Números Reales y Complejos
|
|
- Alfredo Barbero Muñoz
- hace 5 años
- Vistas:
Transcripción
1 Apéndce C Números Reles y Complejos C.. Los números reles Suponemos conocdo el conjunto de los números reles. Vmos defnr y estudr en lgunos conceptos como relcones de orden, ntervlos, cots y vlor bsoluto. C... Relcones de orden. Se el conjunto de los números reles. Decmos que entre los elementos de un subconjunto suyo S exste un relcón de orden s y sólo s se cumplen ls sguentes propeddes: ) Reflexv:, S b) Antsmétrc: b, b b,, b S c) Trnstv: b, b c c,, b, c S Conocemos dstntos subconjuntos de, por ejemplo los números nturles, los enteros, los rconles y los reles. En todos ellos está defnd l relcón de orden. En : < < <... En : < < 0 < < <... En : j j j j
2 Propeddes de l relcón de orden en. ) Es comptble con l sum pues se cumple b + c b + c, c S es decr, s en un desguldd summos el msmo número los dos membros, l desguldd no vrí. b) Es comptble con el producto pues se cumple c > 0, b c b c es decr, s en un desguldd multplcmos por el msmo número postvo los dos membros, l desguldd no vrí. c) Otrs propeddes: C... Intervlos. b, c d + c b+ d 0 0 b b c< 0, b c b c Los ntervlos son subconjuntos de l rect rel. Los hy de tres tpos: - Intervlo berto: ( b, ) r / < r< b } - Intervlo cerrdo: [ b, ] { r / r b} { - Intervlo semberto (o semcerrdo): puede serlo por l derech o por l querd [ b, ) { r / r< b} ( b, ] { r / < r b}
3 Ejemplo: (, ] ndc el conjunto de todos los números reles menores o gules que. A su ve, (, ) es el conjunto de todos los números reles myores que. C... Cots. Supremo e ínfmo. Máxmo y mínmo. Decmos que M es cot superor del conjunto D s x M pr todo x del conjunto. A l menor de ls cots superores de D se l denomn supremo. S el supremo pertenece l conjunto se le llm máxmo o últmo elemento. Análogmente, decmos que m es cot nferor del conjunto D s x m pr todo x del conjunto. A l myor de ls cots nferores de D se l denomn ínfmo. S el ínfmo pertenece l conjunto se le llm mínmo o prmer elemento. un cot nferor es y el ínfmo es, que no pertenece l ntervlo, l ser éste berto, por lo que no exste mínmo. El 7 es l menor de ls cots superores, es decr el supremo. Como pertenece l ntervlo, es tmbén el máxmo. Ejemplo: En el ntervlo (,7] C..4 Vlor bsoluto y prte enter. El vlor bsoluto de un número es el vlor que tene prescndendo del sgno. Concde con el número s es postvo y con su opuesto s es negtvo. Por tnto s 0 s < 0 Propeddes: ) 0 b) c) b b d) + b + b L prte enter de un número x, es el vlor del myor entero menor o gul x. Se represent por E(x) o ben por [x]. L prte enter de x cumple: E ( x ) p Z / p x < p +
4 4 C.. Los números complejos Como hemos hecho en, suponemos conocdo el conjunto de los números complejos y vmos estudr lgunos spectos de estos números, sí como ls opercones báscs entre ellos. C.. Undd mgnr. Form bnómc de un número complejo. Representcón en el plno. Pr dr solucón l ecucón x + 0 se defne l undd mgnr +. Un número complejo, escrto en form bnómc, es un expresón de l form + b, donde y b son números reles. El número es l prte rel del número complejo. A b le llmmos prte mgnr. Escrbmos Re( ) + b Im( ) b S 0, el número es mgnro puro. S b 0, es un número rel. Ejemplo: el número complejo +π tene como prte rel y como prte mgnr π. π es un número mgnro puro. Pr representr los números complejos en unos ejes de coordends se represent en el eje de bscss l prte rel y en el de ordends l mgnr. Al punto A de coordends (, b) se le llm fjo del número complejo + b. Así cd complejo le hcemos corresponder un punto en el plno y recíprocmente. C.. Conjugdo de un número complejo. Módulo. Argumento. Se el número complejo + b, cuyo fjo es el punto A, de b,, del plno. Se llm conjugdo de l número complejo que tene l msm prte rel y l prte mgnr cmbd de sgno coordends ( ) Se llm módulo de l número rel + b b + b
5 5 Es fácl ver que el módulo de un complejo concde con el de su conjugdo. ( ) + b + b Se llm rgumento de l ángulo que form el semeje postvo de bscss con l rect que une el orgen de coordends O con el fjo A de. El rgumento de cumple b cosα ; sen α, π < α π En l sguente fgur se representn un complejo y su conjugdo, sí como ls prtes rel e mgnr de cd uno, sus módulos y su rgumentos. Eje mgnro b O α α Eje rel -b C.. Opercones con números complejos ) Sum (dferenc): se sumn (restn) prtes reles entre sí y prtes mgnrs entre sí ( + b) ± (c + d) ± c + (b ± d) b) Producto: se rel plcndo l propedd dstrbutv del producto respecto de l sum y tenendo en cuent que ( + b)(c + d) c + bd + d + bc c bd + (d + bc)
