Expresiones Algebraicas. Polinomios
|
|
|
- María Concepción Vargas Jiménez
- hace 8 años
- Vistas:
Transcripción
1 Epresiones lgeraicas olinomios Una epresión algeraica es una epresión en la que se operan con valores indeterminados, números y constantes, mediante un número finito de sumas, restas, productos, cocientes, potencias y raíces Las epresiones algeraicas de interés provienen, en general, de fórmulas físicas, geométricas, químicas, económicas, etc Epresiones lgeraicas ueden ser Irracionales Las indeterminadas están afectadas por la radicación EJEMLO y Racionales Las indeterminadas no están afectadas por la radicación ueden ser Fraccionarias si la indeterminada está en algún denominador EJEMLO y Enteras La indeterminada no está en ningún denominador EJEMLO y y olinomios Los polinomios son epresiones algeraicas racionales enteras Definición Sean a 0, a, a, a,, a n números reales y n un número natural Llamaremos olinomio en una indeterminada a toda epresión algeraica entera de la forma a a + a + a + a n n Los números reales a 0, a, a, a,, a n se llaman coeficientes del polinomio El número real, no nulo, a n se llama coeficiente principal, siendo n es mayor eponente al que se encuentra elevada la indeterminada Si a n = el polinomio se llama mónico El número real a 0 se llama término independiente n es el ado del polinomio, si a n 0 y n es mayor eponente al que se encuentra elevada la indeterminada Se denota =n a i i es el término de ado i a i es el coeficiente del término de ado i los polinomios que tienen un solo término se los llama monomios, a los que tienen dos, inomios; a los que tienen tres, trinomios l conjunto de todos los polinomios con coeficientes reales se los denota R[] Si todos los coeficientes son cero, el polinomio se llama nulo y se denota 0 Este polinomio no tiene ado Dos polinomios no nulos son iguales si y sólo si tienen el mismo ado y los coeficientes de los términos de igual ado son iguales Ejemplo = + es un polinomio de ado or la cantidad de términos es un cuatrinomio con a 0 = término independiente, a =0, a =, a = y a = coeficiente principal Valor numérico de un polinomio El valor numérico de un polinomio en = a es el resultado de calcular a Es decir, el valor que se otiene al sustituir la indeterminada por el número a en el polinomio y realizar las operaciones correspondientes Ejemplo El valor numérico de = + para = es = + = Raíces de un polinomio Decimos que un número real a es raíz de un polinomio si y solo si a=0 Ejemplo = es raíz de Q= +, ya que Q= + =0 Oservación No dee confundirse este uso de la palara raíz con la operación de radicación Suma y Diferencia de polinomios Suma ara sumar dos polinomios se aupan los términos o monomios de igual ado y se suman sus coeficientes Matemática Ciclo Superior º año Colegio Santa Margarita rof Silvia Vinci
2 + Q má {, Q} ropiedades de la suma de polinomios Es cerrada en R[] Es asociativa [ + Q] + R = + [Q + R] Es conmutativa + Q = Q + Eiste el elemento neutro 0 denominado polinomio nulo Es el único que verifica que para cualquier R[], + 0 = Eiste elemento opuesto ara cualquier polinomio R[], eiste un polinomio denotado que cumple + = 0 Diferencia La diferencia entre dos polinomios se define como Q = + Q Es la suma entre y el opuesto de Q Q má {, Q} Multiplicación de olinomios La multiplicación de polinomios se define a partir de la imposición de que la propiedad distriutiva del producto con respecto de la suma se cumpla para epresiones del tipo polinómicas En este conteto se define el producto diciendo que para multiplicar dos polinomios se utiliza la propiedad distriutiva, efectuando luego la suma de monomios de igual ado Q = + Q ropiedades de la multiplicación de polinomios Es cerrada en R[] Es asociativa [ Q] R = [Q R] Es conmutativa Q = Q Eiste elemento neutro I El polinomio I= es el único que verifica que para cualquier R[], I = Es distriutiva respecto de la suma de polinomios [ + Q] R = R + Q R roductos especiales Cuadrado de un inomio +a = +a+a Cuo de un inomio +a = + a+a +a Diferencia de cuadrados +a a= a División de polinomios l igual de lo que ocurre en el conjunto de los enteros, la división de polinomios está definida a través del del algoritmo de la división que produce un cociente y un resto Teorema del algoritmo de la división Dados y Q R[], Q 0, eisten y son únicos el cociente C y el resto R R[], con R < Q o R = 0 tales que = Q C + R Divisiilidad de polinomios dividendo divisor cociente resto Dados y Q R[], con Q 0, se dice que Q divide a si y solo si eiste un polinomio C tal que = Q C Es decir, el resto R de la división de por Q es el polinomio nulo l igual que con los números enteros, son equivalentes y usuales las epresiones Q divide a ; es divisile por Q; es múltiplo de Q; Q es divisor de Regla de Ruffini La regla de Ruffini es un procedimiento esquemático para hallar el cociente y el resto de la división de un polinomio por otro de la forma ± a, usando solo los coeficientes de los polinomios Ejemplo ara hacer + +, se procede así Matemática Ciclo Superior º año Colegio Santa Margarita rof Silvia Vinci
