EJERCICIOS DE GEOMETRÍA
|
|
- Celia Henríquez Botella
- hace 6 años
- Vistas:
Transcripción
1 VECTORES EJERCICIOS DE GEOMETRÍA 1. Hllr un vector unitrio u r r r r de l mism dirección que el vector v = 8i 6j.Clculr otro vector ortogonl v r y de módulo 5.. Normliz los vectores: u r = ( 1, v r = (-4,3 3. Si M(,1, M (3,3, M (6, son los puntos medios de los ldos de un triángulo Cuáles son ls coordends de los vértices de un triángulo? 4. Hll ls componentes del vector u r que se perpendiculr v r = ( 3,6 y que: Su primer componente se. b Su módulo es 1. r r r r r r r r 5.Clcul ( u 3v (3u + v sbiendo que u = 1 ; v = ; u v =, 5 r r 6. Se B { u = ( 1,; v = (,1 } Es bse? b Clsific l bse c Encuentr un bse ortonorml l nterior. RECTAS 1. De l rect r se sbe que ps por el punto A (,1 y un vector director es u (-,4. Determin su ecución en tods ls forms que conozcs.. L ecución implícit de un rect es x-3y+1=. Escribe l ecución de est rect en form continu, punto-pendiente, explícit, vectoril y prmétric rzonndo ls respuests. 3. Hllr l ecución de l meditriz del segmento determindo por los puntos A (1,- y B (3,. Hllr, tmbién, el ángulo que form est meditriz con el eje de bsciss. 4. L rect 4x-3y=1 es l meditriz del segmento AB. Hll ls coordends del punto B, sbiendo que ls del punto A son (1,. 5. Los puntos B (-1,3 y C (3,-3 son los vértices de un triángulo isósceles que tiene el tercer vértice A en l rect x+y=15, siendo AB y AC los ldos igules. Clculr ls coordends de A y ls ecuciones y ls longitudes de ls tres lturs del triángulo.
2 6. Hllr ls ecuciones de tods ls rects que psen por el punto P (,-3 y formen un ángulo de 45º con l rect 3x-4y+7=. 7. Determinr el vlor de pr que ls rects x+(-1y-(+= y 3x-(3+1y- (5+4= sen: prlels perpendiculres 8. Determinr el vlor de m pr que ls rects mx+y=1 y 4x-3y=m+1 sen prlels. Después hllr su distnci. 9. Ddos los puntos A (,1, B (-3,5 y C (4,m, clculr el vlor de m pr que el triángulo ABC teng de áre Hllr ls ecuciones de ls rects que psndo por el punto A (1,- distn uniddes del punto B (3, Un ryo de luz r ps por el punto de coordends (1, e incide sobre el eje de bsciss formndo con éste un ángulo de 135º. Suponiendo que sobre el eje de bsciss se encuentr un espejo, hllr l ecución del ryo r y del ryo reflejdo en el espejo. 1. Ddos los puntos A (,-1 y B (1,, hllr ls coordends de todos los puntos P situdos sobre l rect x+y= tles que ls rects PA y PB sen perpendiculres. 13. Los puntos A (3,- y C (7,4 son vértices opuestos de un rectángulo ABCD, el cul tiene un ldo prlelo l rect 6x-y+=. Hllr ls coordends de los otros dos vértices del rectángulo y ls ecuciones de sus ldos. 14. Hllr ls coordends del simétrico del punto P (,6 respecto de l rect y=x Los puntos A (,-1 y C (3,6 son vértices opuestos de un rectángulo ABCD. Sbiendo que B está en l rect de ecución x+4y=, hllr ls coordends de los vértices B y D. (Indicción: bst hllr los puntos P sobre l rect tles que PA y PC son perpendiculres. 16. Averigur si el triángulo de vértices A (,, B (4,7, C (9,4 es isósceles. 17. Clculr l distnci de los puntos A (-,5, B (1, y C (1/3,-5/ l rect de ecuciones prmétrics: x= 1+ 4t r : y= + 3t 18. Hllr los puntos de l rect 7x-y-8= que distn 5 uniddes de longitud de l rect 3x-4y-1=.
3 19. Un cudrdo tiene un vértice en el punto (,7 y un de sus digonles sobre l rect de ecución 3x-y-6=. Hllr el áre.. Un cudrdo tiene un vértice en el origen y un ldo sobre l rect de ecución x- y+1=. Hllr el áre del cudrdo y l longitud de l digonl. 1. Hllr l ecución de un rect que form un ángulo de 1º con el semieje de bsciss positivo y que dist uniddes del origen.. Hllr ls ecuciones de ls rects prlels l rect 3x+4y+= que distn 1 unidd de ell. 3. Hllr ls coordends de un punto P situdo sobre l rect x+y-15= que equidiste de ls rects y-=, 3y=4x Ls rects de ecuciones 3x+4y-5= y px+7y+= formn un ángulo cuyo seno vle 3/5. Hllr p. 5. Determinr ls longitudes de los ldos y los ángulos del triángulo cuyos ldos se encuentrn sobre ls rects x+y=, 5x+y=1 y el eje de ordends. 6. Clcul ls bisectrices de los ángulos determindos por ls rects: r:4x-7y-= s: 3x+4y-4= 7. Ddo los puntos A(,1 B(6,3 C(7,1 D(3,-1.Demuestr que ABCD es rectángulo y clcul su perímetro y su áre,
4 CÓNICAS Un cónic es l curv que se obtiene como intersección de un superficie cónic y un plno π. CIRCUNFERENCIA Un circunferenci es el lugr geométrico de los puntos del plno que equidistn de un punto fijo llmdo centro. L distnci de culquier punto de l circunferenci l centro se llm rdio. d(p,c=r Ecución de l circunferenci de centro C(,b y rdio R: ( x + ( y b = R Ecución reducid: x + y = R Ecución de l rect norml l circunferenci de centro C(,b en el punto p( y y x, y : y b ( x x = x
5 Ecución de l rect tngente l circunferenci se centro C(,b en el punto p=( x : y y x, y ( x b = x y ELIPSE Llmmos elipse l lugr geométrico de los puntos de un plno cuy sum de distncis dos puntos fijos del plno F y F (llmdos focos, es constnte. d(p,f+d(p,f = En un elipse se cumple: = b + c Siendo l longitud del semieje myor, b l longitud del semieje menor y c l mitd de l distnci entre los focos. L ecución reducid de l elipse es: x + b y = 1 Si l elipse tiene centro C ( x su ecución es: ( x x ( y y + b = 1, y Se define l excentricidd de un elipse como el cociente entre l distnci focl y el eje myor. e= c c = Si e tiende cero l elipse se semej un circunferenci.