6 6 c) Dvsón: se obtene multplcndo numerdor y denomndor por el conjugdo del denomndor + b c + d ( + b)( c d) ( c + d)( c d) c + bd + c + d ( bc d ) c + bd c + d bc d + c + d d) Potenc: se clcul desrrollndo l potenc del bnomo ( + b) y tenendo en cuent ls potencs del número. 4 ( ) ( ) Observmos que los vlores de ls potencs de se repten de cutro en cutro. Así, pr clculr potencs de dvdremos el exponente entre 4 y clculremos l potenc del número que tene por exponente el resto de l dvsón. ( + ) Ejemplo: Clculr. En prmer lugr desrrollmos el numerdor: ( + ) ( ) + Ahor multplcmos numerdor y denomndor por el conjugdo de éste: ( + ) + ( + )( + ) ( )( + ) + + ( + ) Pr potencs de orden más elevdo podemos utlr los coefcentes del bnomo de Newton. C..4 Teorem fundmentl del álgebr. El teorem fundmentl del álgebr estblece que culquer polnomo de n n 0 coefcentes reles y grdo n, Pn ( x) nx + n x x + 0, posee n ríces complejs. Se cumple tmbén que s un número complejo es rí del polnomo, entonces su conjugdo tmbén lo es.
7 7 Ejemplo: Clculr ls ríces del polnomo P ( x) x 4x + 6x 4. Es lgun de ells rel? Según el teorem, cd rí complej v compñd de su conjugd por lo que el número de ríces complejs de un polnomo es sempre pr. El polnomo que estmos consderndo es de grdo, por lo que tene ríces. Como debe tener un número pr de ríces complejs, l menos tendrá un rel. Probndo con x ±, x ±..., obtenemos que x es rí de P (x) y dvdendo result P( x) x x + x Hllndo hor ls ríces del cocente x x + 0 x ± ± Entonces ls ríces del polnomo son x, x +, x.
NÚMEROS COMPLEJOS. r φ. (0,0) a
Educgu.com NÚMEROS COMPLEJOS DEFINICIÓN Se llm númeo complejo un p odendo de númeos eles (,b). Los númeos eles y b se llmn componentes del númeo complejo. A l componente se le desgn pte el y l componente
RAÍCES COMPLEJAS DE LAS FUNCIONES CUADRÁTICAS: INTERPRETACIÓN GRÁFICA
RAÍCES COMPLEJAS DE LAS FUNCIONES CUADRÁTICAS: INTERPRETACIÓN GRÁFICA Hydeé Blnco Insttuto Superor del Profesordo "Dr. Joquín V. González" Buenos Ares (Argentn) RESUMEN En este rtículo se present un form
6.1 EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS
TEMA NÚMEROS COMPLEJOS. EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS DEFINICIONES Al resolver ecuacones del tpo : x + = 0 x = ± que no tene solucón en los números reales. Los números complejos nacen del deseo
Problemas sobre números complejos -1-
Problemas sobre números complejos --.- Representa gráfcamente los sguentes números complejos y d cuáles son reales, cuáles magnaros y, de estos, cuáles magnaros puros: 5-5 + 4-5 7 0 -- -7 4.- Obtén las
ACTIVIDADES INICIALES
Soluconaro 7 Números complejos ACTIVIDADES INICIALES 7.I. Clasfca los sguentes números, dcendo a cuál de los conjuntos numércos pertenece (entendendo como tal el menor conjunto). a) 0 b) 6 c) d) e) 0 f)
NÚMEROS COMPLEJOS. Números reales Intervalos El conjunto R 2 Discos Números complejos Teorema fundamental del Álgebra
NÚMEROS COMPLEJOS Números reles Intervlos El conjunto R 2 Discos Números complejos Teorem fundmentl del Álgebr NÚMEROS REALES Números nturles, enteros rcionles e irrcionles En mtemátics son importntes
TEMA: EXPRESIONES ALGEBRAICAS
TEMA: EXPRESIONES ALGEBRAICAS CONCEPTO Son quells epresones en ls que ls opercones que se usn son sólo ls de dcón, sustrccón, multplccón, dvsón, potenccón, rdccón entre sus vrbles en un número lmtdo de
UTN - FRBA Ing. en Sistemas de Información
Modelo Relconl UTN - FRBA Ing. en Sstems de Informcón Gestón de Dtos Prof.: Ing. Jun Zffron Gestón de Dtos Ing. Jun Zffron / Ing. Mrí Crstn Chhn Modelo Relconl - 1 Concepto Propuesto por el Dr. E.F. Codd
TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD
Conceptos preinres TEMA : FUNCIONES. LÍMITES Y CONTINUIDAD Un función es un relción entre dos mgnitudes, de tl mner que cd vlor de l primer le sign un único vlor de l segund. Si A y B son dos conjuntos,
Calcular el equivalente Thevenin y Norton entre los puntos a y b en el circuito de la figura
Ejemplos de cálculo de crcutos equlentes. Aplccón de los teorems de Theenn y Norton Clculr el equlente Theenn y Norton entre los puntos y en el crcuto de l fgur Ω 4Ω 3 6Ω L Ω 5Ω V L Pr clculr el equlente
