TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO VECTORES: MAGNITUDES ESCALARES Y VECTORIALES VECTORES

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO VECTORES: MAGNITUDES ESCALARES Y VECTORIALES VECTORES"

Transcripción

1 TALLER VERTICAL DE MATEMÁTICA VECTORES Cets mgntudes, que quedn pefectmente defnds po un solo númeo el su medd o módulo) se denomnn MAGNITUDES ESCALARES pudendo epesentse po segmentos tomdos soe un ect. Son mgntudes escles, l longtud, l supefce, el volumen etc. Exsten ots mgntudes, p ls cules no esult sufcente un númeo p su detemncón. Po ejemplo, s queemos expes que hemos plcdo soe un cuepo un fuez de 0 kg, no st el númeo el 0 p dentfcl; es neceso demás ndc: DIRECCION, SENTIDO Y PUNTO DE APLICACION de l fuez. Un mgntud de ls ccteístcs de l descpt ece el nome de MAGNITUD VECTORIAL, y se epesent geométcmente mednte un elemento que l smolz denomndo VECTOR FIJO poque tene un punto de plccón). En el sguente ejemplo, puede vese l dfeenc de efectos, s p el msmo módulo, l msm deccón y el msmo sentdo cmmos el punto de plccón del vecto. F 0 kg. Exsten otos tpos de vectoes: F 0 kg. ) Aquellos cuyo efecto esult se el msmo s ctún con gul módulo, deccón y sentdo) soe l msm ect de ccón y que se denomnn VECTORES AXILES O DESLIZANTES. Son los vectoes que se utlzn en Estuctus p estud el equlo de los cuepos ígdos) Págn

2 TALLER VERTICAL DE MATEMÁTICA Cundo se plc l fuez F en el cuepo ígdo A el efecto no ví s l msm se uc soe l msm ect de ccón. F A A F ) Aquellos cuyo efecto esult se el msmo s ctún con gul módulo, deccón y sentdo) soe culque poscón de ls nfnts ects plels un deccón pefjd. Estos vectoes, que estudemos en el pesente cuso, ecen el nome de VECTORES LIBRES. Es dec que s dos vectoes ctún soe ects plels y tenen el MISMO MODULO y el MISMO SENTIDO, demos que son IGUALES, puesto que l se sus ects sostén plels, TIENEN LA MISMA DIRECCION. Los vectoes que cumplen con l condcón pecedente se denomnn VECTORES EQUIPOLENTES. En genel, llmemos vecto todo SEGMENTO ORIENTADO. El punto A se denomn ogen del vecto y el punto B extemo del msmo. B A L ect sostén del segmento AB detemn LA DIRECCION y l punt de l flech, o se, l oentcón desde A hc B detemn EL SENTIDO DEL VECTOR. AB Nomenclemos los vectoes:,, AB ó AB Págn

3 TALLER VERTICAL DE MATEMÁTICA En lo sucesvo, cundo hlemos de VECTOR se entendeá que nos efemos l VECTOR LIBRE. Iguldd ente vectoes Demos que dos vectoes son gules s son equpolentes. OPERACIONES ENTRE VECTORES SUMA DE VECTORES. A B A B C s + D C D L sum de los vectoes y es el VECTOR cuyo ogen es el ogen de un vecto equpolente de y cuyo extemo es el extemo de un vecto equpolente de tzdo pt del extemo del vecto equpolente de. S los vectoes y los ucmos con un ogen común O, p sumlos podemos utlz l REGLA DEL PARALELOGRAMO que se lust en l sguente fgu: s + P efectu l sum de vos vectoes se pocede de l sguente mne: se sumn dos de los vectoes y su vecto SUMA ó RESULTANTE se sum con el sguente vecto y sí sguendo hst temn con todos los vectoes. El vecto SUMA ó RESULTANTE es el vecto que tene su ogen concdente con el ogen del pme vecto y su extemo con el extemo del últmo vecto sumdo. L epesentcón gáfc es l sguente: Págn

4 TALLER VERTICAL DE MATEMÁTICA O R s s 4 s 5 4 S el extemo del últmo vecto sum concde con el ogen del pmeo, el VECTOR SUMA O RESULTANTE ES EL VECTOR NULO. DIFERENCIA DE VECTORES. A B B' D' A' D R C' C Rest un vecto de oto es equvlente sum l vecto el vecto opuesto de. OPUESTO DE - ). En l fgu R es el vecto DIFERENCIA que se otene l est del vecto el opuesto del vecto. Págn 4

5 TALLER VERTICAL DE MATEMÁTICA PRODUCTO DE UN VECTOR POR UN ESCALAR S es un vecto y λ un escl 0 petenecente los númeos eles, el poducto ente y λ es un nuevo vecto cuyo módulo es gul l módulo del vecto multplcdo po el vlo soluto del escl λ ; cuy deccón es l que coesponde l vecto y cuyo sentdo es el del vecto s λ > 0 y el conto s λ < 0. Expesón de un vecto en coodends ctesns. Desde el punto de vst geométco un ect qued detemnd s se conocen de l msm un punto y l deccón mednte un vecto módulo unto llmdo veso; demos en ésts condcones que un eje puede dentfcse s se conoce el p odendo O, ) en el cul 0 es el ogen sendo el módulo de l undd de medd. Ddo el eje O, ) un punto culque del msmo P de scs x se dentfc mednte un vecto de ogen O y extemo P que puede expesse OP x S soe el eje tommos ho dos puntos P y P : O P x ) P x ) P P x x ) l dstnc ente P y P esultá: x x P P x x Págn 5

6 TALLER VERTICAL DE MATEMÁTICA P el espco de dos dmensones E constumos un sstem de efeenc sstem ctesno otogonl); s fjmos dos pes odendos O, ) y O, j ) epesentntes de dos ejes pependcules, el sstem se expes O,, j ) y en él de cuedo l conocd egl del plelogmo: y j y j P x, y ) OP x + y j O x x Expesón de un vecto s se conocen ls coodends de su ogen y ls de su extemo. y y y P P Un punto P culque del plno qued detemndo s se d el llmdo vecto poscón ogen O y extemo en P). Podemos otene l expesón de un vecto de ogen P y extemo P osevndo l fgu donde : j O x x x OP + P P OP de donde P P OP OP sendo OP x y j + OP x + y j Restndo ests dos expesones nos qued: OP OP P P x x ) + y y ) j y l dstnc ente P y P gul l módulo del vecto P P se otene mednte l plccón del Teoem de Ptágos: P x x ) + y ) P y Págn 6

7 TALLER VERTICAL DE MATEMÁTICA En el espco tdmensonl E dentfcmos el sstem de efeenc po el O,, j, k en el cul OP x + y j + z k sstem ) z z k P x,y,z ) j y y x x y del msmo modo que p el plno E, l expesón genel de un vecto ente dos puntos: P P x x + y y j + z z ) ) )k y l dstnc ente dos puntos P P seá gul l módulo del vecto otendo po plccón del Teoem de Ptágos en el espco P x x ) + y y ) + z ) P z Págn 7

