FUNDAMENTOS NUMÉRICOS
|
|
|
- Monica Naranjo Rivas
- hace 8 años
- Vistas:
Transcripción
1 SEMANA 3
2 ÍNDICE ECUACIONES... 3 APRENDIZAJES ESPERADOS... 3 INTRODUCCIÓN... 3 PROPIEDADES DE LA IGUALDAD... 4 ECUACIONES... 4 ECUACIONES LINEALES... 4 ECUACIONES CUADRÁTICAS... 5 RESOLUCIÓN DE UNA ECUACIÓN CUADRÁTICA SIMPLE... 6 COMPLETAR UN CUADRADO... 7 LA FÓRMULA CUADRÁTICA... 8 EL DISCRIMINANTE... 9 ECUACIONES DE OTROS TIPOS EJEMPLO: UNA ECUACIÓN CON EXPRESIONES FRACCIONARIAS ECUACIÓN CON VALOR ABSOLUTO COMENTARIO FINAL REFERENCIAS
3 ECUACIONES APRENDIZAJES ESPERADOS Después de completar esta semana, se espera que el estudiante sea capaz de resolver ecuaciones de primer orden cuadráticas y otras que basan sus mecanismos de solución en las anteriores, por ejemplo ecuaciones con raíces, fraccionarias o con valor absoluto. INTRODUCCIÓN Una ecuación es un enunciado en el que se establece que las expresiones matemáticas son iguales. Por ejemplo: = 8 Esta es una ecuación. La mayor parte de las ecuaciones que se estudian en álgebra contienen variables, las cuales son símbolos, casi siempre letras que representan números. En la ecuación: La letra es la variable. Se considera que la es la incógnita de la ecuación, por lo que el objetivo es determinar el valor de que hace que la ecuación sea cierta. Los valores de la incógnita que hacen que la ecuación sea verdadera se llaman soluciones o raíces de la ecuación y el proceso para determinar las soluciones se denomina resolución de una ecuación. Dos ecuaciones con exactamente las mismas soluciones reciben el nombre de ecuaciones equivalentes. Para resolver una ecuación, se trata de encontrar una ecuación más simple equivalente en la que la variable esté sola en un lado del signo =. Asimismo, están las propiedades que se aplican para resolver una ecuación. (En estas propiedades: A, B y C representan expresiones algebraicas y el símbolo significa equivale a ). 3
4 PROPIEDADES DE LA IGUALDAD 1., al sumar la misma cantidad a ambos miembros de una ecuación se obtiene una ecuación equivalente. 2., al multiplicar la misma cantidad distinta de cero a ambos miembros de una ecuación se obtiene una ecuación equivalente. Estas propiedades requieren que usted efectúe la misma operación en ambos lados de una ecuación cuando la resuelve. Por lo tanto, al decir se suma -7 al resolver una ecuación, lo que realmente se quiere decir es sumar -7 a cada miembro de la ecuación. ECUACIONES ECUACIONES LINEALES El tipo más sencillo de ecuación es la ecuación lineal o ecuación de primer grado, que es una ecuación en la cual cada término es una constante o un múltiplo distinto de cero de la variable. Definición: una ecuación lineal de una variable es una ecuación equivalente a una de la forma: Donde y son números reales y es la variable. A continuación, algunos ejemplos que ilustran la diferencia entre ecuaciones lineales y no lineales: Ecuaciones lineales Ecuaciones no lineales Explicación La ecuación no lineal tiene la variable al cuadrado. La ecuación no lineal tiene la variable en raíz. La variable aparece en el denominador de una de las expresiones. 4
5 Ejemplo de una ecuación Iineal. Resuelva: Solución: la ecuación se resuelve cambiándola a una equivalente en la que todos los términos que tienen la variable están en un lado y todos los términos constantes están en el otro. /-3 / +4 / Observación: puede ser una buena idea comprobar que su respuesta está correcta: Por otro lado: Con lo que se ha comprobado que la solución de la ecuación. efectivamente, es la respuesta correcta ECUACIONES CUADRÁTICAS Las ecuaciones lineales son las ecuaciones de primer grado como. Las ecuaciones cuadráticas son ecuaciones de segundo grado: o como Definición: una ecuación cuadrática es una ecuación de la forma: o Donde, y son números reales con. Algunas ecuaciones cuadráticas se pueden resolver mediante factorización y usando la propiedad básica siguiente de los números reales. Propiedad del producto nulo: 1) si y solo si o bien 5
6 Esto quiere decir que si se puede descomponer en factores el primer miembro de una ecuación cuadrática o de otro orden, entonces se puede resolverla igualando a cero, por turnos, a cada factor. Este método funciona solo cuando el segundo miembro de la ecuación es cero. Ejemplo de una ecuación cuadrática mediante factorización. Resuelva: Solución: primero se debe volver a escribir la ecuación de modo que el segundo miembro sea igual a cero. Las soluciones son: y. o Se puede observar ahora por qué a un lado de la ecuación debe ser cero en el ejemplo anterior? Al factorizar la ecuación como ayuda a determinar la solución, puesto que 24 se puede descomponer en factores de infinitas maneras, como: 6 4,,, etc. Una ecuación cuadrática de la forma, donde es una constante positiva, se factoriza como, así que las soluciones son: y. Con frecuencia se abrevia este como: Las soluciones de la ecuación son y. RESOLUCIÓN DE UNA ECUACIÓN CUADRÁTICA SIMPLE Ejemplo de ecuaciones cuadráticas simples. Encuentre la solución de cada ecuación: a) b) Solución: a) De acuerdo con el principio del ejemplo anterior, se obtiene que b) Se obtiene también la raíz cuadrada de cada miembro de esta ecuación: 6