Los números enteros y racionales
Los números enteros y rcionles Objetivos En est quincen prenderás : Representr y ordenr números enteros Operr con números enteros Aplicr los conceptos reltivos los números enteros en problems reles Reconocer
Los números racionales:
El número rel MATEMÁTICAS I 1 1. EL CONJUNTO DE LOS NÚMEROS REALES. LA RECTA REAL 1.1. El conjunto de los números reles. Como y sbes los números nturles surgen de l necesidd de contr, expresr medids, pr
APUNTES DE MATEMÁTICAS
APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición
Presentación Axiomática de los Números Reales
Héctor Plm Vlenzuel. Dpto. de Mtemátic UdeC. 1 Prte I Presentción Axiomátic de los Números Reles 1. Axioms de los Números Reles 1.1. Axioms de Cuerpo Aceptremos l existenci de un conjunto R cuyos elementos
O(0, 0) verifican que. Por tanto,
Jun Antonio González Mot Proesor de Mtemátics del Colegio Jun XIII Zidín de Grnd SIMETRIA RESPECTO DEL ORIGEN. FUNCIONES IMPARES: Un unción es simétric respecto del origen O, su simétrico respecto de O
CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen, 7 de Septiembre de 2004 Primera parte
CÁLCULO Primer curso de Ingeniero de Telecomunicción Exmen, 7 de Septiembre de 24 Primer prte Ejercicio. Clculr ls coordends de los puntos P y Q de l prábol y x 2, tles que el triángulo formdo por el eje
PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.
PRUES DE CCESO L UNVERSDD L.O.G.S.E. CURSO 2001-2002 - CONVOCTOR: JUNO ELECTROTECN EL LUMNO ELEGRÁ UNO DE LOS DOS MODELOS Crteros e clfccón.- Expresón clr y precs entro el lenguje técnco y gráfco s fuer
Grado en Biología Tema 3 Integración. La regla del trapecio.
Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con
Llamaremos S a la superficie dada y D a su proyección sobre el plano XY (ver figura).
TEOREMA E GAU. 15. Hllr el flujo del cmpo i + j + z k trvés de l superficie z 1 +, z 1. ) irectmente. b) Aplicndo el teorem de Guss. olución Llmremos l superficie dd su proección sobre el plno XY (ver
LA INTEGRAL DEFINIDA Si f(x) es una función continua y no negativa definida en el intervalo x [a, b], entonces la integral definida b.
Tem 4 Integrción 4.. Primitivs LA INTEGRAL DEFINIDA Si f(x) es un función continu y no negtiv definid en el intervlo x [, b], entonces l integrl definid f(x) represent el áre bjo l gráfic de l función
FUNDAMENTOS DE INGENIERÍA ELÉCTRICA. José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo
FUNDAMENTOS DE NGENEÍA EÉCTCA José Frncsco Gómez González Benjmín González Díz Mrí de l Peñ Fn Bendcho Ernesto Pered de Plo Tem 1: Generlddes y CC en régmen estconro PUNTOS OBJETO DE ESTUDO 3 Generlddes
1 VECTORES 1. MAGNITUDES ESCALARES Y VECTORIALES. Un mgnitud es un concepto bstrcto. Se trt de l ide de lgo útil que es necesrio medir. Ncen sí mgnitudes como l longitud, que represent l distnci entre
Máximo común divisor. 2. Descomposición en primos Ejemplo. Encontrar mcd 504,300 Se descomponen ambos números en primos 504 2 252 2 126 2 63 3 21 3
Máximo común divisor El máximo común divisor de dos números nturles y es el número más grnde que divide tnto como. se denot mcd,. Lists: (tl vez, el más intuitivo, pero el menos eficiente) Encontrr mcd
CURSO DE MATEMÁTICA 1. Facultad de Ciencias
CURSO DE MATEMÁTICA 1. Fcultd de Ciencis Reprtido Teórico 1 Mrzo de 2008 1. Conceptos Básicos de Funciones Definiciones 1. Si A y B son conjuntos no vcíos, un función de A en B es un correspondenci tl
TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES
TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES 5.1. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. LÍMITES LATERALES 5.1.1. Concepto de tendenci Decimos que " tiende " si tom los vlores de un sucesión que se proim. Se
Cu +2 + Zn Cu + Zn +2
Termodnámc. Tem 16 Sstems electroquímcos 1. Defncones Electrodo. Metl en contcto con un electrolto (Sstem físco donde se produce un semreccón redox) Un sstem electródco está consttudo por un conductor
CUADERNO DE TRABAJO PARA LA CLASE NÚMEROS REALES
FUNDAMENTOS DEL ÁLGEBRA CUADERNO DE TRABAJO PARA LA CLASE NÚMEROS REALES NOMBRE ID SECCIÓN SALÓN Prof. Evelyn Dávil Tbl de contenido TEMA A. CONJUNTOS NUMÉRICOS... REGLA PARA LA SUMA DE NÚMEROS REALES...
