Módulo 5 Inducción y Deducción
|
|
|
- Gustavo Herrera Fernández
- hace 8 años
- Vistas:
Transcripción
1 Módulo 5 Inducción y Deducción OBJETIVO: Distinguirá razonamientos en que se empleen los métodos inductivo y deductivo; la definición, construcción y forma de graficar en Diagrama de Venn las proposiciones simples y abiertas identificando su valor de verdad. Lógica Es la ciencia que tiene por objeto llegar a la verdad, utilizando el método racional. Razonamiento inductivo Es el proceso de encontrar un principio general, basándose en la presentación de hechos o casos particulares. Ejemplo: - Hecho numero uno: Meter la mano en agua a 350 grados (quemadura). - Hecho numero dos: Meter la mano en agua a 350 grados (quemadura). - Hecho numero tres: Meter la mano en agua a 350 grados (quemadura). - Principio General: Al meter la mano en agua a 350 grados sufrirías quemaduras de primer grado. Usemos el razonamiento inductivo para establecer un principio general: Un borrego fue alimentado con alfalfa durante nueve días consecutivos. qué induces que pasó en el décimo día? Razonamiento deductivo Es el proceso de utilizar un principio general aceptado como verdadero para obtener una conclusión en un caso o hecho en particular. Ejemplo: - Principio general aceptado como verdadero: Al meter la mano en agua a 350 grados sufrirías quemaduras de primer grado. - Hecho numero uno: Meter la mano en agua a 350 grados (quemadura). Usemos el razonamiento deductivo para establecer un principio particular: Todos los estudiantes de prepa aprueban matemáticas. Si Juan es un estudiante de prepa entonces:
2 Proposición Es una oración de la que se puede decir si es verdadera o falsa. Por ejemplo: El perro es un animal mamífero (verdadera) México está en el continente europeo (falsa) Dos ejemplos de oraciones que no son proposiciones abiertas son las siguientes: Karla tiene 10 años (no es verdadera ni falsa puesto que no se sabe de que Karla se está hablando). Juan Gabriel es el mejor cantante de México. (no es verdadera ni falsa puesto que no se sabe de que Juan Gabriel se está hablando). Proposiciones simples Son las oraciones o proposiciones que inmediatamente se puede decir si son verdaderas o son falsas. Valor de verdad: Es la clasificación de la proposición simple de acuerdo a si es verdadera o es falsa. Proposición simple: Los números pares son impares. Valor de verdad: Falso. Proposición simple: Monterrey es la capital de Nuevo león. Valor de verdad: Verdadero. Proposiciones abiertas Es una oración en la que interviene alguna variable (letra) y se debe tener un conjunto de reemplazamiento para decidir si es verdadera o falsa. Conjunto de verdad: Es el conjunto de elementos que hacen que la proposición sea verdadera. Oración abierta: X es un número impar Conjunto de reemplazamiento: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15} Conjunto de verdad: {1, 3, 5, 7, 9, 11, 13, 15} Oración abierta: X es un número primo Conjunto de reemplazamiento: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20} Conjunto de verdad: { 2, 3, 5, 7, 11, 13, 17, 19}
3 Gráfica de proposiciones Los diagramas de Venn son una forma de graficar proposiciones de tal manera que nos puedan ayudar a identificar más fácilmente los conjuntos. Proposición simple: El numero 6 es un numero par. Diagrama de Venn N Números Pares 6 Proposición abierta: X es un múltiplo de 4. Diagrama de Venn N Múltiplos de 4 Proposición: 3< 5 Esta proposición dice que el 3 es un elemento del conjunto de números menores que 5 y su gráfica es: Números menores que 5 * 3
4 Actividades de aprendizaje Use el razonamiento inductivo para establecer un principio general: 1.- Un estudiante de prepa observó durante cuatro días consecutivos que su novia sólo le daba un beso diario. Qué induces que pasó en el quinto día? 2.- Use el razonamiento deductivo para establecer un principio particular: Todos los entrenadores de la selección mexicana pierden en penales. Si Hugo Sánchez es un entrenador de la selección mexicana entonces: En los siguientes ejercicios clasifique las oraciones diciendo si son o no, proposiciones y en caso afirmativo, si éstas son simples o abiertas dando su valor de verdad o su conjunto de verdad según sea el caso es un número primo y + 4 = = 5 x ; x N 6.- y es un número impar; y N Utilice el lenguaje de conjuntos para modificar las siguientes proposiciones y así poder modificarlas. 7.- Todos los múltiplos de 4 son pares > Cuál de los siguientes enunciados es una proposición? a) 5 x 3 = 2x + 8 b) 5 es un factor de 45 c) Andrés Méndez es mayor. d) Un rombo es menor que un cuadrado.