3 Coeficientes del dividendo completo y ordenado Raíz del divisor Se multiplica Resto Cociente + Teorema del Resto Dados los polinomios y a, el resto de dividir por a se otiene haciendo R = a Como el divisor es de ado uno, el ado del resto deerá ser cero o no tener ado polinomio nulo El Teorema del Resto nos permite formalizar esta relación que eiste entre la raíz a de un polinomio y la divisiilidad del mismo por a Es claro que a es raíz de a=0 R=0 es divisile por a, de donde a es raíz de es divisile por a Ejemplo El resto de dividir Q= + con se otiene haciendo R= Q= + =0 Como R=0, se puede decir que Q es divisile por y, además, que = es raíz de Q Oservación Importante Un polinomio de ado n tiene a lo sumo n raíces reales, en coincidencia con la cantidad de divisores de ado uno que el polinomio tiene olinomios Reduciles e Irreduciles Si se puede escriir como producto de polinomios tales que, su ado sea mayor que 0 y menor que el ado de, se dice que es reducile En caso contrario se dice que es irreducile Estalecemos que los únicos polinomios irreduciles en R[] son los de ado uno y los de ado dos que no tienen raíces reales Descomposición factorial en R[] Dado el polinomio, se denomina factorización a la descomposición factorial del mismo, siendo sus factores el coeficiente principal y polinomios irreduciles mónicos Una forma de factorizar un polinomio es hallar las raíces reales de dicho polinomio ara un polinomio de ado n, con n raíces reales se factoriza así = a n n donde a n es el coeficiente principal del polinomio,,,, n son las n raíces reales de ara ello, serán de an utilidad los siguientes teoremas Teorema Si tiene coeficientes enteros y tiene alguna raíz entera a, entonces a divide al término independiente Teorema Si tiene coeficientes enteros y tiene alguna raíz fraccionaria irreducile p/q, entonces p divide al término independiente y q divide al coeficiente principal En el caso de polinomios de ado, las raíces se hallan aplicando la fórmula resolvente Otros instrumentos que puede ayudar en la factorización son el cuadrado y cuo de un inomio, la diferencia de cuadrados y el Factor común Este último es de an utilidad cuando el polinomio no tiene término independiente Un factor común es "algo" número, letra, etc que está multiplicando en todos los términos de una epresión algeraica Tiene que estar en todos los términos, por eso es "común" común a todos demás, en una multiplicación, se les llama "factores" a los números o letras que están multiplicándose De ahí vienen las dos palaras "factor" y "común" or ejemplo, en + +, está el factor común ""; porque en todos los términos está multiplicando el número En + +, está el factor común ""; porque en todos los términos está multiplicando la letra "" ero no siempre es tan fácil identificar al factor común como en esos dos ejemplos, ya que en los términos puede haer números diferentes o letras con distinto eponente, y el factor común puede estar "oculto" entre ellos Cuando son números enteros distintos, el factor común es el MÁXIMO COMÚN DIVISOR es el mayor número por el cual podamos dividir a todos los coeficientes Y cuando una o más letras están en todos los términos, son factor común, y hay que sacarlas con el menor eponente con que aparecen Una vez identificado el o los factores comunes, se divide a todos los términos por ese factor/factores La división entre números ya es conocida La división entre letras iguales potencias de igual ase se hace restando los eponentes "Los números se dividen con los números", "las letras con las letras iguales" Matemática Ciclo Superior º año Colegio Santa Margarita rof Silvia Vinci
4 Ejemplo Factorizar = + El factor común es, entonces divido todos los términos por El resultado de esa división es + y el resto es 0 Entonces el polinomio escrito como suma de términos queda escrito ahora como un producto de la siguiente manera = + = + Es decir, quedó factorizado Ejemplo Factorizar S= += cuadrado de un inomio Ejemplo Factorizar T= + ++= + cuo de un inomio Ejemplo Factorizar M= = + diferencia de cuadrados Ejemplo Factorizar N= + Usando los teoremas para hallar las raíces se puede ver que las posiles raíces racionales son ±, ±/, ±/, ±/, ±/, ±/ Haciendo los cálculos correspondientes se encuentra que / y / son raíces de N, ya que N/=0 y N/=0 Como es de ado, dee tener a lo sumo tres raíces reales o una sola Como se encontraron dos, dee haer una tercera raíz real que puede ser irracional o nuevamente ser una de las ya halladas El procedimiento a seguir, usando conceptos desarrollados anteriormente, es el siguiente Saiendo que =/ es raíz de N, podemos afirmar que N es divisile por / or el algoritmo de la división N= / C [R=0 p ] C se puede determinar usando la Regla de Ruffini ½ N= / 0 Como es un polinomio reducile, se dee factorizar repitiendo el procedimiento anterior Se sae que =/ es raíz de N y en consecuencia de C plicando nuevamente la Regla de