Escrito. 1) Transforma a las bases indicadas:
|
|
|
- Ernesto Ponce Paz
- hace 8 años
- Vistas:
Transcripción
1 Escrto ) Trasforma a las bases dcadas: a. 765 base (0) b. AB base 7 0 (6) base ) Halla los dígtos a y b sabedo que: aam 6 ( 5 ) mam( 6 ) 3) Trasforma a la base dcada usado ua tabla de correspodeca.. 00 base 9. (3) 87 base 3 (9) 4) Completa la tabla de suma e base 4 y opera ) Dada la sguete suma, Idca e que base está escrtos los úmeros ( b) + 567( b) = 87( b) 6) E ua cudad se establece que las matrículas de los vehículos será úmeros de ses dígtos e umeracó hexadecmal. Cuátos vehículos se puede empadroar como máxmo?
2 Escrto ) Demuestra que la sguete gualdad es válda para todo atural a partr de. a. ( ) ( 4 ) = 3 b. Expresa, usado el símbolo de sumatora, la suma de los cuadrados de los prmeros 50 úmeros mpares. c. Calcula la suma de la parte ateror. ) Halla los valores de a y b sabedo que la sguete gualdad se cumple para = y =. = ( a ) ) = ( + )( b + ) 3) Sabedo que la gualdad 0 = d. = = ( + ) e. Desarrolla la sguete suma para = f. Calcula la sguete suma = es verdadera para todo atural, calcula: + : ( + 3) 4) Observa que: + = + + = = g. Deduce la ley geeral. h. Demuéstrala por duccó completa. 5) Cosdera la sguete desgualdad ( + ) < x + x + x (sedo x u real postvo). Ecuetra el prmer atural a partr del cual se cumple. j. Demuestra que la desgualdad es certa para todos los aturales a partr del que se calculó e a.
3 5 Cetífco Prmer Parcal Matemátca Específca Colego Sata Elea 5/6/0 Nombre: - a. Determa todos los úmeros aturales meores a 65, que e la dvsó etera etre 3 da u cocete gual al quítuple de su resto. b. Demuestra que la sguete gualdad es válda para todo atural : = c. Halla los dígtos x e y e caso de exstr, e caso cotraro justfca. = xy 3 = 666. ( ) ( 7) - a / b a. Demuestra la sguete proposcó para todo a,b y c aturales: a /( b + c) a / c 4 b. Halla los dígtos a y b sabedo que: bba ( 6) base aaaa(4) 0 c. Calcula la sguete suma: ( 5 + 4) ( 5 + 4)
4 5ºC Matemátca II Escrto Nombre: ) Sabedo que y completa los sguetes esquemas de dvsó etera: k. b. ) Halla el múltplo de 9, co mayor catdad de dvsores, que esté etre 8 y 33 3) Demuestra que los úmeros de la forma 4 so múltplos de 3 4) Demuestra que el úco dvsor e comú etre h y h + es N 5ºC Matemátca II Escrto Nombre: ) Determa los pares de aturales (x,y) tales que: l. x + y = 600 D = 60 co x y b. x. y = 50 co 3D. m = 96 x y Sedo D y m los máxmo comú dvsor y mímo comú múltplo de ( x, y) respectvamete. ) Halla a atural sabedo que ( a, 36) = 36 D, el úmero de dvsores de a es 4 y a < ) Determa el úmero atural más pequeño que admte 5 dvsores. 4) Determa a y b aturales tales que: a b D a (, b) = 745 = 5 5ºC Matemátca II Escrto Nombre: ) Euca y demuestra el teorema de Eucldes ) Demuestra que el cojuto de úmeros prmos tee ftos elemetos p k q k 3) Demuestra que s k dvde a p y q, etoces D, = D( p, q) 4) Demuestra que s etoces los dvsores comues de a y b so los msmos que los de b y r k
5 5ºC Matemátca II Escrto Nombre: ) A partr de los prmeros térmos de las sguetes sucesoes: ,,,, ,,,....,,,,, a. Determa s so artmétcas o geométrcas y e caso de serlo halla la razó. b. Halla el térmo -ésmo. ) Cuátos úmeros hay etre 8 y 533 (cludos) que da resto 3 al dvdrlos etre 5? Justfca 3) Dada la sguete sucesó: ( a ) a. Determa su crecmeto. : a = 4 + b. Halla la suma de los prmeros 30 térmos. 4) Ua pelota cae desde 8 m de altura. S las alturas alcazadas e los sucesvos rebotes está e progresó geométrca de razó 3/4: a. Qué altura alcazará tras el sexto rebote? b. Cuátas veces debe rebotar, como mímo, para que la sguete altura o supere metro?
