LECCIÓN 2 - MOMENTOS Y SISTEMAS DE VECTORES

Tamaño: px
Comenzar la demostración a partir de la página:

Download "LECCIÓN 2 - MOMENTOS Y SISTEMAS DE VECTORES"

Transcripción

1 LCCIÓN 2 - NTS Y SISTAS D VCTRS 2.. Clsfccó de vectes met cetl de u vect. Cmb del cet de mmets met áxc de u vect Sstems de vectes deslztes Sstems de vectes ccuetes P de vectes Sstems de vectes lgds plels. 2. CLASIFICACIÓN D VCTRS Se dce que ds vectes s equpletes cud tee l msm deccó, módul y setd. A pt de est defcó pdems clsfc, segú su put de plccó, ls vectes e: lbes: u vect es lbe cud puede susttuse p culque de sus equpletes s que p ell deje de epeset l msm mgtud. jempl: el vect velcdd del vet. deslztes: cud puede susttuse el vect p culque de sus equpletes cteds e su líe de ccó. jempl: el vect fuez e l deccó de u cued. lgds: puede susttuse p gu. jempl: el vect tesdd de cmp eléctc de u cg putul. 2.2 NT CNTRAL D UN VCTR. CABI DL CNTR D NTS. Se defe el mmet cetl de u vect espect de u put, () cm el pduct vectl () d sed u vect que tee p ge el put, y su extem e u put culque de l líe de ccó de. S s tees cce úcmete el módul del mmet:

2 P P ' () seϕ d d sed d l dstc más ct ete y l líe de ccó de l mmet cmb s se mueve el vect p su líe de ccó: () ' ( + PP') S ls cmpetes del vect s X, Y, Z y s ls cdeds de u put culque de su líe de ccó s (x,y,z ), l expesó de su mmet espect de (x,y,z ) seá: () x x x y j y y z k z z ' S e lug de expes el mmet espect de queems expesl espect de t put ': ' () ' (' + ) () ' ( ) + ' 2.3. NT ÁXIC D UN VCTR Se llm mmet áxc de u vect mmet de u vect espect u eje, l pyeccó sbe dch eje del mmet cetl del vect espect culque de sus puts: sed u el ves que defe l eje ( ) u ( ) u ux x x x y u Y y y u Z z z z

3 sed (x,y,z ) ls cdeds de u put culque de l líe de ccó del vect y (x,y,z ) ls cdeds de u put culque del eje. u ' ' ' () u y que ( ' ) y u s plels. l mmet cetl del vect sí depede del put del eje csded: ' () ( ) ' ( ' ) + ( ) pe sí l pyeccó sbe el eje, que es l msm: ((' ) + ) u 2.4. SISTAS D VCTRS DSLIZANTS ( ) u ( ) u ( ) u () u S demms sstem de vectes deslztes u cjut de vectes deslztes ( ), se llm esultte del sstem l vect sum de ls vectes que cmpe el sstem, csded ésts cm vectes lbes. R Se llm mmet esultte del sstem espect de u put l sum de ls mmets cetles espect de ese put de cd u de ls vectes del sstem. De fm álg se defe mmet áxc del sstem espect de u eje l sum de ls mmets áxcs de cd u de ls vectes del sstem. Al cjut de l esultte y el mmet esultte e u put se le llm ts del sstem e ese put.

4 l mmet esultte espect de t put ' seá ' ' ' ' ( ) + ( + ' ) ' + ' ' ' R + ' R Sstems de vectes ccuetes l sstem de vectes más smple es quel e que sus líes de ccó ps p u put. Se tt de vectes ccuetes. este tp de sstems, el mmet esultte seá: R C 2 3 es dec el mmet esultte es el mmet de l esultte (teem de Vg) P de vectes Se dem p l cjut de ds vectes deslztes de gul módul y deccó, setd puest y dfeete líe de ccó. vdetemete, l esultte de u p es ul, p l que el mmet del p es depedete del put espect del que se clcule, y que ' ' R S clculms el mmet espect de u put de l líe de ccó de u de ls vectes: c d c dde c es u vect que v de u líe de ccó t. Su módul seá d, dde d es l dstc ete ls ds líes de ccó.

5 l setd de vee dd p l egl del tll (cte dextóg) plcd l p de vectes SISTAS D VCTRS LIGADS PARALLS Se u sstem de vectes plels ( ), u y el ge de u sstem de efeec bt. u es el vect ut e l deccó del sstem. S A es el put de plccó de, l esultte del sstem y el mmet esultte espect de s: R u ( A ) Tee especl teés, desde el put de vst de l ecác, quells puts espect de ls cules el mmet esultte del sstem se ul. S llmms C u culque de tles puts, plcd l ecucó del cmb del cet de mmets, se cumplá que: + C R C C R st últm ecucó sgfc que, s plcms l esultte del sstem e C, etces el mmet esultte del sstem y el mmet de l esultte (plcd e C) espect de culque put del espc, ccde. Se puede cmpb fáclmete que el put C que cumple l cdcó te es úc, s que tds ls psbles sluces se le fmd u ect, que se cce c el mbe de eje cetl del sstem de vectes. De tds ls puts del eje cetl exste u, que llmems G, que tee l ppedd ñdd de que, uque cmbems l deccó de ls vectes del sstem (cmbems u ), el mmet esultte del sstem espect de él sgue uládse. fectvmete, segú l ecucó te: C R C ( ) u C( ) u Pe p t pte, de l defcó de mmet esultte de u sstem, A u ( A ) u Dd que ls esultds de ls ds ecuces tees debe ccd; y mbs s el esultd de seds pducts vectles e ls que el segud multplcd es el msm, exste muchs puts C que cumple mbs gulddes, cm y hems dch. Pe s queems que mbs gulddes se mteg p culque deccó del sstem de vectes (culque vl de u ), l úc psbldd es que se

6 C ( ) A Y est cdcó sól l cumple u put, l que llmems G, y que se detfc, cm veems más delte, c el cet de gvedd de u cuep. Ls cdeds de G se puede clcul cm G A edte est ecucó se puede clcul l pscó de G, sempe y cud l esultte del sstem se ule ( ).

7 JRCICIS LCCIN 2: NTS Y SISTAS D VCTRS 2.- Hll el mmet de u vect v 4 + j plcd e el put (2,-2,) espect del ge de cdeds y espect de A(4,,), cmpbd que se cumple l elcó: A ( v) ( v) A v Sl. k ; 6k A 2.2- Clcul el mmet de u vect de módul 5 stud sbe l ect [y 2x+5; z] espect del ge de cdeds, e ds puts dstts de su líe de ccó, cmpbd que s gules. Sl. 5 5 k 2.3- U eje ps p el ge y p el put (,2,-2). Clcul el mmet espect de dch eje del vect V(2,-4,-3) plcd e P(3,,). Sl. 5/ Clcul el mmet del vect v 2 4 j cuy líe de ccó ps p el put P(-,,), espect del eje defd p ls ecuces: x 2 y 3 z 2 2 Sl: U vect deslzte de módul 5 tee cm líe de ccó l ect x y z-2. Detem el mmet del vect espect del put P(,2,3) y el mmet espect l ect que ps p A(-,5,-4) y B(,3,-2). 5 5 Sl. + k; Dd el vect deslzte V (3,-4,5) y u put A (2,3,) de su líe de ccó, clcul: ) Su mmet _cpl. 2) Su mmet espect del put P (2,-3,5). 3) Su mmet espect de l ect que ps p ls puts B (,-,) y C (2,,). 4) Su mmet espect de ls ejes cdeds. Sl. 9 7 j 7k; 4 2j 8k ; 4/3; 9,-7, Clcul el mmet del vect v 5 4 j 2 k plcd e el put P(2,-,-) espect de u eje que fm águls de 45º y 6º c ls ejes X y Y, sed su tece cse dect pstv, y que ps p A (-,,-3). Sl: U sóld g leded del eje Y, sed l fuez plcd F 3 j + 2 k N. ) Clcul el mmet de F espect del ge, s el put de plccó de F es 5 m. b) Id espect del put ' stud e l cded (,-4,).