Ruffini / N= /= +/ / 0 ara que quede factorizado falta asegurar que todos los factores sean mónicos El primer factor no lo es, para hacerlo Mónico se dee sacar el factor N= +/ /= / +/ / hora sí, el polinomio está escrito en forma factorizada Ejemplo Factorizar W= + Sacando factor común queda W= + Como + es reducile hay que uscar sus raíces, teniendo en cuenta teoremas anteriores las posiles raíces racionales son ± y ± Haciendo los cálculos correspondientes se encuentra que =, = y = son raíces Como es de ado tres, esas serán todas sus raíces En consecuencia W factorizado queda W= += 000+ Ejercitación Dados los siguientes polinomios, a Q c M d N 0, Ordenarlos y completarlos, indicar el ado, el término independiente y el coeficiente principal C Indicar si alguno de los polinomios es mónico Matemática Ciclo Superior º año Colegio Santa Margarita rof Silvia Vinci
5 Matemática Ciclo Superior º año Colegio Santa Margarita rof Silvia Vinci Hallar N, M, Q 0 y Sean C y,, colocar el signo >,= o < según corresponda f e d c C a Hallar el opuesto de Dados los siguientes polinomios Calcular i f c h e g d a Hallar el cociente y el resto de las siguientes divisiones c d e f a Calcular, usando el Teorema del resto, el resto de las divisiones del ejercicio Calcular el valor de k tal que / Q divida a k k El polinomio H es divisile por D Hallar los valores de R para que eso sea posile Factorizar los siguientes polinomios 00 K E J D H C G F 0 Factorizar y simplificar las siguientes epresiones d c a Simplificar y resolver f e d c a Resolver f e d c a
FACTORIZACIÓN DE POLINOMIOS
FACTORIZACIÓN DE OLINOMIOS Un polinomio se dice IRREDUCIBLE cuando no se puede descomponer en producto de otros polinomios de menor grado que él. En caso contrario se dice que es REDUCIBLE. Ejemplos a
UNIDAD DIDÁCTICA V POLINOMIOS Y ECUACIONES ALGEBRAICAS RACIONALES
UNIDAD DIDÁCTICA V POLINOMIOS Y ECUACIONES ALGEBRAICAS RACIONALES Temario: Definición de epresiones algebraicas y clasificación. Polinomio, grado. Operaciones. Regla de Ruffini. Factorización de Polinomios.
Tema 3. Polinomios y fracciones algebraicas
Tema. Polinomios y fracciones algebraicas. Monomios.. Definiciones.. Operaciones con monomios. Polinomios.. Definiciones.. Operaciones con polinomios. Factorización de un polinomio.. Teorema del resto.
TEMA 2. POLINOMIOS Y FRACCIONES ALGEBRAICAS
TEMA. POLINOMIOS Y FRACCIONES ALGEBRAICAS.. Repaso de polinomios - Epresión algebraica. Valor numérico - Polinomios. Operaciones con polinomios.. Identidades notables - Cuadrado de una suma de una diferencia
Expresiones algebraicas
Epresiones algebraicas Matemáticas I 1 Epresiones algebraicas Epresiones algebraicas. Monomios y polinomios. Monomios y polinomios. Una epresión algebraica es una combinación de letras, números y signos
EXPRESIONES ALGEBRAICAS
EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Una epresión algebraica es aquella en la que se operan números conocidos y números desconocidos representados por las letras a, b, c,, y, z,..., que se denominan
Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1. x 5x 2 6 5
Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1 POLINOMIOS Y FRACCIONES ALGEBRAICAS.1 COCIENTE DE POLINOMIOS COCIENTE DE MONOMIOS El cociente de un monomio entre otro monomio de grado igual
POLINOMIOS Y FRACCIONES ALGEBRAICAS
POLINOMIOS Y FRACCIONES ALGEBRAICAS Monomio: Monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural. 2x
EXPRESIONES ALGEBRAICAS
Matemática EXPRESIONES ALGEBRAICAS Unidad N OBJETIVOS GENERALES Convertir las frases del lenguaje coloquial al lenguaje algebraico viceversa Identificar a las epresiones algebraicas según sean racionales
Tema 2. Polinomios y fracciones algebraicas
Tema. Polinomios y fracciones algebraicas. Polinomios.... Definiciones.... Operaciones con polinomios.... Factorización de un polinomio.... Teorema del resto. Criterio de divisibilidad por -a.... Propiedades
TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS
TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.- POLINOMIOS Recordemos que un monomio es una expresión algebraica (combinación de letras y números) en la que las únicas operaciones que aparecen entre las
x a que sean divisores de un polinomio con coeficientes enteros, se deben asignar valores al número a que dividan al término independiente.
or lo tanto: para determinar epresiones a que sean divisores de un polinomio con coeficientes enteros, se deben asignar valores al número a que dividan al término independiente. Apliquemos este resultado
1. EXPRESIONES ALGEBRAICAS.
TEMA 3: POLINOMIOS 1. EXPRESIONES ALGEBRAICAS. Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas
EJERCICIOS. 7.3 Valor de un polinomio para x = a. Por lo tanto: para determinar expresiones
or lo tanto: para determinar epresiones a que sean divisores de un polinomio con coeficientes enteros, se deben asignar valores al número a que dividan al término independiente. Apliquemos este resultado
FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma.