6 HIPÉRBOLA Un hipérbol es el lugr geométrico de los puntos del plno cuy diferenci de distncis dos puntos fijos F y F, es constnte. d (P,F-d(P,F = El eje focl es l rect que ps por los focos.el eje focl cort l hipérbol en los puntos A, A, que reciben el nombre de vértices. El segmento AA es el eje rel de l hipérbol y su longitud es. El punto medio del segmento FF, O, es el centro de l hipérbol En un hipérbol se cumple: c = b + L ecución reducid de l hipérbol es: x b y = 1 Si l hipérbol tiene centro C( x su ecución es: ( x x ( y y b = 1, y
7 L excentricidd de un hipérbol es e= c. Cunto myor es l excentricidd, más se lrg l hipérbol en sentido verticl, de form que cundo e=1, l cónic degener en dos semirrects. Si e= l hipérbol recibe el nombre de hipérbol equiláter y su ecución es de l form x y = PARÁBOLA Un prábol es el lugr geométrico de los puntos del plno que equidistn de un punto fijo F llmdo foco y de un rect fij d llmd directriz de l prábol. d(p,f=d(p,d L directriz es l rect x= p L ecución reducid de l prábol es: y = px Si el foco se encuentr en el eje de ordend l directriz es l rect l ecución reducid es: x py = p y = y Si el centro de l prábol es C( x, y l ecución de l prábol es respectivmente: ( y y = p( x x x x = p( y ( y
8 Ejercicios 1. Encuentr l ecución de l circunferenci que ps por los puntos A (-1,8 B(-3,6 C(-1,4. Comprueb que ls siguientes circunferencis son concéntrics, clculndo el centro de mbs: C : x + y + 4y 31= C : x + y + x 4y = 4 3. Encuentr l ecución de l circunferenci que es concéntric con l circunferenci x + y 6x+ 1y+ 3= y que ps por el punto P(7,-. Clculr l rect norml y tngente l circunferenci en el punto P. 4. Estudi l posición reltiv de r y C. R: y=x+ C: x + y x+ 3y+ = 5. Encuentr l ecución de l elipse de focos F(5,, F (-5, cuyo eje myor es 14, y clcul ls coordends de sus vértices. 6.Los vértices de un elipse son A(11,, A (-11,,B(, 1, B (,- 1. Determin l ecución de l elipse y ls coordends de sus focos. Clcul l excentricidd de l elipse 7. Hll l ecución de l hipérbol de focos F, F y: F(5,, F (-5, =4 b F( 7,,F (-7, =5 8. Hll los focos, los vértices y el centro de l hipérbol: 36x 64y 7x 56y 54= 9. Estudi l posición reltiv de l rect y=-x+4 y l hipérbol x y = Clcul l ecución de un prábol sbiendo que su foco es F(,4 y su directriz es l rect d, de ecución y= Determin l ecución de l prábol de foco F(5, y de directriz x= El vértice de un prábol es V(1,3 y su directriz es l rect y=1. Cuál es su ecución? 13.Clcul los focos y los vértices de ls cónics siguientes, e identific el tipo de cónics l que corresponde cd cso:
9 x + 5y = 5 b y = 1x c x y = d x + y = Hll l ecución del lugr geométrico de los puntos del plno cuy distnci P (1, es doble que su distnci Q(-1, Locliz l ecución del lugr geométrico de los puntos P que verificn que d (P,A= d(p,r, siendo A(-3,1 y r es l rect de ecución x+y+5=
el blog de mate de aida: MATE I. Cónicas pág. 1
el blog de mte de id: MATE I. Cónics pág. 1 SECCIONES CÓNICAS Un superficie cónic se obtiene l girr un rect g (llmd genertriz), lrededor de otr rect e, llmd eje de giro, l que cort en un punto V (vértice).
y ) = 0; que resulta ser la
º BT Mt I CNS CÓNICAS Lugr geométrico.- Es el conjunto de los puntos que verificn un determind propiedd p. Considermos un determindo sistem de referenci crtesino del plno. Diremos que l ecución f(x,)=0
RELACIÓN DE PROBLEMAS DEL ESPACIO AFÍN EUCLÍDEO.