8 TALLER VERTICAL DE MATEMÁTICA EXPRESIÓN CANÓNICA DE UN VECTOR. y j x Un vecto le puede epesentse en un sstem ctesno otogonl, de modo tl que su ogen concd con el ogen O del sstem de efeenc. En ests condcones, dcho vecto puede se expesdo como l sum de los vectoes y cuys deccones concden espectvmente con los ejes de scss y odends, es dec: + S llmmos vesoes fundmentles en el plno xy DOS VECTORES CUYOS MÓDULOS SEAN IGUALES A LA UNIDAD: en l deccón y el sentdo postvo del eje x, j en l deccón y sentdo postvo del eje y, podemos esc los vectoes y de l sguente mne: ) j ) sendo y los módulos de los vectoes y. En ests condcones + + j ) L expesón ) es l FORMA CANÓNICA DEL VECTOR. Págn 8

9 TALLER VERTICAL DE MATEMÁTICA PRODUCTO ESCALAR. Sen + j + j Defnmos como poducto escl l númeo que esult de elz el poducto de los módulos po el coseno del ángulo compenddo. cosα INTERPRETACIÓN GEOMÉTRICA DEL PRODUCTO ESCALAR. De l fgu, l poyeccón de soe el vecto vle cosα ; en consecuenc podemos dec que el poducto escl ente dos vectoes es gul l poducto del módulo de uno de ellos po l poyeccón del oto soe él. cos α ' donde ' cosα α cosα ' 90º Expesón del poducto escl en funcón de ls componentes de los vectoes que se multplcn. desollndo: Sen + j + k + j + k ) + j) + k ) + + j ) + j j) + j k ) + + k ) + k j) + k k ) del espco E Págn 9

10 TALLER VERTICAL DE MATEMÁTICA en l que de cuedo l defncón de poducto escl : cos 0º j j k k po l msm zón j j cos 90º 0 0 y del msmo modo k j j k k k j 0 esultndo v v + + n El poducto escl ente dos vectoes es un númeo gul l sum de los poductos de ls componentes que tenen l msm deccón. ÁNGULO ENTRE VECTORES. Sendo, de cuedo lo vsto: podemos esc: cosα + + cosα + + cosα expesón que nos pemte otene el coseno del ángulo ente dos vectoes. CONDICIÓN DE PARALELISMO ENTRE VECTORES. S dos vectoes y son plelos sus componentes deen se popoconles. En efecto, s y tenen l msm deccón, entonces uno de ellos puede se expesdo como el poducto ente un escl y el oto vecto: λ o en λ + j + k ) + j k + Págn 0

11 TALLER VERTICAL DE MATEMÁTICA de donde que se expes: λ λ λ λ λ λ CONDICIÓN DE PERPENDICULARIDAD ENTRE VECTORES. S dos vectoes y son pependcules, su poducto escl es nulo, es dec, 0 Sendo pependcul cos 90 º ; como semos, + + gulndo ls segunds componentes y despejndo cos α, otenemos: cosα S α 90º cos α 0 y en consecuenc P se s dos vectoes son pependcules vefcmos l vldez de l expesón nteo, s se cumple son otogonles; s el esultdo + + 0, entonces fmmos que los vectoes no son pependcules. Págn

12 TALLER VERTICAL DE MATEMÁTICA TRABAJO PRÁCTICO VECTORES Ejecco Nº.- En E sen, ) ;,) ; c 0,) ; d,4) en fom gáfc y nlítc ls sguentes opecones con vectoes. efectu ) ) + c) c d) + c + d e) f) c g) Ejecco Nº.- Ddos los sguentes vectoes, hll sus módulos, epesent gáfcmente: 4 ) + j ) 5 5 ; c) c j Ejecco N.- Hll el poducto escl ),5) y -,) v ) c + j y d 4 - j c),,) y -,,5) d ) j + k y j + k Ejecco Nº 4.- Hll el ángulo que fomn los vectoes: ) u j + k v + j + k ) u + j v k c) u j + 6 k v + 9 k Págn

MAGNITUDES ESCALARES Y VECTORIALES. Dr. CARLOS MOSQUERA

MAGNITUDES ESCALARES Y VECTORIALES. Dr. CARLOS MOSQUERA 1 MAGNITUDES ESCALARES Y VECTRIALES D. CARLS MSQUERA 2 Mgntudes escles y vectoles Defncones; popeddes y opecones En los conceptos de mecánc que desollemos, nos encontemos con dos dfeentes tpos de mgntudes:

Más detalles

Regla del Triángulo. (a) (b) (c) 1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R 0101) Repaso de Vectores

Regla del Triángulo. (a) (b) (c) 1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R 0101) Repaso de Vectores 1 Físc Genel I Plelos 5. Pofeso RodgoVeg R 11) Repso de Vectoes 1) Repso de Opecones Vectoles Us l sum ectol, usndo l egl del tángulo l del plelogmo. Clcul l mgntud deccón de l sum usndo teoem del seno

Más detalles

Para especificar la posición de un punto en el espacio, se utilizan sistemas de referencia. Esta posición se define en. sistema de referencia.

Para especificar la posición de un punto en el espacio, se utilizan sistemas de referencia. Esta posición se define en. sistema de referencia. P especfc l poscón de un puno en el espco, se uln ssems de efeenc. Es poscón se defne en fom elv lgún deemndo ssem de efeenc. 1 En un ssem de efeenc cesno, esen es ees denomndos ees cesnos X, Y, Z oogonles

Más detalles

NÚMEROS COMPLEJOS. El vector así representado define un número complejo, y a dicha representación se le llama afijo de un número complejo.

NÚMEROS COMPLEJOS. El vector así representado define un número complejo, y a dicha representación se le llama afijo de un número complejo. educgu.com NÚMEROS COMPLEJOS DEFINICIÓN Se llm númeo complejo un p odendo de númeos eles (, ). Los númeos eles y se llmn componentes del númeo complejo. A l componente se le desgn pte el y l componente

Más detalles

Tema 0: Introducción al Cálculo Vectorial

Tema 0: Introducción al Cálculo Vectorial I.E. Jn Rmón Jméne Tem 0: Intodccón l Cálclo Vectol 1.- Mgntdes escles ectoles.- Vecto. Opecones con Vectoes 3.- Podcto escl 4.- Podcto ectol 5.- Decón Vectol 6.- Integcón Vectol 7.- Momento de n Vecto

Más detalles

NÚMEROS COMPLEJOS. r φ. (0,0) a

NÚMEROS COMPLEJOS. r φ. (0,0) a Educgu.com NÚMEROS COMPLEJOS DEFINICIÓN Se llm númeo complejo un p odendo de númeos eles (,b). Los númeos eles y b se llmn componentes del númeo complejo. A l componente se le desgn pte el y l componente

Más detalles

Sistemas de Conductores.