FICHAS REPASO º ESO OPERACIONES CON NÚMEROS ENTEROS El valor absoluto de un número entero es el número natural que resulta al prescindir del signo. Por ejemplo, el valor absoluto de es y el valor absoluto
POLINOMIOS En esta unidad aprenderás a:
POLINOMIOS En esta unidad aprenderás a: Reconocer polinomios y calcular su valor numérico Realizar operaciones con polinomios. Manejar la regla de Ruffini y el teorema del resto para encontrar las raíces
OPERACIONES CON POLINOMIOS
4. 1 UNIDAD 4 OPERACIONES CON POLINOMIOS Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas en los que apliques las operaciones de suma, resta, multiplicación y división de polinomios.
I.E.S. Tierra de Ciudad Rodrigo Departamento de Matemáticas TEMA 6. POLINOMIOS
TEMA 6. POLINOMIOS Una expresión algebraica es un conjunto de letras y números unidos por los signos matemáticos. Las expresiones algebraicas surgen de traducir al lenguaje matemático enunciados en los
2. EXPRESIONES ALGEBRAICAS
2. EXPRESIONES ALGEBRAICAS Tales como, 2X 2 3X + 4 ax + b Se obtienen a partir de variables como X, Y y Z, constantes como -2, 3, a, b, c, d y cobinadas utilizando la suma, resta, multiplicación, división
TEMA 1 NÚMEROS NATURALES
TEMA 1 NÚMEROS NATURALES Criterios De Evaluación de la Unidad 1 Efectuar correctamente operaciones combinadas de números naturales, aplicando correctamente las reglas de prioridad y haciendo un uso adecuado
Unidad 2: Ecuaciones, inecuaciones y sistemas.
Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.
SERIE INTRODUCTORIA. REPASO DE ALGEBRA.
SERIE INTRODUCTORIA. REPASO DE ALGEBRA. 1.- REDUCCION DE TÉRMINOS SEMEJANTES. Recuerde que los términos semejantes son aquellos que tienen las mismas letras con los mismos exponentes. Ejemplos: *7m; 5m
1. GENERALIDADES SOBRE LOS POLINOMIOS.
GENERALIDADES SOBRE LOS POLINOMIOS Funciones polinómicas LAS DEFINICIONES Sea p la función definida por: p ( ) = 2( 2 ) + 2 ( 2 ) + 2 2, p es una función de R en R Y para todo real, se tiene p ( ) = 2
EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Y POLINOMIOS
EXPRESIONES ALGEBRAICAS Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman VARIABLES, INCÓGNITAS o INDETERMINADAS
Factorización de polinomios FACTORIZACIÓN DE POLINOMIOS
FACTORIZACIÓN DE POLINOMIOS 1. Polinomios Un monomio es el producto de un número real por una o más letras que pueden estar elevadas a exponentes que sean números naturales. La suma de los exponentes de
RESUMEN ALGEBRA BÁSICA
RESUMEN ALGEBRA BÁSICA TERMINO ALGEBRAICO: Es una expresión matemática que consta de un producto (o cociente) de un número con una variable elevado a un exponente (o con varias variables). TÉRMINO ALGEBRAICO
PRÁCTICO: : POLINOMIOS
Página: 1 APUNTE TEÓRICO-PRÁCTICO PRÁCTICO: : POLINOMIOS UNIVERSIDAD NACIONAL DE RIO NEGRO Asignatura: Razonamiento y Resolución de Problemas Carreras: Lic. en Economía, Lic. en Administración, Lic. en
Funciones polinómicas
Funciones polinómicas Footer Text 4/23/2015 1 Funciones Polinómicas La ecuación general de una función polinómica de grado n con coeficientes reales está dada por f(x) = a n x n + a n-1 x n-1 + + a 1 x
RADICACIÓN EN LOS REALES
RADICACIÓN EN LOS REALES La raíz n ésima de un número real es otro número real tal que: n a b si y solo si b n Donde el signo se llama radical, n es el índice, a es el radicando y b es la raíz. En la radicación
ECUACIONES.
. ECUACIONES... Introducción. Recordemos que el valor numérico de un polinomio (y, en general, de cualquier epresión algebraica) se calcula sustituyendo la/s variable/s por números (que, en principio,
Capítulo 1. Numeración 1 Variables... 2 Números naturales... 2 Números enteros... 3 Números reales Ejercicios Orden y valor absoluto...