7 Las soluciones son: y. Como se estudió en el ejemplo, si una ecuación cuadrática es de la forma, entonces se puede resolver obteniendo la raíz cuadrada de cada miembro. En una ecuación de esta forma, el primer miembro es un cuadrado perfecto: el cuadrado de una expresión lineal es. Así, si una ecuación cuadrática no se factoriza con facilidad, entonces se puede resolver, aplicando la técnica de completar el cuadrado. Esto quiere decir que se suma una constante a una expresión para hacerla un cuadrado perfecto. Por ejemplo, para hacer cuadrado perfecto se tiene que añadir 9, ya que. un COMPLETAR UN CUADRADO Para hacer que sea un cuadrado perfecto se suma. El cuadrado de la mitad del coeficiente de. Esto da el cuadrado perfecto: Ejemplos de ecuaciones cuadráticas completando el cuadrado. Resuelva: a) b) Solución: a) Si entonces, entonces: Luego: Es decir, y luego es decir o. 7
8 b) Después de restar 6 a cada miembro de la ecuación, es necesario factorizar el coeficiente de es decir, el 3, en el primer miembro para poner la ecuación en la forma correcta completando el cuadrado. Entonces o dicho de otra manera o. LA FÓRMULA CUADRÁTICA Las raíces de la ecuación cuadrática, donde, son: y Se puede aplicar esta fórmula en todos los ejercicios de ecuaciones cuadráticas que se han visto hasta ahora en el curso. Ejemplos de aplicación de Ia fórmula cuadrática. Encuentre las soluciones de las ecuaciones: a) b) c) Solución: a) En esta ecuación cuadrática se tiene que y. De acuerdo con la fórmula cuadrática: 8
9 Si se desean aproximaciones, se puede usar una calculadora para obtener: b) Al usar la fórmula cuadrática con, y se tiene que al usar la fórmula cuadrática: y Esta ecuación tiene solo una raíz, también se puede hablar de que esta ecuación tiene una raíz repetida. c) Si se usa la fórmula cuadrática con y, se obtiene: Durante el desarrollo de la asignatura, se aprendió que el dominio de la función raíz cuadrada es el conjunto de los números positivos y, por lo que la raíz de -1 solo tiene sentido matemático y no real, por lo que la ecuación cuadrática: No tiene raíces. La cantidad se denomina discriminante de la ecuación que aparece bajo el signo de la raíz cuadrada en Ia fórmula cuadrática y se representan con el signo. Si, entonces no está definido, por lo que la ecuación cuadrática no tiene solución real, como en el ejemplo anterior parte c). Si, la ecuación tiene solo una solución real, como en el ejemplo anterior parte b). Por último, si, entonces Ia ecuación tiene dos soluciones reales distintas, como en el ejemplo parte a). En lo que sigue se resumen estas observaciones. EL DISCRIMINANTE El discriminante de la ecuación cuadrática general, es: a) Si, entonces la ecuación tiene dos soluciones reales distintas. b) Si, entonces la ecuación tiene exactamente una solución real. c) Si, entonces la ecuación no tiene solución real. Ejemplo del uso del discriminante. Utilice el discriminante para determinar cuantas soluciones reales tiene cada ecuación: a) 9
10 b) c) Solución: a) El discriminante asociado a la ecuación, es:, por lo tanto la ecuación tiene dos soluciones. b) El discriminante asociado a la ecuación es, por lo que la ecuación tiene solo una solución. c) Finalmente, la ecuación de la letra c) tiene discriminante:. Por lo que esta ecuación no tiene soluciones en En seguida, se considerará una situación de la vida real que puede ser modelada mediante una ecuación cuadrática. Ejercicio propuesto: Trayectoria de un proyectil. Un objeto arrojado o lanzado hacia arriba con una velocidad inicial, alcanzando una altura de metros después de t segundos, donde y están relacionadas mediante la fórmula: Donde representa la fuerza de gravedad. Suponga que se dispara una bala directamente hacia arriba con una velocidad inicial de. Su trayectoria se muestra en la figura:. 10
11 a) Cuándo regresará la bala al nivel del piso? b) Cuándo alcanzará una altura de 1 metro? c) Cuándo alcanzará una altura de 2000 metros? d) Cuál es el punto más alto que alcanza la bala? Para resolver el ejercicio puede, si lo desea, aproximar el valor de por 10. ECUACIONES DE OTROS TIPOS EJEMPLO: UNA ECUACIÓN CON EXPRESIONES FRACCIONARIAS Resuelva la ecuación: Solución: Si se eliminan los denominadores, multiplicando ambos miembros por el mínimo común denominador se obtiene: Y simplificando las fracciones se obtiene la expresión equivalente: Reordenando los términos se escribe: Ecuación cuadrática con discriminante dos soluciones que son: y., es decir la ecuación tiene Es importante notar que al buscar soluciones para la ecuación fraccionaria original pues como se sabe no es factible dividir por cero. y Es necesario comprobar las respuestas, porque la multiplicación por una expresión que contiene la variable puede introducir soluciones extrañas. 11