6 5 Cetífco Segudo Parcal Matemátca Específca Colego Sata Elea 5/6/0 Nombre: 3- Calcula los sguetes límtes: a. b. 3 lm > ( ) + 3 lm + >+ ( ) 4- Halla a y b aturales sabedo que, además ( a, b) = 60 D co b < 450 y a > Demuestra ua de las sguetes proposcoes: a. Todo úmero atural co ua catdad mpar de dvsores es u cuadrado perfecto. b. Todo cuadrado perfecto tee ua catdad mpar de dvsores. 6- Cosdera u cuadrado ( ABCD) de área, luego el cuadrado ( BC D ) de los lados del ( ABCD ), el ( B C ) A formado por los putos medo A formado por los putos medo de los lados del ateror. D a. Halla el térmo -ésmo de la sucesó formada por las áreas de los cuadrados. b. Sabedo que N, demuestra que la sucesó ateror coverge a 0. (sugereca: usar el teorema de la sucesó compredda) c. Halla la suma de las áreas de los prmeros ml cuadrados. d. Calcula el límte de la sucesó formada por la suma de las áreas. 7- Sedo k u úmero real se defe la sucesó ( a ) a. Demuestra que ( a ) es artmétca. b. Determa el térmo -ésmo de ( ) a : a 0 = k = k + a + a sabedo que a = 90 8
Estadística. Tema 2: Medidas de Tendencia Central.. Estadística. UNITEC Tema 2: Medidas de Tendencia Central Prof. L. Lugo
Estadístca Tema : Meddas de Tedeca Cetral. Estadístca. UNITEC Tema : Meddas de Tedeca Cetral 1 Parámetros y Estadístcos Parámetro: Es ua catdad umérca calculada sobre ua poblacó La altura meda de los dvduos
CAPÍTULO IV NÚMEROS COMPLEJOS E INDUCCIÓN MATEMÁTICA
NÚMEROS COMPLEJOS E INDUCCIÓN MATEMATICA 55 CAPÍTULO IV NÚMEROS COMPLEJOS E INDUCCIÓN MATEMÁTICA 4. INTRODUCCIÓN Los úmeros Complejos costtuye el mímo cojuto C, e el que se puede resolver la ecuacó x a
PARÁMETROS ESTADÍSTICOS ... N
el blog de mate de ada: ESTADÍSTICA pág. 6 PARÁMETROS ESTADÍSTICOS MEDIDAS DE CENTRALIZACIÓN Las tablas estadístcas y las represetacoes grácas da ua dea del comportameto de ua dstrbucó, pero ese cojuto
Teoría Simplificada de ERRORES Suscriben este documento los coordinadores de Laboratorio de Química, Física I y Física II.