Sistemas de Conductores. Electcdd y Mgnetsmo uso 009/00 stems de onductoes - ondensdoes Eym E- stems de onductoes. Los sstems de conductoes epesentn l páctc myoí de los polems ue se pueden encont en los sstems de telecomunccón.

Más detalles

Sistemas de Conductores.

Sistemas de Conductores. Electcdd y gnetsmo uso 005/006 stems de onductoes. os sstems de conductoes epesentn l páctc myoí de los polems ue se pueden encont en los sstems de telecomunccón. e cctezn po: Un númeo de de conductoes

Más detalles

TEMA 5: CÁLCULO VECTORIAL

TEMA 5: CÁLCULO VECTORIAL IES Al-Ándlus. Dpto. Físic Químic. F.Q. 1º Bchilleto. Tem 5: Cálculo vectoil - 1-5.1 VECTORES TEMA 5: CÁLCULO VECTORIAL 5.1 Vectoes 5. Sistems de efeenci. Coodends. Componentes de un vecto. 5.3 Opeciones

Más detalles

r f W = F dr r i F = F(r ) [2] c) Como consecuencia, el trabajo realizado a lo largo de una trayectoria cerrada es nulo, W = F(r )dr )dr = q ref ref

r f W = F dr r i F = F(r ) [2] c) Como consecuencia, el trabajo realizado a lo largo de una trayectoria cerrada es nulo, W = F(r )dr )dr = q ref ref letos Físc p Cencs e Ingeneí 1 8.04-1 Intoduccón El concepto de potencl electostátco suele ntoducse en los textos de Físc, de dos foms dfeentes: I.- En un nvel elementl se estlece, en pme lug, el concepto

Más detalles

Cálculo con vectores

Cálculo con vectores Unidd didáctic 1 Cálculo con vectoes 1.- Mgnitudes escles vectoiles. Son mgnitudes escles quells, como l ms, l tempetu, l enegí, etc., cuo vlo qued fijdo po un númeo (con su unidd coespondiente). Gáficmente

Más detalles

TEMA IV PLANO VECTORIAL. PRODUCTO ESCALAR. APLICACIONES. Un vector fijo es un segmento cuyos extremos vienen dados en un cierto orden.

TEMA IV PLANO VECTORIAL. PRODUCTO ESCALAR. APLICACIONES. Un vector fijo es un segmento cuyos extremos vienen dados en un cierto orden. VECTOR FIJO TEM IV PLNO VECTORIL. PRODUCTO ESCLR. PLICCIONES. Un vecto fijo es un segento cuyos exteos vienen ddos en un cieto oden. Ejeplo: El segento de exteos y (en este oden). Se not con (, ) ó con.

Más detalles

Universidad Nacional de La Plata

Universidad Nacional de La Plata Univesidd Ncionl de L Plt Fcultd de Ciencis Ntules y Museo Cáted de Mtemátic y Elementos de Mtemátic Asigntu: Mtemátic Contenidos de l Unidd Temátic nº VECTORES Sum y difeenci de vectoes. Poducto de un

Más detalles

CINEMÁTICA Y DINÁMICA DE ROTACIÓN

CINEMÁTICA Y DINÁMICA DE ROTACIÓN Uel Fcult e Cencs Cuso e Físc I p/lc. Físc y Mtemátc Cuso CINEMÁTICA Y DINÁMICA DE OTACIÓN. Momento e otcón- Un cuepo ígo se muee en otcón pu s c punto el cuepo se muee en tyecto ccul. Los centos e estos

Más detalles

TEMA 5: VECTORES 1. VECTOR FIJO

TEMA 5: VECTORES 1. VECTOR FIJO TEMA 5: 1. VECTOR FIJO Hy gnitudes que no quedn ien definids edinte un núeo el, necesitos deás conoce su diección y su sentido. Ests gnitudes se lln gnitudes vectoiles y ls epesentos edinte. P detein un

Más detalles

10 1 deca da 10 2 hecto h 10 3 kilo k 10 6 Mega M 10 9 Giga G Tera T Peta P Exa E Zetta Z Yotta Y

10 1 deca da 10 2 hecto h 10 3 kilo k 10 6 Mega M 10 9 Giga G Tera T Peta P Exa E Zetta Z Yotta Y Un mgntud es culquer cos que puede ser medd medr no es más que comprr un mgntud con otr de l msm espece que se tom como referenc. Ls mgntudes se epresn con un número uns unddes. En lguns ocsones el número

Más detalles

Tema 5B. Geometría analítica del plano

Tema 5B. Geometría analítica del plano Tem 5B. Geometí nlític del plno L geometí nlític estudi ls elciones ente puntos, ects, ángulos, distncis, de un modo lgebico, medinte fómuls lgebics y ecuciones. P ello es impescindible utiliz un sistem

Más detalles

11.1. CAMBIO DE COORDENADAS RECTANGULARES A POLARES.

11.1. CAMBIO DE COORDENADAS RECTANGULARES A POLARES. Integcón ol lccones CÁLCUL DIFEENCIL E INTEGL I.. CMBI DE CDENDS ECTNGULES LES. Cooens oles El lno Euclno tene socs os ects eencules un hozontleje e ls scss X ot vetcleje e ls oens Y con nteseccón en un

Más detalles

INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA

INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA INSTITUT DE FÍSIC MECÁNIC NEWTNIN Cuso 009 áctco I Cnemátc de l tícul y Movmento eltvo NT: Los sguentes eeccos están odendos po tem y, dento de cd tem, en un oden cecente de dfcultd lgunos eeccos se encuentn

Más detalles

MAGNITUDES VECTORIALES:

MAGNITUDES VECTORIALES: Mgnitudes vectoiles 1 de 8 MAGNITUDES VECTORIALES: Índice 1 Mgnitudes escles vectoiles Sum de vectoes lies Poducto de un escl po un vecto 3 Sistem de coodends vectoiles. Vectoes unitios 3 Módulo de un

Más detalles

Unidad I - Electroestática

Unidad I - Electroestática Undd I - Electoestátc Intoduccón ues de nteccón: ccones dstnc ues Electomgnétcs ues Eléctcs Un poco de hsto El témno eléctco, tene su ogen en ls expeencs elds en l ntgüedd donde se obsevo ue cundo se fotd

Más detalles

POTENCIAL ELECTROSTÁTICO

POTENCIAL ELECTROSTÁTICO letos Físc p Cencs e Ingeneí 4.1 4.1 Potencl electostátco Al estud el cmpo electostátco, se demostó que se tt de un cmpo consevtvo, y, po tnto, l ccón de ls uezs electostátcs se puede susttu, cundo conveng,