12 Compruebe su respuesta cuando resuelva una ecuación que contenga radicales, se debe ser especialmente cuidadoso al comprobar las respuestas finales. EI ejemplo siguiente demuestra por qué: Solución: Para eliminar la raíz cuadrada, primero se aísla la raíz y luego se eleva al cuadrado: El discriminante de la ecuación cuadrática es, por lo tanto, las soluciones de la ecuación cuadrática son: y. Para comprobar, si estas dos soluciones son efectivamente soluciones de la ecuación original: debería ser igual a, pero es negativo y la raíz es siempre positiva, lo cuál es una contradicción, luego no puede ser solución de la ecuación. Se comprueba ahora la otra solución: Por otro lado: Por lo que sí es solución de la ecuación original. ECUACIÓN CON VALOR ABSOLUTO Del contenido de la semana 1 se sabe que, quiere decir que las soluciones son y, esta misma idea se puede aplicar a una expresión de la forma: 12
13 De donde se descompone el problema en dos: o Y la solución de la ecuación original estará formada por las dos soluciones obtenidas de los dos problemas presentados anteriormente, es decir, y. Ejemplo de una ecuación con valor absoluto. Resuelva: Solución: De acuerdo con la definición de valor absoluto, equivale a: o bien o o bien bien Las soluciones son o. 13
14 COMENTARIO FINAL Una ecuación puede plantearse como una pregunta, cuál es el valor de que satisface la expresión? Y la solución de esta ecuación viene a jugar el rol de la respuesta. Esta semana se han aprendido dos cosas fundamentales en matemáticas, por un lado está la modelación de las preguntas, es decir, saber escribir con números y variables la pregunta que se está planteando en lenguaje tradicional y luego saber cómo son los pasos a seguir para poder dar una respuesta a esta pregunta. Es necesario observar que no todas las preguntas se plantean en la misma ecuación, pero sí en cada caso se tendrá preguntas que plantean la misma idea y posteriormente la misma solución. 14
15 REFERENCIAS Baldor, A. (2004). Álgebra. México D.F.: Publicaciones Cultural S. A. Stewart, J. (1999). Cálculo, trascendentes tempranas. México: Thomson. Purcell, E. y Varberg, D. (1993). Cálculo con geometría analítica. Prentice-Hall Hispanoamericana. 15
FUNDAMENTOS NUMÉRICOS SEMANA 4
FUNDAMENTOS NUMÉRICOS SEMANA 4 ÍNDICE INECUACIONES Y DESIGUALDADES... 3 APRENDIZAJES ESPERADOS... 3 INTRODUCCIÓN... 3 INECUACIONES... 4 REGLAS DE LAS DESIGUALDADES... 4 INECUACIONES LINEALES... 5 INECUACIONES
UNIDAD DE APRENDIZAJE VI
UNIDAD DE APRENDIZAJE VI Saberes procedimentales 1. Interpreta y utiliza correctamente el lenguaje simbólico para el manejo de expresiones algebraicas. 2. Relaciona la ecuación algebraica de segundo grado
Unidad 2: Ecuaciones, inecuaciones y sistemas.
Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.
CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García
INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIONES CURSO CERO DE MATEMATICAS Apuntes elaborados por Domingo Pestana Galván y José Manuel Rodríguez García UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica
ECUACIONES DE PRIMER Y SEGUNDO GRADO
7. UNIDAD 7 ECUACIONES DE PRIMER Y SEGUNDO GRADO Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas que involucren la solución de ecuaciones de primer grado y de segundo grado
Eje temático: Álgebra y funciones Contenidos: Raíces cuadradas y cúbicas - Racionalización Ecuaciones irracionales. Nivel: 3 Medio
Eje temático: Álgebra y funciones Contenidos: Raíces cuadradas y cúbicas - Racionalización Ecuaciones irracionales. Nivel: 3 Medio Raíces 1. Raíces cuadradas y cúbicas Comencemos el estudio de las raíces
Por qué expresar de manera algebraica?
Álgebra 1 Sesión No. 2 Nombre: Fundamentos de álgebra. Parte II. Objetivo: al finalizar la sesión, el estudiante conocerá e identificará las expresiones racionales, las diferentes formas de representar
CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV
CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV 1. Números reales. Aritmética y álgebra 1.1. Operar con fracciones de números
LA ECUACIÓN CUADRÁTICA
INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: MATEMÁTICAS DOCENTE: EDISON MEJIA MONSALVE TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N 0 FECHA DURACION 3
UNIDAD: ÁLGEBRA Y FUNCIONES
ECUACIÓN DE PRIMER GRADO UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN es una igualdad entre dos epresiones algebraicas que contienen elementos desconocidos llamados incógnitas. RAÍZ O SOLUCIÓN de una ecuación
Tema 3 Álgebra Matemáticas I 1º Bachillerato. 1
Tema 3 Álgebra Matemáticas I 1º Bachillerato. 1 TEMA 3 ÁLGEBRA 3.1 FACTORIZACIÓN DE POLINOMIOS LA DIVISIBILIDAD EN LOS POLINOMIOS Un polinomio P(x) es divisible por otro polinomio Q(x) cuando el cociente
Nombre del estudiante: Grupo: Hora: Salón:
Instituto Tecnológico de Saltillo. Cuadernillo de Ejercicios de Álgebra. CURSO DE NIVELACIÓN DE ÁLGEBRA 2013 Nombre del estudiante: Grupo: Hora: Salón: CONTENIDO DEL CUADERNILLO. UNIDAD NÚMEROS REALES.