Teoría Smplfcada de ERRORES Suscrbe este documeto los coordadores de Laboratoro de Químca, Físca I y Físca II. Defcoes Báscas: -Error absoluto (o error): Itervalo xe dode co máxma probabldad se ecuetra
V II Muestreo por Conglomerados
V II Muestreo por Coglomerados Dr. Jesús Mellado 31 Por alguas razoes aturales, los elemetos muestrales se ecuetra formado grupos, como por ejemlo, las persoas que vve e coloas de ua cudad, lo elemetos
TEMA 2: LOS NÚMEROS COMPLEJOS
Matemátcas º Bachllerato. Profesora: María José Sáche Quevedo TEMA : LOS NÚMEROS COMPLEJOS. LOS NÚMEROS COMPLEJOS Relacó etre los úmeros complejos y los putos del plao. Afjo de u úmero complejo. Cojugado
GENERALIDADES SOBRE MÓDULOS
GENERALIDADES SOBRE MÓDULOS Presetar el Z -módulo Z como cocete de u Z -módulo lbre Hacer lo msmo para el grupo de Kle Calcular los auladores de los sguetes módulos: a) El Z -módulo Z Z 6 b) El Z -módulo
1 Ce.R.P. del Norte Rivera Julio de 2010 Departamento de Matemática Notas para el curso de Fundamentos de la Matemática
Ce.R.P. del Norte Rvera Julo de Departameto de Matemátca Notas para el curso de Fudametos de la Matemátca CONGRUENCIAS NUMÉRICAS Y ECUACIONES DE CONGRUENCIA. RECORDANDO CONCEPTOS: La cogrueca es ua relacó
APROXIMACIÓN NUMÉRICA AL CÁLCULO DEL ÁREA BAJO LA GRÁFICA DE UNA FUNCIÓN MEDIANTE RECTÁNGULOS INSCRITOS
APROXIMACIÓN NUMÉRICA AL CÁLCULO DEL ÁREA BAJO LA GRÁFICA DE UNA FUNCIÓN MEDIANTE RECTÁNGULOS INSCRITOS Sugerecas para que mparte el curso Ha llegado el mometo e que es coveete resolver ejerccos aplcado
I. ANÁLISIS DESCRIPTIVO DE UN CONJUNTO DE DATOS
Estadístca Tema. Seres Estadístcas. Dstrbucoes de frecuecas. Pág. I. ANÁLISIS DESCIPTIVO DE UN CONJUNTO DE DATOS Seres Estadístcas. Dstrbucoes de frecuecas.. Defcó de Estadístca... Coceptos geerales...2
MEDIDAS DE CENTRALIZACIÓN
Educagua.com MEDIDAS DE CETRALIZACIÓ Las meddas de cetralzacó so estadístcos que releja algú valor global de la sere estadístca. Las prcpales meddas de cetralzacó so: Meda artmétca smple. Meda artmétca
x x x x x Y se seguía operando
. INTRODUCCIÓN. DEFINICIONES UNIDAD : Números complejos Cuado se teta resolver ecuacoes de segudo grado como por ejemplo x 4x 0, se observa que o 4 6 5 4 6 tee solucoes reales x x, pues o exste raíces
MEDIDAS DE TENDENCIA CENTRAL
Probabldad y Estadístca Meddas de tedeca Cetral MEDIDAS DE TENDENCIA CENTRAL E la udad ateror se ha agrupado la ormacó y además se ha dado ua descrpcó de la terpretacó de la ormacó, s embargo e ocasoes
Estadística Descriptiva
Estadístca Descrptva Poblacoes y muestras Varables. Tablas de frecuecas Meddas de: tedeca cetral-dspersó ESTADÍSTICA DESCRIPTIVA: Tee por objetvo recoplar, orgazar y aalzar formacó referda a datos de u
EXPRESIONES ALGEBRAICAS
EXPRESIONES ALGEBRAICAS 1 Epresoes Algebrcs es l uó de úmeros y vrbles medte opercoes de sum, rest, multplccó, dvsó, poteccó y rdccó. Epresó lgebrc rcol: se llm sí quells e ls que ls vrbles está fectds
Estadística Descriptiva
Estadístca Descrptva Poblacó: Es u cojuto de elemetos co ua determada característca. Muestra: Es u subcojuto de la poblacó. Muestreo: Es el proceso para elegr ua muestra que sea represetatva de la poblacó.
MATEMÁTICA MÓDULO 4 Eje temático: Estadística y Probabilidades
MATEMÁTICA MÓDULO 4 Eje temátco: Estadístca y Probabldades Empezaremos este breve estudo de estadístca correspodete al cuarto año de Eseñaza Meda revsado los dferetes tpos de gráfcos.. GRÁFICOS ESTADÍSTICOS
Matemáticas 1 1 EJERCICIOS RESUELTOS: Números Complejos. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria
Matemátcas EJERCICIOS RESUELTOS: Números Complejos Elea Álvare Sá Dpto. Matemátca Aplcada y C. Computacó Uversdad de Catabra Igeería de Telecomucacó Fudametos Matemátcos I Ejerccos: Números Complejos Iterpretacó
Práctica 11. Calcula de manera simbólica la integral indefinida de una función. Ejemplo:
PRÁCTICA SUMAS DE RIEMAN Práctcas Matlab Práctca Objetvos Calcular tegrales defdas de forma aproxmada, utlzado sumas de Rema. Profudzar e la compresó del cocepto de tegracó. Comados de Matlab t Calcula
PROBABILIDAD Y ESTADISTICA
1. Es u cojuto de procedmetos que srve para orgazar y resumr datos, hacer ferecas a partr de ellos y trasmtr los resultados de maera clara, cocsa y sgfcatva? a) La estadístca b) Las matemátcas c) La ceca
Del correcto uso de las fracciones parciales.