2. Cálculo de primitivas
5. Cálculo de primitivs Definición. Se dice que un función F () es un primitiv de otr función f() sobre un intervlo (, b) si pr todo de (, b) se tiene que F () f(). Por ejemplo, l función F () es un primitiv
MATRICES DE NÚMEROS REALES
MTRICES. MTURITS Luis Gil Guerr.- DEFINICIÓN MTRICES DE NÚMEROS RELES Llmmos mtriz de números reles de orden m x n un conjunto ordendo de m. n números reles dispuestos en m fils y en n columns i m i m
NOTAS TEÓRICAS II COTAS y EXTREMOS. AXIOMA del EXTREMO SUPERIOR Curso 2007
NOTAS TEÓRICAS II COTAS y EXTREMOS. AXIOMA del EXTREMO SUPERIOR Curso 2007 1 1. Intervlos Ddos dos números reles y,
Si el rédito anual de valoración, constante a lo largo de toda la operación, es del 9%, determínese:
EJERIIOS DE OPERAIONES DE AMORTIZAIÓN Eercco Se concede un réstmo ersonl de 8.000 euros mortzble en 0 ños mednte térmnos mortztvos semestrles, donde ls cuots de mortzcón son déntcs en todos y cd uno de
2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange.
. Derivd: tngente un curv. Los teorems de Rolle y Lgrnge. Se f : x I f( x) un función definid en un intervlo I y se un punto interior del intervlo I. L pendiente de l rect tngente l curv y f( x), f( )
SISTEMA DE COORDENADAS CARTESIANAS
SISTEMA DE COORDENADAS CARTESIANAS Definición El siste de coordends crtesins en el plno está constituido por dos rects perpendiculres que se intersecn en un punto O l que se le ll el origen. Un de ls rects
Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica
Artículo de sección Revist digitl Mtemátic, Educción e Internet (www.cidse.itcr.c.cr/revistmte/). Vol. 12, N o 1. Agosto Ferero 2012. Fctorizción de polinomios. Sndr Schmidt Q. sschmidt@tec.c.cr Escuel
A modo de repaso. Preliminares
UNIDAD I A modo de repso. Preliminres Conjuntos numéricos. Operciones. Intervlos. Conjuntos numéricos Los números se clsificn de cuerdo con los siguientes conjuntos: Números nturles.- Son los elementos
3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m
LOGARITMOS Ddo un número rel positivo, no nulo y distinto de 1, ( > 0; 0; 1), y un número n positivo y no nulo (n > 0;n 0), se llm ritmo en bse de n l exponente x l que hy que elevr dich bse pr obtener
TEMA 1 EL NÚMERO REAL
Tem El número rel Ejercicios resueltos Mtemátics B º ESO TEMA EL NÚMERO REAL CLASIFICACIÓN Y REPRESENTACIÓN DE NÚMEROS REALES EJERCICIO : Clsific los siguientes números como 0 ; ;,...; 7; ; ; ; 7, = 0,8
i=1 Demuestre que cumple los axiomas de norma. Calcule el límite Verifiquemos cada uno de los axiomas de la definición de norma: i=1
CAPÍTULO 3 EJERCICIOS RESUELTOS: CONCEPTOS BÁSICOS DE ÁLGEBRA LINEAL Ejerccos resueltos 1 1. La norma p (tambén llamada l p ) en R n se defne como ( ) 1/p x p = x p. Demuestre que cumple los axomas de
Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales:
VECTOES 1.- Magntudes Escalares y Magntudes Vectorales. Las Magntudes Escalares: son aquellas que quedan defndas úncamente por su valor numérco (escalar) y su undad correspondente, Eemplo de magntudes
a es la parte real, bi la parte imaginaria.
