Evento E es cualquier subconjunto de posibles resultados de un experimento (Ω o S también se le conoce como evento seguro).

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Evento E es cualquier subconjunto de posibles resultados de un experimento (Ω o S también se le conoce como evento seguro)."

Transcripción

1 I. INTRODUION. oceptos báscos xpemeto: Ua stuacó que da luga a u esultado detfcable. muchos estudos cetífcos os efetamos co expemetos que so epettvos po atualeza o que puede se cocebdos como epettvos. estos casos puede exst el teés de cuatfca el chace que puede tee u esultado e patcula. spaco muestal y evetos. osdeemos expemetos cuyos esultados o puede se pedchos co cetdumbe, au cuado todos los esultados posbles sea coocdo. l cojuto de estos esultados posbles se le cooce co el ombe de spaco Muestal Ω ó S. ej. xpemeto: Detemacó del sexo de u ecé acdo. Luego S {masculo, femeo}. ej.2 xpemeto: Laza 2 moedas. Luego S {{c,c},{c,s},{s,s}}. ej. xpemeto: Laza 2 dados. Luego S { (,j /,j,2,..,6 }. ej.4 xpemeto: Med la vda útl de u chp. Luego S { x años / 0 < x < }. veto es cualque subcojuto de posbles esultados de u expemeto (Ω o S també se le cooce como eveto seguo. ej.: {masculo}. ej.2: { {c,s},{c,c} } ej.: { (,2, (,2 } ej.4: { x / 0 < x < 5 años } Sgfcado básco e tutvo de pobabldades. De maea geeal podemos def la pobabldad como el chace elatvo de ocueca de e u expemeto dado. sto sgfca a gosso modo que la pobabldad es la faccó de veces que el eveto ocuá s el expemeto es epetdo u ga úmeo de veces bajo las msmas codcoes. ste sgfcado es dado más fáclmete cuado el spaco Muestal cotee u úmeo fto de posbles esultados y cuado cada esultado tee el msmo chace de ocu. Supogamos que estamos teesados e sabe que chace tedá u eveto de ocu duate u expemeto. La defcó clásca: la pobabldad de ocueca de u eveto es el cocete del úmeo de esultados e ete el úmeo total de esultados. sta defcó seá pecsada a cotuacó.

2 .2 Defcoes y Lemas báscos. Defcó. U modelo pobabílstco fto es u pa (Ω, p dode Ω es o vacío y fto y p : Ω ----> R ( p coocda como fucó de desdad, tal que: p( ω 0 ω Ω Ω p( ω Ω { 2 k ω, ω, ω,..., ω } La fucó P : (Ω > [0,], defda a tavés de: se llama fucó de dstbucó pobabílstca o acumulada sobe ω. dode: (Ω compuesto de pates Ω (Ω P( Nota: l vacío se cooce como eveto mposble. ω p( ω 0 co ( Ω, s Defcó 2. U modelo pobabílstco (Ω, p se llama Modelo de Laplace sí: ω Ω p( ω Ω Obsevacó: Paa Ω e el modelo de Laplace teemos: jemplo: Al laza dados smultáeamete se tee teés e la pobabldad de obtee como suma de los úmeos mostados u o 2. Ua eflexó supefcal os lleva al sguete esultado. P( p( ω Ω La suma es alcazada co: La suma 2 es alcazada co:

3 l expemeto ates descto se puede epeseta fomalmete po el sguete Modelo Pobablstco(Ω, p: Ω { ω( ω, ω, ω / ω 6, ω Ν, } 2 p( ω Ω 6 ω Ω Nota: sto es valdo sempe y cuado los dados o esté cagados po azoes smétcas. Los sucesos o evetos: tee los sguetes cadales: Luego, { ω Ω / 2 ω { Ω / ω 2 } } P( p( ω 6 P( p( 2 2 ω Lema. Sea (Ω, p u Modelo Pobablstco fto y P la fucó acumulada de p. toces se cumple: (a P( 0 Ω (b P( Ω (c P( U (d P( (e P( y - P(, P( 0 P( Ω Ω,s los Ω, so mutuamete excluyetes (f (g F Ω F Ω P( - P( (h P( F P(+ - P( F,F Ω.

4 Lo sguete es ua geealzacó de (h: P( U 2U (- + <..< P(.. P( (- < 2 + P( P( Demostacó. (a Po defcó p( ω 0, luego P( p( ω 0 (b Po defcó P( Ω p( ω P( 0 (cp( U Ω p( ω p( ω P( w U ( d P( Ω P( P( + P (e P( (b (c ( - P( (d (a (f Ω ( P((F (F (c + F P( + (g (f P( + ( a 0 (h. Dado que F ( F P( F P( ( F (c P( + P( F 2. Dado que susttuye do F ( F ( F P( F - P( F 2 e teemos : P( F P( + - P( F. Repaso de ombatoa. Pemutacoes. De cuátas maeas se puede odea objetos? *(-*(-2*...*! (seleccó s epetcó o s eposcó De cuátas maeas se puede eleg objetos desde objetos paa se speccoados? (seleccó co epetcó o eposcó S o se toma e cueta el ode e que so escogdos tedemos: + + ( +! ( +!!( +!!(! (ste úmeo també es coocdo como combacoes co epetcó

5 Vaacoes ó Pemutacoes s epetcó. De cuátas maeas se puede escoge objetos desde objetos, s que se admta la epetcó de uo de ellos e la escogeca?! V! ( (! ombacoes. De cuátas maeas se puede escoge u subcojuto de elemetos desde u cojutos de elemetos? V! (!!! Nota: Las combacoes se dfeeca de las vaacoes e el hecho de que el ode e que es cofomada la eleccó o es elevate. Resume: Pemutacoes ombacoes o epetcó: +- S epetcó: ( e Del lazameto de u dado o cagado podemos coclu que: p({}... p({6} 6 luego, la pobabldad de que salga u úmeo pa es: P({2,4,6} p({2}+ p({4}+ p({6} e2 U comté de 5 pesoas seá cofomado desde ua lsta de 6 hombes y 9 mujees. S todos e la lsta tee gual pobabldad de cofoma el comté, cuál es la pobabldad de que el comté quede cofomado falmete po hombes y 2 mujees? Solucó: 5 Ω P(A