Más detalles

i = -1 / i = 1 se pueden calcular las raíces de índice par con cantidad subradical negativa, las que no tienen solución en IR. Ejemplos: d) 81 e) 121

i = -1 / i = 1 se pueden calcular las raíces de índice par con cantidad subradical negativa, las que no tienen solución en IR. Ejemplos: d) 81 e) 121 Los números gnros: Clse-15 En hy stucones que no tenen solucón; por ejemplo no exste nngún número cuyo cudrdo se gul -1. Pr dr solucón est stucón recurrremos l conjunto de los números mgnros, donde se

Más detalles

CURSO CERO DE FÍSICA APLICACIÓN DE VECTORES A LA FÍSICA

CURSO CERO DE FÍSICA APLICACIÓN DE VECTORES A LA FÍSICA CURSO CERO DE FÍSIC PLICCIÓN DE VECTORES L FÍSIC Vness de Csto Susn i Deptmento de Físic CURSO CERO DE FÍSIC.UC3M PLICCIÓN DE VECTORES L FÍSIC CONTENIDO Mgnitudes escles vectoiles. Repesentción gáfic de

Más detalles

LA RIOJA / JUNIO 01. LOGSE / FÍSICA / EXAMEN COMPLETO

LA RIOJA / JUNIO 01. LOGSE / FÍSICA / EXAMEN COMPLETO LA RIOJA / JUNIO 1. LOGS / FÍSICA / XAMN COMPLTO l luno elegá un de ls opcones de pobles y cuto de ls cnco cuestones popuests. Cd poble puntú sobe tes puntos y cd cuestón sobe uno. Opcón de pobles 1 A.

Más detalles

X X 1. MECÁNICA GENERAL 1.4. FUNDAMENTOS DE ANÁLISIS TENSORIAL. 1.4.1. Introducción

X X 1. MECÁNICA GENERAL 1.4. FUNDAMENTOS DE ANÁLISIS TENSORIAL. 1.4.1. Introducción Fndmentos y eoís Físcs ES Aqtect. MECÁNCA GENERAL.4. FUNDAMENOS DE ANÁLSS ENSORAL.4.. ntodccón L myoí de ls mgntdes físcs y elcones mtemátcs ente ls msms qedn pefectmente defnds tbjndo con escles y ectoes.

Más detalles

La Carga Eléctrica Puntual, es una partícula cuya masa se supone está concentrada en un punto, y en el mismo se concentra su carga eléctrica.

La Carga Eléctrica Puntual, es una partícula cuya masa se supone está concentrada en un punto, y en el mismo se concentra su carga eléctrica. LEY DE COULOMB La Ley de Coulomb es la pmea ue se estuda en Electcdad ella consttuye una LEY UNIVERSAL poue es posble deducla del expemento y s ese expemento se ealza bajo las msmas condcones físcas cualuea

Más detalles

ELEMENTOS DE CÁLCULO VECTORIAL

ELEMENTOS DE CÁLCULO VECTORIAL ELEMENTOS DE CÁLCULO VECTORIAL SUMARIO: 1.1.- Mgnitudes vectoiles 1.2.- Vectoes: definiciones 1.3.- Clses de vectoes 1.4.- Adición de vectoes 1.5.- Multiplicción po un númeo el 1.6.- Popieddes 1.7.- Consecuencis

Más detalles

Cartesiano Curvilíneas generalizadas: cilíndrico y esférico.

Cartesiano Curvilíneas generalizadas: cilíndrico y esférico. Electc Mgnetsmo - Gupo 2. uso 2/2 Tem : Intouccón oncepto e cmpo Repso e álge vectol Sstems e cooens tesno uvlínes genels: clínco esféco. Opeoes vectoles. Gente Dvegenc Rotconl Dev tempol omncón e opeoes:

Más detalles

ÁLGEBRA VECTORIAL MAGNITUDES ESCALARES Y VECTORIALES:

ÁLGEBRA VECTORIAL MAGNITUDES ESCALARES Y VECTORIALES: MAGNITUDES ESCALARES Y VECTORIALES: Una magnitud es escalar cuando el conjunto de sus valores se puede poner en correspondencia biunívoca y continua con el conjunto de los números reales o una parte del

Más detalles

a la componente imaginaria de z. Dos números complejos son iguales cuando tienen la misma parte real y la misma parte imaginaria.

a la componente imaginaria de z. Dos números complejos son iguales cuando tienen la misma parte real y la misma parte imaginaria. Númeos Complejos Un Defnón Llmemos númeo omplejo un númeo z que se ese e l fom, one y son númeos eles, e vef:. Al númeo se lo enomn pte el e z y l númeo, pte mgn e z. pte } pte } mgn Se esgn on Re ( z)

Más detalles

2. Calcula las coordenadas de D para que el cuadrilátero de vértices: A(-1, -2), B(4, -1), C(5, 2) y D; sea un paralelogramo.

2. Calcula las coordenadas de D para que el cuadrilátero de vértices: A(-1, -2), B(4, -1), C(5, 2) y D; sea un paralelogramo. REPSO DE GEOMETRÍ MÉTRIC PLN. Hll el siético del punto (, - ) especto de M(-, ).. Clcul ls coodends de D p que el cudiláteo de vétices: (-, -), B(, -), C(, ) D; se un plelogo.. Ddos los vectoes (, k) (,

Más detalles

vv = ( vi+ v j+ vk)( v i+ v j+ v k) = v v + v v + vv

vv = ( vi+ v j+ vk)( v i+ v j+ v k) = v v + v v + vv CÁLCULO VECTORIAL. INTRODUCCIÓN Cálculo de las componentes de un ector Dado un ector cuyo origen es el punto A ( x A,y A,z A ) y su extremo el punto B A ( x B,y B,z B ), las componentes del ector se calculan

Más detalles

TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO

TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO Tems Geometí en el espcio Mtemátics II º Bchilleto TEMAS Y GEOMETRÍA EN EL ESACIO ECUACIONES DE RECTAS Y LANOS EJERCICIO es plelo plno que contiene l ect Escibe l ecución del. s hll l ecución de un plno,

Más detalles

LUGARES GEOMÉTRICOS Y ÁNGULOS

LUGARES GEOMÉTRICOS Y ÁNGULOS REPASO Y APOYO OBJETIVO 1 LUGARES GEOMÉTRICOS Y ÁNGULOS Nombe: Cuso: Fec: Se llm lug geomético l conjunto de todos los puntos que cumplen un detemind popiedd geométic. EJEMPLO Cuál es el lug geomético

Más detalles

Problemas de la Unidad 1

Problemas de la Unidad 1 Poblemas de la Unidad.- Dado el vecto a = i + 5 j - k, calcula: a) Sus componentes catesianas, b) Módulo de las componentes catesianas, c) Módulo del vecto a, d) Los cosenos diectoes, e) Ángulo que foma

Más detalles

TEMA 3. ENERGÍA MAGNÉTICA.

