumbre puede
Microeconomía IV. PARTE II: Incertidumbre y economía de la información. Tema 3 Elección en condiciones de incertidumbre
Microeconomía IV PARTE II: Incertidumbre y economía de la información. Tema 3 Elección en condiciones de incertidumbre Microeconomía IV-Tema 3 Curso 007-008 Esquema del tema (cuantificación de la incertidumbre):
IN71A: Economía y Políticas Públicas
IN71A: Economía y Políticas Públicas Pauta Auxiliar 9 Riesgo e incertidumbre Profesor: Pablo González Auxiliar: José Miguel Sanhueza [email protected] I. Preguntas conceptuales 1) Explique los siguientes
Teoría de juegos. Andrés Ramos
Teoría de juegos Andrés Ramos http://www.iit.comillas.edu/aramos/ [email protected] Contenido 1. Introducción 2. Juegos bipersonales de suma 0 con estrategias puras 3. Juegos bipersonales de suma
DISTRIBUCIONES DE PROBABILIDAD
DISTRIBUCIONES DE PROBABILIDAD VARIABLE ALEATORIA Una variable x valuada numéricamente varía o cambia, dependiendo del resultado particular del experimento que se mida. Por ejemplo, suponga que se tira
Toma de decisiones bajo certidumbre
Toma de decisiones bajo certidumbre . Toma de decisiones En el análisis de decisiones se usa un proceso racional, para seleccionar la mejor de varias alternativas. La viabilidad de una alternativa seleccionada
TEORIA DE DECISIONES
TEORIA DE DECISIONES En economía y administración existen ciertos tipos de problemas en los que no es posible obtener muestras(información objetiva) para estimar ciertas características de la población.
Dirección Financiera II Universidad de León. Curso
Dirección Financiera II Universidad de León. Curso 2013-2014 Isabel Feito Ruiz ([email protected]) 1 Índice de Contenidos Bloque I: La Decisión de Inversión en Ambiente de Racionamiento y de Riesgo Tema
Decisiones bajo ambiente de riesgo e incertidumbre Modelos de matriz de pago
Decisiones bajo ambiente de riesgo e incertidumbre Modelos de matriz de pago Teoría de la decisión Un proceso de decisión trata de resolver la ambigüedad existente en un conjunto de alternativas. Es necesario
Tema 7: Algunas nociones sobre Toma de decisiones
Tema 7: Algunas nociones sobre Toma de decisiones Tomar una decisión es elegir entre varias alternativas posibles. Por ejemplo, elegir el ámbito de psicología que más nos gusta y al que nos queremos dedicar
Rendimiento de un activo
Rendimiento de un activo Es la ganancia o pérdida total que experimenta el propietario de una inversión en un periodo de tiempo específico. Se obtiene como el cambio en el valor del activo más cualquier
La Utilidad Esperada y la Aversión al Riesgo
Lic. Joel Vaisman La Utilidad Esperada y la Aversión al Riesgo Los problemas básicos de la Microeconomía son siempre en base a la modelización de la toma de decisiones de los agentes. En su núcleo, se
Teoría de juegos Andrés Ramos Universidad Pontificia Comillas
Teoría de juegos Andrés Ramos Universidad Pontificia Comillas http://www.iit.upcomillas.es/aramos/ [email protected] TEORÍA DE JUEGOS 1 Teoría de juegos 1. Matriz de pagos 2. Clasificación 3.
TEORÍA DE PORTAFOLIOS
TEORÍA DE PORTAFOLIOS Jorge Fregoso Lara 1. Introducción La mayoría de los instrumentos financieros tienen rendimientos inciertos, por lo que son activos riesgosos. El principal problema que enfrenta un
Tema 7: Algunas nociones sobre Toma de decisiones
Tema 7: Algunas nociones sobre Toma de decisiones Tomar una decisión es elegir entre varias alternativas posibles. Por ejemplo, elegir el ámbito de psicología que más nos gusta y al que nos queremos dedicar
UNIDAD 4: DISTRIBUCIÓN DE PROBABILIDAD
UNIDAD 4: DISTRIBUCIÓN DE PROBABILIDAD La Distribución de Probabilidad (DP) es la relación que se da entre los diferentes eventos de un espacio muestral y sus respectivas probabilidades de ocurrencia.