RELACIÓN DE PROBLEMAS DEL ESPACIO AFÍN EUCLÍDEO. 1- Ddo el triángulo de vértices A=(1,-3,), B=(3,-1,0) y C(-1,5,4). ) Determinr ls coordends del bricentro. b) Si ABCD es un prlelogrmo, determinr ls coordends
La Elipse. Distancia Focal : F 1 F 2 = 2 c Eje mayor o focal : AB = 2 a Focos : F 1 y F 2 Eje menor : CD = 2 b. Además se cumple que a
L Elipse L elipse es el lugr geométrico de los puntos del plno cuy sum de distncis dos puntos fijos es constnte. Estos dos puntos fijos se llmn focos de l elipse. Elementos de l Elipse Vértices : A, B,
UTalca - Versión Preliminar
1. Definición L hipérbol es el lugr geométrico de todos los puntos del plno cuyo vlor bsoluto de l diferenci de ls distncis dos puntos fijos es constnte. Más clrmente: Ddos (elementos bses de l hipérbol)
3 E.M. ALGEBRA. Curso: ECUACION DE LA ElIPSE. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO: Eje Temático: SECCIONES CONICAS
Colegio SSCC Concepción - Depto. de Mtemátics Eje Temático: SECCIONES CONICAS Unidd de Aprendizje: Ecución de l Elipse Cpciddes/Destrez/Hbiliddes: Resolver/Construir/ Decidir/Anlizr/ Identificr/ Verificr
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
8 Pág. Págin 88 PRACTICA Vectores y puntos Ddos los puntos A 0 B0 C y D hll ls coordends de los vectores AB BC CD DA AC y BD. AB = 0 0 = DA = 0 = BC = 0 = AC = 0 = 7 CD = = 6 BD = 0 = 8 Ls coordends del
BLOQUE 4: GEOMETRÍA. Vectores. La recta en el plano. Cónicas
BLOQUE 4: GEOMETRÍA Vectores L rect en el plno Cónics 83 4. VECTORES Hy mgnitudes que no quedn bien definids medinte un número; necesitmos conocer demás su dirección y su sentido. A ests mgnitudes se les
TEMA 8 GEOMETRÍA ANALÍTICA
Tem 8 Geometrí Anlític Mtemátics º ESO TEMA 8 GEOMETRÍA ANALÍTICA RELACIÓN ENTRE PUNTOS DEL PLANO EJERCICIO : Hll el punto medio del segmento de extremos P, y Q,. Ls coordends del punto medio, M, son l
La Elipse. B( 0, b ) P( x, y ) a b. B'( 0, -b ) PF' PF VV ' (x + c) + y = 2a (x c) + y elevando al cuadrado (x + c) + y = 2a (x c) + y
L Elipse Regresr Wikispces L elipse es el conjunto de todos los puntos P de un plno, tles que l sum de ls distncis de culquier punto dos puntos fijos del plno es constnte y su ecución se llm ecución ordinri.
ELIPSE. Las componentes principales de la elipse se pueden obtener de la figura anterior, las cuales son: Focos: Vértices: Pág. 1
ELIPSE. Es el conjunto de todos los puntos con l propiedd de que l sum de ls distncis de los puntos del conjunto dos puntos fijos ddos es un constnte, myor que l distnci entre los dos puntos. L elipse
LA ELIPSE DEFINICIÓN ELEMENTOS DE LA ELIPSE
1 LA ELIPSE DEFINICIÓN L elipse es el lugr geométrico de todos los puntos P del plno cuy sum de distncis dos puntos fijos, F 1 y F, llmdos focos es un constnte positiv. Es decir: L elipse es l curv cerrd
ÁlgebrayGeometría. 5. Halla la ecuación de la circunferencia que pasa por (3, 0), ( 1, 0) y (0, 3).
ÁlgebryGeometrí 1. ) Ddos tres puntos A, B y C en el plno demuestr que l circunferenci de diámetro AC ps por B siysólosielánguloâbc es recto. b) Ddos dos puntos A y B del plno y un rect r, determin, cundo
2.1 Ecuaciones de la recta en 2.2 Posiciones relativas.
. Ecuciones de l rect en. Posiciones reltivs. R Objetivos. Se persigue que el estudinte: Encuentre ecuciones de rects Determine si dos rects son coincidentes, prlels o si son intersecntes Encuentre punto
FUNDAMENTOS MATEMÁTICOS TEMA 1: CURVAS
FUNDAMENTOS MATEMÁTICOS TEMA 1: CURVAS TEMA 1: CURVAS 1. CÓNICAS * Prábols * Elipses * Hipérbols * Ecución Generl de un cónic. ECUACIONES PARAMÉTRICAS DE UNA CURVA 3. COORDENADAS POLARES EN EL PLANO *
6.2 DISTANCIA ENTRE DOS PUNTOS Consideremos la siguiente figura: Según el teorema de Pitágoras se tiene que: d x. y 2
UNIDAD 6: GEOMETRIA ANALÍTICA 6. SISTEMA DE COORDENADAS RECTANGULARES Un sistem de coordends rectngulres divide l plno en cutro cudrntes por medio de dos rects perpendiculres que se cortn en el punto O.
Ejercicios de optimización
Ejercicios de optimizción 1. Entre todos los triángulos isósceles de perímetro 0, cuál es el de áre máxim? Función mximizr: A yh Relcionr vribles: Estudimos l función: h h y x h x y x y 0 x 0y 0 y 0 0y
LAS CÓNICAS COMO LUGARES GEOMÉTRICOS
LAS CÓNICAS COMO LUGARES GEOMÉTRICOS Elipse: lugr geométrico de los puntos del plno cuy sum de distncis dos puntos fijos llmdos focos es constnte. d(x,f) + d(x,f ) = k LAS CÓNICAS COMO LUGARES GEOMÉTRICOS
LA RECTA DEL PLANO P O L I T E C N I C O 1 ECUACIÓN VECTORIAL Y ECUACIONES PARAMÉTRICAS
L Rect del Plno Mtemátic 4º Año Cód. 44-5 P r o f. M r í d e l L u j á n M r t í n e z P r o f. J u n C r l o s B u e P r o f. M i r t R o s i t o P r o f. V e r ó n i c F i l o t t i Dpto. de Mtemátic
1.- VECTORES EN EL PLANO. OPERACIONES. Cualquier vector v tiene dos componentes (v 1. v = (4,3) 1 2 1 2 u v. u = v (u, u ) = (v, v )
º Bchillerto Mtemátics I Dpto e Mtemátics- I.E.S. Montes Orientles (Iznlloz-Curso 0/0 TEMA 8.- GEOMETRÍA ANALÍTICA. PROBLEMAS AFINES Y MÉTRICOS.- VECTORES EN EL PLANO. OPERACIONES. Concepto e vector Un
CÓNICAS ESTUDIO ANALÍTICO DE LAS CÓNICAS
ESTUDIO ANALÍTICO DE LAS CÓNICAS Definición: Cónic es el lugr geométrico de los puntos de un plno cu rzón de distncis un punto fijo (que llmremos foco) un rect fij (que llmremos directriz) es constnte.