TEMA 3. ENERGÍA MAGNÉTICA. TEMA 3. ENEGÍA MAGNÉTIA. POLEMA. ENEGÍA MAGNÉTIA EN UN ILO ONDUTO. POLEMA. ENEGÍA MAGNÉTIA EN UN INDUTO. POLEMA 3. INDUTANIA TOOIDE. POLEMA 4. ENEGÍA ALMAENADA EN EL AMPO MAGNÉTIO DE UN TOOIDE. POLEMA

Más detalles

No entraremos en detalle ni en definiciones demasiado formales sino que veremos únicamente aquellos conceptos que necesitaremos durante el curso.

No entraremos en detalle ni en definiciones demasiado formales sino que veremos únicamente aquellos conceptos que necesitaremos durante el curso. Técncs Computconles, Cuso 007-008. Pedo Sldo.- Álgeb lnel o entemos en detlle n en defncones demsdo fomles sno que eemos úncmente quellos conceptos que necestemos dunte el cuso.. Espcos ectoles Un espco

Más detalles

TEMA II: POSICIONES RELATIVAS ENTRE ELEMENTOS

TEMA II: POSICIONES RELATIVAS ENTRE ELEMENTOS TEA II: POSICIONES RELATIVAS ENTRE ELEENTOS..D Ente dos ects Dos ects en el espcio pueden se: ) plels (sus poecciones homónims son plels) b) secntes (tienen un único punto en común) c) o cuse Ejemplo 4

Más detalles

A r. 1.5 Tipos de magnitudes

A r. 1.5 Tipos de magnitudes 1.5 Tipos de magnitudes Ente las distintas popiedades medibles puede establecese una clasificación básica. Un gupo impotante de ellas quedan pefectamente deteminadas cuando se expesa su cantidad mediante

Más detalles

vectores Componentes de un vector

vectores Componentes de un vector Vectores Un vector es un segmento orientdo. Está formdo por se representn: - con un flech encim v - en un eje de coordends - el módulo: es l longitud del origen l extremo - l dirección: es l rect que contiene

Más detalles

TEORÍA (3 p). (a) Calcular el momento de inercia de una esfera homogénea de masa M y radio R

TEORÍA (3 p). (a) Calcular el momento de inercia de una esfera homogénea de masa M y radio R EM 1 ( p) Un b delgd de longtud está tculd en el punto fo mednte un psdo lededo del cul g en sentdo nthoo con elocdd ngul (ése fgu 1). En el punto está und ot b delgd de longtud cuyo extemo se deslz lo

Más detalles

MATEMÁTICA 4º. Prof. Sandra Corti

MATEMÁTICA 4º. Prof. Sandra Corti L rdccón de se negtv e índce pr no tene solucón en el conjunto de los números reles ( 4; 25, 16, etc.), y que no exste nngún número rel que elevdo un potenc pr dé por resultdo un número negtvo. Se defne

Más detalles

PRUEBA DE ACCESO A LA UNIVERSIDAD ENUNCIADO Y RESOLUCIÓN

PRUEBA DE ACCESO A LA UNIVERSIDAD ENUNCIADO Y RESOLUCIÓN PRUEBA DE ACCESO A LA UNIVERSIDAD.6 ENUNCIADO Y RESOLUCIÓN Instucciones: )Dución: 1 ho y minutos. b) Tienes que elegi ente eliz únicmente los cuto ejecicios de l Opción A o eliz únicmente los cuto ejecicios

Más detalles

Bibliografía. Bibliografía. Fundamentos Físicos de la Ingeniería. Tema 3 Mc Graw Hill. - Tipler. "Física". Cap. 23. Reverté.

Bibliografía. Bibliografía. Fundamentos Físicos de la Ingeniería. Tema 3 Mc Graw Hill. - Tipler. Física. Cap. 23. Reverté. Tema.- POTENCIAL ELÉCTRICO. Potencal eléctco. (3.).. Potencal eléctco debdo a un sstema de cagas puntuales. (3.).. Potencal eléctco debdo a dstbucones contnuas de caga. (3.4)..3 Detemnacón del campo eléctco

Más detalles

CAPÍTULO 2. MARCO TEÓRICO

CAPÍTULO 2. MARCO TEÓRICO 8 CÍULO. MRCO EÓRCO.. Robótc L obótc es l cenc o estudo de ls tecnologís báscs socds con los obots. El estudo nclue tnto l nvestgcón teóc como l plcd, dvdéndose en el dseño del obot, su mecánc, l plnecón

Más detalles

EL ESPACIO AFÍN. Respecto del sistema de referencia, las coordenadas del punto A= a, a, a

EL ESPACIO AFÍN. Respecto del sistema de referencia, las coordenadas del punto A= a, a, a Geometí Anlític: El Espcio Afín Pofeso:Mí José Sánchez Queedo. EL ESPACIO AFÍN SISTEMA DE REFERENCIA EN EL ESPACIO AFÍN Un sistem de efeenci del espcio fín está compuesto po un punto fijo O del espcio

Más detalles

el conjunto de puntos del espacio que notaremos por A, B, Dados dos puntos A, B de E

el conjunto de puntos del espacio que notaremos por A, B, Dados dos puntos A, B de E IES Pade Poeda (Gadx) Matemátcas II UNIDAD 8: VECTORES EN EL ESPACIO.. VECTORES FIJOS EN EL ESPACIO. Sea E el connto de pntos del espaco qe notaemos po A B C K Dados dos pntos A B de E se llama ecto fo

Más detalles

5.- Ajuste de curvas. para M = 2 un ajuste parabólico, etc..

5.- Ajuste de curvas. para M = 2 un ajuste parabólico, etc.. écncs Computconles Cuso 7-8. Pedo lvdo 5.- juste de cuvs El juste de cuvs es un poceso mednte el cul ddo un conjunto de pes de puntos { } sendo l vble ndependente e l dependente se detemn un uncón mtemátc

Más detalles

Representar las dos proyecciones y la tercera proyección de los puntos dados a continuación:

Representar las dos proyecciones y la tercera proyección de los puntos dados a continuación: Repesent ls dos poyecciones y l tece poyección de los puntos ddos continución: pto. lej. cot A + 0 B + = + C + < + D 0 + E - > + F - = + G - > + H - 0 I - > - J - = - K L - 0 < - - M + < - N + = - + >

Más detalles

BLOQUE 2 :GEOMETRIA ANALITICA EN EL PLANO.

BLOQUE 2 :GEOMETRIA ANALITICA EN EL PLANO. LOQUE :GEOMETRI NLITIC EN EL PLNO. Lección : Vectoes..-El conjunto R El conjunto R está fomdo po dupls del tipo (,) donde, son númeos eles. Dos elementos de R son igules si tienen igul su pime segund componentes.