8 c) Cmpueb que ls cmpetes Y y 'Y s gules. Sl. j 5k Nm; 8 j 7k N ' 2.9- Hll ls mmets áxcs del vect j k, plcd e (,2,-) espect de ls ejes ctess. Sl. X 6; Y -2; Z Dd el sstem de vectes: v j + k y u put P (,,2) de su líe de ccó, v2 j + k y u put P 2(,2,) de su líe de ccó, v j + 3k y u put P 3 (,,) de su líe de ccó, detem: ) Resultte del sstem. 2) met esultte espect del ge de cdeds. 3) met esultte espect de (,,). Sl. R j + 5k ; j + 4k ; ' j + 2k 2.- Dd el sstem de vectes plels: 2 + j + k y A (,,) u put de su líe de ccó, 2 2 j k y A 2 (,,) u put de su líe de ccó, j + 2k y A 3 (,,) u put de su líe de ccó, detem: ) Resultte del sstem. 2) met esultte espect del ge de cdeds. 3) l vect que dc l pscó del put G, G. 4) Cmpb que el mmet esultte del sstem espect de G es ul. Sl. R j + 2k; 2 + j + 3k; G ( j + k) 2

CÁLCULO VECTORIAL 1.- MAGNITUDES ESCALARES Y VECTORIALES. Llamamos magnitud a toda propiedad física susceptible de ser medida.

CÁLCULO VECTORIAL 1.- MAGNITUDES ESCALARES Y VECTORIALES. Llamamos magnitud a toda propiedad física susceptible de ser medida. CÁLCULO VECTORIAL.- MAGNITUDES ESCALARES Y VECTORIALES. Llmms mgtud td prpedd físc susceptle de ser medd. Al lr ls mgtudes físcs pdems cmprr que este ds clses e dferecds: ) Mgtudes esclres: s quells que

Más detalles

2 SISTEMAS DE PARTÍCULAS. SÓLIDO RÍGIDO

2 SISTEMAS DE PARTÍCULAS. SÓLIDO RÍGIDO CNTENIDS BÁSICS SISTEMAS DE PARTÍCULAS. SÓLID RÍGID Sstes de ptículs Cet de ss Met gul de u sste de ptículs 4 Eegí cétc de u sste de ptículs 5 Csevcó de ls ets lel y gul FTGRAFÍA DE LA VÍA LÁCTEA 6 Sste

Más detalles

Inductancias propias y mutuas de una línea de transmisión

Inductancias propias y mutuas de una línea de transmisión ductcs pps y mutus de u íe de tsmsó E su fm más básc, ductc es u pámet que pemte ec cete que ccu e u ccut c u cmp mgétc: este pámet ec pp cete c e pp cmp, se hb de ductc pp utductc de ccut. ductc ec cete

Más detalles

Una magnitud física es todo aquello que se puede medir: masa, volumen, temperatura, velocidad...

Una magnitud física es todo aquello que se puede medir: masa, volumen, temperatura, velocidad... Fdmetos Teoís Físcs TS Aqtect.. CÁLCUL VCTIAL... INTDUCCIÓN L ecác es l pte de l Físc qe estd el eqlbo el mometo de los cepos. Se dde e Cemátc qe se ocp del mometo de los cepos depedetemete de ls fes qe

Más detalles

3.6 APLICACIONES DE LOS OPERADORES DIFERENCIALES EN MEDIOS CONTINUOS

3.6 APLICACIONES DE LOS OPERADORES DIFERENCIALES EN MEDIOS CONTINUOS 3.6 APLICACIONES E LOS OPERAORES IFERENCIALES EN MEIOS CONTINUOS Existe vis pblems físics que puede epesetse mtemáticmete e témis de pedes difeeciles. E geel, se utiliz epesetcies vectiles p que ls pltemiets

Más detalles

PRODUCTO ESCALAR. r r r

PRODUCTO ESCALAR. r r r PRODUCTO ESCALAR Defncón de pdct escl de ectes. Se denmn pdct escl de ds ectes (, ) y (, ), l núme: cs α y l epesentms p En el pdct escl se mltplcn ds ectes, pe el esltd es n núme (escl). S ls ectes petenecen

Más detalles

i j k

i j k Ejemplos de oblems p evo I I. Descpcó del Movmeto de U tícul, Coodeds de u ptícul ví co el tempo de cuedo co ls fomuls: t s t, t cos t, t.) Demuéstese ue l tecto de ptícul es espl ubcd sobe supefce de

Más detalles

LAS OLIMPIADAS INTERNACIONALES

LAS OLIMPIADAS INTERNACIONALES POBLEMAS DE LAS OLIMPIADAS INTENACIONALES DE FÍSICA Jsé Lus Heáez Péez Agustí Lz Pll M 008 Jsé Lus Heáez Péez; Agustí Lz Pll, M 008 8ª OLIMPIADA DE FÍSICA. EPÚBLICA DEMOCÁTICA ALEMANA. 975.-U vll vuelts

Más detalles

Experimento 1 Medición de Índices de Refracción

Experimento 1 Medición de Índices de Refracción Expemeto Medcó de Ídces de Refccó Objetvos Istumet e el lbotoo métodos de medcó de ídces de efccó de sustcs tspetes que puede est e estdo líqudo o sóldo, tles como vdo, luct, gu, glce, etc. Relz u álss

Más detalles

CONDUCCIÓN ESTACIONARIA UNIDIMENSIONAL(I)

CONDUCCIÓN ESTACIONARIA UNIDIMENSIONAL(I) em : Coduccó estco udmes. I. fel oyo, José Mguel Coeá. Cuso 000-000 Dpostv em : Coduccó estco udmesol CONDUCCIÓN ESCIONI UNIDIMENSIONLI PLICCIÓN PEDES PLNS Y CONDUCOS JM Coeá, oyo UPV em : Coduccó estco

Más detalles

EXPRESIONES ALGEBRAICAS

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS 1 Epresoes Algebrcs es l uó de úmeros y vrbles medte opercoes de sum, rest, multplccó, dvsó, poteccó y rdccó. Epresó lgebrc rcol: se llm sí quells e ls que ls vrbles está fectds