ECUACIONES. Resuelve, con sentido común, las siguientes ecuaciones... 3º ESO. PARA PRACTICAR : LIBRO [ PÁG. 102 / Nº 2, 3, 4 ] mn
ECUACIONES Comprender el lenguaje algebraico para resolver ecuaciones Resuelve, con sentido común, las siguientes ecuaciones... 3º ESO. PARA PRACTICAR : LIBRO [ PÁG. 102 / Nº 2, 3, 4 ] mn Estudiar en el
Una ecuación puede tener ninguna, una o varias soluciones. Por ejemplo: 5x 9 = 1 es una ecuación con una incógnita con una solución, x = 2
Podemos definir a las ecuaciones como una igualdad entre expresiones algebraicas (encadenamiento de números y letras ligados por operaciones matemáticas diversas),en la que intervienen una o más letras,
Matemáticas B 4º E.S.O.- Ecuaciones, Inecuaciones y Sistemas. 1
Matemáticas B 4º E.S.O.- Ecuaciones, Inecuaciones y Sistemas. 1 ECUACIONES INECUACIONES Y SISTEMAS ECUACIONES Una ecuación es una propuesta de igualdad en la que interviene alguna letra llamada incógnita.
LA ECUACIÓN CUADRÁTICA
INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : ASIGNATURA: DOCENTE: TIPO DE GUIA: MATEMÁTICAS MATEMÁTICAS EDISON MEJIA MONSALVE CONCEPTUAL - EJERCITACION PERIODO GRADO 9 N 0 4 FECHA 7 DE ABRIL
Las operaciones con números irracionales
Las operaciones con números irracionales Antes de empezar a sumar, restar, multiplicar, y realizar cualquier tipo de las operaciones con números irracionales, debemos comprender como extraer, e introducir
MATEMÁTICAS II CC III PARCIAL
UNIDAD DIDÁCTICA #3 CONTENIDO ECUACIONES LINEALES CON UNA INCOGNITA TIPOS DE ECUACIONES RESOLUCION DE ECUACIONES LINEALES INECUACIONES LINEALES 1 ECUACIONES LINEALES CON UNA INCOGNITA Una ecuación es una
4) Si el menor de los ángulos agudos de un triángulo rectángulo mide la cuarta parte del otro ángulo agudo Cuál es la medida de cada uno de ellos?
) La suma de los dígitos de un número de cifras es. Si las cifras del número se invierten, el número resultante es 9 unidades menor que el número original. Cuál es el número original? ) El gerente de un
UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE PRIMER GRADO
UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE PRIMER GRADO CONCEPTOS ECUACIÓN es una igualdad entre dos epresiones algebraicas que contienen elementos desconocidos llamados incógnitas. RAÍZ O SOLUCIÓN de una
Matemáticas Universitarias
Matemáticas Universitarias 1 Sesión No. 3 Nombre: Ecuaciones Lineales Objetivo de la asignatura: En esta sesión el estudiante aplicará las principales propiedades de ecuaciones lineales con la finalidad
Mó duló 06: Á lgebra Elemental II
INTERNADO MATEMÁTICA 016 Guía para el Estudiante Mó duló 06: Á lgebra Elemental II Objetivo: Factorizar expresiones algebraicas y generalizar la operatoria de fracciones por medio del álgebra, que le permita
Descomposición factorial. Suma o diferencia de cubos perfectos. P r o c e d i m i e n t o
103 Descomposición factorial Suma o diferencia de cubos perfectos P r o c e d i m i e n t o 1. Se abren dos paréntesis 2. En el primer paréntesis se escribe la suma o la diferencia, según el caso, de las
Ecuaciones cuadráticas Resolver ecuaciones cuadráticas fórmula cuadrática y casos especiales
Ecuaciones cuadráticas Resolver ecuaciones cuadráticas fórmula cuadrática y casos especiales Departamento de Matemáticas Universidad de Puerto Rico - Arecibo Ecuación cuadrática en forma general Una ecuación
UNIDAD 10: ECUACIONES DE SEGUNDO GRADO.
UNIDAD 10: ECUACIONES DE SEGUNDO GRADO. 10.1 Estudio elemental de la ecuación de segundo grado. Expresión general. 10.2 Resolución de ecuaciones de segundo grado completas e incompletas. 10.3 Planteamiento
Matemáticas. Matías Puello Chamorro. Algebra Operativa. 9 de agosto de 2016
Matemáticas Algebra Operativa Matías Puello Chamorro http://www.unilibrebaq.edu.co 9 de agosto de 2016 Índice 1. Introducción 3 2. Definiciones básicas del Algebra 4 2.1. Definición de igualdad............................
INTERVALOS Y SEMIRRECTAS.
el blog de mate de aida CSI: Inecuaciones pág 1 INTERVALOS Y SEMIRRECTAS La ordenación de números permite definir algunos conjuntos de números que tienen una representación geométrica en la recta real
FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma.
FICHAS REPASO º ESO OPERACIONES CON NÚMEROS ENTEROS El valor absoluto de un número entero es el número natural que resulta al prescindir del signo. Por ejemplo, el valor absoluto de es y el valor absoluto
Desigualdades o inecuaciones lineales en una variable. Prof. Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo
Desigualdades o inecuaciones lineales en una variable Prof. Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo Desigualdades Una desigualdad o inecuación usa símbolos como ,, para representar
Preparación para Álgebra universitaria con trigonometría
Preparación para Álgebra universitaria con trigonometría Este curso cubre los siguientes temas. Usted puede personalizar la gama y la secuencia de este curso para satisfacer sus necesidades curriculares.