INGENIERÍA ECONÓMICA (II-082) TASA DE RETORNO RELACIÓN COSTO-BENEFICIO:
INGENIERÍA ECONÓMICA (II-082) TASA DE RETORNO RELACIÓN COSTO-BENEFICIO: Ing. César Torrez [email protected] https://torrezcesar.wordpress.com 0416-2299743 METODOS DE ANALISIS DE ALTERNATIVAS Valor Presente
Distribución de Probabilidad
Distribución de Probabilidad Variables discretas Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Modelos probabilísticos Un modelo es una
Fundamentos de Investigación de Operaciones Certamen # 1
Instrucciones: Fundamentos de Investigación de Operaciones Certamen # Profesores: Carlos Castro & Esteban Sáez 30 de abril de 2004 Responda cada pregunta en una hoja separada identificada con nombre y
TEORIA MICROECONÓMICA
TEORIA MICROECONÓMICA PRINCIPIOS BASICOS Y AMPLIACIONES Novena edición IX Contenido Parte 1 INTRODUCCIÓN 1 1 MODELOS ECONÓMICOS 3 Modelos teóricos 3 Verificación de los modelos económicos 4 Características
Cualquier problema de decisión, tiene ciertas características que describe su naturaleza y además pueden proporcionar alternativas para su solución.
TOMA DE DECISIONES INTRODUCCION Para una persona que toma decisiones, es difícil tener en cuenta todos los factores que inciden en la decisión, por tanto, es indispensable encontrar alguna manera de descomponer
PROGRAMA DETALLADO VIGENCIA TURNO UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA 2009 DIURNO INGENIERÌA EN SISTEMAS ASIGNATURA
PROGRAMA DETALLADO VIGENCIA TURNO UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA 2009 DIURNO INGENIERÌA EN SISTEMAS SEMESTRE ASIGNATURA 8vo TEORÍA DE DECISIONES CÓDIGO HORAS MAT-31314
Investigación Operativa
Investigación Operativa Unidad: Teoría de decisiones y modelos de programación lineal Docente: Johnny. Pacheco Contreras Unidad Teoría de decisiones y modelos de programación lineal. Logro Al finalizar
TEMA 8 REGRESIÓN Y CORRELACIÓN
/7 TEMA 8 REGRESIÓN Y CORRELACIÓN Dada una variable aleatoria bidimensional (, ) supongamos que las variables no sean independientes, es decir, que eista cierta relación entre ellas. Nos planteamos entonces
Evaluación y Selección de Alternativas de Solución La Matriz de Decisión
Teoría de Decisiones Conceptos Fundamentales Evaluación y Selección de Alternativas de Solución La Matriz de Decisión Sesión 5 Nelson José Pérez Díaz La metodología recomendada. 1. El problema 2. Objetivo
Arboles de decisión. Area de Computación e Inteligencia Artificial
Arboles de decisión Teoría de la decisión Hemos estudiado las redes bayesianas como instrumento para el diagnóstico en presencia de incertidumbre. La idea ahora es aprovechar ese diagnóstico para decidir
c) Si el PIB actual del país es de 9200 unidades monetarias, calcular el punto de equilibrio en el mercado del producto Y.
CURSO 08-09. 1º ING INDUSTRIAL. SEPTIEMBRE. NUMERO: Nombre y apellidos:... (contestar utilizando el espacio en blanco en las hojas correspondientes a este ejercicio y el dorso de las mismas; NO SE CORREGIRÁ
LOS PROYECTOS DE INVERSIÓN ANALIZADOS COMO OPCIONES REALES. Preparado por: Mg Carlos Mario Ramírez Gil