6 e Ua mao de Poke es de 5 catas. S estas catas tee valoes cosecutvos y o todas so de la msma pta se dce que cofoma ua cadea. uál es la pobabldad de que al epatse las catas el pme jugado ecba ua cadea(ecbe las catas ua detás de la ota? Solucó: 52 5 Ω posbles maos. Sea A: 5 úmeos cosecutvos o de la msma pta. Ates de calcula A, veamos como calcula el cojuto de esultados del tpo: As, 2,, 4 y 5. De cada uo de estos úmeos hay cuato catas co dfeetes ptas asocadas. Po ello exste 4 5 posbldades. Se sabe, etoces que solo hay 4 posbldades de que salga la see co la msma pta, po lo tato al ped que o todos sea guales se tedá (4 5-4 posbldades. Las opcoes posbles so: As S S 9 0 S R 0 S R As Po lo tato tedemos 0*(4 5-4 posbles cadeas. La pobabldad deseada es 5 0(

Se entiende por sistema de fuerzas a un conjunto de fuerzas como se indica

Se entiende por sistema de fuerzas a un conjunto de fuerzas como se indica CDENADAS VECTIALES DE LS SISTEAS DE FUEZAS Se etede po sstema de fuezas a u cojuto de fuezas como se dca La esultate geeal del sstema se obtee sumado los vectoes equpoletes de cada ua de las compoetes

Más detalles

Estadística Tema 9. Modelos de distribuciones. Pág. 1

Estadística Tema 9. Modelos de distribuciones. Pág. 1 Estadístca Tema 9. Modelos de dstbucoes. Pág. 9 Modelos de dstbucoes. 9. Modelos dscetos de vaables aleatoas. 9.. Epemetos y dstbucó de Beoull. 9.. Dstbucó bomal. 9.. Dstbucó ufome dsceta. 9.. Dstbucó

Más detalles

Capítulo 2 Análisis de datos (Bivariados( Bivariados) Estadística Computacional I Semestre 2006 Parte II

Capítulo 2 Análisis de datos (Bivariados( Bivariados) Estadística Computacional I Semestre 2006 Parte II Uvesdad Técca Fedeco Sata Maía Uvesdad Técca Fedeco Sata Maía Depatameto de Iomátca ILI-80 Capítulo Aálss de datos (Bvaados( Bvaados) Estadístca Computacoal I Semeste 006 Pate II Poesoes: Calos Valle (cvalle@.utsm.cl)

Más detalles

8- Estimación puntual

8- Estimación puntual Pate stmacó putual Pof. Maía B. Ptaell 8- stmacó putual 8. Itoduccó Supogamos la sguete stuacó: e ua fábca se poduce atículos el teés está e la poduccó de u día específcamete de todos los atículos poducdos

Más detalles

FUNDAMENTOS DE LA TEORÍA DE LA

FUNDAMENTOS DE LA TEORÍA DE LA Pepaado po Iee Paticia Valdez y lfao eptiembe 2006 Coceptos pevios FCULTD DE INGENIERÍ U N M PROBBILIDD Y ETDÍTIC Iee Paticia Valdez y lfao ieev@sevido.uam.mx FUNDMENTO DE L TEORÍ DE L PROBBILIDD CONCEPTO

Más detalles

Nombre del estudiante:

Nombre del estudiante: UNIVERSIDAD DE OSTA RIA ESUELA DE IENIAS DE LA OPUTAIÓN E INFORÁTIA I-0 ESTRUTURAS DISRETAS PROF. KRYSIA DAVIANA RAÍREZ BENAVIDES II Semeste 06 Fecha: /09/06 SOLUIÓN EXAEN PARIAL I Nombe del estudiate:

Más detalles

3 = =. Pero si queremos calcular P (B) 2, ya que si A ocurrió, entonces en la urna

3 = =. Pero si queremos calcular P (B) 2, ya que si A ocurrió, entonces en la urna arte robabldad codcoal rof. María. tarell - robabldad codcoal.- Defcó Supogamos el expermeto aleatoro de extraer al azar s reemplazo dos bolllas de ua ura que cotee 7 bolllas rojas y blacas. summos que

Más detalles

TEMA 1 PROBABILIDAD 1/10. Ejemplos : E y E

TEMA 1 PROBABILIDAD 1/10. Ejemplos : E y E wwwovauedes/webpages/ilde/web/dexhtm e-mal: mozas@elxuedes TEMA PROAILIDAD SUCESOS Exste feómeos o expermetos que, repetdos e détcas codcoes, sempre proporcoa el msmo resultado, a los que llamaremos determstas,

Más detalles

x x x x x Y se seguía operando

x x x x x Y se seguía operando . INTRODUCCIÓN. DEFINICIONES UNIDAD : Números complejos Cuado se teta resolver ecuacoes de segudo grado como por ejemplo x 4x 0, se observa que o 4 6 5 4 6 tee solucoes reales x x, pues o exste raíces

Más detalles

X = d representa la métrica (distancia) euclideana en R n, dada por: d T(X,Y) = X Y = 1.3 TOPOLOGÍA BÁSICA EN

X = d representa la métrica (distancia) euclideana en R n, dada por: d T(X,Y) = X Y = 1.3 TOPOLOGÍA BÁSICA EN 0.3. Cojutos abertos y cerrados.3 TOPOLOGÍA BÁSICA EN R El espaco eucldeao dmesoal se defe como: E ( R,,, d ) Dode (asumedo que X, Y R, co X = (x,..., x ), Y = (y,..., y )): El símbolo represeta el producto

Más detalles

INSTITUTO TECNOLÓGICO DE APIZACO PROBABILIDAD AXIOMAS Y TEOREMAS DE LA PROBABILIDAD.

INSTITUTO TECNOLÓGICO DE APIZACO PROBABILIDAD AXIOMAS Y TEOREMAS DE LA PROBABILIDAD. NSTTUTO TECNOLÓGCO DE ZCO Estadístca OLDD XOMS Y TEOEMS DE L OLDD. DEFNCONES DE L OLDD. La palabra probabldad se utlza para cuatfcar uestra creeca de que ocurra u acotecmeto determado. Exste tres formas

Más detalles

I. ANÁLISIS DESCRIPTIVO DE UN CONJUNTO DE DATOS

I. ANÁLISIS DESCRIPTIVO DE UN CONJUNTO DE DATOS Estadístca Tema. Seres Estadístcas. Dstrbucoes de frecuecas. Pág. I. ANÁLISIS DESCIPTIVO DE UN CONJUNTO DE DATOS Seres Estadístcas. Dstrbucoes de frecuecas.. Defcó de Estadístca... Coceptos geerales...2

Más detalles

Probabilidad. 1. Experimentos aleatorios Espacio muestral asociado a un experimento aleatorio Sucesos... 3

Probabilidad. 1. Experimentos aleatorios Espacio muestral asociado a un experimento aleatorio Sucesos... 3 Probabldad PROBABILIDAD 1. Expermetos aleatoros... 2 2. Espaco muestral asocado a u expermeto aleatoro. 3 3. Sucesos... 3 4. El álgebra de Boole de los sucesos... 4 5. Frecuecas. Propedades... 6 6. Defcó

Más detalles

1. Los postulados de la Mecánica Cuántica. 2. Estados Estacionarios. 3. Relación de Incertidumbre de Heisenberg. 4. Teorema de compatibilidad.