GUÍA DE APLICACIÓN POR FRACCIONES PARCIALES
GUÍA DE APLICACIÓN POR FRACCIONES PARCIALES El método de fracciones parciales se utiliza cuando quiere integrarse una expresión de la forma, donde el numerador y el denominador son polinomios y el grado
Listo para seguir? Intervención de destrezas
9A Listo para seguir? Intervención de destrezas 9-1 Cómo identificar funciones cuadráticas Busca estas palabras de vocabulario en la Lección 9-1 el Glosario multilingüe. Vocabulario función cuadrática
a) Factoriza el monomio común. En este caso 6 se puede dividir de cada término:
Materia: Matemática de 5to Tema: Factorización y Resolución de ecuaciones 1) Factorización Marco Teórico Decimos que un polinomio está factorizado completamente cuando no podemos factorizarlo más. He aquí
GUÍA DE APRENDIZAJE. PROCESO: Prestación del Servicio / Educación Superior
GUÍA UNIDAD No. 04 Programa: Procesos Aduaneros Semestre: Primero 2012 Asignatura: Matemáticas Básicas Nombre Unidad: Factorización Subtemas: Casos de factorización Metodología de Formación: Presencial
SERIE INTRODUCTORIA. REPASO DE ALGEBRA.
SERIE INTRODUCTORIA. REPASO DE ALGEBRA. 1.- REDUCCION DE TÉRMINOS SEMEJANTES. Recuerde que los términos semejantes son aquellos que tienen las mismas letras con los mismos exponentes. Ejemplos: *7m; 5m
Curso º ESO. UNIDADES 6 Y 7: EXPRESIONES ALGEBRAICAS Y ECUACIONES Departamento de Matemáticas IES Fray Bartolomé de las Casas de Morón
2º ESO UNIDADES 6 Y 7: EXPRESIONES ALGEBRAICAS Y ECUACIONES Departamento de Matemáticas IES Fray Bartolomé de las Casas de Morón OBJETIVOS CONTENIDOS PROCEDIMIENTOS Lenguaje algebraico. Normas y Traducción
Lección 6 - Ecuaciones cuadráticas
Ecuaciones cuadráticas Objetivos: Al terminar esta lección podrás definir lo que es una ecuación cuadrática y podrás resolver ecuaciones cuadráticas. En la lección previa aprendimos lo que es una ecuación
1 Resolución de ecuaciones de 2º grado y ecuaciones bicuadradas. 4ºESO.
1 1. ECUAC. 2º GRADO Y UNA INCÓGNITA Una ecuación con una incógnita es de segundo grado si el exponente de la incógnita es dos. Ecuaciones de segundo grado con una incógnita son: Esta última ecuación parece,
Nombre del estudiante: Grupo: Hora: Salón:
Instituto Tecnológico de Saltillo. Cuadernillo de Ejercicios de Álgebra. CURSO DE NIVELACIÓN DE ÁLGEBRA 2011 Nombre del estudiante: Grupo: Hora: Salón: CONTENIDO DEL CUADERNILLO. UNIDAD NÚMEROS REALES.
Universidad de Puerto Rico en Aguadilla Departamento de Matemáticas PRONTUARIO
Universidad de Puerto Rico en Aguadilla Departamento de Matemáticas PRONTUARIO Profesor : Nombre del Estudiante : Oficina : Sección : Horas de Oficina : Página Internet : http://math.uprag.edu I. Título
Titulo: SISTEMAS DE ECUACIONES Año escolar: 3er. año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo electrónico: [email protected]
Desigualdades con Valor absoluto
Resolver una desigualdad significa encontrar los valores para los cuales la incógnita cumple la condición. Para ver ejemplos de las diferentes desigualdades que hay, haga Click sobre el nombre: Desigualdades
1 - Ecuaciones. Sistemas de Ecuaciones Mixtos
Nivelación de Matemática MTHA UNLP 1 1 - Ecuaciones. Sistemas de Ecuaciones Mixtos 1. Conjuntos numéricos Los números mas comunes son los llamados NATURALES O ENTEROS POSI- TIVOS: 1,, 3,... Para designar
1º BACH MATEMÁTICAS I
1º BACH MATEMÁTICAS I Ecuaciones, inecuaciones y sistemas Trigonometría Vectores Nº complejos Geometría Funciones. Límites. Continuidad. Derivadas Repaso en casa Potencias Radicales. Racionalización. (pag.