ÍNDICE Capítulo 1. Numeración 1 Variables... 2 Números naturales... 2 Números enteros... 3 Números reales... 3 Ejercicios... 5 Orden y valor absoluto... 6 Ejercicios... 7 Suma de números reales... 9 Reglas
COLEGIO AUGUSTO WALTE INFORMACIÓN DE ASIGNATURA II PERÍOD DESCRIPCIÓN DE CONTENIDOS
COLEGIO AUGUSTO WALTE INFORMACIÓN DE ASIGNATURA II PERÍOD DESCRIPCIÓN DE CONTENIDOS GRADO: 8º ASIGNATURA: Matemática PERIODO: 2 PROFESORA: Selene Carballo UNIDAD Nº 2 NOMBRE DE LA UNIDAD: Operemos con
UNIDAD DOS FACTORIZACIÓN
UNIDAD DOS FACTORIZACIÓN Factorizar quiere decir descomponer en factores, los factores son divisores de una expresión que, multiplicados entre sí, dan como resultado la primera expresión. FACTOR COMÚN
24 = = = = = 12. 2
UNIVERSIDAD MARIANO GÁLVEZ DE GUATEMALA FACULTAD DE CIENCIAS DE LA ADMINISTRACIÓN DIRECCIÓN GENERAL DE CENTRO UNIVERSITARIOS CENTRO UNIVERSITARIO DE VILLA NUEVA CURSO MATEMÁTICAS APLICADA I 015 Lic. Manuel
TEMA 4: EXPRESIONES ALGEBRAICAS.
TEMA 4: EXPRESIONES ALGEBRAICAS. Segundo Curso de Educación Secundaria Obligatoria. I.E.S de Fuentesaúco. Manuel González de León. CURSO 2011-2012 Página 1 de 14 Profesor: Manuel González de León Curso
LECTURA Nº 12: MÉTODOS DE FACTORIZACIÓN
Tenemos un cuadrado cuyos lados miden ( + + ) = + por lo que el área sería: Largo. ancho = ( + ).( + ) = ( + ) Pero ya se conoce el área total que es 9 unidades cuadradas Entonces: ( + ) = 9 donde despejando
ALGEBRA I, ALGEBRA Y TRIGONOMETRIA , Segundo Semestre CAPITULO 6: POLINOMIOS.
ALGEBRA I, ALGEBRA Y TRIGONOMETRIA 520135, 522115 Segundo Semestre CAPITULO 6: POLINOMIOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Polinomio Sea K
Fracciones Algebraicas
Fracciones Algebraicas 1 Conceptos básicos Definición 1 Una fracción algebraica en la indeterminada x (o cualquier otra letra) es una expresión de la forma, donde tanto P como Q son polinomios con coeficientes
open green road Guía Matemática profesor: Nicolás Melgarejo .cl
Guía Matemática RAÍCES profesor: Nicolás Melgarejo.cl . Raíces y potencias La radicación podemos entenderla como la operación inversa a la potenciación, así como multiplicar y dividir, sumar y restar.
CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV
CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV 1. Números reales. Aritmética y álgebra 1.1. Operar con fracciones de números
Ejercicio 1: Realiza las siguientes divisiones por el método tradicional y por Ruffini: a)
Tema 2: Ecuaciones, Sistemas e Inecuaciones. 2.1 División de polinomios. Regla de Ruffini. Polinomio: Expresión algebraica formada por la suma y/o resta de varios monomios. Terminología: o Grado del polinomio:
Lección 10: División de Polinomios. Dra. Noemí L. Ruiz Limardo 2009
Lección 10: División de Polinomios Dra. Noemí L. Ruiz Limardo 009 Objetivos de la lección Al finalizar esta lección los estudiantes: Dividirán polinomios de dos o más términos por polinomios de uno y dos
Cuando p(a) = 0 decimos que el valor a, que hemos sustituido, es una raíz del polinomio.
Regla de Ruffini Teorema del resto Polinomios y fracciones algebraicas Dividir un polinomio por -a Regla de Ruffini Factorización de polinomios Divisibilidad de polinomios Fracciones algebraicas Operaciones
Titulo: FACTORIZACION (Descomposición Factorial) Año escolar: 2do: año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo
lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas
º ESO 1. Expresiones algebraicas En matemáticas es muy común utilizar letras para expresar un resultado general. Por ejemplo, el área de un b h triángulo es base por altura dividido por dos y se expresa
Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +...
Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... + a 1 x 1 + a 0 Siendo a n, a n -1... a 1, a o números,
ECUACIONES DE PRIMER Y SEGUNDO GRADO
7. UNIDAD 7 ECUACIONES DE PRIMER Y SEGUNDO GRADO Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas que involucren la solución de ecuaciones de primer grado y de segundo grado
TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO
TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO 1. División de polinomios Dados dos polinomios P (el dividendo) y D (el divisor), dividir P entre D es encontrar dos polinomios Q (el cociente)
TEMA 1. Números Reales. Teoría. Matemáticas
1 1.- Los números reales Cuáles son los números reales? Los números reales son todos los números racionales y todos los números irracionales. El conjunto de los números reales se designa con el símbolo
FACTORIZACION FACTORIZACIÓN. Factorizar un número consiste en expresarlo como producto de dos de sus divisores.