Más detalles

Cinemática 1D 2D 3D (un enfoque para estudiar el movimiento)

Cinemática 1D 2D 3D (un enfoque para estudiar el movimiento) L cnemác es un m de l mecánc clásc que esud el mmen de ls cueps sn ene en cuen ls cuss (uezs) que l pducen. Se pecup p ls ecs en uncón del emp, p l cul ulz un ssem de cdends (ssem de eeenc). Además, esud

Más detalles

Se entiende por sistema de fuerzas a un conjunto de fuerzas como se indica

Se entiende por sistema de fuerzas a un conjunto de fuerzas como se indica CDENADAS VECTIALES DE LS SISTEAS DE FUEZAS Se etede po sstema de fuezas a u cojuto de fuezas como se dca La esultate geeal del sstema se obtee sumado los vectoes equpoletes de cada ua de las compoetes

Más detalles

En cualquier punto donde coloquemos nuestra segunda carga, su posición podrá darse con un vector de posición que cumple:

En cualquier punto donde coloquemos nuestra segunda carga, su posición podrá darse con un vector de posición que cumple: CAMPO LCTRICO Cosdeemos e pcpo ua stuacó deal: l Uveso está vacío y o exste ada supogamos ue e el ceto de ese Uveso colocamos ua caga putual podemos pegutaos: Sufe algú cambo el Uveso? S o exste ota caga

Más detalles

a, b y POSITIVA, se puede hacer una aproximación del área

a, b y POSITIVA, se puede hacer una aproximación del área BLOQUE III: Aálss -ÁREA BAJO UNA CURVA Tem 5: Itegrles defds Dd u fucó (, y POSITIVA, se puede hcer u promcó del áre compredd etre el eje X y l gráfc de l fucó e el tervlo, del sguete modo: ) Se dvde el

Más detalles

PRODUCTO ESCALAR. r r r

PRODUCTO ESCALAR. r r r PRODUCTO ESCALAR Defnón de pdt esl de vetes. Se denmn pdt esl de ds vetes ( ) y ( ) p l núme: s y l epesentms En el pdt esl se mltpln ds vetes pe el esltd es n núme (esl). S ls vetes peteneen l esp vetl

Más detalles

PROBLEMAS RESUELTOS. Problema 1. Resolver la ecuación en la incógnita x: Solución al problema 1

PROBLEMAS RESUELTOS. Problema 1. Resolver la ecuación en la incógnita x: Solución al problema 1 PROBLEMS RESUELTOS Presetmos cotucó ls solucoes los problems,, del úmero de l Revst, que eví Crlos Mrcelo Css Cudrdo. Problem Resolver l ecucó e l cógt : (bsolutorl ufgbe, Bver, 87 Solucó l problem El

Más detalles

PRÁCTICA DE CLASE No. 1 CÁLCULO NUMÉRICO DE TRAYECTORIAS ORBITALES

PRÁCTICA DE CLASE No. 1 CÁLCULO NUMÉRICO DE TRAYECTORIAS ORBITALES Pfc Uesdd Je. Fculd de Igeeí Depe de Cecs Nules y Meács Áe de Físc Ceác y Dác PRÁCTICA DE CLASE N. CÁLCULO NUMÉRICO DE TRAYECTORIAS ORBITALES. TIPO DE PRÁCTICA Acdd e Clse Pácc Cse.. OBJETIVOS. Dee de

Más detalles

EXAMEN: AMPLIACIÓN DE MATEMATICAS Y TRIGONOMETRIA ESFÉRICA (F.FEBRERO) CURSO:2009/10 05 de febrero de 2010

EXAMEN: AMPLIACIÓN DE MATEMATICAS Y TRIGONOMETRIA ESFÉRICA (F.FEBRERO) CURSO:2009/10 05 de febrero de 2010 EXÁMENES CURSO CTUL. RESOLUCIÓN ISIDORO PONTE E.S.M.C, EXMEN: MPLICIÓN DE MTEMTICS Y TRIGONOMETRI ESFÉRIC (F.FEBRERO) CURSO:9/ de febrer de. )Dd l mtri, clcul: I ( I mtri idetidd) ) Clculms I I Clculms

Más detalles

CAPÍTULO V MOMENTOS DE INERCIA. El momento de inercia de un área tiene la forma

CAPÍTULO V MOMENTOS DE INERCIA. El momento de inercia de un área tiene la forma sistci d Mtils. Cpítul V. CPÍTULO V MOMENTOS DE NEC 5.. Mmts d ici d ás El t d ici d u á ti l fm Mmt d ici spct dl j : Mmt d ici spct dl j : Nt qu l cdd qu v l itgd s l cti l j spct dl qu s clcul l t d

Más detalles

TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO VECTORES: MAGNITUDES ESCALARES Y VECTORIALES VECTORES

TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO VECTORES: MAGNITUDES ESCALARES Y VECTORIALES VECTORES TALLER VERTICAL DE MATEMÁTICA VECTORES Cets mgntudes, que quedn pefectmente defnds po un solo númeo el su medd o módulo) se denomnn MAGNITUDES ESCALARES pudendo epesentse po segmentos tomdos soe un ect.

Más detalles

Cálculo con vectores

Cálculo con vectores Uidd didáctic 1 Cálculo co vectoes 1.- Mgitudes escles vectoiles. So mgitudes escles quells, como l ms, l tempetu, l eegí, etc., cuo vlo qued fijdo po u úmeo (co su uidd coespodiete). Gáficmete se epeset

Más detalles

VECTORES EN EL ESPACIO

VECTORES EN EL ESPACIO Tem Vectes Ejecicis eselts Mtemátics II º Bchillet VECTORES EN EL ESPACIO DEPENDENCIA E INDEPENDENCIA LINEAL COMBINACIÓN LINEAL BASE EJERCICIO : Dds ls vectes ( ) b( ) c ( ) d ( ): ) Fmn n bse de R? Expes

Más detalles

3. Unidad Aritmética Lógica (ALU)

3. Unidad Aritmética Lógica (ALU) 3. Udd rtmétc Lógc (LU) bordremos los spectos que permte l mplemetcó de l rtmétc de u computdor, trbuto fucol de l Udd rtmétc Lógc (LU). Prmero se revstrá lo relcodo l form de represetr los úmeros como

Más detalles

FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA PRIMER EJERCICIO GRUPO 1PV 27 de Febrero de 2002

FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA PRIMER EJERCICIO GRUPO 1PV 27 de Febrero de 2002 FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA PRIMER EJERCICIO GRUPO 1PV 7 de Fee de Cuestines 1. Otén ls dimensines del fluj del cmp eléctic e indic sus uniddes en el sistem intencinl. F Q MLT IT 1 [ Φ] [ ES

Más detalles

NÚMEROS COMPLEJOS. El vector así representado define un número complejo, y a dicha representación se le llama afijo de un número complejo.

NÚMEROS COMPLEJOS. El vector así representado define un número complejo, y a dicha representación se le llama afijo de un número complejo. educgu.com NÚMEROS COMPLEJOS DEFINICIÓN Se llm númeo complejo un p odendo de númeos eles (, ). Los númeos eles y se llmn componentes del númeo complejo. A l componente se le desgn pte el y l componente

Más detalles

PROYECTO DE TEORIA DE MECANISMOS.