5 10.- El conjunto de verdad de la proposición 2 x 5 = 3 2x; x ℵ, es: a) { 1} b) { 2} c) { 4} d) { 7} 11.- Cuál de las siguientes proposiciones es falsa? 20 a) = 4; x ℵ x 2 b) Esta proposición es falsa. c) Maribel tiene un bonito auto rojo. d) Un triangulo equilátero es isósceles En que grafica se localiza la proposición siguiente, x es un elemento del conjunto de números primos?
UNIDAD I CONJUNTOS. Módulo 1 Conjuntos
UNIDAD I CONJUNTOS Módulo 1 Conjuntos OBJETIVO: Definirá el término conjunto, determinará la pertenencia de un elemento a un conjunto; y la construcción enumerativa y descriptiva de los conjuntos. La Teoría
SECRETARIA DE EDUCACIÓN PUBLICA SUBSECRETARIA DE EDUCACIÓN MEDIA SUPERIOR DIRECCIÓN DE BACHILLERATOS ESTATALES Y PREPARATORIA ABIERTA
SECRETARIA DE EDUCACIÓN PUBLICA SUBSECRETARIA DE EDUCACIÓN MEDIA SUPERIOR DIRECCIÓN DE BACHILLERATOS ESTATALES Y PREPARATORIA ABIERTA DEPARTAMENTO DE PREPARATORIA ABIERTA MATEMÁTICAS I GUIA DE ESTUDIO
MATEMATICAS I INDICE GENERAL
UNIDAD I CONJUNTOS MATEMATICAS I INDICE GENERAL MODULO 1 CONJUNTOS, NOTACION, ORACIONES ABIERTAS, VARIABLES, CONJUNTO DE REEMPLAZAMIENTO, CONJUNTO DE VERDAD MODULO 2 CARDINALIDAD, CONJUNTOS FINITOS E INFINITOS,
Introducción: Proposiciones, argumentos e inferencias. Inferencias deductivas e inductivas. Deducción: Inferencias transitivas (Silogismos lineales)
Tema 2.- Deducción. Psicología del Pensamiento, Guión del Tema 2 Prof.: Eduardo Madrid Bloque 1: Razonamiento y variedades del pensamiento. Introducción: Proposiciones, argumentos e inferencias. Inferencias
Capítulo 4. Lógica matemática. Continuar
Capítulo 4. Lógica matemática Continuar Introducción La lógica estudia la forma del razonamiento, es una disciplina que por medio de reglas y técnicas determina si un teorema es falso o verdadero, además
Benemérita Universidad Autónoma de Puebla
Tarea No. 1 Matemáticas Elementales Profesor Fco. Javier Robles Mendoza Benemérita Universidad Autónoma de Puebla Facultad de Ciencias de la Computación Lógica y Conjuntos 1. Considere las proposiciones
Material diseñado para los estudiantes del NUTULA, alumnos del profesor Álvaro Moreno.01/10/2010 Lógica Proposicional
Lógica Proposicional INTRODUCCIÓN El humano se comunica con sus semejantes a través de un lenguaje determinado (oral, simbólico, escrito, etc.) construido por frases y oraciones. Estas pueden tener diferentes
CORPORACION UNIFICACADA NACIONAL DE EDUCACION SUPERIOR CUN- DEPARTAMENTO DE CIENCIAS BÁSICAS: PENSAMIENTO LOGICO-MATEMATICO
CORPORACION UNIICACADA NACIONAL DE EDUCACION SUPERIOR CUN- DEPARTAMENTO DE CIENCIAS BÁSICAS: PENSAMIENTO LOGICO-MATEMATICO Proposiciones Lógicas DOC. YAMILE MEDINA CASTAÑEDA GUIA N 2: LOGICA Una proposición
CONJUNTO: Colección o agregado de ideas u objetos de cualquier especie.
RESUMEN DE MATEMATICAS I PARTE I CONJUNTOS CONJUNTO: Colección o agregado de ideas u objetos de cualquier especie. A= {números pares} B= { banda de rock} ELEMENTO: Son las ideas u objetos cualesquiera
La Lógica estudia la forma del razonamiento. La Lógica Matemática es la disciplina que trata de métodos de razonamiento. En un nivel elemental, la
LÓGICA MATEMÁTICA OBJETIVOS Definirás proposición simple. Definirás proposiciones compuestas: Disyunción y conjunción. Relacionarás dichas proposiciones con las operaciones de conjuntos: unión e intersección.