1. Los postulados de la Mecánica Cuántica. 2. Estados Estacionarios. 3. Relación de Incertidumbre de Heisenberg. 4. Teorema de compatibilidad. Parte : MECÁNICA CUÁNTICA 1. Los postulados de la Mecáca Cuátca.. Estados Estacoaros. 3. Relacó de Icertdumbre de Heseberg. 4. Teorema de compatbldad. 1 U breve repaso de Mecáca Clásca 1. Partícula clásca:

Más detalles

Probabilidad. 1. Experimentos aleatorios Espacio muestral asociado a un experimento aleatorio Sucesos... 3

Probabilidad. 1. Experimentos aleatorios Espacio muestral asociado a un experimento aleatorio Sucesos... 3 Probabldad PROBBILIDD. Expermetos aleatoros... 2 2. Espaco muestral asocado a u expermeto aleatoro. 3 3. Sucesos... 3 4. El álgebra de Boole de los sucesos... 4 5. Frecuecas. Propedades... 6 6. Defcó axomátca

Más detalles

FEM-OF: EDP Elíptica de 2 Orden

FEM-OF: EDP Elíptica de 2 Orden 9/02/2008 Capítulo 5: FM-OF: D líptca de 2 Orde Idce: 5..- Operador Dferecal líptco 5.2.- roblema Básco 5.3.- Fucoes Óptmas 5.4.- FM-OF Steklov-ocaré 5.5.- FM-OF Trefftz-Herrera 5.6.- FM-OF etrov-galerk

Más detalles

ÁLGEBRA II (LSI PI) TRANSFORMACIONES LINEALES UNIDAD Nº 5. Facultad de Ciencias Exactas y Tecnologías UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO

ÁLGEBRA II (LSI PI) TRANSFORMACIONES LINEALES UNIDAD Nº 5. Facultad de Ciencias Exactas y Tecnologías UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO 2017 ÁLGEBRA II (LSI PI) UNIDAD Nº 5 RANSFORMACIONES LINEALES Facultad de Cecas Exactas y ecologías UNIERSIDAD NACIONAL DE SANIAGO DEL ESERO aa Error! No hay texto co el estlo especfcado e el documeto

Más detalles

Inferencia Estadística

Inferencia Estadística Ifereca Estadístca Poblacó y muestra Coceptos y defcoes Muestra Aleatora Smple (MAS) Cosderemos ua poblacó, cuya fucó de dstrbucó esta dada por F(), la cual está costtuda por u úmero fto de posbles valores,

Más detalles

1.3. Longitud de arco.

1.3. Longitud de arco. .. Logtud de arco. Defcó. Sea C ua curva suave defda paramétrcamete por la fucó vectoral f : R R / f () t = ( f() t, f() t,, f ( t) ) e el espaco R, co t [ a, b], que se recorre exactamete ua vez cuado

Más detalles

En cualquier punto donde coloquemos nuestra segunda carga, su posición podrá darse con un vector de posición que cumple:

En cualquier punto donde coloquemos nuestra segunda carga, su posición podrá darse con un vector de posición que cumple: CAMPO LCTRICO Cosdeemos e pcpo ua stuacó deal: l Uveso está vacío y o exste ada supogamos ue e el ceto de ese Uveso colocamos ua caga putual podemos pegutaos: Sufe algú cambo el Uveso? S o exste ota caga

Más detalles

n p(a ) = n p(a ) = n k Nº de casos favorables de A Nº de casos posibles de E p(a) = Capítulo PROBABILIDAD 1. Introducción

n p(a ) = n p(a ) = n k Nº de casos favorables de A Nº de casos posibles de E p(a) = Capítulo PROBABILIDAD 1. Introducción Capítulo VII PROBABILIDAD 1. Itroduccó Se dcaba e el capítulo ateror que cuado u expermeto aleatoro se repte u gra úmero de veces, los posbles resultados tede a presetarse u úmero muy parecdo de veces,

Más detalles

A I A subconjunto de S A es un Evento s A s es elemento de A Ocurre el evento A

A I A subconjunto de S A es un Evento s A s es elemento de A Ocurre el evento A Uversdad Técca Federco Sata María Departameto de Iformátca ILI-80 Capítulo Probabldades Estadístca Computacoal II Semestre 004 Profesores: Héctor llede (hallede@f.utfsm.cl Rodrgo Salas (rsalas@f.utfsm.cl

Más detalles

SOLUCIÓN: cara. sale. Sea X i = cruz. sale. 1 p = ; con ello 2

SOLUCIÓN: cara. sale. Sea X i = cruz. sale. 1 p = ; con ello 2 Hojas de oblemas Estadístca VI. Calcula el úmeo de veces que se debe laa ua moeda de maea que se tega ua pobabldad supeo a 9 de que el cocete ete el úmeo de caas y el de laametos esté compeddo ete y 6.

Más detalles

IES Mediterráneo de Málaga Solución Junio 2012 Juan Carlos Alonso Gianonatti. Serie 3

IES Mediterráneo de Málaga Solución Junio 2012 Juan Carlos Alonso Gianonatti. Serie 3 E Medteáeo de Málaga olucó Juo Jua Calos loso Gaoatt ee.- Dga aa qué alo del aáeto los laos π :, π : π : tee coo teseccó ua ecta. [ utos] Tee coo teseccó ua ecta cuado el sstea que foa sea coatle deteado

Más detalles

LOS NÚMEROS COMPLEJOS

LOS NÚMEROS COMPLEJOS LOS NÚMEROS COMPLEJOS por Jorge José Osés Reco Departameto de Matemátcas - Uversdad de los Ades Bogotá Colomba - 00 Cuado se estudó la solucó de la ecuacó de segudo grado ax bx c 0 se aaló el sgo del dscrmate

Más detalles

TEMA 2 MEDIDAS DE CENTRALIZACIÓN

TEMA 2 MEDIDAS DE CENTRALIZACIÓN D37 ESTADÍSTICA. Tema TEMA MEDIDAS DE CETRALIZACIÓ. Caacteístcas de las meddas de poscó cetal.. Meddas de cetalzacó: meda atmétca, medaa y moda. Popedades. Relacó ete meda, medaa y moda..3 Cuatles: cuatles,

Más detalles

Introducción al Algebra Lineal en Contexto Autor José Arturo Barreto M.A. Web:

Introducción al Algebra Lineal en Contexto Autor José Arturo Barreto M.A. Web: Itroduccó al Algebra Leal e Cotexto Autor José Arturo Barreto M.A. Web: www.abaco.com.e www.mprofe.com.e josearturobarreto@yahoo.com Descomposcó e Valor Sgular (SVD: Sgular Value Decomposto) El sguete

Más detalles

ÁLGEBRA II (LSI PI) VALORES Y VECTORES PROPIOS UNIDAD Nº 6. Facultad de Ciencias Exactas y Tecnologías UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO

ÁLGEBRA II (LSI PI) VALORES Y VECTORES PROPIOS UNIDAD Nº 6. Facultad de Ciencias Exactas y Tecnologías UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO 6 ÁLGEBRA II (LSI PI) UNIDAD Nº 6 VALORES Y VECTORES PROPIOS Facultad de Cecas Exactas y Tecologías UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO aa Error! No hay texto co el estlo especfcado e el documeto.