-PA-0 FACTORIZACION V0 Página de 9 NOCION: FACTORIZACIÓN Factorizar un número consiste en epresarlo como producto de dos de sus divisores. Ejemplo: Factoriza 0 en dos de sus divisores :, es decir 0 = Y
ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Enteros
Resumen teoría Prof. Alcón ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Z = N {0} N Enteros Las operaciones + y. son cerradas en Z, es decir la suma de dos números enteros es un número entero y el producto
El polinomio. es divisible por x + 1, y. Comprobar utilizando el valor numérico, que el polinomio calcula con una división otro factor del polinomio.
1 P() 8 El polinomio es el producto de tres factores, siendo dos de ellos los correspondientes a las raíces =1 = - Halla mediante dos divisiones consecutivas por el método de Ruffini el tercer factor Comprobar
Semana 6. Factorización. Parte I. Semana Productos 7 notables. Parte II. Empecemos! Qué sabes de...? El reto es...
Semana Productos 7 notables. Parte II Semana 6 Empecemos! El tema que estudiarás en esta sesión está muy relacionado con el de productos notables, la relación entre estos y la factorización, dado que son
CASO I: FACTORIZACION DE BINOMIOS
CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS ACTIVIDAD ACADEMICA: FUNDAMENTOS MATEMATICOS DOCENTE: LIC- ING: ROSMIRO FUENTES ROCHA UNIDAD N : FACTORIZACION
LA FACTORIZACIÓN COMO HERRAMIENTA PARA LA SIMPLIFICACIÓN DE EXPRESIONES ALGEBRAICAS.
LA FACTORIZACIÓN COMO HERRAMIENTA PARA LA SIMPLIFICACIÓN DE EXPRESIONES ALGEBRAICAS. Material adaptado con fines instruccionales por Teresa Gómez, de: Ochoa, A., González N., Lorenzo J. y Gómez T. (008)
MONOMIOS Y POLINOMIOS
Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas o indeterminadas y se representan por letras.
RESUMEN DE CONCEPTOS
RESUMEN DE CONCEPTOS 1º ESO MATEMÁTICAS NÚMEROS NATURALES (1) Múltiplo de un número: Un número es múltiplo de otro si el segundo está contenido en el primero un número exacto de veces. Ejemplo: 16 es múltiplo
CONCEPTOS GENERALES SOBRE LA FACTORIZACIÓN: Qué es factorizar o factorear un polinomio?
CONCEPTOS GENERALES SOBRE LA FACTORIZACIÓN: Qué es factorizar o factorear un polinomio? Factorizar o Factorear significa "transformar en multiplicación" (o "producto", como también se le llama a la multiplicación).
El Teorema Fundamental del Álgebra
El Teorema Fundamental del Álgebra 1. Repaso de polinomios Definiciones básicas Un monomio en una indeterminada x es una expresión de la forma ax n que representa el producto de un número, a, por una potencia
CLASIFICACION DE LAS EXPRESIONES ALGEBRAICAS. Las expresiones algebraicas se clasifican en: a) racionales; b) irracionales.
Capítulo 3.-EXPRESIONES ALGEBRAICAS OBJETIVOS INSTRUCTIVOS Que el alumno: Distinga la clasificación de las expresiones algebraicas. Aprenda las operaciones con monomios y polinomios y sus aplicaciones
CONJUNTOS NUMÉRICOS. La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria.
CONJUNTOS NUMÉRICOS La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria. Por ejemplo, usamos números para contar una determinada cantidad
Capítulo 4: Polinomios
Capítulo 4: Polinomios Miguel Ángel Olalla Acosta [email protected] Departamento de Álgebra Universidad de Sevilla Diciembre de 2015 Olalla (Universidad de Sevilla) Capítulo 4: Polinomios Diciembre de
Apuntes de matemáticas 2º ESO Curso 2013-2014. Lenguaje algebraico.
Lenguaje algebraico. Expresiones algebraicas Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas
Curso º ESO. UNIDADES 6 Y 7: EXPRESIONES ALGEBRAICAS Y ECUACIONES Departamento de Matemáticas IES Fray Bartolomé de las Casas de Morón
2º ESO UNIDADES 6 Y 7: EXPRESIONES ALGEBRAICAS Y ECUACIONES Departamento de Matemáticas IES Fray Bartolomé de las Casas de Morón OBJETIVOS CONTENIDOS PROCEDIMIENTOS Lenguaje algebraico. Normas y Traducción
La asignatura de Matemática estimula el desarrollo de diversas habilidades:
La asignatura de Matemática estimula el desarrollo de diversas habilidades: Intelectuales, como: El razonamiento lógico y flexible, la imaginación, la inteligencia espacial, el cálculo mental, la creatividad,
Operaciones de números racionales
Operaciones de números racionales Yuitza T. Humarán Martínez Adapatado por Caroline Rodriguez Departamento de Matemáticas Universidad de Puerto Rico en Arecibo El conjunto de los números racionales consiste
Preparación para Álgebra universitaria con trigonometría
Preparación para Álgebra universitaria con trigonometría Este curso cubre los siguientes temas. Usted puede personalizar la gama y la secuencia de este curso para satisfacer sus necesidades curriculares.