MATEMÁTICAS BÁSICAS. Autora: Jeanneth Galeano Peñaloza Edición: Oscar Guillermo Riaño
MATEMÁTICAS BÁSICAS Autora: Jeanneth Galeano Peñaloza Edición: Oscar Guillermo Riaño Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá Enero de 2014 Universidad Nacional de Colombia
Números irracionales famosos
INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: GEOMETRIA NOTA DOCENTE: HUGO BEDOYA TIPO DE GUIA: Conceptual - ejercitación PARA COMPENSAR EL CESE DE ACTIVIDADES DEL
Equilátero Isósceles Escaleno
3. Escribe la letra de cada uno de los triángulos dados en la primera página de esta guía en el cuadro que le corresponde. Clasificación de los triángulos según igualdad de la longitud de sus lados Equilátero
Autora: Jeanneth Galeano Peñaloza. 3 de febrero de Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá 1/ 45
Autora: Jeanneth Galeano Peñaloza Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá 3 de febrero de 2013 1/ 45 Parte I 2/ 45 Definición intuitiva de conjunto Definición Un conjunto
LÓGICA PROPOSICIONAL
LÓGICA PROPOSICIONAL QUE ES LA LÓGICA? El sentido ordinario de la palabra lógica se refiere a lo que es congruente, ordenado, bien estructurado. Lo ilógico es lo mismo que incongruente, desordenado, incoherente.
PRISMAS VOLUMEN Y ÁREA DE SUPERFICIE y 9.1.2
PRISMAS VOLUMEN Y ÁREA DE SUPERFICIE 9.1.1 y 9.1.2 VOLUMEN DE UN PRISMA El volumen es un concepto tridimensional. Mide la cantidad de espacio interior de una figura tridimensional basado en una unidad
CURSO DE PREPARACIÓN PARA EL EXÁMEN DE INGRESO A LA UNIVERSIDAD 2012
CURSO DE PREPARACIÓN PARA EL EXÁMEN DE INGRESO A LA UNIVERSIDAD 2012 La Universidad Autónoma de Coahuila a través de la Coordinación Unidad Saltillo Invita: A los aspirantes de nivel Licenciatura al Curso
RAZONAMIENTO LÓGICO LECCIÓN 1: ANÁLISIS DEL LENGUAJE ORDINARIO. La lógica se puede clasificar como:
La lógica se puede clasificar como: 1. Lógica tradicional o no formal. 2. Lógica simbólica o formal. En la lógica tradicional o no formal se consideran procesos psicológicos del pensamiento y los métodos
Mó duló 04: Á lgebra Elemental I
INTERNADO MATEMÁTICA 016 Guía para el Estudiante Mó duló 04: Á lgebra Elemental I Objetivo: Identificar y utilizar conceptos matemáticos asociados al estudio del álgebra elemental. Problema 1 La edad de
INSTITUTO SUPERIOR PEDAGÓGICO LOS RÍOS PROYECTO DE LA UNIDAD INVESTIGACIÓN EJERCICIOS DE PRIMEL NIVEL MATEMÁTICO
INSTITUTO SUPERIOR PEDAGÓGICO LOS RÍOS PROYECTO DE LA UNIDAD INVESTIGACIÓN Nombre: Curso: EJERCICIOS DE PRIMEL NIVEL MATEMÁTICO Realice los ejercicios y seleccione la respuesta correcta encerrada en un
El conjuntos de los estudiantes inteligentes de la UPR Río Piedras. El conjunto de los mejores baloncelistas de la NBA.
1 Conjuntos Un conjunto es una colección de objetos bien definida. Ejemplos de conjuntos: El conjuntos de todos los estudiantes matriculados en el programa immersión. El conjunto de todos los pueblos de
PREPARATORIA ABIERTA Cuestionario matemáticas I. Modulo I al XVI MODULO I
PREPARATORIA ABIERTA Cuestionario matemáticas I Modulo I al XVI MODULO I 1. - Es una colección o agregado de ideas u objetos de cualquier especie siempre y cuando estén tan claros y definidos como para
Un enunciado es toda frase u oración que se emite
OBJETIO 2: Aplicar la lógica proposicional y la lógica de predicados en la determinación de la validez de una proposición dada. Lógica Proposicional La lógica proposicional es la más antigua y simple de
LOGICA MATEMATICA. El dar un juicio nos permite comparar las características primarias o secundarias del objeto o termino y valorarlas
DEINICIÓN ETIMOLÓGICA DE LÓGICA EL término LOGICA viene de dos voces griegas: Logos, que significa palabra, tratado, pensamiento o razón e icos que significa relacionado con, por lo tanto lógica significa
ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS 2013 ÁLGEBRA I
ESCUELA MILITAR DE INGENIERÍA Elaborado por: Lic. Bismar Choque Nina MISCELÁNEAS DE PROBLEMAS 2013 ÁLGEBRA I A pesar de que la refutación por ejemplo del contrario es un procedimiento válido, los teoremas
3. OBJETIVOS ESPECÍFICOS (De formación académica): Como resultado de cada capítulo el estudiante estará en capacidad de:
MATERIA Lógica y Argumentación. CÓDIGO 08273 PRERREQUISITOS: Ninguno. PROGRAMAS: Todos los programas de pregrado. PERÍODO ACADÉMICO: 162-2 (Segundo semestre de 2016) INTENSIDAD HORARIA: 4 horas semanales
Examen final de Lógica y argumentación (Fecha: xxxxxxxx)
1 Examen final de Lógica y argumentación (Fecha: xxxxxxxx) Nombre: Código: Profesor y grupo: 1. 1 (6%) Construya un silogismo de forma: oao-3, con estas especificaciones: Término mayor: Rascacielos Término
Algoritmos y Estructura de Datos I
Clase práctica de Especificación - Lógica proposicional Viernes 20 de Marzo de 2015 Menú del día Fórmulas bien formadas Tablas de verdad Tautologías, Contingencias y Contradicciones Relación de fuerza
Algunos ejemplos de conjuntos pueden ser los siguientes:
1. CONJUNTOS Y PRODUCTO CRTESINO. OBJETIVOS: 1) Establecer los conceptos básicos y las distintas notaciones para conjuntos. 2) Descripción de conjuntos en distintas formas: Lista, expresión verbal, expresión
Lógica proposicional. Ivan Olmos Pineda
Lógica proposicional Ivan Olmos Pineda Introducción Originalmente, la lógica trataba con argumentos en el lenguaje natural es el siguiente argumento válido? Todos los hombres son mortales Sócrates es hombre
Introducción a la Lógica
Tema 0 Introducción a la Lógica En cualquier disciplina científica se necesita distinguir entre argumentos válidos y no válidos. Para ello, se utilizan, a menudo sin saberlo, las reglas de la lógica. Aquí
PLAN DE UNIDAD 8.1. Enfoque de Contenido. racional positivo.