Más detalles

MANUAL DE PRÁCTICAS DE LABORATORIO DE HIDRÁULICA PROPAGACIÓN DE ERRORES. Escuela de Geociencias y Medio Ambiente

MANUAL DE PRÁCTICAS DE LABORATORIO DE HIDRÁULICA PROPAGACIÓN DE ERRORES. Escuela de Geociencias y Medio Ambiente ANUAL DE PRÁCTICAS DE LABORATORIO DE HIDRÁULICA 35 ANEXO A5 PROPAGACIÓN DE ERRORES Ramo abello Péez Escuela de Geocecas y edo Ambete 36 ANEXO 5 A5 PROPAGACIÓN DE ERRORES Tomado de la Ref. [0] Las magtudes

Más detalles

APLICACIONES DE LA MATEMÁTICA FINANCIERA EN LA TOMA DE DECISIONES

APLICACIONES DE LA MATEMÁTICA FINANCIERA EN LA TOMA DE DECISIONES Uversdad de Los Ades Facultad de Cecas Ecoómcas y Socales Escuela de Admstracó y Cotaduría Públca Departameto de Cecas Admstratvas Cátedra de Produccó y Aálss de la Iversó Asgatura: Matemátca Facera APLICACIONES

Más detalles

Intensificación en Estadística

Intensificación en Estadística GRADO EN VETERINARIA DEPARTAMENTO DE ESTADÍSTICA E IO 0-0 IV Curso Cero Itesfcacó e Estadístca Itroduccó a la fucó Sumatoro Itroduccó Cocepto de fucó sumatoro Aplcacoes Itroduccó Cocepto de fucó sumatoro

Más detalles

ESPACIOS VECTORIALES SUBESPACIOS FINITAMENTE GENERADOS:

ESPACIOS VECTORIALES SUBESPACIOS FINITAMENTE GENERADOS: SUBESPACIOS FINITAMENTE GENERADOS: Teorema S G={v, v,, v } es u sstema fto de geeradores de u subespaco S V K-EV, etoces G`= {v, v,, v,w} sedo w combacó leal de vectores de G, també geera a S. Demostracó

Más detalles

5. Estimación puntual. Curso Estadística

5. Estimación puntual. Curso Estadística 5. stmacó utual Cuso - stadístca Poblacó % DFCTUOSA Pobabldad Coocdo cuato vale? Muesta Nº Defectuosa Coocdo cuato vale? Ifeeca stmacó utual N Paámetos? MUSTRA... Datos Coocdos? stmacó utual 3 sesoes de

Más detalles

Probabilidad ( A) Los axiomas de la probabilidad. φ = el conjunto vacío A B = A y no B C

Probabilidad ( A) Los axiomas de la probabilidad. φ = el conjunto vacío A B = A y no B C Los axomas de la probabldad obabldad El prmer paso para descrbr la certdumbre es cosderar el cojuto de posbles resultados obtedos a partr de u expermeto aleatoro. Este cojuto es llamado espaco muestral

Más detalles

TEMA 5.- LA DECISIÓN DE INVERTIR EN UN CONTEXTO DE RIESGO Introducción.

TEMA 5.- LA DECISIÓN DE INVERTIR EN UN CONTEXTO DE RIESGO Introducción. TEMA 5.- LA DECISIÓN DE INVERTIR EN UN CONTEXTO DE RIESGO 5..- Itroduccó. Stuacoes segú el vel de formacó: Certeza. Icertdumbre parcal o resgo: (Iversoes co resgo) Icertdumbre total: (Iversoes co certdumbre)

Más detalles

GRADO EN PSICOLOGIA INTRODUCCIÓN AL ANÁLISIS DE DATOS Código Asignatura: FEBRERO 2010 EXAMEN MODELO A

GRADO EN PSICOLOGIA INTRODUCCIÓN AL ANÁLISIS DE DATOS Código Asignatura: FEBRERO 2010 EXAMEN MODELO A Febrero 20 EAMEN MODELO A Pág. 1 GRADO EN PICOLOGIA INTRODUCCIÓN AL ANÁLII DE DATO Códgo Asgatura: 620137 FEBRERO 20 EAMEN MODELO A Tabla 1: Para estudar la relacó etre las putuacoes e u test () y el redmeto

Más detalles

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN - INTRODUCCIÓN E este tema se tratará de formalzar umércamete los resultados de u feómeo aleatoro Por tato, ua varable aleatora es u valor umérco que correspode

Más detalles

4. Fórmula de Lagrage El polomo de terpolacó de Hermte, p (x, de la fucó f e los putos dsttos x,,x admte la expresó: p( x f (x L (x + f '(x L (x, (Fór

4. Fórmula de Lagrage El polomo de terpolacó de Hermte, p (x, de la fucó f e los putos dsttos x,,x admte la expresó: p( x f (x L (x + f '(x L (x, (Fór Capítulo 4 Iterpolacó polomal de Hermte E determadas aplcacoes se precsa métodos de terpolacó que trabaje co datos prescrtos de la fucó y sus dervadas e ua sere de putos, co el objeto de aumetar la aproxmacó

Más detalles

Test de Hipótesis. Error de tipo I: Rechazar H 0 siendo H 0 Verdadera. Error de tipo II: No rechazar H 0 siendo H 0 Falsa

Test de Hipótesis. Error de tipo I: Rechazar H 0 siendo H 0 Verdadera. Error de tipo II: No rechazar H 0 siendo H 0 Falsa Error tpo I: Rechazar H sedo H Verdara Test Hpótess Error tpo II: No rechazar H sedo H Falsa Nvel Sgfcacó: = P(error tpo I = P(Rechazar H sedo H Verdara Probabldad error tpo II: = P(error tpo II = P(No