PROYECTO DE TEORIA DE MECANISMOS. Nmbe: Mecnism: PROYECTO DE TEORIA DE MECANISMOS. Análisis cinemátic y dinámic de un mecnism pln ticuld cn un gd de libetd. 7. Cálcul de ls celecines cn el métd de ls celecines eltivs gáfic y nlític 7.1.

Más detalles

Inferencia estadística Intervalos de confianza

Inferencia estadística Intervalos de confianza rbblddes y Estdístc Cmutcó Fcultd de Cecs Excts y Nturles Uversdd de Bues Ares A M. Bc y Ele J. Mrtíe 4 Iferec estdístc Itervls de cf Cud se btee u estmcó utul de u rámetr es cveete cmñr dch estmcó r u

Más detalles

No entrarem en detalls ni en definicions massa formals sinó que veurem únicament aquells conceptes que necessitarem durant el curs.

No entrarem en detalls ni en definicions massa formals sinó que veurem únicament aquells conceptes que necessitarem durant el curs. Mètodes Mtemàtcs Aplcts l Químc, Cus 006-007. Pedo Sldo.- Àlgeb lel o etem e detlls e defcos mss fomls só que euem úcmet quells coceptes que ecesstem dut el cus.. Esps ectols U espco ectol es u estuctu

Más detalles

A) Se considera el problema de contorno bidimensional constituido por la ecuación diferencial

A) Se considera el problema de contorno bidimensional constituido por la ecuación diferencial Elemetos tos bdmesoles. U vsó pelm A Se cosde el poblem de cotoo bdmesol costtdo po l eccó deecl (, e el domo, smplemete coeo ls codcoes de cotoo: (, coocd e α coocd e Recédese qe qe, s se deom l ccdte

Más detalles

Tema 5: Operación de amortización. Préstamos

Tema 5: Operación de amortización. Préstamos Te 5: Opecó de otzcó. Péstos.- Plteeto geel de l opecó de otzcó co teeses pospgbles. Recbe est deocó tod opecó de pestcó úc y cotpestcó últple: Pestcó - { 0,t 0 } otpestcó -{, t, t..., t } El cptl de l

Más detalles

es toda la línea determinada por estos dos puntos, mientras que el conjunto de todas las combinaciones convexas es el segmento de línea que une a

es toda la línea determinada por estos dos puntos, mientras que el conjunto de todas las combinaciones convexas es el segmento de línea que une a 5 dsttos Cosecuetemete el cojuto de tods ls combcoes fes de dos putos R es tod l líe determd por estos dos putos metrs que el cojuto de tods ls combcoes coves es el segmeto de líe que ue y. Obvmete cd

Más detalles

Lenguaje humano. Representación de la información. Utiliza un conjunto de símbolos alfanuméricos. Puede representar Información

Lenguaje humano. Representación de la información. Utiliza un conjunto de símbolos alfanuméricos. Puede representar Información Leguje humo Represetcó de l formcó Utlz u cojuto de símbolos lfumércos Crcteres lfbétcos:, B, C,.Z,, b, c,...z Símbolos umércos 9 sgos de putucó... Puede represetr Iformcó umérc lfumérc Leguje del ordedor

Más detalles

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS NÚMEOROS COMPLEJOS

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS NÚMEOROS COMPLEJOS NÚMEOROS COMPLEJOS Defcó: El cojuto de los úmeros complejos es C R R {(, / R y b R} C está formdo por todos los pres ordedos de úmeros reles etre los que defmos u relcó, l guldd, y dos opercoes brs que

Más detalles

FUNDAMENTOS FÍSICOS DE LA INGENIERÍA PRIMER CURSO DE INGENIERO DE TELECOMUNICACIÓN CURSO 2009/2010

FUNDAMENTOS FÍSICOS DE LA INGENIERÍA PRIMER CURSO DE INGENIERO DE TELECOMUNICACIÓN CURSO 2009/2010 FUNDMNTOS FÍSICOS D L INGNIRÍ PRIMR CURSO D INGNIRO D TLCOMUNICCIÓN CURSO 009/00 FÍSIC CUÁNTIC. l estdo de u sstem e Físc Clásc.. Fllos de l Físc Clásc sto e clse.. l epemeto de l doble edj sto e clse.

Más detalles

NÚMEROS COMPLEJOS. r φ. (0,0) a

NÚMEROS COMPLEJOS. r φ. (0,0) a Educgu.com NÚMEROS COMPLEJOS DEFINICIÓN Se llm númeo complejo un p odendo de númeos eles (,b). Los númeos eles y b se llmn componentes del númeo complejo. A l componente se le desgn pte el y l componente

Más detalles

DINÁMICA DEL MOVIMIENTO CIRCULAR.

DINÁMICA DEL MOVIMIENTO CIRCULAR. Diámic del oimieto Cicul DINÁICA DEL OIIENO CICULA..- uez Noml o Cetípet. Si u cuepo se est moiedo co u pidez uifome, e u cículo de dio, este expeimet u celeció cetípet, cuy mitud seá: L diecció de es

Más detalles

MAGNITUDES ESCALARES Y VECTORIALES. Dr. CARLOS MOSQUERA

MAGNITUDES ESCALARES Y VECTORIALES. Dr. CARLOS MOSQUERA 1 MAGNITUDES ESCALARES Y VECTRIALES D. CARLS MSQUERA 2 Mgntudes escles y vectoles Defncones; popeddes y opecones En los conceptos de mecánc que desollemos, nos encontemos con dos dfeentes tpos de mgntudes:

Más detalles

(Apuntes sin revisión para orientar el aprendizaje) CÁLCULO INTEGRAL LA INTEGRAL DEFINIDA Y LA INTEGRAL INDEFINIDA

(Apuntes sin revisión para orientar el aprendizaje) CÁLCULO INTEGRAL LA INTEGRAL DEFINIDA Y LA INTEGRAL INDEFINIDA (Aputes s revsó pr oretr el predzje) CÁLCULO INTEGRAL LA INTEGRAL DEFINIDA Y LA INTEGRAL INDEFINIDA Sumtor Pr represetr e form revd determdo tpo de sums, se utlz como símolo l letr greg sgm. Ejemplos.