ETAPA ACTIVIDADES PARA EL LOGRO DE LAS TAREAS DE DESEMPEÑO TAREAS DE DESEMPEÑO U OTRA EVIDENCIA Antes (Dirigen la instrucción hacia la exploración del conocimiento previo del estudiante) Durante(El estudiante
UNIVERSIDAD MAYOR DE SAN SIMON FACULTAD DE CIENCIAS Y TECNOLOGÍA PLAN GLOBAL ALGEBRA I
UNIVERSIDAD MAYOR DE SAN SIMON FACULTAD DE CIENCIAS Y TECNOLOGÍA PLAN GLOBAL ALGEBRA I I. DATOS DE IDENTIFICACIÓN Nombre de la materia: ALGEBRA I Código: 2008019 Grupo: 4 Carga horaria: 2 TEÓRICAS Y DOS
LÓGICA FORMAL. PROPOSICIONES. CONECTORES LÓGICOS. TABLAS DE VERDAD. Introducción a la programación EPET N 3
LÓGICA FORMAL. PROPOSICIONES. CONECTORES LÓGICOS. TABLAS DE VERDAD. Introducción a la programación EPET N 3 LÓGICA Los seres humanos constantemente realizamos deducciones. Esto quiere decir que obtenemos
GESTIÓN ACADÉMICA GUÍA DIDÁCTICA
PÁGINA: 1 de 10 Nombres y Apellidos del Estudiante: Docente: Área: Matemáticas Grado: OCTAVO Periodo: SEGUNDO GUIA 1 Duración: 15horas Asignatura: Matemáticas ESTÁNDAR: Construyo expresiones algebraicas
Introducción. Ejemplos de expresiones que no son proposiciones
Introducción El objetivo de los matemáticos es descubrir y comunicar ciertas verdades. Las matemáticas son el lenguaje de los matemáticos y una demostración, es un método para comunicar una verdad matemática
mismo número consecutivos cualesquiera r) Dos números consecutivos h) La cuarta parte de un número
MATEMÁTICAS ª ESO LENGUAJE ALGEBRAICO. ECUACIONES. Epresa algebraicamente los siguientes enunciados verbales: Ejemplo Un número cualquiera a a) El doble de un número b) Un número aumentado en. c) Un número
Apuntes de Lógica Proposicional
Apuntes de Lógica Proposicional La lógica proposicional trabaja con expresiones u oraciones a las cuales se les puede asociar un valor de verdad (verdadero o falso); estas sentencias se conocen como sentencias
Matemáticas Currículum Universal
Matemáticas Currículum Universal Índice de contenidos 08-11 años 2013-2014 Matemáticas 08-11 años USOS DE LOS NÚMEROS NATURALES Reconocer la utilidad de los números naturales para contar y ordenar elementos.
Conjuntos - Otra Forma Para Contar
Universidad de Puerto Rico Recinto Universitario de Mayagüez AFAMaC-Matemáticas Cesar A. Barreto - Gabriel D. Uribe Septiembre 5 de 2010 Definiciones y Notación Definición Un conjunto es una colección
Borrador del temario de la guía PAA. PRIMERA PARTE: RAZONAMIENTO VERBAL.