Más detalles

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales:

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales: VECTOES 1.- Magntudes Escalares y Magntudes Vectorales. Las Magntudes Escalares: son aquellas que quedan defndas úncamente por su valor numérco (escalar) y su undad correspondente, Eemplo de magntudes

Más detalles

Introducción al cálculo vectorial

Introducción al cálculo vectorial GRADUADO EN INGENIERÍA Y CIENCIA AGRONÓMICA GRADUADO EN INGENIERIA ALIMENTARIA GRADUADO EN INGENIERÍA AGROAMBIENTAL Intoducción al cálculo vectoial Magnitudes escalaes y vectoiales Tipos de vectoes Opeaciones

Más detalles

4πε. r 1. r 2. E rˆ La carga puntual q 1

4πε. r 1. r 2. E rˆ La carga puntual q 1 .3 L cg puntul q -5. nc está en el oigen l cg puntul q 3 nc está sobe el eje de ls en 3 cm. l punto P está en 4 cm. ) Clcule los cmpos elécticos debidos ls dos cgs en P. b) Obteng el cmpo eléctico esultnte

Más detalles

Se le define como toda situación física producidapor una masa men el espacio que lo rodeay que es perceptible debido a la fuerza que ejerce sobre una

Se le define como toda situación física producidapor una masa men el espacio que lo rodeay que es perceptible debido a la fuerza que ejerce sobre una Cpo vtconl Se le defne coo tod stucón físc poducdpo un s en el espco que lo ode que es peceptble debdo l fuez que ejece sobe un s colocd en dco espco. Dd un s en el espco un s en dfeentes poscones lededo

Más detalles

V E C T O R E S L I B R E S E N E L P L A N O

V E C T O R E S L I B R E S E N E L P L A N O V E C T O R E S L I B R E S E N E L P L A N O 1. V E C T O R E S F I J O S Y V E C T O R E S L I B R E S E N E L P L A N O Existen magnitudes como la fuerza, la velocidad, la aceleración, que no quedan

Más detalles

TEMA10. VECTORES EN EL ESPACIO.

TEMA10. VECTORES EN EL ESPACIO. TEMA0. VECTORES EN EL ESPACIO..- Coodenadas en el espacio: En el espacio tidimensional, un punto P iene deteminado po tes coodenadas P(x, y, z) que epesentan las distancias diigidas desde los planos de

Más detalles

VECTORES EN EL ESPACIO

VECTORES EN EL ESPACIO VECTORES EN EL ESPACIO DEF.- Se llama vector fijo de extremos A y B al segmento orientado AB, y se representa por Todo vector fijo queda caracterizado por { Dos vectores fijos se dice que son equivalentes,

Más detalles

CANTIDAD ESCALAR Es aquella que sólo posee magnitud.

CANTIDAD ESCALAR Es aquella que sólo posee magnitud. 6.-ÁLGEBRA VECTORIAL CANTIDAD ESCALAR Es aquella que sólo posee magnitud. CANTIDAD VECTORIAL Es aquella que posee magnitud, dirección y sentido. A los vectores se les representa con una línea arriba de

Más detalles

Para caracterizar completamente una magnitud vectorial, como son la velocidad, aceleración, fuerza, etc, es preciso indicar tres cosas:

Para caracterizar completamente una magnitud vectorial, como son la velocidad, aceleración, fuerza, etc, es preciso indicar tres cosas: VECTORES Y ESCLRES Las magntudes escalaes son aquellas que quedan totalmente defndas al epesa la cantdad la undad en que se mde. Eemplos son la masa, el tempo, el tabao todas las enegías, etc. Las magntudes

Más detalles

Números Reales y Complejos

Números Reales y Complejos Apéndce C Números Reles y Complejos C.. Los números reles Suponemos conocdo el conjunto de los números reles. Vmos defnr y estudr en lgunos conceptos como relcones de orden, ntervlos, cots y vlor bsoluto.

Más detalles

0.2.4 Producto de un escalar por un vector. Vector unitario. 0.3 Vectores en el sistema de coordenadas cartesianas.

0.2.4 Producto de un escalar por un vector. Vector unitario. 0.3 Vectores en el sistema de coordenadas cartesianas. VECTORES, OPERCIONES ÁSICS. VECTORES EN EL SISTEM DE C. CRTESINS 0.1 Vectoes escalaes. 0. Opeaciones básicas: 0..1 Suma de vectoes. 0.. Vecto opuesto. 0..3 Difeencia de vectoes. 0..4 Poducto de un escala

Más detalles

Cálculo con vectores

Cálculo con vectores Uidd didáctic 1 Cálculo co vectoes 1.- Mgitudes escles vectoiles. So mgitudes escles quells, como l ms, l tempetu, l eegí, etc., cuo vlo qued fijdo po u úmeo (co su uidd coespodiete). Gáficmete se epeset

Más detalles

Gráficamente se representan mediante un punto en una escala (de ahí el nombre).

Gráficamente se representan mediante un punto en una escala (de ahí el nombre). 1.- Intoducción. L Cinemátic es l pte de l ísic que descibe los movimientos de los cuepos sin bod ls cuss que los poducen, ls cules son objeto de ot pte de l ísic: l Dinámic. L Cinemátic esponde l necesidd

Más detalles

CAPÍTULO V SISTEMAS DE PARTÍCULAS

CAPÍTULO V SISTEMAS DE PARTÍCULAS CAPÍTULO V SISTEAS DE PARTÍCULAS 3 SISTEAS DE PARTÍCULAS La mayo pate de los objetos físcos no pueden po lo geneal tatase como patículas. En mecánca clásca, un objeto enddo se consdea como un sstema compuesto

Más detalles

RESUMEN DE VECTORES. Un vector fijo AB es un segmento orientado que va del punto A (origen) al punto B (extremo). ELEMENTOS DE UN VECTOR:

RESUMEN DE VECTORES. Un vector fijo AB es un segmento orientado que va del punto A (origen) al punto B (extremo). ELEMENTOS DE UN VECTOR: RESUMEN DE VECTORES Un vector fijo AB es un segmento orientado que va del punto A (origen) al punto B (extremo). Componentes de un vector Si las coordenadas de los puntos A y B son ELEMENTOS DE UN VECTOR:

Más detalles

PRÁCTICA 2. LEY DE LA REFRACCIÓN. Medida del índice de refracción de una lámina de vidrio

PRÁCTICA 2. LEY DE LA REFRACCIÓN. Medida del índice de refracción de una lámina de vidrio Coodnacón EVAU. Páctcas cuso 2017-18 P2 Objetvo: Detemna el índce de efaccón de un vdo. Fundamento: PRÁCTICA 2. LEY DE LA REFRACCIÓN. Medda del índce de efaccón de una lámna de vdo La ley de la efaccón,

Más detalles

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES DEFINICIÓN Un vecto es un segmento oientado. Un vecto AB queda deteminado po dos puntos, oigen A y extemo B. Elementos de un vecto: Módulo de un vecto es la

Más detalles

CAPÍTULO VI CINÉTICA DEL RÍGIDO

CAPÍTULO VI CINÉTICA DEL RÍGIDO CÍULO CÉC DEL RÍDO CEMÁC Un cuepo ígdo puede consdese coo un sste de ss puntules cuys dstncs se ntenen constntes dunte el oento. Coenceos detenndo el núeo de coodends ndependentes necess p especfc su confgucón