LOS PROYECTOS DE INVERSIÓN ANALIZADOS COMO OPCIONES REALES Preparado por: Mg Carlos Mario Ramírez Gil PLAN DE TEMAS Evaluación financiera proyectos de inversión OPCIONES REALES Proyectos de inversión analizados
TEORÍA DE LA COMUNICACIÓN TEMA 2 RUIDO EN LOS SISTEMA DE COMUNICACIONES. Variable aleatoria (Real)
TEORÍA DE LA COMUNICACIÓN TEMA 2 RUIDO EN LOS SISTEMA DE COMUNICACIONES Grado Ing Telemática (UC3M) Teoría de la Comunicación Variable Aleatoria / 26 Variable aleatoria (Real) Función que asigna un valor
Capítulo 5: Probabilidad e inferencia
Capítulo 5: Probabilidad e inferencia estadística (Fundamentos Matemáticos de la Biotecnología) Departamento de Matemáticas Universidad de Murcia Contenidos Principios de la probabilidad Conceptos básicos
SISTEMAS DE APOYO A LA TOMA DE DECISIONES : DSS y EIS
IIC3712 GESTIÓN de las TEC. de INFORMACIÓN SISTEMAS DE APOYO A LA TOMA DE DECISIONES : DSS y EIS Ignacio Casas R. Escuela de Ingeniería Pontificia Universidad Católica de Chile Mayo, 2002 Qué es la Toma
Módulo 2. Programación Multiobjetivo bajo Incertidumbre
Módulo. Programación Multiobjetivo bajo Incertidumbre Patricia Jaramillo y Ricardo Smith Q. Instituto de Sistemas y Ciencias de la Decisión Facultad de Minas Universidad Nacional de Colombia, Medellín,
ESTADOS DE LA NATURALEZA
DECISIONES BAJO INCERTIDUMBRE: MÉTODOS NO PROBABILÍSTICOS Escuela de la Ingeniería de la Organización Felipe Andrés Herrera Rojas INTRODUCCIÓN Situaciones Determinísticas Vs No determinísticas Qué es incertidumbre?esta
TABLAS DE DECISIÓN Muchos procesos de toma de decisiones pueden ser tratados por medio de tablas de decisión, en las que se representan los elementos
TABLAS DE DECISIÓN Muchos procesos de toma de decisiones pueden ser tratados por medio de tablas de decisión, en las que se representan los elementos característicos de estos problemas: EJEMPLO Un ama
TEMA 2.- VARIABLES ALEATORIAS UNIDIMENSIONALES.- CURSO 17/18
TEMA 2.- VARIABLES ALEATORIAS UNIDIMENSIONALES.- CURSO 17/18 2.1. Concepto de variable aleatoria. Tipos de variables aleatorias: discretas y continuas. 2.2. Variables aleatorias discretas. Diagrama de
Fundamentos de Teoría de la Decisión Modelos y Herramientas de Decisión Máster Universitario de Ingeniería de Organización - ETSEIB
UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH OPE ORGANIZACIÓN DE LA PRODUCCIÓN Y DE EMPRESA (ASPECTOS TÉCNICOS, JURÍDICOS Y ECONÓMICOS EN PRODUCCIÓN ) Fundamentos de Teoría de la Decisión Modelos
EXAMEN Métodos de Decisión Mayo 2018
DE DECISION MÉTODOS DE DECISIÓN - 1 - EXAMEN Métodos de Decisión Mayo 2018 Preguntas 1, 2, 3, 4 y 5. AngelFire es manager del grupo de rock BabyDolls y está preparando la gira de verano para lo que estudia
2. Rentabilidad y riesgo
2. Rentabilidad y riesgo INSTITUTO TECNOLOGICO DE LA LAGUNA ADMINISTRACIÓN FINANCIERA II Dra. Diana Margarita Vázquez Peña TEMA DOS No existe inversión sin riesgo, aunque algunos productos tienen más riesgo
6.2 Métodos y modelos para la toma de decisiones
TEMA 6. LA TOMA DE DECISIONES 6.1 Definición Una decisión es una elección consciente y racional, orientada a conseguir un objetivo, que se realiza entre diversas posibilidades de actuación (o alternativas).