Del correcto uso de las fraccoes parcales. Rubé Emauel Madrd García. E este opúsculo haré u aálss de lo que hoy llamamos fraccoes parcales, lo cual o es otra cosa que la descomposcó del cocete etre dos
Laboratorio de Física PRÁCTICA 1
PRELABORATORIO: MEDICIÓN - Medr. - Aprecacó. - Meddas drectas. - Meddas drectas. MEDIDAS DE LONGITUD - Cta métrca. - Verer. - Torllo mcrométrco. MEDIDAS DE TIEMPO - Croómetro. Error. - Error sstemátco.
LOS NÚMEROS COMPLEJOS
LOS NÚMEROS COMPLEJOS por Jorge José Osés Reco Departameto de Matemátcas - Uversdad de los Ades Bogotá Colomba - 00 Cuado se estudó la solucó de la ecuacó de segudo grado ax bx c 0 se aaló el sgo del dscrmate
GUIA TEORICO-PRACTICA II
GUIA TEORICO-PRACTICA II CONTENIDOS.. Sucesoes. Progresoes: artmétcas y geométrcas.. Ejerccos Propuestos... Sumatora: propedades. Prcpo de Iduccó Completa..4 Ejerccos Propuestos..5. Factoral de u úmero
Objetivos. Introducción n a las medidas de posición n (tendencia central o tipismo): Moda y Mediana Media aritmética
Objetvos Itroduccó a las meddas de poscó (tedeca cetral o tpsmo): Moda y Medaa Meda artmétca tca Cuartles,, decles y percetles Meddas de poscó Defcó: : refereca a u lugar específco de ua dstrbucó, epresado
6. ESTIMACIÓN PUNTUAL
Defcoes 6 ESTIMACIÓN PUNTUAL E la práctca, los parámetros de ua dstrbucó de probabldad se estma a partr de la muestra La fereca estadístca cosste e estmar los parámetros de ua dstrbucó; y e evaluar ua
ESTADÍSTICA DESCRIPTIVA
ESTADÍSTICA DESCRIPTIVA A. MEDIDAS DE TENDENCIA CENTRAL B. MEDIDAS DE VARIABILIDAD C. MEDIDAS DE FORMA RESUMEN: A. MEDIDAS DE TENDENCIA CENTRAL So estadígrafos de poscó que so terpretados como valores
X / n : proporción de caras ( = frecuencia relativa del suceso A = f A = n A / n ) Se espera que a medida que n crece la frecuencia relativa de cara
95 Teoremas límte Cosderemos el exermeto aleatoro que cosste e arrojar ua moeda equlbrada veces. Suogamos que se regstra la roorcó de caras. U resultado coocdo es que esta roorcó estará cerca de /. Formalzado
RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN SEMANA 13 RAZONES Y PROPORCIONES ab + cd = 2500, halle el valor de (a + c) a c e g K.