ELIPSE E HIPERBOLA DEFINICIONES Y EJERCICIOS
ELIPSE E HIPERBOLA DEFINICIONES Y EJERCICIOS Chí, Octubre de 015 Señores Estudintes grdos Décimos Adjunto encontrrán ls definiciones y los ejercicios que deben relizr de los dos tems pendientes pr l evlución
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MODELO Curso / MATERIA MATEMATICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El lumno
Se traza la paralela al lado a y distancia la altura h a.
Hojs de Problems Geometrí IV 56. Construir un triángulo conocido el ldo, l medin reltiv l ldo b y l ltur reltiv l ldo. Tomndo como ldos de un rectángulo los ldos, b del triángulo nterior clculr los ldos
LA ELIPSE EJERCICIOS RESUELTOS. Colegio Sor Juana Inés de la Cruz Sección Preparatoria Matemáticas III Bloque VII Ing. Jonathan Quiroga Tinoco
LA ELIPSE EJERCICIOS RESUELTOS Colegio Sor Jun Inés de l Cruz Sección Preprtori Mtemátics III Bloque VII Ing. Jonthn Quirog Tinoco 1. Pr encontrr l ecución de l elipse con centro en el origen, un foco
Los polígonos y la circunferencia
l: ldo 12 Los polígonos y l circunferenci 1. Polígonos lcul cuánto mide el ángulo centrl mrcdo en los siguientes polígonos: P I E N S Y L U L R l: ldo R R? R? R R? R R? R E l: ldo l: ldo F E 360 : 3 =
HIPÉRBOLA. Las componentes principales de la hipérbola se pueden obtener de la figura anterior, las cuales son: Focos: Vértices: Pág.
HIPÉRBOLA. Es el conjunto de todos los puntos con l propiedd de que l diferenci de ls distncis de los puntos del conjunto dos puntos fijos ddos es un constnte, positiv y menor que l distnci entre los focos.
VECTORES, PLANOS Y RECTAS EN R 2 Y R 3
Profesionl en Técnics de Ingenierí VECTORES, PLANOS Y RECTAS EN R Y R 3 1. Puntos en R y R 3 Un pr ordendo (, ) y un tern ordend (,, c) representn puntos de IR y IR 3, respectivmente.,, c, se denominn
Problemas de fases nacionales e internacionales
Problems de fses ncionles e interncionles 1.- (Chin 1993). Ddo el prlelogrmo ABCD, se considern dos puntos E, F sobre l digonl AC e interiores l prlelogrmo. Demostrr que si existe un circunferenci psndo
NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : DISEÑO AYUD. C. RAMIREZ N. AÑO : 2007 LA HIPERBOLA
ASIGNATURA : MATEMATICAS MATERIAL DE APOYO NIVEL : er. AÑO PROF. L. ALTIMIRAS R. CARRERA : DISEÑO AYUD. C. RAMIREZ N. AÑO : 007 LA HIPERBOLA Definición : Un Hipérol es el lugr geométrico de un punto en
7 ACTIVIDADES DE REFUERZO
7 ACTIVIDADES DE REFUERZO Nombre: Curso: Fech: 1. Dibuj un segmento AB de 2 cm de longitud. Trz un circunferenci con centro A y otr con centro B de 2 cm de rdio. Dibuj l rect que ps por los puntos de corte
2.- Dos ángulos de un triángulo miden 73º y 58º respectivamente. Determina el ángulo que forman sus bisectrices.
GEOMETRÍ 1.- Determin ls medids de los ángulos desconocidos. ) b) " 31º " 20º 47º 2.- Dos ángulos de un triángulo miden 73º y 58º respectivmente. Determin el ángulo que formn sus bisectrices. 3.- uánto
a (3, 1, 1), b(1, 7, 2), c (2, 1, 4) = 18,5 u 3
8 Clcul el volumen del prlelepípedo determindo por u(,, ), v (,, ) y w = u v. Justific por qué el resultdo es u v. w = u Ò v = (,, ) (,, ) = (, 6, 5) [u, v, w] = 6 5 u v = 9 + 6 + 5 = 7 = 7 Volumen = 7
1. Ejercicios Primera parte. 1. Clasifique en verdadero (V) o falso (F):
PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ Progrm de Perfeccionmiento pr Profesores de Mtemátics del Nivel Secundrio Curso Piloto-Etp distnci 1. Ejercicios 1.1. Primer prte 1. Clsifique en verddero (V) o
MATEMÁTICA V SEMESTRE. Autores: Lic. Armando Sandoval Torres Lic. Zulema Cuadrado González Lic. Emma García Enis.