Más detalles

Tema 5 Modos de convergencias de sucesiones de variables aleatorias

Tema 5 Modos de convergencias de sucesiones de variables aleatorias Tema 5 Modos de covegecias de sucesioes de vaiables aleatoias Itoducció Cuado se cosidea sucesioes y seies de vaiables aleatoias, es deci, sucesioes y seies de fucioes medibles, su covegecia puede se cosideada

Más detalles

Problemas de Polímeros. Química Física III

Problemas de Polímeros. Química Física III Problemas de Polímeros Químca Físca III 7..- Del fraccoameto de ua muestra de u determado polímero se obtuvero los sguetes resultados: Fraccó º, g 5, g/mol,75,6,886,89,,75,57,56 5,9,68 6,8,8 7,55,5 8,6,9

Más detalles

TEMA 6 VALORACIÓN FINANCIERA DE RENTAS (III)

TEMA 6 VALORACIÓN FINANCIERA DE RENTAS (III) Facultad de.ee. Dpto. de Ecooía Facea I Dapostva Mateátca Facea TEMA 6 VALORAIÓN FINANIERA DE RENTAS III. Faccoaeto atétco y faceo de ua eta 2. Retas faccoadas 3. Retas cotuas Facultad de.ee. Dpto. de

Más detalles

Aproximación a la distribución normal: el Teorema del Límite Central

Aproximación a la distribución normal: el Teorema del Límite Central Aproxmacó a la dstrbucó ormal: el Teorema del Límte Cetral El teorema del límte cetral establece que s se tee varables aleatoras, X, X,..., X, depedetes y co détca dstrbucó de meda µ y varaza σ, a medda

Más detalles

de los vectores libres del plano. Recordemos que la operación de sumar vectores verificaba las siguientes propiedades: se cumple que u + v = v + u

de los vectores libres del plano. Recordemos que la operación de sumar vectores verificaba las siguientes propiedades: se cumple que u + v = v + u FUNDAMENTOS DE LOS ESPACIOS VECTORIALES ABSTRACTOS Prmeros ejemplos. Cosderemos el cojuto V de los vectores lbres del plao. Recordemos que la operacó de sumar vectores verfcaba las sguetes propedades:

Más detalles

GUÍA DE EJERCICIOS. Área Matemática Álgebra lineal

GUÍA DE EJERCICIOS. Área Matemática Álgebra lineal GUÍA DE EJERCICIOS Área Matemátca Álgebra leal Resultados de apredzaje. Recoocer exsteca de subespaco vectoral. Cotedos 1. Espacos vectorales. 2. Subespacos vectorales. Debo saber Se debe recordar que

Más detalles

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA FCULTD DE INGENIERÍ U N M ROILIDD Y ESTDÍSTIC Iree atrca Valdez y lfaro reev@servdor.uam.mx T E M S DEL CURSO. álss Estadístco de datos muestrales. 2. Fudametos de la Teoría de la probabldad. 3. Varables

Más detalles

NOMBRE. para los nuevos datos, incrementando 5 unidades cada calificación. entonces la media sumando 5 unidades a cada calificación es

NOMBRE. para los nuevos datos, incrementando 5 unidades cada calificación. entonces la media sumando 5 unidades a cada calificación es UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE PROBABILIDAD Y ESTADÍSTICA PRIMER EAMEN FINAL RESOLUCIÓN SEMESTRE

Más detalles

Medida de Probabilidad

Medida de Probabilidad Medida de Probabilidad Memo Garro Resume E este artículo etramos de lleo e el estudio del cocepto de medida de probabilidad. Para llegar a él seguiremos dos camios complemetarios: e primer térmio, partiremos

Más detalles

que queremos ajustar a los datos. Supongamos que la función f( x ) describe la relación entre dos cantidades físicas: x e y = f( x)

que queremos ajustar a los datos. Supongamos que la función f( x ) describe la relación entre dos cantidades físicas: x e y = f( x) APROXIMACIÓN DISCRETA DE MÍNIMOS CUADRADOS Las leyes físcas que rge el feómeo que se estuda e forma expermetal os proporcoa formacó mportate que debemos cosderar para propoer la forma de la fucó φ ( x)

Más detalles

Espacio Euclídeo real n-dimensional TEOREMA DE WEIERSTRASS

Espacio Euclídeo real n-dimensional TEOREMA DE WEIERSTRASS Espaco Euclídeo eal -desoal TEOREMA DE WEERSTRASS Se geealza peaete a R el pcpo de ecaje de ato e R que es el stueto paa deosta el teoea del puto de acuulacó o de Bolzao- Weestass del que se deduce el

Más detalles

División de Estadísticas y Proyecciones Económicas (DEPE) Centro de Proyecciones Económicas (CPE)

División de Estadísticas y Proyecciones Económicas (DEPE) Centro de Proyecciones Económicas (CPE) Comsó Ecoómca paa Améca Lata y el Cabe (CEPAL Dvsó de Estadístcas y Poyeccoes Ecoómcas (DEPE Ceto de Poyeccoes Ecoómcas (CPE Modelo Clásco de Regesó Alguos Temas Complemetaos Chsta A. utado Navao Mayo,

Más detalles

1. ESPACIOS VECTORIALES

1. ESPACIOS VECTORIALES Espacios Vectoiales Heamietas ifomáticas paa el igeieo e el estudio del algeba lieal. ESPACIOS VECTORIALES.. ESTRUCTURA DE ESPACIO VECTORIAL... Defiició..2. Ejemplos de espacios vectoiales..3. Popiedades

Más detalles

Números Complejos PREGUNTAS MÁS FRECUENTES

Números Complejos PREGUNTAS MÁS FRECUENTES Repaso de º de Bachllerato Números Complejos PREGUNTAS MÁS FRECUENTES. Qué es la udad magara? Es u elemeto del que coocemos úcamete su cuadrado:.obvamete, o se trata de u úmero real.. Qué es u úmero complejo?