Más detalles

21 k. ! en función de n. = 1. Universidad de Santiago de Chile Facultad de Ciencia Depto. Matemática y Ciencia de la Computación

21 k. ! en función de n. = 1. Universidad de Santiago de Chile Facultad de Ciencia Depto. Matemática y Ciencia de la Computación USACH ÁLGEBRA Gbrel Rbles R. Uversdd de Stgo de Chle Fcultd de Cec Depto. Mtemátc y Cec de l Computcó Prof. Gbrel Rbles R. SUMATORIAS EJERCICIOS RESUELTOS: Clculr: ) ) b) [ ) ) ] c) j j j d) el vlor de

Más detalles

Cálculo con vectores

Cálculo con vectores Unidd didáctic 1 Cálculo con vectoes 1.- Mgnitudes escles vectoiles. Son mgnitudes escles quells, como l ms, l tempetu, l enegí, etc., cuo vlo qued fijdo po un númeo (con su unidd coespondiente). Gáficmente

Más detalles

Regla del Triángulo. (a) (b) (c) 1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R 0101) Repaso de Vectores

Regla del Triángulo. (a) (b) (c) 1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R 0101) Repaso de Vectores 1 Físc Genel I Plelos 5. Pofeso RodgoVeg R 11) Repso de Vectoes 1) Repso de Opecones Vectoles Us l sum ectol, usndo l egl del tángulo l del plelogmo. Clcul l mgntud deccón de l sum usndo teoem del seno

Más detalles

UNIVERSIDAD DE GRANADA PONENCIA DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES PONENTE: PROF. FRANCISCO JIMÉNEZ GÓMEZ

UNIVERSIDAD DE GRANADA PONENCIA DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES PONENTE: PROF. FRANCISCO JIMÉNEZ GÓMEZ UNIVERSIDD DE GRND ONENCI DE MTEMÁTICS LICDS LS CIENCIS SOCILES ONENTE: ROF FRNCISCO JIMÉNEZ GÓMEZ RUE DE CCESO R MYORES DE ÑOS CONVOCTORI DE ENUNCIDOS Y RESOLUCIÓN DE LOS EJERCICIOS ROUESTOS EN MTEMÁTICS

Más detalles

PROBLEMAS RESUELTOS DE TRABAJO Y ENERGÍA

PROBLEMAS RESUELTOS DE TRABAJO Y ENERGÍA POLEMS ESUELOS E JO Y ENEGÍ Equip dct: ti J. Gc Mi Hádz Puc lfs l lmt POLEM U l d ms qu s mu 4 m/s pt iztlmt u lqu d md st u pfudidd d 5 cm. uál s l fuz mdi qu s lizd s l l p dtl?. F N d m S F l fuz mdi

Más detalles

TEORÍA (3 p). (a) Calcular el momento de inercia de una esfera homogénea de masa M y radio R

TEORÍA (3 p). (a) Calcular el momento de inercia de una esfera homogénea de masa M y radio R EM 1 ( p) Un b delgd de longtud está tculd en el punto fo mednte un psdo lededo del cul g en sentdo nthoo con elocdd ngul (ése fgu 1). En el punto está und ot b delgd de longtud cuyo extemo se deslz lo

Más detalles

Determinación del Número de Particiones de un Conjunto

Determinación del Número de Particiones de un Conjunto Determcó del Número de rtcoes de u Couto Lus E Ryber E el estudo de prtcoes estblecds e u couto A que posee elemetos se susct l cuestó del úmero totl de tles prtcoes Es evdete y el cálculo sí lo dc que

Más detalles

SOBRE LAS APLICACIONES DE R n EN R m UTILIZANDO EL JACOBIANO

SOBRE LAS APLICACIONES DE R n EN R m UTILIZANDO EL JACOBIANO OBE LA APLICACIOE E E UTILIZAO EL ACOBIAO Ce ÁCHEZ ÍEZ Estdos qí ls codcoes báscs de deecbldd de ls coes deds desde e P ello seos l t cob costtd po ls deds pcles de ls coes copoetes de l plccó dd ls popeddes

Más detalles

Tema 2 Transformada Z y análisis transformado de sistemas LTI

Tema 2 Transformada Z y análisis transformado de sistemas LTI Tem Trsformd Z y álss trsformdo de sstems LTI rlos Óscr Sáche Soro 4º Ig. Telecomuccó EPS Uv. S Pblo EU Bblogrfí: Oppehem I p., Oppehem II p. 3, Pros p. 3 y Fucoes props de los sstems LTI x h h h h H x

Más detalles

Practico 7 Fuerza y Leyes de Newton

Practico 7 Fuerza y Leyes de Newton 008 Pctico 7 uez y Leyes de Newton ) Un bloque de 5.5 Kg. está inicilmente en eposo sobe un supeficie hoizontl sin ficción. Es empujdo con un fuez hoizontl constnte de 3.8 N. ) Cuál es su celeción? b)

Más detalles

UNIVERSIDAD NACIONAL DE INGENIERIA P.A FACULTAD DE INGENIERIA MECANICA 19/10/2011 DACIBAHCC EXAMEN PARCIAL DE METODOS NUMERICOS (MB536)

UNIVERSIDAD NACIONAL DE INGENIERIA P.A FACULTAD DE INGENIERIA MECANICA 19/10/2011 DACIBAHCC EXAMEN PARCIAL DE METODOS NUMERICOS (MB536) UNIVERSIA NACIONA E INGENIERIA P.A. - FACUTA E INGENIERIA MECANICA // ACIBAHCC EXAMEN PARCIA E METOOS NUMERICOS MB6 SOO SE PERMITE E USO E UNA HOJA E FORMUARIO Y CACUAORA ESCRIBA CARAMENTE SUS PROCEIMIENTOS

Más detalles

TEMA 12 (Oposiciones de Matemáticas)

TEMA 12 (Oposiciones de Matemáticas) TEMA (psces de Matemátcas) ESPACIS ECTRIALES.. Espacs ectales.. Sbespacs ectales... Iteseccó de Sbespacs... ó de Sbespacs..3. Sma de Sbespacs..4. Sma Decta de Sbespacs. 3. Aplcaces Leales. Espac Ccete.

Más detalles

TEMA 7. SUCESIONES NUMÉRICAS.

TEMA 7. SUCESIONES NUMÉRICAS. º EO Tem 7 TEMA 7. UCEIONE NUMÉRICA.. UCEIONE NUMÉRICA. Imgiemos el ecoido que efectú u bló que se h lzdo l suelo y midmos ls distcis ete bote y bote: Ls distcis fom u sucesió de úmeos: 0, 5, 0, 5,. U

Más detalles

MÉTRICA. = r. r r. Se puede calcular como distancia entre dos puntos.

MÉTRICA. = r. r r. Se puede calcular como distancia entre dos puntos. MÉTRI. Ditci. i. Ditci ete pt. L itci ete pt e el mól el egmet qe etemi l pt. Se ( ) ( ) pt el epci l itci ete ell eá p l epeió Ppiee i. ii. Sí l ( ) iii. ( ) ( ) i. ( ) ( ) ( ) ( ) ( ) ( ) ( ) etce ii.