MATEMÁTICA V SEMESTRE. Autores: Lic. Armndo Sndovl Torres Lic. Zulem Cudrdo González Lic. Emm Grcí Enis. Índice Repso de l líne rect / Cpítulo. Curvs de segudo grdo. Secciones cónics /.. Circunferenci
INSTRUCTIVO PARA TUTORÍAS
INSTRUCTIVO PARA TUTORÍAS Ls tutorís corresponden los espcios cdémicos en los que el estudinte del Politécnico Los Alpes puede profundizr y reforzr sus conocimientos en diferentes tems de cr l exmen de
Circunferencia y elipse
GAE-05_M1AAL5_circunferenci_elipse Circunferenci y elipse Por: Sndr Elvi Pérez Circunferenci Comienz por revisr l definición de circunferenci. Un circunferenci es un curv formd por puntos que equidistn
E-mail: grupociencia@hotmail.com 405 4466 Web-page: www.grupo-ciencia.jimdo.com 945 631 619
1. En el prlelogrmo mostrdo en l figur M N son puntos medios. Hlle = ++ en función de 3 + D + C +3. En l figur muestr los vectores de inscritos en un cudro de 6m de ldo. Determine el vector unitrio del
Geometría Analítica Enero 2016
Laboratorio #1 Distancia entre dos puntos I.- Halle el perímetro del triángulo cuyos vértices son los puntos dados 1) ( 3, 3), ( -1, -3), ( 4, 0) 2) (-2, 5), (4, 3), (7, -2) II.- Demuestre que los puntos
IES Fco Ayala de Granada Sobrantes del 2001 (Modelo 1) Solución Germán-Jesús Rubio Luna OPCIÓN A Area Area
IES Fco Ayl de Grnd Sobrntes del (Modelo ) GermánJesús Rubio Lun OPCIÓN A Ejercicio de l Opción A del Modelo de sobrntes de. Se quiere dividir l región encerrd entre l prábol y x y l rect y en dos regiones
La Hipérbola. César Román Martínez García Conalep Aztahuacan. 20 de noviembre de 2005
L Hipérbol Césr Román Mrtínez Grcí cesrom@esfm.ipn.mx, mcrosss666@hotmil.com Conlep Azthucn 20 de noviembre de 2005 Resumen Estudiremos l ecución de l hipérbol 1. Hipérbol Definición 0.1 Un hipébol es
SEPTIEMBRE " ( él representa el producto vectorial)? En caso afirmativo, justifíquese. En caso contrario, póngase un ejemplo que lo confirme.
SEPTIEMBRE 99 OPCIÓN A EJERCICIO. Otener ls mtrices A y B tles que cumplen ls siguientes condiciones: B A B A Se trt de un sistem de ecuciones mtriciles, que se puede resolver por culquier método. Pr este
UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO PRÁCTICO DE GEOMETRÍA ANALÍTICA
UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO PRÁCTICO DE GEOMETRÍA ANALÍTICA AÑO 014 CURSO PREPARATORIO DE INGENIERÍA CPI-014 TRASLACIÓN Y/O
La elipse es el lugar geométrico de todos los puntos cuya suma de distancias a dos puntos fijos, llamados focos, es constante.
LA ELIPSE DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6., los focos están representdos por los puntos y f.
BLOQUE II Análisis. Resoluciones de la autoevaluación del libro de texto. sea continua en x = 1.
Pág. de 7 x si x Ì Hll el vlor de k pr que l función fx = x + k si x > se continu en x =. b Represent l función pr ese vlor de k. c Es derivble en x =? Pr que f se continu en x =, h de ser fx = f. x 8
BLOQUE II ANÁLISIS. Página 234. a) Halla el valor de k para que la función f(x) = continua en x = 1. x 2 + k si x > 1
II BLOQUE II ANÁLISIS Págin 3 3x si x Ì Hll el vlor de k pr que l función fx = continu en x =. x + k si x > se b Represent l función pr ese vlor de k. c Es derivble en x =? Pr que f se continu en x =,
SELECTIVIDAD ANDALUCÍA. a) Esboza las gráficas de f y g sobre los mismos ejes y calcula los puntos de corte entre ambas gráficas.
SELECTIVIDAD. Est es un selección de cuestiones propuests en ls otrs comuniddes utónoms en l convoctori de Junio del.. En quells comuniddes en ls que no se indic nd, el formto de emen es similr l que se
1) Halla La ecuación del lugar geométrico de los puntos del plano cuya distancia a P(1,2) es doble que su distancia a Q(-1,8).
CÓNICS º BCHILLERTO ) Hll L ecución d lugr geométrico los puntos d plno cu distnci P(,) doble que su distnci Q(-,). d ( R, P) d( R, Q) ( ) ( ) ( ) ( ) ( ) 0 0 0 ) Encuentr l circunferenci circunscrit l
UNIVERSIDAD NACIONAL AGRARIA LA MOLINA CENTRO DE ESTUDIOS PREUNIVERSITARIOS SEMINARIO FINAL DE GEOMETRIA
UNIVRSI NINL GRRI L LIN NTR STUIS PRUNIVRSITRIS SINRI INL GTRI 01. n l figur: ls rects L y son prlels. Hlle el vlor de x. ) 18 ) 0 ) 5 ) 0 ) 5 0. n un triángulo se trz l ltur H tl que m = m H. Hlle si
INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE
INSTITUTO VALLADOLID PREPARATORIA Págin 05 6 LA ELIPSE 6. DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6.,
PROBLEMAS DE GEOMETRÍA ANALÍTICA PLANA. Capítulo SISTEMA DE COORDENADAS. Demostrar que los puntos A = ( 0,1) son los vértices de un cuadrado.