ECUACIONES DE 2º GRADO. Se resuelve mediante la siguiente fórmula:
ECUACIONES DE 2º GRADO Una ecuación de segundo grado es toda expresión de la forma: ax 2 + bx +c = 0 con a 0. Se resuelve mediante la siguiente fórmula: ( 1). Si es a
UNIDAD: ÁLGEBRA Y FUNCIONES ÁLGEBRA DE POLINOMIOS
C u r s o : Matemática Material N 15 UNIDAD: ÁLGEBRA Y FUNCIONES ÁLGEBRA DE POLINOMIOS GUÍA TEÓRICO PRÁCTICA Nº 1 EVALUACIÓN DE EXPRESIONES ALGEBRAICAS Evaluar una expresión algebraica consiste en sustituir
Ecuaciones de 2º grado
Ecuaciones de 2º grado Una ecuación de segundo grado es toda expresión de la forma: ax 2 + bx +c = 0 con a 0. Resolución de ecuaciones de segundo grado Para resolver ecuaciones de segundo grado utilizamos
RESUMEN ALGEBRA BÁSICA
RESUMEN ALGEBRA BÁSICA TERMINO ALGEBRAICO: Es una expresión matemática que consta de un producto (o cociente) de un número con una variable elevado a un exponente (o con varias variables). TÉRMINO ALGEBRAICO
Unidad didáctica 1. Operaciones básicas con números enteros
Unidad didáctica 1 Operaciones básicas con números enteros 1.- Representación y ordenación de números enteros Para representar números enteros en una recta hay que seguir estos pasos: a) Se dibuja una
ÍNDICE. Prefacio... xi
ÍNDICE Prefacio... xi 1 EL SISTEMA DE LOS NÚMEROS REALES... 1 1.1 Conjuntos... 1 Ejercicio 1.1, 20 problemas... 7 1.2 Constantes y variables... 8 1.3 El conjunto de los números reales... 9 Ejercicio 1.2,
4.1. Polinomios y teoría de ecuaciones
CAPÍTULO 4 Polinomios y teoría de ecuaciones 4.1. Polinomios y teoría de ecuaciones Un polinomio real en x, o simplemente polinomio en x es una expresión algebraica de la forma a n x n + a n 1 x n 1 +
EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Y POLINOMIOS
EXPRESIONES ALGEBRAICAS Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman VARIABLES, INCÓGNITAS o INDETERMINADAS
ECUACIONES.
. ECUACIONES... Introducción. Recordemos que el valor numérico de un polinomio (y, en general, de cualquier epresión algebraica) se calcula sustituyendo la/s variable/s por números (que, en principio,
UNIVERSIDAD TECNOLÓGICA DE JALISCO
TITULO DE LA PRACTICA: Ecuaciones limeales de Primer grado. ASIGNATURA: Matemáticas I HOJA: 1 DE: 6 UNIDAD TEMÁTICA: 2 FECHA DE REALIZACIÓN: Junio de 2007 NUMERO DE PARTICIPANTES RECOMENDABLE: 1 ELABORO:
Prácticas para Resolver PROBLEMAS MATEMÁTICOS
Prácticas para Resolver PROBLEMAS MATEMÁTICOS 1 Prólogo El presente manual está dirigido a los estudiantes de las facultades de físico matemáticas de las Escuelas Normales Superiores que estudian la especialidad
OPERACIONES CON POLINOMIOS
4. 1 UNIDAD 4 OPERACIONES CON POLINOMIOS Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas en los que apliques las operaciones de suma, resta, multiplicación y división de polinomios.
TEMARIO PRESENTACIÓN 7 MÓDULO I 17 EXPRESIONES ALGEBRAICAS 19
TEMARIO PRESENTACIÓN 7 MÓDULO I 17 EXPRESIONES ALGEBRAICAS 19 Introducción 19 Lenguaje común y lenguaje algebraico 22 Actividad 1 (Lenguaje común y lenguaje algebraico) 23 Actividad 2 (Lenguaje común y
Elevar a la cuarto potencia. " " raíz Elevar a " " potencia.
ECUACIONES IRRACIONALES Suponga que su profesor ha dado instrucciones a los miembros de su clase de matemáticas que en parejas, encuentren la longitud de un segmento de línea. Usted recibe unidades de
Matemáticas Universitarias
Matemáticas Universitarias 1 Sesión No. 2 Nombre: Expresiones algebraicas y sus operaciones Objetivo de la asignatura: En esta sesión el estudiante aplicará las operaciones básicas como suma, resta, multiplicación
UNIDAD 8 INECUACIONES. Objetivo general.
8. 1 UNIDAD 8 INECUACIONES Objetivo general. Al terminar esta Unidad resolverás inecuaciones lineales y cuadráticas e inecuaciones que incluyan valores absolutos, identificarás sus conjuntos solución en
AlACiMa Alianza para el Aprendizaje de Ciencias y Matemáticas PR Math and Science Partnership (PR-MSP) Actividad Matemática Nivel 10 al 12
AlACiMa Alianza para el Aprendizaje de Ciencias y Matemáticas PR Math and Science Partnership (PR-MSP) Actividad Matemática Nivel 10 al 1 Título: Autor: Reyes Nivel: 10-1 Objetivo: Lograr que los estudiantes
UNIVERSIDAD DE ANTIOQUIA FACULTAD NACIONAL DE SALUD PÚBLICA Héctor Abad Gómez Departamento de Ciencias Específicas Página 1 de 7
Página 1 de 7 APROBADO EN EL COMITÉ DE CARRERA GESTION DE SERVICIOS DE SALUD ACTA NRO. 15-2011 Mayo 18 de 2011 PROGRAMA DE ADMINISTRACION EN SALUD El presente formato tiene la finalidad de unificar la
TEMA 2. POLINOMIOS Y FRACCIONES ALGEBRAICAS
TEMA. POLINOMIOS Y FRACCIONES ALGEBRAICAS.. Repaso de polinomios - Epresión algebraica. Valor numérico - Polinomios. Operaciones con polinomios.. Identidades notables - Cuadrado de una suma de una diferencia
UNIDAD VI.-OPERACIONES CON FRACCIONES ALGEBRAICAS. Como podrás recordar, en fracciones numéricas,, para simplificarlas era muy sencillo, pues por
UNIDAD VI.-OPERACIONES CON FRACCIONES ALGEBRAICAS Simplificación de Fracciones Algebraicas 8 Como podrás recordar, en fracciones numéricas,, para simplificarlas era mu sencillo, pues por 5 5 ejemplo para
Capítulo 1. Numeración 1 Variables... 2 Números naturales... 2 Números enteros... 3 Números reales Ejercicios Orden y valor absoluto...