Más detalles

4πε. r 1. r 2. E rˆ La carga puntual q 1

4πε. r 1. r 2. E rˆ La carga puntual q 1 .3 L cg puntul q -5. nc está en el oigen l cg puntul q 3 nc está sobe el eje de ls en 3 cm. l punto P está en 4 cm. ) Clcule los cmpos elécticos debidos ls dos cgs en P. b) Obteng el cmpo eléctico esultnte

Más detalles

Resolución de sistemas de congruencias

Resolución de sistemas de congruencias Resolucó de sstems de cogruecs E este prtdo veremos cómo utlzr l rtmétc modulr pr resolver u problem muy tguo, coocdo como problem cho de los restos, que reformulremos hor utlzdo el leguje modero de ls

Más detalles

Tema 5: Operación de amortización. Préstamos

Tema 5: Operación de amortización. Préstamos Tem 5: Opecó de motzcó. Pétmo. Pltemeto geel de l opecó de motzcó co teee popgble. Recbe et deomcó tod opecó de petcó úc y cotpetcó múltple: Petcó: {(, t } otpetcó: {(, t, (, t,, (, t } El cptl de l petcó

Más detalles

Representar las dos proyecciones y la tercera proyección de los puntos dados a continuación:

Representar las dos proyecciones y la tercera proyección de los puntos dados a continuación: Repesent ls dos poyecciones y l tece poyección de los puntos ddos continución: pto. lej. cot A + 0 B + = + C + < + D 0 + E - > + F - = + G - > + H - 0 I - > - J - = - K L - 0 < - - M + < - N + = - + >

Más detalles

Dado el sistema de ecuaciones lineales de la forma

Dado el sistema de ecuaciones lineales de la forma Aálss del Error e Solucó de Sstems de Ecucoes Leles Ddo el sstem de ecucoes leles de l form R A b, dode A ; b R E reldd teemos: A δa δ b δb A Aδ δa δa δ A δb S desprecmosδa δ : δ A - δb δa Métodos Numércos

Más detalles

GUÍA EJERCICIOS: NÚMEROS NATURALES

GUÍA EJERCICIOS: NÚMEROS NATURALES UNIVERSIDAD ANDRÉS BELLO DEPARTAMENTO DE MATEMÁTICAS ÁLGEBRA FMM COORD. PAOLA BARILE M. GUÍA EJERCICIOS: NÚMEROS NATURALES PROGRESIONES ARITMÉTICA Y GEOMÉTRICA EJERCICIOS CON RESPUESTAS.- Verfque s ls

Más detalles

= se cumplen todas las igualdades: Por tanto, una solución del sistema se puede considerar como un vector ( s s s s )

= se cumplen todas las igualdades: Por tanto, una solución del sistema se puede considerar como un vector ( s s s s ) SISTEMAS DE ECUACIONES LINEALES Todo problem cuyo eucdo somete úmeros descoocdos vrs codcoes, es susceptble de ser epresdo por medo de gulddes o desgulddes que form u sstem de ecucoes o ecucoes. De hí

Más detalles

- Función Polinómica f es toda función de dominio el conjunto de los números reales, tal que la imagen de cada número real x es:

- Función Polinómica f es toda función de dominio el conjunto de los números reales, tal que la imagen de cada número real x es: POLINOMIOS Defcó: Fucó Polóc - Fucó Polóc f es tod fucó de doo el cojuto de los úeros reles, tl que l ge de cd úero rel es: f = + + + + +, dode,,,,, so ueros reles y es turl Defcó: Poloo - Poloo de vrble

Más detalles

Hacia la universidad Geometría

Hacia la universidad Geometría Hc l unvesdd Geomeí OPCIÓN A Solucono ) Clcul es vecoes que sen pependcules u ) peo que no sen plelos ene sí. b) Clcul un veco que se pependcul l ve u l pmeo que hs ddo como eemplo del pdo neo. ) Los vecoes

Más detalles

Si las cargas se atraen o repelen significa que hay una fuerza entre ellas. LEY DE COULOMB

Si las cargas se atraen o repelen significa que hay una fuerza entre ellas. LEY DE COULOMB Cuso: FISICA II CB 3U Ley de Coulomb (1736-186). Si ls cgs se ten o epelen signific que hy un fuez ente ells. LEY DE COULOMB L fuez ejecid po un cg puntul sobe ot Está diigid lo lgo de l líne que los une.

Más detalles

2. Conversión de Coordenadas.

2. Conversión de Coordenadas. Cvsó Cs Ctí Mtátc A Stll Vázquz Cvsó Cs Pccó C Sst cs sétc sétc Pl l Pccó,, Elps supc c ptz, φ, Cálcul lítc ucó Alítc vbl cplj λ = λ λ,sλ l ltu l M Ctl l Hus, φ l lttu Isétc cspt l lttu ésc ϕ s S s ucs

Más detalles

210. Se considera el experimento aleatorio consistente en tirar tres dados al aire y anotar los puntos de las caras superiores.

210. Se considera el experimento aleatorio consistente en tirar tres dados al aire y anotar los puntos de las caras superiores. Hojs de Prolems Estdístc I. Se cosder el expermeto letoro cosstete e trr tres ddos l re y otr los putos de ls crs superores. ) utos elemetos tee el espco de sucesos? ) lculr l proldd de scr l meos dos.

Más detalles

EL TEOREMA EGREGIUM. Introducción

EL TEOREMA EGREGIUM. Introducción CARLOS S CHIEA EL TEOREMA EGREGIUM DE GAUSS Itoduccó Joha Ca Fedch Gauss (30 de ab de 777 3 de febeo de 855) e sus Dsqustoes eeaes cca supefces cuvas de 88 expoe e teoea coocdo coo eeo Eeu que ha tedo

Más detalles

MATEMÁTICA 4º. Prof. Sandra Corti

MATEMÁTICA 4º. Prof. Sandra Corti L rdccón de se negtv e índce pr no tene solucón en el conjunto de los números reles ( 4; 25, 16, etc.), y que no exste nngún número rel que elevdo un potenc pr dé por resultdo un número negtvo. Se defne

Más detalles

Tema 0 Cálculo vectorial

Tema 0 Cálculo vectorial Tem 0 Cálcul vectil IES Pe Mnjón Pf: Edud Eismn 1 1 Tem 0. Cálcul vectil Mgnitudes físics escles vectiles. Vectes Vect uniti ves Descmpsición de un vect en el pln Descmpsición de un vect en el espci Sum

Más detalles

= = = n. Radicación. a con a < 0 y n par, en el conjunto de los reales = 27. Raíz n-ésima de un número. Número radical. Cuidado!!

= = = n. Radicación. a con a < 0 y n par, en el conjunto de los reales = 27. Raíz n-ésima de un número. Número radical. Cuidado!! Mtemátic 4º ñ Arte Ríz -ésim de u úmer Rdicció Llmms ríz -ésim de u úmer rel, y l simblizms, u úmer b defiid de l siguiete frm: b b > b, ℵ Si es pr, > 0, 0 Si es impr, b b, ℵ Númer rdicl 5 Ejempls: 04

Más detalles

Unidad I - Electroestática

Unidad I - Electroestática Undd I - Electoestátc Intoduccón ues de nteccón: ccones dstnc ues Electomgnétcs ues Eléctcs Un poco de hsto El témno eléctco, tene su ogen en ls expeencs elds en l ntgüedd donde se obsevo ue cundo se fotd

Más detalles

Definición. una sucesión, definimos la sumatoria de los n primeros

Definición. una sucesión, definimos la sumatoria de los n primeros MATEMATICA GENERAL 00, HERALDO GONZALEZ S SUMATORIAS Suto sle Defcó U sucesó el es tod fucó co doo u sucouto de los úeos tules y co vloes e, sólcete, l sucesó es : N tl que Osevcó Deotos l sucesó o N,

Más detalles

- La energía potencial electrostática de una carga puntual es nula.