Más detalles

A I A subconjunto de S A es un Evento s A s es elemento de A Ocurre el evento A

A I A subconjunto de S A es un Evento s A s es elemento de A Ocurre el evento A Uversdad Técca Federco Sata María Departameto de Iformátca ILI-80 Coceptos áscos Capítulo 5 Modelos de Probabldades Estadístca stca Computacoal II Semestre 005 Profesores: Héctor llede (hallede@f.utfsm.cl

Más detalles

Universidad Técnica Federico Santa María

Universidad Técnica Federico Santa María Uversdad Técca Federco Sata María Uversdad Técca Federco Sata María Departameto de Iformátca ILI-80 Coceptos áscos Capítulo 4 Probabldades Estadístca Computacoal II Semestre 006 Profesores: Héctor llede

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL Probabldad y Estadístca Meddas de tedeca Cetral MEDIDAS DE TENDENCIA CENTRAL E la udad ateror se ha agrupado la ormacó y además se ha dado ua descrpcó de la terpretacó de la ormacó, s embargo e ocasoes

Más detalles

MEDIDAS DE FORMA: ASIMETRÍA Y CURTOSIS. MOMENTOS

MEDIDAS DE FORMA: ASIMETRÍA Y CURTOSIS. MOMENTOS Julo Olva Coteo Estadístca TEMA 6 MEDIDA DE FORMA: AIMETRÍA Y CURTOI. MOMETO. Moetos de ua dstbucó Los oetos de ua dstbucó so eddas obtedas a pat de todos sus datos y de sus fecuecas absolutas. Estas eddas

Más detalles

Dada una sucesión x1, x2, x3,... x n dos a dos independientes, con una misma distribución de probabilidad y con esperanza µ y varianza σ

Dada una sucesión x1, x2, x3,... x n dos a dos independientes, con una misma distribución de probabilidad y con esperanza µ y varianza σ TEOREMA DE BERNOULLI GENERALIZADO > 0 Dada ua sucesó x1, x, x3,... x dos a dos depedetes, co ua msma dstrbucó de probabldad y co esperaza µ y varaza lím Se verfca que P x µ = 1 ó lím P x µ > = 0 El límte,

Más detalles

es toda la línea determinada por estos dos puntos, mientras que el conjunto de todas las combinaciones convexas es el segmento de línea que une a

es toda la línea determinada por estos dos puntos, mientras que el conjunto de todas las combinaciones convexas es el segmento de línea que une a 5 dsttos Cosecuetemete el cojuto de tods ls combcoes fes de dos putos R es tod l líe determd por estos dos putos metrs que el cojuto de tods ls combcoes coves es el segmeto de líe que ue y. Obvmete cd

Más detalles

Espacios con producto interior

Espacios con producto interior Espacos co producto teror [Versó prelmar] Prof. Isabel Arrata Z. Algebra Leal E esta udad, todos los espacos ectorales será reales Sea V u espaco ectoral sobre. U producto teror (p..) e V es ua fucó

Más detalles

( A) P( B) 4.2 Definición y cálculo de probabilidades Función de probabilidad

( A) P( B) 4.2 Definición y cálculo de probabilidades Función de probabilidad 4. Defcó y cálculo de probabldades 4.. Fucó de probabldad Defcó: Sea la famla de sucesos asocada a u expermeto aleatoro de espaco muestral Ω. Se cosdera ua fucó : R, que verfca las dos propedades 0 y Ω

Más detalles

Variables aleatorias

Variables aleatorias Vaables aleatoas M. e A. Vícto D. Plla Moá Facultad de Igeeía, UNAM Resume El cocepto de vaable aleatoa como abstaccó de u eveto aleatoo y su defcó. vaable aleatoa dsceta: fucó de pobabldad, sus popedades

Más detalles

Tema 1. La medida en Física. Estadística de la medida Cifras significativas e incertidumbre

Tema 1. La medida en Física. Estadística de la medida Cifras significativas e incertidumbre Tema. La medda e Físca Estadístca de la medda Cfras sgfcatvas e certdumbre Cotedos Herrameta para represetar los valores de las magtudes físcas: los úmeros Sstemas de udades Notacó cetífca Estadístca de

Más detalles

CAPÍTULO IV NÚMEROS COMPLEJOS E INDUCCIÓN MATEMÁTICA

CAPÍTULO IV NÚMEROS COMPLEJOS E INDUCCIÓN MATEMÁTICA NÚMEROS COMPLEJOS E INDUCCIÓN MATEMATICA 55 CAPÍTULO IV NÚMEROS COMPLEJOS E INDUCCIÓN MATEMÁTICA 4. INTRODUCCIÓN Los úmeros Complejos costtuye el mímo cojuto C, e el que se puede resolver la ecuacó x a

Más detalles

TEMA 63. Frecuencia y Azar. Leyes de Azar. Espacio probabilístico.

TEMA 63. Frecuencia y Azar. Leyes de Azar. Espacio probabilístico. TEM 63.Frecueca y azar. Leyes de azar. Espaco probablístco TEM 63. Frecueca y zar. Leyes de zar. Espaco probablístco.. Itroduccó.. Hstórca. Los coceptos de azar e certdumbre so ta veos como la propa cvlzacó.

Más detalles

UN VIAJE POR EL MUNDO DE LA PROBABILIDAD

UN VIAJE POR EL MUNDO DE LA PROBABILIDAD UN VIAJE POR EL MUNDO DE LA PROBABILIDAD AUTORÍA JUAN JOSÉ LEÓN ROMERA TEMÁTICA PROBABILIDAD ETAPA BACHILLERATO Resume E el presete artículo se trata los cotedos relacoados co Probabldad. Se hace u acercameto,

Más detalles

MATEMÁTICA MÓDULO 4 Eje temático: Estadística y Probabilidades

MATEMÁTICA MÓDULO 4 Eje temático: Estadística y Probabilidades MATEMÁTICA MÓDULO 4 Eje temátco: Estadístca y Probabldades Empezaremos este breve estudo de estadístca correspodete al cuarto año de Eseñaza Meda revsado los dferetes tpos de gráfcos.. GRÁFICOS ESTADÍSTICOS

Más detalles

Ingeniería de Sistemas y Automática Continuidad del control visual Ingeniería de Sistemas y Automática Continuidad del control visual

Ingeniería de Sistemas y Automática Continuidad del control visual Ingeniería de Sistemas y Automática Continuidad del control visual Cotudad del cotrol vsual INDICE Itroduccó Teoría prelmar: Cotrol vsual e el espaco varate Cotrol e el espaco varate co pesos(weghted varat space) Expermetos utlzado datos smulados Cotrol de ua camara metras

Más detalles

Experimento determinístico. Aquellos que dan lugar al mismo resultado siempre que se realicen bj bajo las mismas condiciones.