ÍNDICE Capítulo 1. Numeración 1 Variables... 2 Números naturales... 2 Números enteros... 3 Números reales... 3 Ejercicios... 5 Orden y valor absoluto... 6 Ejercicios... 7 Suma de números reales... 9 Reglas
Semana 6. Factorización. Parte I. Semana Productos 7 notables. Parte II. Empecemos! Qué sabes de...? El reto es...
Semana Productos 7 notables. Parte II Semana 6 Empecemos! El tema que estudiarás en esta sesión está muy relacionado con el de productos notables, la relación entre estos y la factorización, dado que son
7 4 = Actividades propuestas 1. Calcula mentalmente las siguientes potencias y escribe el resultado en tu cuaderno: exponente. base.
21 21 CAPÍTULO : Potencias y raíces. Matemáticas 2º de ESO 1. POTENCIAS Ya conoces las potencias. En este aparato vamos a revisar la forma de trabajar con ellas. 1.1. Concepto de potencia. Base y exponente
Productos notables. Se les llama productos notables (también productos especiales) precisamente porque son muy utilizados en los ejercicios.
Productos notables Sabemos que se llama producto al resultado de una multiplicación. También sabemos que los valores que se multiplican se llaman factores. Se llama productos notables a ciertas expresiones
1. EXPRESIONES ALGEBRAICAS.
TEMA 3: POLINOMIOS 1. EXPRESIONES ALGEBRAICAS. Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas
USO DE LA PROPIEDAD DE PRODUCTO CERO 5.1.3
USO DE LA PROPIEDAD DE PRODUCTO CERO 5.1.3 El gráfico de una función cuadrática, una parábola, es una curva simétrica. Su punto más alto o más bajo recibe el nombre de vértice. El gráfico de una parábola
UNIDAD DE APRENDIZAJE II
UNIDAD DE APRENDIZAJE II NÚMEROS RACIONALES Jerarquía de Operaciones En matemáticas una operación es una acción realizada sobre un número (en el caso de la raíz y potencia) o donde se involucran dos números
CONTENIDOS MÍNIMOS del ÁREA DE MATEMÁTICAS
Dpto. de Matemáticas IES Las Breñas 4º ESO OPCIÓN B CONTENIDOS MÍNIMOS del ÁREA DE MATEMÁTICAS 1: Números reales. Septiembre-2016 Números no racionales. Expresión decimal - Reconocimiento de algunos irracionales.
ESCRITURA Y GRAFICACIÓN DE ECUACIONES LINEALES EN UNA SUPERFICIE PLANA
ESCRITURA Y GRAFICACIÓN DE ECUACIONES LINEALES EN UNA SUPERFICIE PLANA La pendiente es un número que indica lo inclinado (o plano) de una recta, al igual que su dirección (hacia arriba o hacia abajo) de
4 Ecuaciones e inecuaciones
Ecuaciones e inecuaciones INTRODUCCIÓN Comenzamos esta unidad diferenciando entre identidades y ecuaciones, y definiendo los conceptos asociados a cualquier ecuación: miembros, términos, coeficientes,
Inecuaciones: Actividades de recuperación.
Inecuaciones: Actividades de recuperación. 1.- Escribe la inecuación que corresponde a los siguientes enunciados: a) El perímetro de un triángulo equilátero es menor que 4. (x = lado del triángulo) b)
Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1. x 5x 2 6 5
Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1 POLINOMIOS Y FRACCIONES ALGEBRAICAS.1 COCIENTE DE POLINOMIOS COCIENTE DE MONOMIOS El cociente de un monomio entre otro monomio de grado igual
2. Ecuaciones de primer grado: (sencillas, con paréntesis, con denominadores).
Bloque 3. ECUACIONES Y SISTEMAS (En el libro Temas 4 y 5, páginas 63 y 81) 1. Ecuaciones: Definiciones. Reglas de equivalencia. 2. Ecuaciones de primer grado: (sencillas, con paréntesis, con denominadores).
LICEO Nº1 JAVIERA CARRERA 2012 MATEMATICA Benjamín Rojas F. FACTORIZACIÓN
LICEO Nº1 JAVIERA CARRERA 2012 MATEMATICA Benjamín Rojas F. FACTORIZACIÓN Factorizar es transformar un número o una expresión algebraica en un producto. Ejemplos: Transformar en un producto el número 6
Uniboyacá GUÍA DE APRENDIZAJE NO 7. Psicología e Ingeniería Ambiental
Uniboyacá GUÍA DE APRENDIZAJE NO 7 1. IDENTIFICACIÓN Programa académico Psicología e Ingeniería Ambiental Actividad académica o curso Matemáticas básicas Semestre Segundo de 2012 Actividad de aprendizaje
Ecuaciones, inecuaciones y sistemas
Ecuaciones, inecuaciones y sistemas. Matemáticas Aplicadas a las Ciencias Sociales I 1 Ecuaciones, inecuaciones y sistemas Ecuaciones con una incógnita. Ecuación.- Una ecuación es una igualdad de expresiones
El cuadrado de la suma de dos números es igual al cuadrado del primero más el cuadrado del segundo más el doble producto del primero por el segundo.