- La energía potencial electrostática de una carga puntual es nula. 1 e EXAMEN PACIAL. FÍSICA II. TEMAS 1 Y (6/04/016) ESOLUCIÓN Cuestión 1.- Cnsidéense ls siguientes distibucines de cg: () puntul; (b) supeficil unifme, sbe un esfe de di ; (c) vlúmic unifme en un esfe

Más detalles

Bolilla 4: Rotación de los cuerpos rígidos. Movimiento circular

Bolilla 4: Rotación de los cuerpos rígidos. Movimiento circular Bollla 4: Rotacó de los cueos ígdos. Movmeto ccula Bollla 4: Rotacó de los cueos ígdos. Movmeto ccula 4. Vaables Agulaes Las vaables agulaes sve aa eeseta e foma mas smle e dóea al movmeto de otacó. La

Más detalles

PROBLEMAS RESUELTOS SOBRE CAMPO ELECTROSTÁTICO EN MEDIOS DIELÉCTRICOS

PROBLEMAS RESUELTOS SOBRE CAMPO ELECTROSTÁTICO EN MEDIOS DIELÉCTRICOS UNIVRSIDAD NACIONAL DL CALLAO FACULTAD D INGNIRÍA LÉCTRICA Y LCTRÓNICA SCULA PROFSIONAL D INGNIRÍA LÉCTRICA CURSO: TORÍA D CAMPOS LCTROMAGNÉTICOS PROFSOR: Ing. JORG MONTAÑO PISFIL PROBLMAS RSULTOS SOBR

Más detalles

Algunas series e integrales con funciones trigonométricas

Algunas series e integrales con funciones trigonométricas Revst Tecocetífc URU Uvesdd Rfel Udet Fcultd de Igeeí Nº Julo - Dcembe ISSN: 44-775X / Depósto legl pp ZU86 Algus sees e tegles co fucoes tgoométcs Alfedo Vlllobos y Gley Gcí Uvesdd del Zul. Fcultd de

Más detalles

e x Integración numérica Tema 2: Cá álculo umérico Fórmulas de cuadratura. Fórmulas de Newton-Cotes. Fórmulas del trapecio y Simpson. Errores.

e x Integración numérica Tema 2: Cá álculo umérico Fórmulas de cuadratura. Fórmulas de Newton-Cotes. Fórmulas del trapecio y Simpson. Errores. Tem : Itegrcó umérc Tem : Itegrcó ó umérc Prolem Fórmuls de cudrtur. Fórmuls de Newto-Cotes. Fórmuls del trpeco Smpso. Errores. Clculr l sguete tegrl: e d Usremos l tegrcó umérc cudo, por el motvo que

Más detalles

LABORATORIO DE PROGRAMACIÓN EN LENGUAJE ENSAMBLADOR x86-16bits

LABORATORIO DE PROGRAMACIÓN EN LENGUAJE ENSAMBLADOR x86-16bits LBORTORIO DE PROGRMCIÓN EN LENGUJE ENSMBLDOR x86-6ts Covesó o-scii Ojetvo El ojetvo de est páctc es l pogcó del códgo eceso p covet u úeo eteo o lcedo e eo l cde SCII coespodete su codfccó e u vedd de

Más detalles

Inferencia estadística Intervalos de confianza

Inferencia estadística Intervalos de confianza Ifereca estadístca Itervals de cfaa Cuad se btee ua estmacó utual de u arámetr es cveete acmañar dcha estmacó r ua medda de la recsó de la estmacó. U md de hacerl es frmar el estmadr y su errr stadard.

Más detalles

TEMA 5: CÁLCULO VECTORIAL

TEMA 5: CÁLCULO VECTORIAL IES Al-Ándlus. Dpto. Físic Químic. F.Q. 1º Bchilleto. Tem 5: Cálculo vectoil - 1-5.1 VECTORES TEMA 5: CÁLCULO VECTORIAL 5.1 Vectoes 5. Sistems de efeenci. Coodends. Componentes de un vecto. 5.3 Opeciones

Más detalles

Una introducción al concepto de VARIEDAD REAL DIFERENCIABLE Y GRUPO DE LIE

Una introducción al concepto de VARIEDAD REAL DIFERENCIABLE Y GRUPO DE LIE N NTRODCCÓN L CONCPETO DE VREDD REL DFERENCBLE Y GRPO DE LE CRLOS S. CHNE a trduccó al ccept de VREDD REL DFERENCBLE Y GRPO DE LE 0. Sbre tplgía y espac tplógc. 0. Separabldad. Espacs de Hausdr. 03. El

Más detalles

TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO

TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO Tems Geometí en el espcio Mtemátics II º Bchilleto TEMAS Y GEOMETRÍA EN EL ESACIO ECUACIONES DE RECTAS Y LANOS EJERCICIO es plelo plno que contiene l ect Escibe l ecución del. s hll l ecución de un plno,

Más detalles

Capítulo. Cinemática del Sólido Rígido

Capítulo. Cinemática del Sólido Rígido Cpítulo 1 Cinemátic del Sólido Rígido Contenido Intoducción Tslción Rotción lededo de un Eje Fijo. elocidd Rotción lededo de un Eje Fijo: celeción Rotción lededo de un Eje Fijo: Sección epesentti Ecución

Más detalles

Lámina 01. Ejercicio 3. Con la ayuda del compás, trazar: ( AB + CD) - EF, a partir del punto N, y

Lámina 01. Ejercicio 3. Con la ayuda del compás, trazar: ( AB + CD) - EF, a partir del punto N, y E F G I J H M K M L N N Q P R S Ejecicio 1. Medi con un egl estos segmentos y not, encim de cd uno de ellos, el esultdo en milímetos. T Ejecicio 2. on l yud del compás, tz: +, pti del punto M, -, pti del

Más detalles

20/06/2012 ECUACIONES QUE RIGEN EL FLUJO DE AGUA A TRAVÉS DE LA MASA DE SUELO. GRADIENTE HIDRAULICO CRÍTICO: Para flujo vertical ascendente:

20/06/2012 ECUACIONES QUE RIGEN EL FLUJO DE AGUA A TRAVÉS DE LA MASA DE SUELO. GRADIENTE HIDRAULICO CRÍTICO: Para flujo vertical ascendente: /6/ GRDIENTE HIDRUICO CRÍTICO Pr l codcó drostátc st + st (+) ( st - ) Pr flujo vertcl descedete st + st (+-) ( st - )+ Pr flujo vertcl scedete st + st (++) ( st - )- E el flujo vertcl scedete, es cudo

Más detalles

(elegir una blanca de I y una negra de II o elegir una negra de I y una negra de II)

(elegir una blanca de I y una negra de II o elegir una negra de I y una negra de II) Hos de olems stdístc V 44. Cosdeemos tes us que llmemos I, II y III. Cd u de ells cotee ols lcs y ols egs. temos u ol l z de l u I y l toducmos e l u II, cotucó etemos u ol l z de l u II y l toducmos e

Más detalles

EJERCICIOS DE REPASO TODA LA MATERIA (Ficha 2)