1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS
1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS 1.1 SISTEMAS DE ECUACIONES LINEALES Una ecuación lineal es una ecuación polinómica de grado 1, con una o varias incógnitas. Dos ecuaciones son equivalentes
CURSO PROPEDEUTICO DEALGEBRA PARA BQFT QUÍMICO FARMACEÚTICO BIOTECNÓLOGO CURSO PROPEDEUTICO AGOSTO 2013 ELABORÓ ALEJANDRO JAIME CARRETO SOSA
QUÍMICO FARMACEÚTICO BIOTECNÓLOGO CURSO PROPEDEUTICO AGOSTO 201 ELABORÓ ALEJANDRO JAIME CARRETO SOSA 1 Operaciones entre Quebrados (Fracciones) Sumar quebrados o fracciones: se calcula el común denominador,
Colegio San Patricio Matemática 3 año Prof. Selva Hernández Trabajo Práctico N 9 : Factorización de polinomios.
Colegio San Patricio Matemática 3 año - 2015 Prof. Selva Hernández Trabajo Práctico N 9 : Factorización de polinomios. Factorizar un polinomio es escribirlo como producto de factores irreducibles. El concepto
UNIDAD 1: NÚMEROS NATURALES OBJETIVOS
UNIDAD 1: NÚMEROS NATURALES Realizar las operaciones con números naturales (suma, resta, multiplicación y división) y operaciones combinadas de las anteriores. Diferenciar entre división exacta y entera,
Tema 1.- Los números reales
Tema 1.- Los números reales Los números irracionales Un número es irracional si posee infinitas cifras decimales no periódicas, por tanto no se puede expresar en forma de fracción. El número irracional
EXPRESIONES ALGEBRAICAS RACIONALES
Epresiones Algebraicas Racionales EXPRESIONES ALGEBRAICAS RACIONALES Llamaremos epresiones algebraicas racionales a las de la forma A() donde A() y B() son B() polinomios de variable, y B() 0. Por ejemplo,
FACTORIZACIÓN DE POLINOMIOS en Q (racionales)
FACTORIZACIÓN DE OLINOMIOS en Q racionales FAQ Qué es factorizar un polinomio? Es expresarlo como un producto por eso lo de "factorizar" de otros polinomios de grado igual o menor a él ara qué factorizar
Bloque 1. Aritmética y Álgebra
Bloque. Aritmética y Álgebra 6. Los números reales: radicales. Definición de radical Un radical es una epresión de la forma, en la que n y a ; con tal que cuando a sea negativo, n ha de ser impar. Obsérvese
a) Factoriza el monomio común. En este caso 6 se puede dividir de cada término:
Materia: Matemática de 5to Tema: Factorización y Resolución de ecuaciones 1) Factorización Marco Teórico Decimos que un polinomio está factorizado completamente cuando no podemos factorizarlo más. He aquí
4) Si el menor de los ángulos agudos de un triángulo rectángulo mide la cuarta parte del otro ángulo agudo Cuál es la medida de cada uno de ellos?
) La suma de los dígitos de un número de cifras es. Si las cifras del número se invierten, el número resultante es 9 unidades menor que el número original. Cuál es el número original? ) El gerente de un
TEMA 2. Números racionales. Teoría. Matemáticas
1 1.- Números racionales Se llama número racional a todo número que puede representarse como el cociente de dos enteros, con denominador distinto de cero. Se representa por Las fracciones también pueden
Institución Educativa Distrital Madre Laura
Una fracción algebraica es una expresión fraccionaria en la que numerador y denominador son polinomios. Son fracciones algebraicas: Las fracciones algebraicas tienen un comportamiento similar a las fracciones
Suma, diferencia y producto de polinomios
I, Polinomios Suma, diferencia y producto de polinomios Un monomio es una expresión algebraica donde los números (coeficientes) y las letras (parte literal) están separados por el signo de la multiplicación.
MATEMÁTICAS TEMA 50. Polinomios. Operaciones. Fórmula de Newton. Divisibilidad de polinomios. Fracciones algebraicas
MATEMÁTICAS TEMA 50 Polinomios. Operaciones. Fórmula de Newton. Divisibilidad de polinomios. Fracciones algebraicas ÍNDICE. 1. Introducción. 2. El anillo de los polinomios. 3. Potencia de un polinomio.
TEMA 5. FACTORIZACIÓN DE POLINOMIOS.
TEMA 5. FACTORIZACIÓN DE POLINOMIOS. 1. SACAR FACTOR COMÚN Cuando todos los términos de un polinomio, P(x), son múltiplos de un mismo monomio, M(x), podemos extraer M(x) como factor común. Por ejemplo:
El número áureo,, utilizado por artistas de todas las épocas (Fidias, Leonardo da Vinci, Alberto Durero, Dalí,..) en las proporciones de sus obras.