CAPÍTULOIX 55 NÚMEROS COMPLEJOS Coocmetos Prevos Supoemos coocdo que: ) El cojuto de úmeros complejos está e correspodec buívoc co el cojuto de los putos de u plo. b) U úmero complejo expresdo e form boml
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS Aplicciones de Trigonometrí de Triángulos Rectángulos Un triángulo tiene seis
TEMA 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Matemáticas CCSSII 2º Bachillerato 1
TEMA RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Mtemátics CCSSII 2º Bchillerto 1 TEMA RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES.1 DETERMINANTES DE ORDEN 2.1.1 DEFINICIÓN: El determinnte de un mtriz
RESISTENCIAS EN SERIE Y LEY DE LAS MALLAS V 1 V 2 V 3 A B C
RESISTENCIS EN SERIE Y LEY DE LS MLLS V V 2 V 3 C D Fgura R R 2 R 3 Nomenclatura: Suponemos que el potencal en es mayor que el potencal en, por lo tanto la ntensdad de la corrente se mueve haca la derecha.
Fugacidad. Mezcla de gases ideales
Termodnámca del equlbro Fugacdad. Mezcla de gases deales rofesor: Alí Gabrel Lara 1. Fugacdad 1.1. Fugacdad para gases Antes de abarcar el caso de mezclas de gases, debemos conocer como podemos relaconar
= x 1º B. 2º- Calcular y simplificar: 3º- Calcular el valor de k para que el cociente
Departamento de Matemátcas 1º B 7 / OCT / 05 1º- Defnr conjugado, opuesto e nverso de un nº complejo. Escrbr y representar el conjugado, el opuesto, el conjugado del opuesto, el opuesto del conjugado,
TEMA 1. LOS NÚMEROS REALES.
TEMA. LOS NÚMEROS REALES... Repso de números enteros y rcionles - Operciones con números enteros - Pso de deciml frcción y de frcción de deciml - Operciones con números rcionles - Potencis. Operciones
TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN:
TEMA LOS NÚMEROS REALES. LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: Los números rcionles: Se crcterizn porque pueden epresrse: En form de frcción, es decir, como cociente de dos números enteros: Q,
LA INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES
LA INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES L integrl definid Se y f un función definid en el intervlo,, se llm integrl definid de f en n el intervlo, y se denot por fd lim fc i i i. n i y se llmn límites
Estabilidad de los sistemas en tiempo discreto
Estbilidd de los sistems en tiempo discreto En tiempo discreto tmbién se puede hblr de estbilidd de estdo y de estbilidd de entrd slid de form similr l empled pr los sistems en tiempo continuo. Podemos
Aplicaciones del cálculo integral
Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:
UNIDAD 6: DERIVADAS. 1. TASA DE VARIACIÓN MEDIA. Se define la tasa de variación media de una función f ( x) y = en un intervalo [ b] a, como: = siendo
IES Pdre Poved (Gudi UNIDAD 6: DERIVADAS.. TASA DE VARIACIÓN MEDIA. Se deine l ts de vrición medi de un unción y en un intervlo [ b] T. M. [, b] ( b (, como: b (,, B,, Si considero l rect que une A ( b
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
Pág. 1 PÁGINA 70 EJERCICIOS Áres y perímetros de figurs sencills Hll el áre y el perímetro de ls figurs coloreds de los siguientes ejercicios: 1 ) b) 3 m 3 m 1,8 m 4 m 6 m ) S3 m3 m9 m b) S 6m 1,8 m 5,4
Curvas en el plano y en el espacio
Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que
Ejemplo: Para indicar el conjunto (que llamaremos M), formado por los números 4, 6 y 8, escribimos: M = { 4, 6, 8}
NÚMEROS REALES. BREVE REPASO DE LA TEORÍA DE CONJUNTOS En est unidd utilizremos ls notciones l terminologí de conjuntos. L ide de conjunto se emple mucho en mtemátic se trt de un concepto básico del que
Estudio de funciones exponenciales y logarítmicas
FUNCIÓN EXPONENCIAL Recomendciones l Docente: L ctividd proponer debe puntr que los lumnos puedn nlizr los siguientes spectos: 1. Cómo vrí el gráfico de l función eponencil y de qué depende su monotoní.
1. Números imaginarios. Números complejos en forma binómica página 115. 2. Representación gráfica de los números complejos página 116
Números complejos E S Q U E M A D E L A U N I D A D. Números magnaros. Números complejos en forma bnómca págna. Representacón gráfca de los números complejos págna 6.. Suma de números complejos págna 8.