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DEPARTAMENTO DE PLANEACIÓN INGENIERÍA DE SISTEMAS PROYECTO DE TOMA DE DESICIONES
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DEPARTAMENTO DE PLANEACIÓN INGENIERÍA DE SISTEMAS PROYECTO DE TOMA DE DESICIONES AMPLIACIÓN DE LINEA DEL TREN SUBURBANO BUENAVISTA- CUAUTITLÁN
INDICE Parte I. Modelos y Toma de Decisiones 1. Introducción al Análisis Cuantitativo 2. Introducción a la Construcción de Modelos
INDICE Parte I. Modelos y Toma de Decisiones 1 1. Introducción al Análisis Cuantitativo 3 Decisiones empresariales 3 Abstracción y simplificación 4 Construcción de modelos 5 Soluciones 5 Errores 6 Técnicas
Ms. C. Marco Vinicio Rodríguez
Ms. C. Marco Vinicio Rodríguez [email protected] http://mvrurural.wordpress.com/ Uno de los objetivos de la estadística es saber acerca del comportamiento de parámetros poblacionales tales como:
3. Variables aleatorias
3. Variables aleatorias Estadística Ingeniería Informática Curso 2009-2010 Estadística (Aurora Torrente) 3. Variables aleatorias Curso 2009-2010 1 / 33 Contenidos 1 Variables aleatorias y su distribución
Teoría Microeconómica
Teoría Microeconómica Sandro A. Huamaní Antonio 1 LAMBDA GROUP S.A.C Febrero del 2011 1 Esta es una versión preliminar escrita para el curso de Microeonomía dictado en LAMBDA GROUP cualquier sugerencia
Arboles de decisión. Area de Computación e Inteligencia Artificial
Arboles de decisión 1 Teoría de la decisión Hemos estudiado las redes bayesianas como instrumento para el diagnóstico en presencia de incertidumbre. La idea ahora es aprovechas ese diagnóstico para decidir
Año Académico 2009 INGENIERÍA INDUSTRIAL E INGENIERÍA DE SISTEMAS
Año Académico 2009 INGENIERÍA INDUSTRIAL E INGENIERÍA DE SISTEMAS Investigación de operaciones I UNIDAD Unidad I: Programación lineal Conjuntos convexos, propiedades. Solución gráfica del problema bidimensional
Capítulo 9 Estructura y Administración de Portafolios de Inversión
Capítulo 9 Estructura y Administración de Portafolios de Inversión Objetivo Presentar los conceptos básicos y el proceso vinculado a la administración de portafolios de inversión Parte I CONCEPTOS BÁSICOS
Evaluación de Proyectos de Inversión
Evaluación de Proyectos de Inversión Sesión #10: Estudio financiero (7) Periodo de recuperación de la inversión y Evaluación del riesgo del proyecto de inversión Contextualización Con la evaluación económica
Dar una introducción sobre la asignatura IO Familiarizar al estudiante con las características y aplicación del modelo de matriz de decisiones
I Unidad: Introducción a al Investigación de Operaciones. Contenidos: 1. Breve reseña histórica de la l. De O. 2. Concepto de la l. De O. 3. Objeto de Estudio de la l. De O. 4. Introducción a la teoría
Introducción a la unidad 4:
Introducción a la unidad 4: Valor actual neto, tasa interna de retorno INACAP Virtual Introducción a la Unidad 4 Matemática financiera 2 ÍNDICE DE CONTENIDOS ÍNDICE DE CONTENIDOS... 3 INTRODUCCIÓN... 4
Nota de los autores... vi
ÍNDICE Nota de los autores... vi 1 Qué es la estadística?... 1 1.1 Introducción... 2 1.2 Por qué se debe estudiar estadística?... 2 1.3 Qué se entiende por estadística?... 4 1.4 Tipos de estadística...
FACULTAD DE INGENIERIA CIVIL IV CICLO I SESION Nº 09
FACULTAD DE INGENIERIA CIVIL IV CICLO 2012 - I SESION Nº 09 1 2 ING. M. HAMILTON WILSON H. 2 TABLAS DE DECISIÓN Muchos procesos de toma de decisiones pueden ser tratados por medio DE TABLAS DE DECISIÓN,
Sesión 2: Teoría de Probabilidad
Modelos Gráficos Probabilistas L. Enrique Sucar INAOE Sesión 2: Teoría de Probabilidad Considero que la probabilidad representa el estado de la mente con respecto a una afirmación, evento u otra cosa para
TEORIA CLASICA DE DECISIÓN. Agradecimiento al profesor Juan Jose Bravo, Msc
TEORIA CLASICA DE DECISIÓN Agradecimiento al profesor Juan Jose Bravo, Msc ELEMENTOS DE DECISIÓN Y MATRICES DE PAGO ANÁLISIS DE DECISIONES Herramientas de representación de decisiones secuenciales con
Análisis de Decisiones Mario Maruri Martínez
Análisis de Decisiones Mario Maruri Martínez Tema 3: Tabla y matriz de pagos Decisiones bajo incertidumbre Análisis de decisiones - división Bajo certidumbre Los parámetros son constantes, conocidos y
EVALUACIÓN ECONÓMICA
EVALUACIÓN ECONÓMICA Tasa de descuento Flujo de fondos de efectivo proyectados Valor Actual Neto VAN- Tasa Interna de Retorno TIR- Costo Beneficio -B/C- Maestría en Proyectos. Curso Proyectos 2 Universidad
ESCUELA COMERCIAL CÁMARA DE COMERCIO EXTENSIÓN DE ESTUDIOS PROFESIONALES MAESTRÍA EN ADMINISTRACIÓN
CICLO, ÁREA O MÓDULO: TERCER CUATRIMESTRE OBJETIVO GENERAL DE LA ASIGNATURA: Al termino del curso el alumno efectuara el análisis ordenado y sistemático de la Información, a través del uso de las técnicas
Introducción al Diseño de Experimentos.