1.- LOS NÚMEROS REALES Los números irracionales Un número es irracional si posee infinitas cifras decimales no periódicas, por tanto no se pueden expresar en forma de fracción. El número irracional más
RECONOCER EL GRADO, EL TÉRMINO Y LOS COEFICIENTES DE UN POLINOMIO
OBJETIVO RECONOCER EL GRADO, EL TÉRMINO Y LOS COEICIENTES DE UN POLINOMIO NOMBRE: CURSO: ECHA: Un polinomio es una expresión algebraica formada por la suma de monomios, que son los términos del polinomio.
UNIDAD I FUNDAMENTOS BÁSICOS
República Bolivariana de Venezuela Universidad Alonso de Ojeda Administración Mención Gerencia y Mercadeo UNIDAD I FUNDAMENTOS BÁSICOS Elaborado por: Ing. Ronny Altuve Ciudad Ojeda, Mayo 2016 ÁLGEBRA Es
POLINOMIOS Y FRACCIONES ALGEBRAICAS
POLINOMIOS Y FRACCIONES ALGEBRAICAS Definición de monomio. Expresión algebraica formada por el producto de un número finito de constantes y variables con exponente natural. Al producto de las constantes
Números Naturales. Cero elemento neutro: = 12 Sucesión fundamental : se obtiene el siguiente número = 9
Números Naturales Cuando comenzamos a contar los objetos, los años, etc, nos hemos encontrado con los números de forma natural; por eso a este conjunto de números así aprendidos se les denomina números
Una ecuación puede tener ninguna, una o varias soluciones. Por ejemplo: 5x 9 = 1 es una ecuación con una incógnita con una solución, x = 2
Podemos definir a las ecuaciones como una igualdad entre expresiones algebraicas (encadenamiento de números y letras ligados por operaciones matemáticas diversas),en la que intervienen una o más letras,
LOS NÚMEROS ENTEROS. Para restar un número entero, se quita el paréntesis y se pone al número el signo contrario al que tenía.
Melilla Los números Enteros y operaciones elementales LOS NÚMEROS ENTEROS 1º LOS NÚMEROS ENTEROS. El conjunto de los números enteros Z está formado por los números naturales (enteros positivos) el cero
1. dejar a una lado de la igualdad la expresión que contenga una raíz.
1. Resuelve las siguientes ecuaciones reales: Solución x 1 + x = 0 ; 3 x = 3 ; ln(x 1) + 4 = ln 3 Ecuaciones con raíces: No todas las ecuaciones de este tipo son sencillas de resolver, pero podemos intentar
Los números naturales están ordenados, lo que nos permite comparar dos números naturales:
LOS NUMEROS NATURALES. El conjunto de los números naturales está formado por: N = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,...} Con los números naturales contamos los elementos de un conjunto (número cardinal). O
2º) El límite de la función f(x)=x, tanto en - como en + : Veamos como ejemplo el límite de la función polinómica f(x)=3x 2-8 en + :
LÍMITES LECCIÓN 6 Índice: Cálculo de ites en el infinito. Epresión indeterminada -. Epresión indeterminada /. Epresión indeterminada 0. Epresión indeterminada ±. Límites de sucesiones. Cálculo de ites
EJERCICIOS DE POLINOMIOS
EJERCICIOS DE POLINOMIOS NOMBRE:... Nº:... º....- Escribe el grado, el número de términos y el nombre (monomio, binomio, trinomio, polinomio) que recibe cada una de las siguientes expresiones algebraicas:
UNIDAD: ÁLGEBRA Y FUNCIONES ÁLGEBRA DE POLINOMIOS
C u r s o : Matemática Material N 15 UNIDAD: ÁLGEBRA Y FUNCIONES ÁLGEBRA DE POLINOMIOS GUÍA TEÓRICO PRÁCTICA Nº 1 EVALUACIÓN DE EXPRESIONES ALGEBRAICAS Evaluar una expresión algebraica consiste en sustituir
Expresiones algebraicas (1º ESO)
Epresiones algebraicas (º ESO) Lenguaje numérico y lenguaje algebraico. El lenguaje en el que intervienen números y signos de operaciones se denomina lenguaje numérico. Lenguaje usual Lenguaje numérico
Materia: Matemática de Octavo Tema: Raíces de un polinomio. Marco teórico
Materia: Matemática de Octavo Tema: Raíces de un polinomio Y si tuvieras una ecuación polinómica como? Cómo podrías factorizar el polinomio para resolver la ecuación? Después de completar esta lección
2. Ecuaciones de primer grado: (sencillas, con paréntesis, con denominadores).
Bloque 3. ECUACIONES Y SISTEMAS (En el libro Temas 4 y 5, páginas 63 y 81) 1. Ecuaciones: Definiciones. Reglas de equivalencia. 2. Ecuaciones de primer grado: (sencillas, con paréntesis, con denominadores).