El conjunto de los números naturales tiene las siguientes características
CAPÍTULO Números Podemos decir que l noción de número nció con el homre. El homre primitivo tení l ide de número nturl y prtir de llí, lo lrgo de muchos siglos e intenso trjo, se h llegdo l desrrollo que
PROGRESIONES ARITMETICAS
PROGRESIONES ARITMETICAS. Hllr l sum de los primeros cien enteros positivos múltiplos de 7. L sum de n términos de un progresión ritmétic viene dd por l expresión: + n Sn n Aplicndo pr 00 términos: + 00
CANTIDADES VECTORIALES: VECTORES
INSTITUION EDUTIV L PRESENTION NOMRE LUMN: RE : MTEMÁTIS SIGNTUR: GEOMETRÍ DOENTE: JOSÉ IGNIO DE JESÚS FRNO RESTREPO TIPO DE GUI: ONEPTUL - EJERITION PERIODO GRDO FEH DURION 3 11 JUNIO 3 DE 2012 7 UNIDDES
Modelo 5 de sobrantes de Opción A
Ejercicio. [ puntos] Se f : R l función dd por Modelo de sobrntes de 6 - Opción. Ln f siendo Ln l función logrito neperino. Estudi l eistenci de síntot horiontl pr l gráfic de est función. En cso de que
CAPÍTULO V ESTRUCTURAS ALGEBRAICAS
ESTRUCTURAS ALGEBRAICAS 7 CAPÍTULO V ESTRUCTURAS ALGEBRAICAS Estructura Algebraca es todo conjunto no vacío en el cual se han defndo una o más leyes de composcón nterna, luego de cumplr certas propedades
Tema 4. Números Complejos
Tema. Números Complejos. Números complejos...... Defncón de números complejo..... Conjugado y opuesto de números complejos..... Representacón gráfca de los complejos.... Operacones con complejos..... Suma
Primer octante Segundo octante Tercer octante Cuarto octante P ( X, Y, Z ) P (-X, Y, Z ) P (-X,-Y, Z ) P ( X,-Y, Z )
Cpítulo III. Álgebr vectoril Objetivo: El lumno plicrá el álgebr vectoril en l resolución de problems geométricos. Contenido: 3.1 Sistem crtesino en tres dimensiones. Simetrí de puntos. 3. Cntiddes esclres
Colegio Diocesano Sagrado Corazón de Jesús EJERCICIOS MATEMÁTICAS 3º ESO VERANO 2015
Colegio Diocesno Sgrdo Corzón de Jesús EJERCICIOS MATEMÁTICAS º ESO VERANO º. Amplific ls siguientes frcciones pr que tods tengn denomindor b c d º. Cuál de ls siguientes frcciones es un frcción mplificd
Introducción al Cálculo Integral
Inroduccón l Cálculo Inegrl José Lus Alejndre Mrco An Isel Alluev Pnll José Mguel González Sános Deprmeno de Memác Aplcd Unversdd de Zrgoz versón dgl sd en el lro "Inroduccón l Cálculo Inegrl" ISBN 8-77-5-6,
El Teorema Fundamental del Cálculo
del Cálculo Deprtmento de Análise Mtemátic Fcultde de Mtemátics Universidde de Sntigo de Compostel Sntigo, 2011 L Regl de Brrow: un resultdo sorprendente Recordemos que f es integrble en I = [, b] y su
CÁLCULO VECTORIAL 1.- MAGNITUDES ESCALARES Y VECTORIALES. 2.- VECTORES. pág. 1
CÁLCL ECTRIAL 1. Magntudes escalares y vectorales.. ectores. Componentes vectorales. ectores untaros. Componentes escalares. Módulo de un vector. Cosenos drectores. 3. peracones con vectores. 3.1. Suma.