Experimento determinístico. Aquellos que dan lugar al mismo resultado siempre que se realicen bj bajo las mismas condiciones. Tema 3. Espacos de Probabldad. Defcó axomátca y propedades báscas de la Probabldad 3.. Itroduccó. Feómeos y expermetos aleatoros. Álgebra de sucesos E este tema se establece ls ocoes báscas para el desarrollo

Más detalles

Análisis amortizado. Técnicas Avanzadas de Programación - Javier Campos 205

Análisis amortizado. Técnicas Avanzadas de Programación - Javier Campos 205 Aálss amortzado Téccas Avazadas de Programacó - Javer Campos 205 Aálss amortzado El pla: Coceptos báscos: Método agregado Método cotable Método potecal Prmer ejemplo: aálss de tablas hash dámcas Motículos

Más detalles

APÉNDICE: TÉCNICAS DE CONTEO

APÉNDICE: TÉCNICAS DE CONTEO APÉNDICE: TÉCNICAS DE CONTEO Métodos de eumeació La ciecia es la estética de la iteligecia Gastó Bachelad La ESTADÍSTICA es la estética de la atualeza MOVE Co la fialidad de especifica el total de esultados

Más detalles

La inferencia estadística es primordialmente de naturaleza

La inferencia estadística es primordialmente de naturaleza VI. Ifereca estadístca Ifereca Estadístca La fereca estadístca es prmordalmete de aturaleza ductva y llega a geeralzar respecto de las característcas de ua poblacó valédose de observacoes empírcas de la

Más detalles

Tema 5: Equilibrio General Parte III OWC Economía para Matemáticos. Fernando Perera Tallo ttp://bit.ly/8l8ddu

Tema 5: Equilibrio General Parte III OWC Economía para Matemáticos. Fernando Perera Tallo ttp://bit.ly/8l8ddu y Tea 5: Equlbro Geeral Parte III OWC Ecooía para Mateátcos Ferado Perera Tallo ttp://bt.ly/8l8ddu Esteca de Equlbro Ferado Perera-Tallo A lo largo de esta presetacó os vaos a cocetrar e espacos Eucldos,

Más detalles

Práctica 11. Calcula de manera simbólica la integral indefinida de una función. Ejemplo:

Práctica 11. Calcula de manera simbólica la integral indefinida de una función. Ejemplo: PRÁCTICA SUMAS DE RIEMAN Práctcas Matlab Práctca Objetvos Calcular tegrales defdas de forma aproxmada, utlzado sumas de Rema. Profudzar e la compresó del cocepto de tegracó. Comados de Matlab t Calcula

Más detalles

Matemáticas Discretas

Matemáticas Discretas Coordacó de Cecas Computacoales - INAOE Matemátcas Dscretas Cursos Propedéutcos 0 Cecas Computacoales INAOE Dr. Erque Muñoz de Cote jemc@aoep.m http://ccc.aoep.m/~jemc Ofca 80 Dapostvas basadas e prevas

Más detalles

Veamos cuáles son las interpretaciones geométricas para los distintos valores de n, que definirán la dimensión de los espacios vectoriales.

Veamos cuáles son las interpretaciones geométricas para los distintos valores de n, que definirán la dimensión de los espacios vectoriales. Pof. Adea Campillo Aálisis Matemático II Topología elemetal Recodemos cómo se defie u etoo de ceto R adio E = { R / < } Sabemos que ( R : < < < < < Esfea abieta e R Si geealizamos el cocepto de etoo e

Más detalles

Curso de Estadística Unidad de Medidas Descriptivas. Lección 2: Medidas de Tendencia Central para Datos Agrupados por Valor Simple

Curso de Estadística Unidad de Medidas Descriptivas. Lección 2: Medidas de Tendencia Central para Datos Agrupados por Valor Simple 1 Curso de Estadístca Udad de Meddas Descrptvas Leccó 2: Meddas de Tedeca Cetral para Datos Agrupados por Valor Smple Creado por: Dra. Noemí L. Ruz Lmardo, EdD 2010 Derechos de Autor 2 Objetvos 1. Calcular

Más detalles

Escrito. 1) Transforma a las bases indicadas:

Escrito. 1) Transforma a las bases indicadas: Escrto ) Trasforma a las bases dcadas: a. 765 base (0) b. AB base 7 0 (6) base ) Halla los dígtos a y b sabedo que: aam 6 ( 5 ) mam( 6 ) 3) Trasforma a la base dcada usado ua tabla de correspodeca.. 00

Más detalles

Soluciones de los ejercicios de Selectividad sobre Inferencia Estadística de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Inferencia Estadística de Matemáticas Aplicadas a las Ciencias Sociales II Solucoes de los ejeccos de Selectvdad sobe Ifeeca Estadístca de Matemátcas Aplcadas a las Cecas Socales II Atoo Facsco Roldá López de Heo * Covocatoa de 007 Las sguetes págas cotee las solucoes de los

Más detalles

APROXIMACIÓN NUMÉRICA AL CÁLCULO DEL ÁREA BAJO LA GRÁFICA DE UNA FUNCIÓN MEDIANTE RECTÁNGULOS INSCRITOS

APROXIMACIÓN NUMÉRICA AL CÁLCULO DEL ÁREA BAJO LA GRÁFICA DE UNA FUNCIÓN MEDIANTE RECTÁNGULOS INSCRITOS APROXIMACIÓN NUMÉRICA AL CÁLCULO DEL ÁREA BAJO LA GRÁFICA DE UNA FUNCIÓN MEDIANTE RECTÁNGULOS INSCRITOS Sugerecas para que mparte el curso Ha llegado el mometo e que es coveete resolver ejerccos aplcado

Más detalles

A I A subconjunto de S A es un Evento s A s es elemento de A Ocurre el evento A

A I A subconjunto de S A es un Evento s A s es elemento de A Ocurre el evento A Uversdad Técca Federco Sata María Departameto de Iformátca ILI-80 Coceptos áscos Capítulo 5: Modelos de Probabldad Estadístca Computacoal º Semestre 00 Profesor :Héctor llede Pága : www.f.utfsm.cl/~hallede

Más detalles

Tema 12: Modelos de distribución de probabilidad: Variables Continuas

Tema 12: Modelos de distribución de probabilidad: Variables Continuas Aálss de Datos I Esquema del Tema Tema : Modelos de dstrbucó de robabldad: Varables Cotuas. EL MODELO RECTANGULAR. EL MODELO NORMAL, N(; ) 3. MODELO CHI-CUADRADO DE PEARSON, k 4. MODELO t DE STUDENT, t

Más detalles

GUIA TEORICO-PRACTICA II

GUIA TEORICO-PRACTICA II GUIA TEORICO-PRACTICA II CONTENIDOS.. Sucesoes. Progresoes: artmétcas y geométrcas.. Ejerccos Propuestos... Sumatora: propedades. Prcpo de Iduccó Completa..4 Ejerccos Propuestos..5. Factoral de u úmero

Más detalles

LECTURA 02: DISTRIBUCIONES DE FRECUENCIAS (PARTE I) DISTRIBUCIONES DE FRECUENCIAS EN PUNTOS AISLADOS

LECTURA 02: DISTRIBUCIONES DE FRECUENCIAS (PARTE I) DISTRIBUCIONES DE FRECUENCIAS EN PUNTOS AISLADOS Uversdad Católca Los Ágeles de Cmbote LECTURA 0: DISTRIBUCIONES DE FRECUENCIAS (PARTE I) DISTRIBUCIONES DE FRECUENCIAS EN PUNTOS AISLADOS TEMA : DISTRIBUCIONES DE FRECUENCIAS: DEFINICIÓN Y CLASIFICACIÓN