Borrador del temario de la guía PAA. PRIMERA PARTE: RAZONAMIENTO VERBAL. -Razonamiento verbal. -Sinónimos. -Antónimos. -Estructura de una oración. -Conectores de una oración. -Uso adecuado de la sintaxis
Capítulo 1 Lógica Proposicional
Capítulo 1 Lógica Proposicional 1.1 Introducción El ser humano, a través de su vida diaria, se comunica con sus semejantes a través de un lenguaje determinado (oral, escrito, etc.) por medio de frases
TEMA I. INTRODUCCIÓN A LA LÓGICA Y AL RAZONAMIENTO DEDUCTIVO.
Lógica y razonamiento. La lógica es el estudio de los métodos que permiten establecer la validez de un razonamiento, entendiendo como tal al proceso mental que, partiendo de ciertas premisas, deriva en
I. CONSIDERACIONES GENERALES
MATRIZ DE ESPECIFICACIONES DE LA PRUEBA NACIONAL DE SUFICIENCIA EN COMPRENSIÓN DE TEXTOS Y RAZONAMIENTO LÓGICO MATEMÁTICO PARA LA INCORPORACIÓN AL COLEGIO MAYOR SECUNDARIO PRESIDENTE DEL PERÚ I. CONSIDERACIONES
Capítulo 1: Fundamentos: Lógica y Demostraciones Clase 2: Lógica de Predicados y Métodos de Demostración
Capítulo 1: Fundamentos: Lógica y Demostraciones Clase 2: Lógica de Predicados y Métodos de Demostración Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 1: Fundamentos:
EJERCICIOS DE EXPRESIONES ALGEBRAICAS
EJERCICIOS DE EXPRESIONES ALGEBRAICAS Ejercicio nº.- Epresa en lenguaje algebraico cada uno de los siguientes enunciados: a El 0% de un número. b El área de un rectángulo de base cm y altura desconocida.
Guía de estudio de Lógica Examen final 1 y 2da. Vuelta. Prof. Federico Meza Mejía Ciclo escolar
Página 1 de 5 Guía de estudio de Lógica Examen final 1 y 2da. Vuelta. Prof. Federico Meza Mejía Ciclo escolar 2014-2015 1. Definición real y etimológica de lógica. 2. Definición real y etimológica de filosofía.
INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: ASIGNATURA: MATEMATICAS. NOTA
INSTITUCION EDUCATIA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: MATEMATICAS. NOTA DOCENTE: HUGO HERNAN BEDOYA TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO ECHA N DURACION 1
LÓGICA Y PENSAMIENTO CRÍTICO
LÓGICA Y PENSAMIENTO CRÍTICO La disciplina en el pensamiento, como piedra angular de la generación del conocimiento, ha sido reconocida desde la antigüedad y se ha valorado cada día más con un elemento
1 Expresiones algebraicas
1 Epresiones algebraicas Página 7 1. Epresa en lenguaje algebraico. El doble de un número menos su tercera parte. b) El doble del resultado de sumarle tres unidades a un número. c) La edad de Alberto ahora
Eje 2. Razonamiento lógico matemático
Razonamiento deductivo e inductivo La historia de las matemáticas se remonta al antiguo Egipto y Babilonia. Ante la necesidad de resolver problemas a través de errores y victorias, estas culturas lograron
PARA CONSTRUIR CUALQUIER TIPO DE TRIÁNGULOS Y POLIGONOS REGULARES. DANIEL BEJARANO SEGURA Licenciado en Matemáticas y Física
MÉTODO DABEJA PARA CONSTRUIR CUALQUIER TIPO DE TRIÁNGULOS Y POLIGONOS REGULARES DANIEL BEJARANO SEGURA Licenciado en Matemáticas y Física [email protected] MÉTODO DABEJA PARA CONSTRUIR CUALQUIER TIPO DE
a. Todos los procesadores de palabra permiten imprimir el Yo tengo un procesador de palabras. Por lo tanto yo puedo imprimir el
Inicio: Considerar el siguiente argumento: a. Todos los procesadores de palabra permiten imprimir el símbolo @. Yo tengo un procesador de palabras. Por lo tanto yo puedo imprimir el símbolo @. En argumento
Asignatura: Matemática Fundamental [405036M-02] Taller 1 Lenguaje Simbólico y lógica proposicional
Asignatura: Matemática Fundamental [405036M-02] Taller 1 Lenguaje Simbólico y lógica proposicional 1. Responda las siguientes preguntas: a) Qué es un lenguaje formal? b) Qué es lenguaje matemático? c)
5to Grado - Geometría, Medidas, y Algebra Estándar Básico 3. Evaluación.
5to Grado - Geometría, Medidas, y Algebra Estándar Básico 3. Evaluación. 5.3.1 Identificar y clasificar triángulos de acuerdo a sus ángulos (agudo, recto, obtuso) y lados (escaleno, isósceles, equilátero).
número par o impar de divisores. El subconjunto de los números naturales en que todos
Código de pregunta: 1.3.07 Ítem El conjunto de divisores de un número natural es finito. Este conjunto puede tener un número par o impar de divisores. El subconjunto de los números naturales en que todos
Materia: Matemáticas Curso: Octavo de Básica
Materia: Matemáticas Curso: Octavo de Básica BREVE DESCRIPCIÓN DE LA CLASE: Formar entre el profesor y el estudiante/es una comunidad de trabajo por medio de la creatividad y estructura de los conocimientos
Centro Educativo Distrital Don Bosco V.