PROBLEMAS DE GEOMETRÍA ANALÍTICA PLANA Cpítulo SISTEMA DE COORDENADAS Demostrr que los puntos A ( 0,) B (,5) ; C ( 7,) D (, ) son los vértices de un cudrdo. Solución AB 9 6 5 5 BC 6 9 5 5 AD 9 6 5 5 CD
UNIVERSIDAD NACIONAL AGRARIA LA MOLINA CENTRO DE ESTUDIOS PREUNIVERSITARIOS SEMINARIO FINAL DE GEOMETRÍA
UNIVRSI NINL GRRI L LIN NTR STUIS PRUNIVRSITRIS SINRI INL GTRÍ 1. n l figur: ls rects L y son prlels. Hlle el vlor de x. ) 18 ) 0 ) 5 60 ) 5. n un triángulo se trz l ltur H tl que m < = m < H. Hlle si
UNI DAD 2 TRIGONOMETRÍA ANALÍTICA. Objetivos
UNI DAD 2 TRIGONOMETRÍA ANALÍTICA Objetivos Geometrí nlític Introducción funciones trigonométrics Vribles: dependientes independientes Constnte: numéric bsolut rbitrri, y z., b, c, Funciones: función
HIPÉRBOLA. Ecuación de la hipérbola
Mtemátic 014 HIPÉRBOLA Definición: Se llm hipérol l conjunto de puntos del plno que cumplen con l condición de que l diferenci de ls distncis dos puntos fijos, llmdos focos, es constnte. pf p f ' = constnte
CÓNICAS. Es el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado centro. centro de la circunferencia.
CÓNICAS CPR. JORGE JUAN Xuvi-Nrón L circunferenci, l elipse, l hipérol y l práol se conocen como cónics deido que se pueden otener l cortr un superficie cónic de revolución por un plno que no pse por su
TRIGONOMETRÍA Sistemas de Medición de Ángulos Equivalencia entre los tres Sistemas
TRIGONOMETRÍA Sistems de Medición de Ángulos Equivlenci entre los tres Sistems Áre del Circulo =. r 360º = Rd = 400 G º = R = G 360º 400 G Longitud de l Circunferenci C =. rdio Áre de Anillo o Coron Circulr
AB CH. Área del PQR ABC AB CH. Área del ABC QR PA. Área del. El área de un triangulo rectángulo es igual al semiproducto de sus catetos.
AREAS L noción de áre está socid l extensión o superficie de un figur. El áre es un número que nos dice que tn extens es un región y l expresmos en kilómetros cudrdos (Km ); metros cudrdos (m ); centímetros
9Soluciones a los ejercicios y problemas PÁGINA 196
PÁGIN 196 Pág. 1 P RCTIC Ángulos 1 Hll el vlor del ángulo en cd uno de estos csos: ) b) 11 37 48 48 c) d) 35 40 ) 37 b 11 b 180 11 68 180 37 68 75 b) 360 48 8 13 c) 40 b b 180 90 40 50 180 50 130 d) 35
UNIVERSIDAD NACIONAL DE FRONTERA CEPREUNF CICLO REGULAR
UNIVERSIDD NCIONL DE FRONTER CEPREUNF CICLO REGULR 017-018 CURSO: FISIC Elementos básicos de un vector: SEMN TEM: NÁLISIS VECTORIL Origen Módulo Dirección CLSIFICCION DE LS MGNITUDES FÍSICS POR SU NTURLEZ
12. Los polígonos y la circunferencia
l: ldo SLUINI 107 1. Los polígonos y l circunferenci 1. PLÍGNS PIENS Y LUL lcul cuánto mide el ángulo centrl mrcdo en los siguientes polígonos:? l: ldo? 4. ivide un circunferenci de de rdio en seis prtes
UNIDAD 7. PROPORCIONALIDAD, SEMEJANZA Y RELACIONES MÉTRICAS
UNIDAD 7. PROPORCIONALIDAD, SEMEJANZA Y RELACIONES MÉTRICAS RAZONES Y PROPORCIONES DEFINICIONES RAZÓN: L rzón entre dos números reles y, (0), es el cociente entre y, es decir. Tmién se escrie: /,, :. PROPIEDADES
Tema 5. Trigonometría y geometría del plano
1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene
XI. LA HIPÉRBOLA LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO
XI. LA HIPÉRBOLA 11.1. LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO Definición L hipérol es el lugr geométrico descrito por un punto P que se mueve en el plno de tl modo que el vlor soluto de l diferenci de sus
Retos Matemáticos visuales
Retos Mtemáticos visules Bdjoz, 5 de junio de 207 Dpto. de Mtemátics Univ. de Extremdur Retos Mtemáticos visules Dpto. de Mtemátics Univ. de Extremdur «Retos Mtemáticos visules. 5 de junio de 207 Tem
2. Calcula las coordenadas de D para que el cuadrilátero de vértices: A(-1, -2), B(4, -1), C(5, 2) y D; sea un paralelogramo.
REPSO DE GEOMETRÍ MÉTRIC PLN. Hllr el siétrico del punto (, - ) respecto de M(-, ).. Clcul ls coordends de D pr que el cudrilátero de vértices: (-, -), B(, -), C(, ) D; se un prlelogro.. Ddos los vectores
UNIVERSIDAD NACIONAL AGRARIA LA MOLINA CENTRO DE ESTUDIOS PREUNIVERSITARIOS SEMINARIO FINAL DE GEOMETRIA
UNIVRSI NINL GRRI L LIN NTR STUIS PRUNIVRSITRIS SINRI INL GTRI 01. n l figur, ls rects L y son prlels. Hlle el vlor de x. ) 18 ) 0 ) 5 ) 0 ) 5 0. n un triángulo, se trz l ltur H, tl que m = m H. Hlle,
Ecuación de la circunferencia de centro el origen C(0, 0) y de
CÓNICAS EN EL PLANO. CIRCUNFERENCIA, ELIPSE, HIPÉRBOLA Y PARÁBOLA centrds en el origen CIRCUNFERENCIA Aunque segurmente se sep, recordmos que l circunferenci es el conjunto de puntos que distn un cntidd
1º (junio 1994) i) Estudiar, para los diferentes valores del parámetro a, la existencia de
Sistems de ecuciones lineles SISTEMAS DE ECUACIONES LINEALES EJERCICIOS DE SELECTIVIDAD º (junio 994) i) Estudir, pr los diferentes vlores del prámetro, l eistenci de soluciones del sistem resolverlo cundo
GUÍA DE MATEMÁTICAS V. Ciclo escolar B determina:
Elbor: Preprtori Págin 1 de 14 Ciclo escolr 014-015 Docente: Fernndo Vivr Mrtínez I) Producto Crtesino, Relciones y Funciones B determin: 1) Ddos los conjuntos A 0,1,,3 y 4,5,6,7 ) El Producto Crtesino
TEMA 2. DETERMINANTES
TEMA. DETERMINANTES A cd mtriz cudrd de orden n se le puede signr un número rel que se obtiene operndo de ciert mner con los elementos de l mtriz. A dicho número se le llm determinnte de l mtriz A, y se
Secciones cónicas CONO. Un cono es la superficie que se obtiene girando una recta alrededor de un eje que la cruza.