PROBLEMAS DE ELECTRÓNICA ANALÓGICA (Diodos)
PROBLEMAS DE ELECTRÓNCA ANALÓGCA (Dodos) Escuela Poltécnca Superor Profesor. Darío García Rodríguez . En el crcuto de la fgura los dodos son deales, calcular la ntensdad que crcula por la fuente V en funcón
COLEGIO SAN FRANCISCO DE SALES Prof. Cecilia Galimberti
COLEGIO SAN FRANCISCO DE SALES - 0 - Prof. Cecili Glimerti MATEMÁTICA AÑO B GUÍA N - NÚMEROS IRRACIONALES NUMEROS IRRACIONALES Conocemos hst hor distintos Conjuntos Numéricos: - Los n nturles: (, 8,.8),
Aplicaciones de la derivada (II)
UNIVERSIDAD DEL CAUCA Fcultd de Ciencis Nturles, Ects de l Educción Deprtmento de Mtemátics CÁLCULO I Ejercicios Rects tngentes Aplicciones de l derivd (II) 1. Se l curv gráfic de l ecución ( ) =. Encuentre
PROBLEMAS RESUELTOS CIRCUITOS DE CORRIENTE CONTINUA CAPITULO 28 FISICA TOMO 2. Tercera y quinta edición. Raymond A. Serway
PROBLEMAS RESUELTOS CIRCUITOS DE CORRIENTE CONTINUA CAPITULO 8 FISICA TOMO Tercer y qunt edcón Rymond A. Serwy CIRCUITOS DE CORRIENTE CONTINUA 8. Fuerz electromotrz 8. Resstores en sere y en prlelo 8.3
CAPÍTULO XII. INTEGRALES IMPROPIAS
CAPÍTULO XII. INTEGRALES IMPROPIAS SECCIONES A. Integrles impropis de primer especie. B. Integrles impropis de segund especie. C. Aplicciones l cálculo de áres y volúmenes. D. Ejercicios propuestos. 9
7.1. Definición de integral impropia y primeras propiedades
Cpítulo 7 Integrles impropis 7.. Definición de integrl impropi y primers propieddes El concepto de integrl se etiende de mner csi espontáne situciones más generles que ls que hemos emindo hst hor. Consideremos,
1. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN
http://www.cepmrm.es ACFGS - Mtemátics ESG - /0 Pág. de Polinomios: Teorí ejercicios. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN Tnto en mtemátics, como en físic, en economí, en químic,... es corriente el
MAGNITUDES ESCALARES Y VECTORIALES. Dr. CARLOS MOSQUERA
1 MAGNITUDES ESCALARES Y VECTRIALES D. CARLS MSQUERA 2 Mgntudes escles y vectoles Defncones; popeddes y opecones En los conceptos de mecánc que desollemos, nos encontemos con dos dfeentes tpos de mgntudes:
62 EJERCICIOS de NÚMEROS COMPLEJOS
6 EJERCICIOS de NÚMEROS COMPLEJOS. Resolver las sguentes ecuacones en el campo de los números complejos: a x -x+=0 (Soluc: ± b x +=0 (Soluc: ± c x -x+=0 (Soluc: ± d x -x+=0 (Soluc: ± e x -6x +x-6=0 (Soluc:,
Sistemas de Control. Control de Sistemas Dinámicos
Sstems de Control Control de Sstems Dnámcos ISA-UMH Lus M. Jménez 1 Defncón n de Control Mnpulr ls mgntudes de un sstem (plnt) pr consegur uns especfccones de comportmento desedo El dspostvo que relz est
[FACTORIZACION DE POLINOMIOS]
009 CETis 6 Ing. Gerrdo Srmiento Díz de León [FACTORIZACION DE POLINOMIOS] Documento que enseñ como fctorizr polinomios Pr fctorizr polinomios hy vrios métodos: FACTORIZACIÓN DE POLINOMIOS. Scr fctor común:
ESCEMMat ESCENARIOS MULTIMEDIA EN FORMACIÓN DE FUTUROS PROFESORES DE MATEMÁTICAS DE SECUNDARIA FUNDAMENTACIÓN TEÓRICA ESCENARIO 2
FUNDAMENTACIÓN TEÓRICA ESCENARIO Dominio I: Conocimientos de Mtemátics Tem: Funciones reles de un vrible rel. L función eponencil. L función logrítmic. Asignturs involucrds en l formción universitri: Análisis
2. REPRESENTACIÓN ANALÍTICA Y GRÁFICA DE UN VECTOR
1. INTRODUCCIÓN CÁLCULO VECTORIAL Mgnitud: Es todo quello que se puede medir eperimentlmente. Ls mgnitudes físics se clsificn en esclres ectoriles. Mgnitud esclr: Es quell que iene perfectmente definid
1. Cálculo de primitivas. 2. Reglas de cálculo de primitivas. (I Integrales inmediatas)
Tem : L integrl definid. Cálculo de primitivs. Aplicciones.. Cálculo de primitivs. Definición. Dds f, F : D R R, decimos que F es un primitiv de l función f si: F ( f(, D. Está clro que si F es un primitiv
EJERCICIOS DE GEOMETRÍA
VECTORES EJERCICIOS DE GEOMETRÍA 1. Hllr un vector unitrio u r r r r de l mism dirección que el vector v = 8i 6j.Clculr otro vector ortogonl v r y de módulo 5.. Normliz los vectores: u r = ( 1, v r = (-4,3
EXPRESIONES ALGEBRAICAS. POLINOMIOS