Introducción al Diseño de Experimentos www.academia.utp.ac.pa/humberto-alvarez Introducción Una población o universo es una colección o totalidad de posibles individuos, especímenes, objetos o medidas
Universidad Carlos III de Madrid Mayo de Microeconomía Calif.
Universidad Carlos III de Madrid Mayo de 2012 Nombre: Microeconomía Grupo: 1 2 3 4 5 Calif. Dispone de 2 horas y 45 minutos. La puntuación de cada apartado se indica entre paréntesis. Administre su tiempo
Dar una introducción sobre la asignatura IO Familiarizar al estudiante con las características y aplicación del modelo de matriz de decisiones
I Unidad: Introducción a al Investigación de Operaciones. Contenidos: 1. Breve reseña histórica de la l. De O. 2. Concepto de la l. De O. 3. Objeto de Estudio de la l. De O. 4. Introducción a la teoría
SEMINARIO FINANZAS - RIESGO UNIDAD 1 - TOMA DE DECISIONES Y RIESGO SEMANA 2 TEMA TECNICAS DE DECISION EN ESCENARIO DE RIESGO
SEMINARIO FINANZAS - RIESGO UNIDAD 1 - TOMA DE DECISIONES Y RIESGO SEMANA 2 TEMA 2.1 - TECNICAS DE DECISION EN ESCENARIO DE RIESGO Un REPASO: Definición de riesgo en un proyecto *. Recordemos que el riesgo
Teoría de la Decisión: Decisión con incertidumbre y riesgo. Begoña Vitoriano Villanueva
Teoría de la Decisión: Decisión con incertidumbre y riesgo Begoña Vitoriano Villanueva Teoría de la decisión: Introducción Decisión: elegir lo mejor entre lo posible Definir lo mejor y lo posible Lo mejor:
Estadística II Examen final junio - 17/06/16 Curso 2015/16 Soluciones Duración del examen: 2 h. y 45 min.
Estadística II Examen final junio - 17/06/16 Curso 201/16 Soluciones Duración del examen: 2 h. y 4 min. 1. (3, puntos) La publicidad de un fondo de inversión afirma que la rentabilidad media anual del
INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 6)
TEMA Nº 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD OBJETIVOS DE APRENDIZAJE: Ser capaz de definir correctamente una o más variables aleatorias sobre los resultados de un experimento aleatorio y determinar
Programa de Asesor Financiero. Módulo 1: Conceptos básicos de la inversión
Programa de Asesor Financiero Nivel I Módulo 1: FUNDAMENTOS DE LA INVERSIÓN Capítulo 1. Conceptos básicos de la inversión Capítulo 2. Capitalización Capítulo 3. Descuento Capítulo 4. Tipos de interés y
ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada.
ANEXO 1. CONCEPTOS BÁSICOS Este anexo contiene información que complementa el entendimiento de la tesis presentada. Aquí se exponen técnicas de cálculo que son utilizados en los procedimientos de los modelos
Colección de problemas de. Tema 4. Incertidumbre y Utilidad Esperada INCERTIDUMBRE Y CONTRATOS
Colección de problemas de INCERTIDUMBRE Y CONTRATOS Curso 3º Grado en Economía 2017-2018 Iñaki Aguirre Elena Iñarra Marta San Martín Ana Saracho Fundamentos del Análisis Económico I Universidad del País
CURSO: TOMA DE DECISIONES BAJO RIESGO
MANAGEMENT CONSULTORES CURSO: TOMA DE DECISIONES BAJO RIESGO Cnel. R.L. Falcón 1435 C1406GNC 35 Buenos Aires, Argentina Tel.: 054-11-15-5468-3369 Fax: 054-11-4433-4202 Mail: [email protected]
8. Elección individual con incertidumbre
8. Elección individual con incertidumbre En esta parte nos vamos a concentrar en el problema de decisión con incertidumbre desde un punto de vista muy básico. Es decir, vamos a volver a plantearnos el
La Simulación es un sistema complejo de carácter fundamentalmente estadístico destino a la gestión de la incertidumbre.
La Simulación es un sistema complejo de carácter fundamentalmente estadístico destino a la gestión de la incertidumbre. Para ello utiliza los cash flows mediante un modelo mátematico de forma repetitiva