Secciones cónics Un cono es l superficie que se obtiene girndo un rect lrededor de un eje que l cruz. Un sección cónic es l curv que se obtiene intersectndo un cono con un plno. CONO Los griegos comenzron
UNIDAD: GEOMETRÍA RECTAS Y PLANOS EN EL ESPACIO - ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS
u r s o : Mtemátic Mteril N 38 GUÍ TEÓRIO PRÁTI Nº 29 UNIDD: GEOMETRÍ RETS Y PLNOS EN EL ESPIO - ÁRES Y VOLÚMENES DE UERPOS GEOMÉTRIOS Determinción del plno: Un plno qued determindo por: Dos rects que
Ejercicios de las Cónicas
Ejercicios de ls Cónics Ejemplo 1 Ejemplo Otener l ecución crtesin generl de l circunferenci que coincide con el punto (, 3) cuo centro coincide con el origen. Prtiendo de l ecución ordinri ( - h) + (
Guía de Sustentación Matemática. 1º medio A 3, 2. h) H. c) El cuarto cuadrante d) El segundo cuadrante 5, 2
Royl Americn School Profesor An Mendiet Guí de Sustentción Mtemátic 1º medio A Formndo persons: Responsles respetuoss honests y leles 1) Represent en el plno crtesino los siguientes puntos: ) A(-1) d)
Aplicaciones de la derivada (II)
UNIVERSIDAD DEL CAUCA Fcultd de Ciencis Nturles, Ects de l Educción Deprtmento de Mtemátics CÁLCULO I Ejercicios Rects tngentes Aplicciones de l derivd (II) 1. Se l curv gráfic de l ecución ( ) =. Encuentre
INSTITUTO POLITECNICO NACIONAL CECYT MIGUEL BERNARD PERALES GUIA DE GEOMETRIA ANALITICA
INSTITUTO POLITECNICO NACIONAL CECYT MIGUEL BERNARD PERALES GUIA DE GEOMETRIA ANALITICA I. LA RECTA. Ejercicios pr resolver. 1. Demuestr que los puntos A(-,8); B(-6,1) C(0,4) son los vértices de un tringulo
En este tema supondremos al lector familiarizado con las técnicas más elementales de formas bilineales y cuadráticas sobre un espacio vectorial.
Cpítulo 4 El espcio euclídeo 4.1 Introducción En este tem supondremos l lector fmilirizdo con ls técnics más elementles de forms bilineles y cudrátics sobre un espcio vectoril. Definición 4.1.1. Un espcio
geometria proyectiva primer cuatrimestre 2003 Práctica 5
geometri proyectiv primer cutrimestre 2003 Práctic 5 1. Encontrr un curv prmetrizd α cuy trz se el círculo x 2 + y 2 = 1, que lo recorr en el sentido de ls gujs del reloj y tl que α(0) = (0, 1). 2. Se
Hl = {P = (x, y) 1 d(p, Fl) - d(p, 4) = -2a} 4.2 NOTACION Y PROPIEDADES
4.1 DEFINICION. Un hipérol es el conjunto de todos los puntos del plno euclideno R~ tles que que l diferenci de sus distncis dos puntos fijos es en vlor soluto un constnte. Así, si F, y F, son dos puntos
En todo triángulo rectángulo se cumple el Teorema de Pitágoras. sen C hipotenusa. cos C. BC : hipotenusa B AC. (Regla: SOHCAHTOA)
RAZONES TRIGONOMÉTRICAS Recordmos los siguientes conceptos: ABC es un triángulo rectángulo en A : BC : hipotenus AB : cteto dycente B ó cteto opuesto C AC : cteto opuesto B ó cteto dycente C Propiedd de
PROGRESIONES ARITMETICAS
PROGRESIONES ARITMETICAS. Hllr l sum de los primeros cien enteros positivos múltiplos de 7. L sum de n términos de un progresión ritmétic viene dd por l expresión: + n Sn n Aplicndo pr 00 términos: + 00
Circunferencia Parábola Elipse Hipérbola
INTRODUCCIÓN: UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA ANTONIO JOSÉ DE SUCRE VICE-RECTORADO PUERTO ORDAZ DEPARTAMENTO DE ESTUDIOS GENERALES SECCIÓN DE MATEMÁTICA Prof. Esther Morles (009) 1 Ls figurs
La hipérbola es el lugar geométrico de todos los puntos cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante e igual a 2a.
INSTITUTO VALLADOLID PREPARATORIA Págin 11 7 LA HIPÉRBOLA 7.1 DEFINICIONES L hipérol es el lugr geométrico de todos los puntos cuy diferenci de distncis dos puntos fijos, llmdos focos, es constnte e igul.