TEMAS COMPETENCIAS LOGROS INDICADORES DE LOGRO UNIDAD DIDÁCTICA (METODOLOGIA, TRANSVERSALIDAD Y EVALUACION) 1.Fundamentos de Lógica Matemática: Proposiciones simples y compuestas. Conectores lógicos Tablas
Introd. al Pens. Científico Nociones básicas de la lógica ClasesATodaHora.com.ar
ClasesATodaHora.com.ar > Exámenes > UBA - UBA XXI > Introd. al Pensamiento Científico Introd. al Pens. Científico Nociones básicas de la lógica ClasesATodaHora.com.ar Razonamientos: Conjunto de propiedades
COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS (GEOMETRÍA)
COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS (GEOMETRÍA) GRADO:7 O DOCENTE: Nubia E. Niño C. FECHA: 9 / 06 / 15 Guía Didáctica 3-1 Desempeño: Determina la clasificación
MATEMÁTICA. Módulo Educativo Etapa Presencial Docente Coordinadora: Bioq. y Farm. Marta Marzi
MATEMÁTICA Módulo Educativo Etapa Presencial 2014 Docente Coordinadora: Bioq. y Farm. Marta Marzi Facultad de Ciencias Bioquímicas y Farmacéuticas UNIVERSIDAD NACIONAL DE ROSARIO Suipacha 531 0341-4804592/93/97
Método de Formación de Conceptos Básicos 1. Jerome Bruner - Jacqueline Goodnow - George Austin
Método de Formación de Conceptos Básicos 1 Jerome Bruner - Jacqueline Goodnow - George Austin 1. Supuestos Supuestos sobre la Persona El ser humano es capaz de discriminar la compleja y amplia diversidad
ALGUNAS NOTAS SOBRE METODOS DE INVESTIGACION CIENTIFICA
UNIVERSIDAD NACIONAL DE PIURA FACULTAD DE ECONOMIA Diplomado en Gestión Pública Descentralizada Enero Julio 2010 ALGUNAS NOTAS SOBRE METODOS DE INVESTIGACION CIENTIFICA Método de Investigación Es el procedimiento
TEMA 8 PENSAMIENTO Y LENGUAJE -5. LAS CATEGORÍAS DEL PENSAMIENTO
TEMA 8 PENSAMIENTO Y LENGUAJE -5. LAS CATEGORÍAS DEL PENSAMIENTO 5. LAS CATEGORÍAS DEL PENSAMIENTO El lenguaje verbal se construye a partir de fonemas, morfemas, palabras y oraciones El pensamiento se
Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 1: Lunes 11 Viernes 16 de Marzo. Contenidos
Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 1: Lunes 11 Viernes 16 de Marzo Complementos Contenidos Clase 1: Elementos de lógica: Conectivos, tablas de verdad, tautologías y contingencias.
SÍLABO : OPERACIONES MATEMÁTICAS I
SÍLABO I. INFORMACIÓN GENERAL ASIGNATURA : OPERACIONES MATEMÁTICAS I ESPECIALIDAD : TODAS LAS CARRERAS CICLO : I PRE- REQUISITO : NINGUNO HORAS SEMANALES : 3 II. DESCRIPCIÓN DEL CURSO La matemática, por
ELEMENTOS DE LÓGICA Y TEORÍA DE CONJUNTOS. Dra. Patricia Kisbye Dr. Alejandro L. Tiraboschi
ELEMENTOS DE LÓGICA Y TEORÍA DE CONJUNTOS Dra. Patricia Kisbye Dr. Alejandro L. Tiraboschi 3 INTRODUCCIÓN Estas notas han sido elaboradas con el objetivo de ofrecer al ingresante a las carreras de la
GUÍA DE ACTIVIDADES Y RÚBRICA DE EVALUACIÓN. Evaluación Nacional por ABP (Aprendizaje Basado en Problemas) _Pensamiento Lógico y Matemático
GUÍA DE ACTIVIDADES Y RÚBRICA DE EVALUACIÓN Evaluación Nacional por ABP (Aprendizaje Basado en Problemas) 200611_Pensamiento Lógico y Matemático 2015_8-05 Cronograma de Actividades Fecha de Inicio: 07
Lógica Proposicional. Guía Lógica Proposicional. Tema III: Cuantificadores
Guía Lógica Proposicional Tema III: Cuantificadores 1.7.2. CUANTIFICADORES Los cuantificadores permiten afirmaciones sobre colecciones enteras de objetos en lugar de tener que enumerar los objetos por
CORPORACIÓN UNIFICADA NACIONAL DE EDUCACIÓN SUPERIOR CUN GUÍA DE FUNDAMENTOS DE MATEMÁTICAS DOCENTE : YAMILE MEDINA CASTAÑEDA
GUÍA # 2 LÓGICA DOCENTE : YAMILE MEDINA CASTAÑEDA PROPOSICIONES Y OPERACIONES LÓGICAS. Una proposición o enunciado es una oración (expresión con sentido completo) de la cual puede afirmarse si es falsa
Guía para el estudiante
Guía para el estudiante Guía realizada por Jefferson Bustos Profesional en Matemáticas Master en Educación Nombre: Fecha: Curso: Dentro del lenguaje común, las palabras y frases pueden tener diversas interpretaciones.