EJERCICIOS DE REPASO TODA LA MATERIA (Ficha 2) IES ÁFRIC º BCHILLERTO CCNN EJERCICIOS DE REPSO TOD L MTERI (Fich ) Ejecicio nº.- Un estdo comp biles de petóleo tes suministdoes dieentes que lo venden 7,8 y dóles el bil, espectivmente. L ctu totl sciende

Más detalles

NOASDTODODESFLO DSQUECACIÓNDFFPARECERAD

NOASDTODODESFLO DSQUECACIÓNDFFPARECERAD NOASDTODODESFLO DSQUECACIÓNDFFPARECERAD NOASDTODODESFLO DSQUECACIÓNDFFPARECERAD ASELDPODERDDEFLA NEDUCACIÓNDFFINANCIERAD ASELDPODERDDEFLA NEDUCACIÓNDFFINANCIERAD É U Q DE A S O M A V Y O H R A L HAB N

Más detalles

CINEMÁTICA Y DINÁMICA DE ROTACIÓN

CINEMÁTICA Y DINÁMICA DE ROTACIÓN Uel Fcult e Cencs Cuso e Físc I p/lc. Físc y Mtemátc Cuso CINEMÁTICA Y DINÁMICA DE OTACIÓN. Momento e otcón- Un cuepo ígo se muee en otcón pu s c punto el cuepo se muee en tyecto ccul. Los centos e estos

Más detalles

YMAGIS. 7LFNHW.'0 Herramienta para la gestión de KDM 4XLFN'&3 Herramienta para que HO ([KLELGRU FUHH VX SURSLR '&3

YMAGIS. 7LFNHW.'0 Herramienta para la gestión de KDM 4XLFN'&3 Herramienta para que HO ([KLELGRU FUHH VX SURSLR '&3 ! d t b g h D x E e Cn s es YMAGIS Ymgs es únc empes eupe dedcd excusvmente Cne Dgt. Desde 2007 estms ptnd sucnes p e Cne Dgt. Ymgs está fmd p un equp de ejecutvs y expets de s ndusts de cne y de nfmátc.

Más detalles

X i. X n. Volumen molar parcial. Mezclas simples. Propiedades de las disoluciones. Propiedad o cantidad molar parcial

X i. X n. Volumen molar parcial. Mezclas simples. Propiedades de las disoluciones. Propiedad o cantidad molar parcial Mezcls smples. rpeddes de ls dsluces Vlume mlr prcl rpedd ctdd mlr prcl Se plc culquer prpedd extesv (V, U,, S, G, etc.) E u sstem bert, ls prpeddes extesvs (X) depede de T, y del úmer de mles de ls cmpetes

Más detalles

Evento E es cualquier subconjunto de posibles resultados de un experimento (Ω o S también se le conoce como evento seguro).

Evento E es cualquier subconjunto de posibles resultados de un experimento (Ω o S también se le conoce como evento seguro). I. INTRODUION. oceptos báscos xpemeto: Ua stuacó que da luga a u esultado detfcable. muchos estudos cetífcos os efetamos co expemetos que so epettvos po atualeza o que puede se cocebdos como epettvos.

Más detalles

Problema 10.4ver1 VIO . T

Problema 10.4ver1 VIO . T Prblems Adcnles. Cpítul 0: El Amplcdr Opercnl rel (I) Amplcdres Opercnles: Prblems esuelts. J.A. Mrtínez, J.M. enent y M. Pscul. SPUPV- 00.495 Prblem 0.4er El crcut de l gur 0.4. es un cnertdr tensón-crrente

Más detalles

n n Solución: empleando la siguiente propiedad de producto de bases con un mismo exponente dentro de la llave c c c

n n Solución: empleando la siguiente propiedad de producto de bases con un mismo exponente dentro de la llave c c c Elbrd pr: Jhy Chquehuc Lizrrg Mtemátics Pre-Uiversitri. Hllr el ceficiete del mmi M ( ) si su grd es. Slució: empled l siguiete prpiedd de prduct de bses c u mism epete detr de l llve c c c M ( ) Orded

Más detalles

Se le define como toda situación física producidapor una masa men el espacio que lo rodeay que es perceptible debido a la fuerza que ejerce sobre una

Se le define como toda situación física producidapor una masa men el espacio que lo rodeay que es perceptible debido a la fuerza que ejerce sobre una Cpo vtconl Se le defne coo tod stucón físc poducdpo un s en el espco que lo ode que es peceptble debdo l fuez que ejece sobe un s colocd en dco espco. Dd un s en el espco un s en dfeentes poscones lededo

Más detalles

FI1002 Sistemas Newtonianos Judit Lisoni Sección 6

FI1002 Sistemas Newtonianos Judit Lisoni Sección 6 F00 Sstemas Newtonanos Ju Lson Seccón 6 Undad 4C Sóldos ígdos: Toque y momento angula Undad 4D Sóldos ígdos: Rodadua o oda sn esbala Contendos Undad 4C.Foma otaconal de la segunda ley de Newton: momento

Más detalles

CAMPO MAGNÉTICO. r r r

CAMPO MAGNÉTICO. r r r CAMPO MAGNÉTICO Camp magnétic Se dice que existe un camp magnétic en un punt, si una caga de pueba que se muee cn una elcidad p ese punt es desiada p la acción de una fueza que se denmina magnética. La

Más detalles

2. Calcula las coordenadas de D para que el cuadrilátero de vértices: A(-1, -2), B(4, -1), C(5, 2) y D; sea un paralelogramo.

2. Calcula las coordenadas de D para que el cuadrilátero de vértices: A(-1, -2), B(4, -1), C(5, 2) y D; sea un paralelogramo. REPSO DE GEOMETRÍ MÉTRIC PLN. Hll el siético del punto (, - ) especto de M(-, ).. Clcul ls coodends de D p que el cudiláteo de vétices: (-, -), B(, -), C(, ) D; se un plelogo.. Ddos los vectoes (, k) (,

Más detalles

Introducción al cálculo de errores

Introducción al cálculo de errores Itoducció l cálculo de eoes 1/5 Itoducció l cálculo de eoes Los eoes idetemidos so quellos que se debe l z. Po ejemplo, l eliz l medid de u ms e u blz csi siempe os ofece vloes difeetes debido fctoes ccidetles.

Más detalles

ALGEBRA Y GEOMETRIA ANALITICA.

ALGEBRA Y GEOMETRIA ANALITICA. ALGEBRA Y GEOMETRIA ANALITICA. - ESPACIOS VECTORIALES. Aptes de l Cáted. Albeto Setell. Colboo Cst Mscett Ves Begoz Edcó Pe CECANA CECEJS CET Jí. UNNOBA Uesdd Ncol de Nooeste de l Pc. de Bs. As. P meses

Más detalles

Lo representaremos gráficamente con un sistema de coordenadas cartesianas. Que en principio nos servirá con uno bidimensional.

Lo representaremos gráficamente con un sistema de coordenadas cartesianas. Que en principio nos servirá con uno bidimensional. mbl S Cruz, 94-38004 S Cruz de Teerife 34 9 76 056 - Fx: 34 9 78 477 buz@clegi-hisp-igles.es Ciemáic: Es l pre de l mecáic clásic que esudi ls leyes del mimie de ls cuerps si eer e cue ls cuss que l prduce,

Más detalles