UNIVERSIDAD NACIONAL AGRARIA LA MOLINA CENTRO DE ESTUDIOS PREUNIVERSITARIOS ASESORÍA FINAL DE GEOMETRIA
UNIVRSI NINL GRRI L LIN NTR STUIS PRUNIVRSITRIS SSRÍ INL GTRI 01. n l figur, ls rects L y son prlels. Hlle el vlor de x. ) 18 ) 0 ) 5 ) 0 ) 5 0. n un triángulo, se trz l ltur H, tl que m = mh. Hlle, si
m m = -1 = μ - 1. Halla la Apellidos: Nombre: Curso: 2º Grupo: A Día: 27 - IV - 15 CURSO Opción A
S Instrucciones: EXAMEN DE MATEMATICAS II 3ª EVALUACIÓN Apellidos: Nobre: Curso: º Grupo: A Dí: 7 - IV - 5 CURSO 4-5 ) Durción: HORA y 3 MINUTOS. b) Debes elegir entre relizr únicente los cutro ejercicios
UNIDAD: GEOMETRÍA PERÍMETROS Y ÁREAS
u r s o : Mtemátic Mteril N 17 GUÍ TÓRI PRÁTI Nº 14 UNI: GMTRÍ PRÍMTRS Y ÁRS Perímetro de un polígono, es l sum de ls longitudes de todos sus ldos. l perímetro se denotrá por p y el semiperímetro por s.
Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales
Universidd Centrl de Venezuel Fcultd de Frmci Mtemátic - Físic Prof J R Morles Guí de Vectores (Resumen de l Teorí) 1 En físic distinguiremos dos tipos de cntiddes: vectoriles esclres Ls cntiddes vectoriles
* La letra a representa la distancia que hay desde el centro hasta el extremo de la elipse por su parte más alargada. Ver la figura 7.3.
págin 110 7.1 DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 7.1, los focos están representdos por los puntos
es una matriz de orden 2 x 3.
TEMA 7: MATRICES. 7.. Introducción l concepto de mtriz. 7.. Tipos de mtrices. 7.. El espcio vectoril de ls mtrices de orden m x n. 7.. INTRODUCCIÓN AL CONCEPTO DE MATRIZ. Se define mtriz de orden m x n
71 BAC CNyS VECTORES 1. PRESENTACIÓN DEL TEMA 2. VECTORES Y OPERACIONES 3. COORDENADAS DE UN VECTOR 4. PRODUCTO ESCALAR DE VECTORES
71 BAC CNyS VECTORES 1. PRESENTACIÓN DEL TEMA 2. VECTORES Y OPERACIONES 3. COORDENADAS DE UN VECTOR 4. PRODUCTO ESCALAR DE VECTORES 5. APLICACIONES (EN UNA BASE ORTONORMAL) 6. EJERCICIOS Y PROBLEMAS Vectores
CAPÍTULO 6: RELACIONES MÉTRICAS EN EL TRIÁNGULO (II)
CAPÍTULO 6: ELACIONES MÉTICAS EN EL TIÁNGULO (II) Dnte Guerrero-Chnduví Piur, 015 FACULTAD DE INGENIEÍA Áre Deprtmentl de Ingenierí Industril y de Sistems CAPÍTULO 6: ELACIONES MÉTICAS EN EL TIÁNGULO (II)
CIRCUNFERENCIA: Definición: Es el lugar geométrico de los puntos que equidistan de un punto llamado Centro y esa distancia es el radio.
Ls cónics responden l ecución generl del tipo F, ) 0 L ecución generl de un cónic es: A B C D E F 0 I) tér min oc cudráti cos tér min os lineles tér min o independiente B término rectngulr, cundo prece
CENTRO DE BACHILLERATO Y SECUNDARIA DEPTO. DE MATEMATICAS. MATEMÁTICAS III Geometria Analítica CLAVE SEMESTRE PLAN DE ESTUDIOS 12036 3 2004
CENTRO DE BACHILLERATO Y SECUNDARIA DEPTO. DE MATEMATICAS MATERIA MATEMÁTICAS III Geometri Anlític CLAVE SEMESTRE PLAN DE ESTUDIOS 036 3 004 CRÉDITOS 6 HORAS TEÓRICAS HORAS PRÁCTICAS 4 FECHA ACTUALIZACIÓN
SELECTIVIDAD DETERMINANTES
SELECTIVIDAD DETERMINANTES Junio 8: Dds ls mtrices A = 5, B = y M = b, clcúlese y b pr que se verifiquen MA =, M + B =, donde se está usndo l notción hbitul (con brrs verticles) pr denotr l determinnte
INDICADORES DE DESEMPEÑO
INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: GEOMETRÍA DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N 0 FECHA
vectores Componentes de un vector
Vectores Un vector es un segmento orientdo. Está formdo por se representn: - con un flech encim v - en un eje de coordends - el módulo: es l longitud del origen l extremo - l dirección: es l rect que contiene
4TO AÑO DE SECUNDARIA 1. 01. Si " " es la medida de un ángulo agudo y se cumple que:
0. Si " " es l medid de un ángulo gudo y se cumple que: Tg ; clculr: T Sen ot b) 8 0 0. n un triángulo rectángulo recto en "" se cumple que: Sen=Sen; clculr: Sen Tg 0 b) 0 0 0. l perímetro de un triángulo
2. [ANDA] [JUN-B] Considera la función f: definida por f(x) = e
Selectividd CCNN 5. [ANDA] [JUN-A] Se sbe que ls dos gráfics del dibujo corresponden l función f: definid por f() = e y su función derivd f'. ) Indic, rzonndo l respuest, cuál es l gráfic de f y cuál l
EJERCICI0S PARA ENTRENARSE. Hacemos una tabla de valores y después representamos la función
Unidd 3 Funciones Cudrátics EJERCICI0S PARA ENTRENARSE 4 Represent en los mismos ejes ls siguientes funciones: )) y y -. )) y 0,5 y - 0,5. c)) y 6 y - 6. Hcemos un tl de vlores y después representmos l