EXPRESIONES ALGEBRAICAS. POLINOMIOS A. EXPRESIONES ALGEBRAICAS. Cundo se quiere indicr un número no conocido, un cntidd o un expresión generl de l medid de un mgnitud (distnci, superficie, volumen, etc
ACTIVIDADES DE APRENDIZAJE Nº 5... 112
FACULTAD DE INGENIERÍA - UNJ Unidd : olinomios UNIDAD olinomios Introducción - Epresiones lgebrics - Clsificción de ls epresiones lgebrics - Epresiones lgebrics enters 7 - Monomios 7 - Grdo de un monomio
TABLA DE DISTRIBUCIÓN DE FRECUENCIAS
TABLA DE DISTRIBUCIÓN DE FRECUENCIAS L.C. y Mtro. Frncisco Jvier Cruz Ariz L.C. y Mtro. Frncisco Jvier Cruz Ariz TABLA DE DISTRIBUCIÓN DE FRECUENCIAS Un mner de simplificr los dtos es usr un tbl de frecuenci
Aplicaciones de la integral indefinida
Aplicciones_de_l_integrl.n Aplicciones de l integrl indefinid Práctic de Cálculo, E.U.A.T,Grupos ºA y ºB, 2005 Est práctic muestr cómo clculr lguns áres y volúmenes utilizndo integrles. En cd cso dremos
Z := Z {0} a partir de este nuevo conjunto construimos el producto cartesiano
Cpítulo 4 Números Rcionles. Luego de construir los Números Nturles, se presentron ciertos problems como Cuál es el resultdo de 3 menos 5?, pr poder encontrr un solución se creó prtir de N el conjunto de
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 6 Curso preprtorio de l prueb de cceso l universidd pr myores de 5 ños curso 1/11 Nuri Torrdo Robles Deprtmento de Estdístic Universidd Crlos III de Mdrid
Tema 5. Trigonometría y geometría del plano
1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene
OPERACIONES CON FRACIONES
LEY DE SIGNOS OPERACIONES CON FRACIONES SUMA Y RESTA: Si se sumn dos números con el mismo signo, se sumn los vlores solutos y se coloc el signo común (+) + (+) = + 8 (-) + (-) = - 8 Si se sumn dos números
Ejercicios de optimización
Ejercicios de optimizción 1. Entre todos los triángulos isósceles de perímetro 0, cuál es el de áre máxim? Función mximizr: A yh Relcionr vribles: Estudimos l función: h h y x h x y x y 0 x 0y 0 y 0 0y
Se llama logaritmo en base a de P, y se escribe log a P, al exponente al que hay que elevar la base a para obtener P.
Log P X Se llm ritmo en bse de P, y se escribe P, l eponente l que hy que elevr l bse pr obtener P. Log P P Ejemplo: 8 8 L l it b d 8 Leemos, ritmo en bse de 8 es porque elevdo es 8. Anámente podemos decir:
POTENCIAS Y LOGARITMOS DE NÚMEROS REALES
www.mtesrond.net José A. Jiméne Nieto POTENCIAS Y LOGARITMOS DE NÚMEROS REALES. POTENCIAS DE NÚMEROS REALES.. Potencis de eponente entero L potenci de se un número rel eponente entero se define sí: n (
Integral de Riemann. Introducción a la integración numérica.
Cálculo Mtemático (Práctics) M. I. Berenguer Mldondo mribel@ugr.es. 1 Integrl de Riemnn. Introducción l integrción numéric. En est práctic usremos l clculdor ClssPd pr trtr el problem de integrción. Se
int(s) o int(s, var) S puede ser una expresión simbólica o el nombre de una expresión simbólica.
Práctic 3: Cálculo Integrl con MtLb Curso 2010-2011 1 1 Introducción Un de los pquetes más útiles pr el cálculo con MtLb lo constituye Symbolic Mth Toolbox, que permite relizr cálculo simbólico vnzdo,
a la componente imaginaria de z. Dos números complejos son iguales cuando tienen la misma parte real y la misma parte imaginaria.
Númeos Complejos Un Defnón Llmemos númeo omplejo un númeo z que se ese e l fom, one y son númeos eles, e vef:. Al númeo se lo enomn pte el e z y l númeo, pte mgn e z. pte } pte } mgn Se esgn on Re ( z)
INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE
INSTITUTO VALLADOLID PREPARATORIA Págin 05 6 LA ELIPSE 6. DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6.,
La Integral de Riemann
Sums de Riemnn Funciones integrbles Riemnn Cálculo de l integrl Teorems de integrbilidd L función potencil Sums de Riemnn Funciones integrbles Riemnn Cálculo de l integrl Teorems de integrbilidd L función
Física I. TRABAJO y ENERGÍA MECÁNICA. Apuntes complementarios al libro de texto. Autor : Dr. Jorge O. Ratto
ísca I Apuntes complementaros al lbro de teto TRABAJO y ENERGÍA MECÁNICA Autor : Dr. Jorge O. Ratto Estudaremos el trabajo mecánco de la sguente manera : undmensonal constante Tpo de movmento varable bdmensonal