Más detalles

Flujo Potencial ( ) ( ) Flujos irrotacionales. Función n potencial: Campos conservativos. Campos de velocidades Conservativos y Solenoidales

Flujo Potencial ( ) ( ) Flujos irrotacionales. Función n potencial: Campos conservativos. Campos de velocidades Conservativos y Solenoidales Flujo Potencl Clse I) Regones no vscoss de un flujo Defncón: Regones donde ls fuezs vscoss son despecbles s se ls comp ls fuezs de pesón y/o nec ~0 s Re mpotnte Ecucón de Eule Los efectos de l vscosdd

Más detalles

Sistemas de Reacciones Múltiples

Sistemas de Reacciones Múltiples stems de eccones Múltples eccones Químcs mples Un sol ecucón cnétc Múltples En ee En Plelo EJEMPLO. Poduccón de nhíddo ftálco pt de o-xleno: o toluldehdo O, O o xleno ftld nhíddo ftálco Esto se puede epesent

Más detalles

( ) ( ) ( ) i j ij B (1.1) Y que su volumen se expresa en términos del producto punto de vectores como: ( )

( ) ( ) ( ) i j ij B (1.1) Y que su volumen se expresa en términos del producto punto de vectores como: ( ) Te de Estdo Sólido 5/Septiembe/008 Min Eugeni Fís Anguino. Pob que, b b, b π π π Donde los vectoes b i cumplen l siguiente elción: b πδ i j ij Po constucción geométic, los dos conjuntos de vectoes y b

Más detalles

ECUACIONES DE LA RECTA

ECUACIONES DE LA RECTA RECTAS Y PLANOS EN EL ESPACIO ECUACIONES DE LA RECTA P hll l ecución de un ect en el espcio necesito: Dos puntos Un punto su vecto diecto Not: Nosotos utiliemos siempe un punto A(,, ) un vecto v (,b,c).

Más detalles

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 2 ÁLGEBRA VECTORIAL

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 2 ÁLGEBRA VECTORIAL Vectores y escalares. REPÚBLICA BOLIVARIANA DE VENEZUELA APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 2 ÁLGEBRA VECTORIAL Las magnitudes escalares son aquellas magnitudes físicas que

Más detalles

TEMA 11. VECTORES EN EL ESPACIO

TEMA 11. VECTORES EN EL ESPACIO TEMA 11. VECTORES EN EL ESPACIO Dados dos puntos y, se define el vector como el segmento orientado caracterizado por su módulo, su dirección y su sentido. Dos vectores son equipolentes si tienen el mismo

Más detalles

Vectores. 2)Coordenadas y base Combinación lineal Vectores linealmente dependiente Bases. Bases canónica

Vectores. 2)Coordenadas y base Combinación lineal Vectores linealmente dependiente Bases. Bases canónica Vectores 1) Vectores en R 2 Vector fijo en el plano Elementos de un vector fijo ( módulo, dirección, sentido, origen y extremo) Vectores equipolentes Vector libres Propiedad fundamental de los vectores

Más detalles

FUNDAMENTOS TICOS TEMA 5: CÁLCULO INTEGRAL DE FUNCIONES DE UNA Y DOS VARIABLES

FUNDAMENTOS TICOS TEMA 5: CÁLCULO INTEGRAL DE FUNCIONES DE UNA Y DOS VARIABLES FUNDAMENTOS MATEMÁTICOS TICOS TEMA 5: CÁLCULO INTEGRAL DE FUNCIONES DE UNA Y DOS VARIABLES CÁLCULO INTEGRAL DE FUNCIONES DE UNA VARIABLE Integrl defnd Dd un funcón f, exste otr F tl que F = f? Integrcón

Más detalles

ANEXO 4.1: Centro de masa y de gravedad

ANEXO 4.1: Centro de masa y de gravedad Cuso l Físca I Auto l Loenzo Ipaague ANEXO 4.: Cento de asa de gavedad El punto que poeda la ubcacón de la asa se denona cento de asa (), dado que la accón de la gavedad es popoconal a la asa, es natual

Más detalles

MOVIMIENTO DE UNA PARTICULA EN EL CAMPO GRAVITACIONAL REAL

MOVIMIENTO DE UNA PARTICULA EN EL CAMPO GRAVITACIONAL REAL MOVIMIENTO DE N PRTICL EN EL CMPO RVITCIONL REL Consdeaemos el movmento de una patícula en el campo gavtaconal Real donde el Sstema de Laboatoo es despecado poque se toma en cuenta la geodesa de la tea

Más detalles

r V CINEMÁTICA DEL SÓLIDO RÍGIDO

r V CINEMÁTICA DEL SÓLIDO RÍGIDO 1 d j m j Fg.1 dm dm Fg.2 m INEMÁTI DEL SÓLID RÍGID Un sóldo ígdo se consdea como un conjunto de patículas numeables: m 1,...m...m n cuyas dstancas mutuas pemanecen nvaables, en las condcones habtuales

Más detalles

LECCIÓN 2 - MOMENTOS Y SISTEMAS DE VECTORES

LECCIÓN 2 - MOMENTOS Y SISTEMAS DE VECTORES LCCIÓN 2 - NTS Y SISTAS D VCTRS 2.. Clsfccó de vectes. 2.2. met cetl de u vect. Cmb del cet de mmets. 2.3. met áxc de u vect. 2.4. Sstems de vectes deslztes. 2.4.. Sstems de vectes ccuetes. 2.4.2. P de

Más detalles

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria)

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria) TEMAS DE MATEMÁTICAS (Oposiciones de Secundi) TEMA 5 PRODUCTO ESCALAR DE VECTORES. PRODUCTO VECTORIAL Y PRODUCTO MIXTO. APLICACIONES A LA RESOLUCION DE PROBLEMAS FISICOS Y GEOMETRICOS.. Poducto escl. Popieddes...Nom

Más detalles

RESUMEN DE VECTORES. representa por AB El módulo de un vector es un número siempre positivo o cero.

RESUMEN DE VECTORES. representa por AB El módulo de un vector es un número siempre positivo o cero. RESUMEN DE VECTORES Un vector fijo AB es un segmento orientado que va del punto A (origen) al punto B (extremo). ELEMENTOS DE UN VECTOR: Dirección de un vector: La dirección del vector es la dirección

Más detalles

Vectores. en el plano

Vectores. en el plano 7 Vectores 5 en el plano LECTURA INICIAL ESQUEMA INTERNET ACTIVIDAD Los vectores nos dan información en situaciones como el sentido de avance de una barca o la dirección de un trayecto en bicicleta. INICIO

Más detalles

( ) TEMA V. 1. Ecuaciones del plano. Tema 5 : Rectas y planos en el espacio

( ) TEMA V. 1. Ecuaciones del plano. Tema 5 : Rectas y planos en el espacio TEMA V. Ecuaciones del plano. Ecuaciones de la ecta. Haz de planos 4. Incidencia de planos y ectas 5. Ángulos en el espacio 6. Condiciones de pependiculaidad 7. Distancias en el espacio. Ecuaciones del

Más detalles

Tema 4: Vectores en el espacio.