IDENTIDADES NOTABLES Definición Qué es una identidad notable? Es una identidad algebraica que, por su relevancia y por la gran cantidad de veces que se usa en las operaciones matemáticas, recibe el nombre
ECUACIONES. Una igualdad algebraica está formada por dos expresiones algebraicas (una de ellas puede ser un número), separadas por el signo =.
ECUACIONES IDENTIDADES, IGUALDADES FALSAS Y ECUACIONES.- Una igualdad algebraica está formada por dos epresiones algebraicas (una de ellas puede ser un número), separadas por el signo. Ejemplos.- ( ) ;
Ecuaciones lineales en una variable. Prof. Anneliesse Sánchez Adaptada por Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo
Ecuaciones lineales en una variable Prof. Anneliesse Sánchez Adaptada por Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo Qué es una ecuación? Una ecuación es una oración que expresa la igualdad
APUNTES DE FUNDAMENTOS DE MATEMATICA. CASO I: Cuando todos los términos de un polinomio tienen un factor común.
FACTORIZACION DE POLINOMIOS. CASO I: Cuando todos los términos de un polinomio tienen un factor común. Cuando se tiene una expresión de dos o más términos algebraicos y si se presenta algún término común,
Factorización de polinomios FACTORIZACIÓN DE POLINOMIOS
FACTORIZACIÓN DE POLINOMIOS 1. Polinomios Un monomio es el producto de un número real por una o más letras que pueden estar elevadas a exponentes que sean números naturales. La suma de los exponentes de
UNIDAD DOS FACTORIZACIÓN
UNIDAD DOS FACTORIZACIÓN Factorizar quiere decir descomponer en factores, los factores son divisores de una expresión que, multiplicados entre sí, dan como resultado la primera expresión. FACTOR COMÚN
Inecuaciones lineales y cuadráticas
Inecuaciones lineales y cuadráticas 0.1. Inecuaciones lineales Una inecuación lineal tiene la forma ax + b < 0 ó ax + b > 0 ó ax + b 0 ó ax + b 0. El objetivo consiste en hallar el conjunto solución de
( 3) esto no es igual a 3 ya que sería
MATEMÁTICA MÓDULO 3 Eje temático: Álgebra y Funciones 1. RAÍCES CUADRADAS Y CÚBICAS Comencemos el estudio de las raíces haciéndonos la siguiente pregunta: si el área de un cuadrado es 15 cm, cuál es su
EJERCICIOS RESUELTOS DE NÚMEROS REALES
EJERCICIOS RESUELTOS DE NÚMEROS REALES 1. Expresar mediante intervalos los siguientes subconjuntos de R: a) A = x œ R 5-x 4+x < 0 b) B = x œ R x+ d) D = x œ R x -4 x-9 0 e) E = { x œ R x + 4x x - } x-
UNIDAD DE APRENDIZAJE III
MATEMÁTICAS I ALGEBRA Unidad de Aprendizaje III UNIDAD DE APRENDIZAJE III Saberes procedimentales Saberes declarativos Expresa un polinomio en sus factores primos A Concepto de factores primos algebraicos
24 = = = = = 12. 2
UNIVERSIDAD MARIANO GÁLVEZ DE GUATEMALA FACULTAD DE CIENCIAS DE LA ADMINISTRACIÓN DIRECCIÓN GENERAL DE CENTRO UNIVERSITARIOS CENTRO UNIVERSITARIO DE VILLA NUEVA CURSO MATEMÁTICAS APLICADA I 015 Lic. Manuel
Ecuaciones de primer grado
Ecuaciones de primer grado º ESO - 3º ESO Definición, elementos y solución de la ecuación de primer grado Una ecuación de primer grado es una igualdad del tipo a b donde a y b son números reales conocidos,
II. Guía de evaluación del módulo Manejo espacios cantidades
II. Guía de evaluación del módulo Manejo espacios cantidades Modelo Académico de Calidad para la Competitividad MAEC-04 110/135 10. Matriz de valoración ó rúbrica Siglema:-MAEC-04 módulo: alumno: Docente
TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS
TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.- POLINOMIOS Recordemos que un monomio es una expresión algebraica (combinación de letras y números) en la que las únicas operaciones que aparecen entre las
PRODUCTOS Y COCIENTES NOTABLES
5. 1 UNIDAD 5 PRODUCTOS Y COCIENTES NOTABLES Objetivo general. Al terminar esta unidad resolverás ejercicios en los que apliques los resultados de los productos cocientes notables. Objetivos específicos:
TEMA Nº 1. Conjuntos numéricos
TEMA Nº 1 Conjuntos numéricos Aprendizajes esperados: Utilizar y clasificar los distintos conjuntos numéricos en sus diversas formas de expresión, tanto en las ciencias exactas como en las ciencias sociales
Cuando se enumeran todos los elementos que componen el conjunto. A = { 1, 2, 3, 4, 5 }
LOS NÚMEROS REALES TEMA 1 IDEAS SOBRE CONJUNTOS Partiremos de la idea natural de conjunto y del conocimiento de si un elemento pertenece (* ) o no pertenece (* ) a un conjunto. Los conjuntos se pueden