Más detalles

Matemáticas Aplicadas CC. SS. I -- I. E. S. Sabinar

Matemáticas Aplicadas CC. SS. I -- I. E. S. Sabinar Matemátcas Aplcadas. SS. I -- I. E. S. Saba MATEMÁTIAS INANIERAS EN 1º BTO.. SS. 1. PORENTAJES 1.1 Aumetos y dsmucoes pocetuales. Ídce de vaacó 1.2 Aumetos y dsmucoes pocetuales ecadeados. Ídce de vaacó

Más detalles

El estudio de autovalores y autovectores (o valores y vectores propios) de matrices

El estudio de autovalores y autovectores (o valores y vectores propios) de matrices Tema V DIAGONALIZACIÓN POR TRANSFORMACIONES DE SEMEJANZA Objetvos Presetar los coceptos de autovalor y autovector, los cuales tee gra mportaca e las aplcacoes práctcas (tato es así, que podría decrse que

Más detalles

4 METODOLOGIA ADAPTADA AL PROBLEMA

4 METODOLOGIA ADAPTADA AL PROBLEMA 4 MEODOLOGA ADAPADA AL PROBLEMA 4.1 troduccó Báscamete el problema que se quere resolver es ecotrar la actuacó óptma sobre las tesoes de los geeradores, la relacó de tomas de los trasformadores y el valor

Más detalles

PARTE 1 - PROBABILIDAD

PARTE 1 - PROBABILIDAD arte - robabldad rof. María. tarell RTE - ROILIDD - robabldad. - Espacos muestrales y evetos. La Teoría de robabldades estuda los llamados expermetos aleatoros. Ejemplos cláscos de expermetos aleatoros

Más detalles

2.5. Área de una superficie.

2.5. Área de una superficie. .5. Área de ua superfce. Sea g ua fucó co prmeras dervadas parcales cotuas, tal que z g( x y), 0 e toda la regó D del plao xy. Sea S la parte de la gráfca de g cuya proyeccó e el plao xy es como se lustra

Más detalles

NOMBRE Apellido Paterno Apellido Materno Nombre(s)

NOMBRE Apellido Paterno Apellido Materno Nombre(s) UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE PROBABILIDAD ESTADÍSTICA SEGUNDO EXAMEN FINAL RESOLUCIÓN SEMESTRE

Más detalles

INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA

INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA Lus Fraco Martí {lfraco@us.es} Elea Olmedo Ferádez {olmedo@us.es} Jua Mauel Valderas Jaramllo {valderas@us.es}

Más detalles

Cuando un sistema se encuentra en un estado cuántico dado, podemos considerar que se encuentra parcialmente en otros 2 ó + estados.

Cuando un sistema se encuentra en un estado cuántico dado, podemos considerar que se encuentra parcialmente en otros 2 ó + estados. Estado cuátco: Prcpo de superposcó de los estados: Cualquer movmeto o perturbado que esté restrgdo por tatas codcoes como sea posble teórcamete s que exsta terferecas o cotradccoes etre ellas. Estado e

Más detalles

SUCESOS Y PROBABILIDAD

SUCESOS Y PROBABILIDAD SUCESOS Y PROAILIDAD Notas Idce. OJETIVOS 2. CONCEPTOS ÁSICOS DE LA TEORÍA DE CONJUNTOS. ESPACIO MUESTRAL. ÁLGERA DE SUCESOS 4 4. PROAILIDAD 8 5. INDEPENDENCIA DE SUCESOS 4 ILIOGRAFÍA 4 APÉNDICE. NOTACIÓN

Más detalles

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria)

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria) TEMAS DE MATEMÁTICAS (Ooscoes de Secudaa TEMA 6 DESIGUALDAD DE TCHEBYCHEV. COEFICIENTE DE VARIACION. VARIABLE NORMALIZADA. ALICACIÓN AL ANÁLISIS, INTERRETACIÓN Y COMARACIÓN DE DATOS ESTADÍSTICOS.. Vaable

Más detalles

SEMANA 01. CLASE 01. MARTES 04/10/16

SEMANA 01. CLASE 01. MARTES 04/10/16 EMANA 0. CLAE 0. MARTE 04/0/6. Experimeto aleatorio.. Defiició. Experimeto e el cual o se puede predecir el resultado ates de realizarlo. Para que u experimeto sea aleatorio debe teer al meos dos resultados

Más detalles

Consideremos una lista p (l), p (2), p (3),... de proposiciones con índices en P. Todas las proposiciones p(n) son verdaderas a condición de que:

Consideremos una lista p (l), p (2), p (3),... de proposiciones con índices en P. Todas las proposiciones p(n) son verdaderas a condición de que: INTRODUCCION S estamos ete matemátcos, la palaba duccó os sugee el Pcpo de Iduccó Matemátca: S ua popedad vale paa 0 y s sempe que la popedad vale paa u úmeo (atual) vale paa su suceso, etoces la popedad

Más detalles

NOCIONES FUNDAMENTALES DEL CÁLCULO DE PROBABILIDADES

NOCIONES FUNDAMENTALES DEL CÁLCULO DE PROBABILIDADES NOCIONES FUNDAMENTALES DEL CÁLCULO DE PROBABILIDADES INTRODUCCION -.DEFINICIONES:.U experimeto o u feómeo es aleatorio si cumple:.si o hay codició extera que ifluya e el resultado, es decir, pos realizar

Más detalles

GENERALIDADES SOBRE MÓDULOS

GENERALIDADES SOBRE MÓDULOS GENERALIDADES SOBRE MÓDULOS Presetar el Z -módulo Z como cocete de u Z -módulo lbre Hacer lo msmo para el grupo de Kle Calcular los auladores de los sguetes módulos: a) El Z -módulo Z Z 6 b) El Z -módulo

Más detalles

Del correcto uso de las fracciones parciales.

Del correcto uso de las fracciones parciales. Del correcto uso de las fraccoes parcales. Rubé Emauel Madrd García. E este opúsculo haré u aálss de lo que hoy llamamos fraccoes parcales, lo cual o es otra cosa que la descomposcó del cocete etre dos

Más detalles

Supongamos que hemos aplicado el test F y hemos rechazado la H0.

Supongamos que hemos aplicado el test F y hemos rechazado la H0. Comparacó de medas tomadas de a pares CONDICION Meda s --------- ---------- ------ ---------- 0.00 3.0000 0.00 3.73 3 97.00 3.0000 4 93.00.44 TOTAL 98.73.6036 Supogamos que hemos aplcado el test F y hemos

Más detalles