Tema 4: Vectores en el espacio. Tema 4: Vectores en el espacio. Producto escalar, vectorial y mixto January 9, 2017 1 Vectores en el espacio Un vector jo en el espacio, AB, es un segmento orientado de origen A, y extremo B. Los vectores

Más detalles

MAGNITUDES VECTORIALES:

MAGNITUDES VECTORIALES: Magnitudes ectoiales MAGNITUDES VECTORIALES: Índice 1 Magnitudes escalaes ectoiales Suma de ectoes libes Poducto de un escala po un ecto 3 Sistema de coodenadas ectoiales. Vectoes unitaios 3 Módulo de

Más detalles

Lámina 01. Ejercicio 3. Con la ayuda del compás, trazar: ( AB + CD) - EF, a partir del punto N, y

Lámina 01. Ejercicio 3. Con la ayuda del compás, trazar: ( AB + CD) - EF, a partir del punto N, y E F G I J H M K M L N N Q P R S Ejecicio 1. Medi con un egl estos segmentos y not, encim de cd uno de ellos, el esultdo en milímetos. T Ejecicio 2. on l yud del compás, tz: +, pti del punto M, -, pti del

Más detalles

CAPÍTULO III TRABAJO Y ENERGÍA

CAPÍTULO III TRABAJO Y ENERGÍA TRAJO Y ENERGÍA CAPÍTULO III "De todos los conceptos físcos, el de enegía es pobablemente el de más vasto alcance. Todos, con fomacón técnca o no, tenen una pecepcón de la enegía y lo que esta palaba sgnfca.

Más detalles

Vectores. Bases. Producto escalar, vectorial y mixto; y aplicaciones

Vectores. Bases. Producto escalar, vectorial y mixto; y aplicaciones Mtemátics II Geometí del espcio Vectoes. Bses. Podcto escl vectoil mixto; plicciones Obsevción: L moí de los poblems eseltos continción se hn popesto en los exámenes de Selectividd.. Ddos los vectoes (

Más detalles

ALGEBRA VECTORIAL. cúbico Caudal de volumen Metro cúbico por segundo. m 3 /s CAP Magnitudes físicas. Pág. 1

ALGEBRA VECTORIAL. cúbico Caudal de volumen Metro cúbico por segundo. m 3 /s CAP Magnitudes físicas. Pág. 1 FISI I P 1 LGER VETORIL 11 Mgntudes físcs Ls mgntudes físcs, son ls propeddes que le crctern los cuerpos o los fenómenos nturles que se pueden medr, E: L longtud, l ms, l velocdd, l tempertur, etc Mentrs

Más detalles

1º Bachillerato Matemáticas I Tema 5: Vectores Ana Pascua García

1º Bachillerato Matemáticas I Tema 5: Vectores Ana Pascua García Página 1 de 13 Introducción Vectores: Algo más que números En este tema estudiaremos qué son los vectores en el plano real, R, sus propiedades, y a utilizarlos para entre otras cosas resolver problemas

Más detalles

EJERCICIOS DE PUNTOS, RECTAS Y PLANOS PUNTOS

EJERCICIOS DE PUNTOS, RECTAS Y PLANOS PUNTOS EJERCICIOS DE PUNTOS, RECTAS Y PLANOS PUNTOS Ejecicio nº.- Repeent lo punto iguiente: A(, 5, ), B(,, ) C(,, ) Ejecicio nº.- Repeent lo punto iguiente: A(,, ), B(,, ) C(,, ) Ejecicio nº.- Repeent lo punto

Más detalles

Capítulo 11. Movimiento de Rodamiento y Momentum Angular

Capítulo 11. Movimiento de Rodamiento y Momentum Angular Capítulo 11 Movmento de Rodamento y Momentum Angular 1 Contendos: Movmento de rodamento de un cuerpo rígdo. Momentum Angular de una partícula. Momentum Angular de un sstema de partículas. Momentum Angular

Más detalles

en el espacio queda caracterizado por un par de puntos A y B, o bien por su módulo, dirección y sentido junto con el origen, siendo:

en el espacio queda caracterizado por un par de puntos A y B, o bien por su módulo, dirección y sentido junto con el origen, siendo: TEMA 10: VECTORES EN EL ESPACIO. 10.1 Vectores fijos y libres en el espacio vectorial. 10. Operaciones con vectores libres. Bases del espacio vectorial. 10.3 Producto escalar. Módulo y ángulo de vectores.

Más detalles

De acuerdo con sus características podemos considerar tres tipos de vectores:

De acuerdo con sus características podemos considerar tres tipos de vectores: CÁLCULO VECTORIAL 1. ESCALARES Y VECTORES 1.1.-MAGNITUDES ESCALARES Y VECTORIALES Existen magnitudes físicas cuyas cantidades pueden ser expresadas mediante un número y una unidad. Otras, en cambio, requieren

Más detalles

PRODUCTO ESCALAR. r r r

PRODUCTO ESCALAR. r r r PRODUCTO ESCALAR Defncón de pdct escl de ectes. Se denmn pdct escl de ds ectes (, ) y (, ), l núme: cs α y l epesentms p En el pdct escl se mltplcn ds ectes, pe el esltd es n núme (escl). S ls ectes petenecen

Más detalles

Grupo: Nombre: Fecha: Lámina nº : 1 Contenido: PARALELISMO Y PERPENDICULARIDAD Nota:

Grupo: Nombre: Fecha: Lámina nº : 1 Contenido: PARALELISMO Y PERPENDICULARIDAD Nota: Tz lines ects plels en posición hoizontl Tz lines ects plels en posición veticl Tz lines ects pependicules ls dds Tz lines ects plels l diección indicd Tz lines ects pependicules ls dds Tz lines ects pependicules

Más detalles

Solucionario de las actividades propuestas en el libro del alumno

Solucionario de las actividades propuestas en el libro del alumno Soluconao de las actvdades popuestas en el lbo del alumno 7.. LEY DE COULOMB Págna 47. La dstanca que sepaa ente sí los dos potones de un núcleo de helo es del oden de fm (0 5 m). a) Calcula el módulo

Más detalles

FIGURAS EN EL PLANO Y EN EL ESPACIO

FIGURAS EN EL PLANO Y EN EL ESPACIO Consejeí de Educción, Cultu y Depotes CENTRO DE EDUCACIÓN DE PERSONAS ADULTAS. Simienz C/ Fncisco Gcí Pvón, 16 Tomelloso 1700 (C. Rel) Teléfono Fx: 96 51 9 9 Págin 1 FIGURAS EN EL PLANO POLÍGONOS FIGURAS

Más detalles