Guía para maestro. Conectores lógicos y tablas de verdad. Compartir Saberes
Guía para maestro Guía realizada por Jefferson Bustos Profesional en Matemáticas Master en educación El razonamiento no solo constituye una de las competencias básicas en el pensamiento matemático, sino
Big Math for Little Kids en Español
Big Math for Little Kids en Español correlated to Texas Essential Knowledge and Skills - Spanish Kindergarten BIG MATH FOR LITTLE KIDS en Español Pearson Learning Group correlated to Texas Essential Knowledge
Taller de Análisis Lógico de Argumentos Filosóficos Semestre FORMALIZACIÓN: CONECTIVAS Y CONSTÁNTES LÓGICAS. I. Lenguaje formal.
FORMALIZACIÓN: CONECTIVAS Y CONSTÁNTES LÓGICAS I. Lenguaje formal. 1 II. Definición y utilidad de la formalización Formalización es el proceso de traducción de los argumentos del lenguaje natural a esquemas
Resumen de las clases teóricas del turno tarde a cargo de la Prof. Alcón.
Resumen de las clases teóricas del turno tarde a cargo de la Prof. Alcón. 0.1. Elementos de lógica Una proposición es una oración declamativa a la cual se le puede asignar un valor verdad: verdadera (V)
Números naturales y recursividad
Números naturales y recursividad Rafael F. Isaacs G. * Fecha: 12 de abril de 2004 Números naturales Cuál es el primer conjunto de números que estudiamos desde la escuela primaria? Se sabe que los números
LÓGICA I Programa del curso
UNIVERSIDAD NACIONAL DE COLOMBIA FACULTAD DE CIENCIAS HUMANAS DEPARTAMENTO DE FILOSOFÍA Curso: Lógica I 2015-II Profesor: Gustavo Silva ([email protected]) LÓGICA I Programa del curso I. Objetivos y
Matemáticas Grado 3 Reglas para identificar números
Matemáticas Grado 3 Reglas para identificar números Estimado padre o tutor legal: Actualmente su hijo/a está aprendiendo como usar reglas para identificar un número. Ésta es su oportunidad para ayudarle
MATEMÁTICAS GRADO 6º UNIDAD 1 LÓGICA
MATEMÁTICAS GRADO 6º UNIDAD 1 LÓGICA 1 LOGRO: Reconocer las propiedades de la lógica y los conjuntos aplicando este conocimiento a la cotidianidad e identificando la estrecha relación entre ambas teorías
TEMA N 1 LÓGICA Y CONJUNTOS
TEMA N 1 LÓGICA Y CONJUNTOS DEFINICIÓN Y NOTACIÓN DE CONJUNTOS OBJETIVOS Comprenderás, o repasarás, la idea intuitiva de conjunto. Definirás conjuntos por enumeración y por comprensión, así como su forma
Ecuaciones. Son igualdades algebraicas que se cumplen solo para algunos valores de la letra.
TEMA 4: EL LENGUAGE ALGEBRAICO. POLINOMIOS EXPRESIONES ALGEBRAICAS Para obtener las epresiones algebraicas hay que utilizar el lenguaje algebraico. Hay epresiones algebraicas de varios tipos: Monomios.
Pontificia Universidad Católica del Ecuador
1. DATOS INFORMATIVOS: MATERIA: Algebra Lineal y Geometría Analítica CÓDIGO: CARRERA: Civil NIVEL: Primero No. CRÉDITOS: 6 CRÉDITOS TEORÍA: 6 SEMESTRE/AÑO ACADÉMICO: Agosto Diciembre 2008 CRÉDITOS PRÁCTICA:
1. En la recta real, qué número(s) NO se encuentra(n) en su correcta ubicación?
1. En la recta real, qué número(s) NO se encuentra(n) en su correcta ubicación? 3. Cuál fue el ingreso total de toda la mercancía vendida? A. $29 069 B. $28 589 C. $28 730 D. $28 391 A. 0 y 2 B. 1 y 2
UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA - UNAD CURSO DE LÓGICA MATEMÁTICA TRABAJO FINAL PUNTOS A DESARROLLAR
UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA - UNAD CURSO DE LÓGICA MATEMÁTICA TRABAJO FINAL Con su grupo de trabajo resolver los siguientes puntos, sustentando cada una de sus respuestas. PUNTOS A DESARROLLAR
UNIDAD 7. SISTEMA MÉTRICO DECIMAL
UNIDAD 7. SISTEMA MÉTRICO DECIMAL Reconocer la necesidad de medir, apreciar la utilidad de los instrumentos de medida y conocer los más importantes. Definir el metro como la unidad principal de longitud,
INSTITUTO FRANCISCO POSSENTI, A.C. Per crucem ad lucem. Preparatoria (1085)
INSTITUTO FRANCISCO POSSENTI, A.C. Per crucem ad lucem Preparatoria (1085) GUÍA DE LÓGICA CLAVE: 1404 Tema 1. Introducción 1. Da la definición real y etimológica de Lógica. 2. Cuál es el objeto propio
Recuerdas la reunión social del sexto grado del concepto anterior?
Materia: Matemática de séptimo Tema: Reglas de divisibilidad Recuerdas la reunión social del sexto grado del concepto anterior? Recuerdas que había dos grupos de estudiantes que asisten a la reunión, uno
PROCESO DE PLANEACIÓN DIDÁCTICA DEL PROYECTO INTEGRADOR DE
PROCESO DE PLANEACIÓN DIDÁCTICA DEL PROYECTO INTEGRADOR DE 1er. SEMESTRE. CBU 2015. LÓGICA Eje: Salud adolescente y práctica de habilidades sociales: convivencia y prevención de la violencia. Proyecto:
Comprende los tipos y las propiedades de los triángulos. Recordemos que... Los ángulos reciben su nombre de acuerdo a su medida, éstos son:
04 Lección Triángulos Propiedades y Postulados Estudio Comprende los tipos y las propiedades de los triángulos. En Presentación de Contenidos se repasa la clasificación de triángulos de acuerdo a sus lados
EJERCICIOS PROPUESTOS. Escribe las expresiones algebraicas correspondientes. a) Tres números consecutivos. b) Tres números pares consecutivos.
4 POLINOMIOS EJERCICIOS PROPUESTOS 4.1 Relaciona cada enunciado con su epresión algebraica. Múltiplo de 3. Número par. El cuadrado de un número más 3. Un número más 5. El triple de un número más 7. 5 3
La forma general de toda proposición categórica es la siguiente: cuantificador + sujeto + cópula + predicado
1.5 Proposiciones categóricas Las proposiciones categóricas son aquéllas que hacen afirmaciones incondicionales. Por ejemplo, todos los hombres son mortales es una proposición categórica, mientras que
MÉTODOS DE LA INVESTIGACIÓN. Víctor Hugo Abril, Ph. D.
MÉTODOS DE LA INVESTIGACIÓN Víctor Hugo Abril, Ph. D. 1 FRASE DE REFLEXIÓN "Quien estudia y trabaja sin método es como el navegante sin brújula" (Aura Babaresco de Prieto) 2 DEFINICIÓN DE MÉTODO El término
Una proposición es una afirmación que debe ser cierta o falsa (aunque no lo sepamos).
Lógica intuitiva Una proposición es una afirmación que debe ser cierta o falsa (aunque no lo sepamos). A : Las águilas vuelan B : El cielo es rosa C : No existe vida extraterrestre D : 5 < 3 E : Algunos
Matemáticas Discretas TC1003
Matemáticas Discretas TC1003 Módulo I: s Válidos Departamento de Matemáticas ITESM Módulo I: s Válidos Matemáticas Discretas - p. 1/50 En matemáticas y en lógica un argumento no es una disputa. Más bien,
Introducción a la geometría
Introducción a la geometría Este curso cubre los siguientes temas. Usted puede personalizar la gama y la secuencia de este curso para satisfacer sus necesidades curriculares. Plan de estudios (217 temas)
CEPRUNSA EXCELENCIA LÓGICA - 8
CERUNA EXCELENCIA LÓGICA - 8 EIÓN 08 - ILOGIMO CATEGÓRICO 1. EL ILOGIMO 1.1. DEFINICIÓN Es una inferencia mediata compuesta por proposiciones categóricas (A E I O), que consiste en obtener una conclusión
CAPÍTULO I LÓGICA Y GEOMETRÍ A
Introducción CAPÍTULO I LÓGICA Y GEOMETRÍ A La geometría estudia las propiedades de los cuerpos extensos en el espacio, haciendo abstracción de todo lo que no sea extensión. No se ocupa, por lo tanto,
Materia: Matemáticas Curso: Noveno de Básica BREVE DESCRIPCIÓN DE LA CLASE:
Materia: Matemáticas Curso: Noveno de Básica BREVE DESCRIPCIÓN DE LA CLASE: Durante este curso se contribuirá al desarrollo del pensamiento lógico, reflexivo y crítico de los estudiantes, es por ello,