SEMANA 1 RAZONES Y PROPORCIONES 1. Si: a b c d y 7 4 1 6 ab + cd = 500, halle el valor de (a + c) A) 75 B) 80 C) 90 D) 95 E) 100 a b ab K K 7 4 8 d e de K K 1 6 7 Luego: 500 100K K = 5 Luego: a = 5, d
Números complejos. Números complejos. Las tribulaciones del estudiante Törless LITERATURA Y MATEMÁTICAS
Números complejos SOLUCIONARIO Números complejos LITERATURA Y MATEMÁTICAS Las trbulacoes del estudate Törless Dme, etedste be todo esto? Qué? Ese asuto de los úmeros magaros. Sí, o es ta dfícl. Lo úco
que queremos ajustar a los datos. Supongamos que la función f( x ) describe la relación entre dos cantidades físicas: x e y = f( x)
APROXIMACIÓN DISCRETA DE MÍNIMOS CUADRADOS Las leyes físcas que rge el feómeo que se estuda e forma expermetal os proporcoa formacó mportate que debemos cosderar para propoer la forma de la fucó φ ( x)
Topología General Capítulo 0-2 -
Topología Geeral Topología Geeral apítulo - - - - Topología Geeral apítulo - 3 - Breve reseña hstórca Sus orígees está asocados a la obra de Euler, ator y Möbus. La palabra topología había sdo utlzada
4º MEDIO: MEDIDAS DE POSICIÓN
4º MEDIO: MEDIDAS DE POSICIÓN També llamadas de cetralzacó o de tedeca cetral. Srve para estudar las característcas de los valores cetrales de la dstrbucó atededo a dsttos crteros. Veamos su sgfcado co
INTEGRAL DE LÍNEA EN EL CAMPO COMPLEJO
INTEGRAL DE LÍNEA EN EL AMPO OMPLEJO ARRERA: Igeería Electromecáca ASIGNATURA: DOENTES: Ig. Norberto laudo MAGGI Ig. Horaco Raúl DUARTE INGENIERÍA ELETROMEÁNIA INTEGRAL DE LÍNEA EN EL AMPO OMPLEJO ONEPTOS
Respuesta. Si 100 manzanas es una muestra suficientemente grande podemos ocupar el TCL. Por lo tanto:
Curso: Estadístca Iferecal (ICO 8306) Profesores: Esteba Calvo, Pablo Huechapa y Omar Ramos Ayudates: José T. Meda, Fabo Salas y Daela Vlches PROBLEMA Cosdere que Ud. es dueño de u campo que produce mazaas,
V Muestreo Estratificado
V Muestreo Estratfcado Dr. Jesús Mellado 10 Certas poblacoes que se desea muestrear, preseta grupos de elemetos co característcas dferetes, s los grupos so pleamete detfcables e su peculardad y e su tamaño,
MEDIA ARITMÉTICA. Normalmente se suele distinguir entre media aritmética simple y media aritmética ponderada.
MEDIDAS DE POSICIÓN També llamadas de cetralzacó o de tedeca cetral. Srve para estudar las característcas de los valores cetrales de la dstrbucó atededo a dsttos crteros. Veamos su sgfcado co u ejemplo:
VARIABLES ESTADÍSTICAS UNIDIMENSIONALES.
CONTENIDOS. VARIABLES ESTADÍSTICAS UNIDIMENSIONALES. Itroduccó a la Estadístca descrptva. Termología básca: poblacó, muestra, dvduo, carácter. Varable estadístca: dscretas y cotuas. Orgazacó de datos.
TEMA 3. Medidas de variabilidad y asimetría. - X mín. X máx
TEMA 3 Meddas de varabldad y asmetría 1. MEDIDAS DE VARIABILIDAD La varabldad o dspersó hace refereca al grado de varacó que hay e u cojuto de putuacoes. Por ejemplo: etre dos dstrbucoes que preseta la
Números Complejos PREGUNTAS MÁS FRECUENTES
Repaso de º de Bachllerato Números Complejos PREGUNTAS MÁS FRECUENTES. Qué es la udad magara? Es u elemeto del que coocemos úcamete su cuadrado:.obvamete, o se trata de u úmero real.. Qué es u úmero complejo?
PARTE 2 - ESTADISTICA. Parte 2 Estadística Descriptiva. 7. 1 Introducción
Parte Estadístca Descrptva Prof. María B. Ptarell PARTE - ESTADISTICA 7- Estadístca Descrptva 7. Itroduccó El campo de la estadístca tee que ver co la recoplacó, orgazacó, aálss y uso de datos para tomar
GUÍA DE EJERCICIOS. Área Matemática Álgebra lineal
GUÍA DE EJERCICIOS Área Matemátca Álgebra leal Resultados de apredzaje. Recoocer exsteca de subespaco vectoral. Cotedos 1. Espacos vectorales. 2. Subespacos vectorales. Debo saber Se debe recordar que
MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS NÚMEOROS COMPLEJOS
NÚMEOROS COMPLEJOS Defcó: El cojuto de los úmeros complejos es C R R {(, / R y b R} C está formdo por todos los pres ordedos de úmeros reles etre los que defmos u relcó, l guldd, y dos opercoes brs que
ESTADÍSTICA poblaciones
ESTADÍSTICA Es la parte de las Matemátcas que estuda el comportameto de las poblacoes utlzado datos umércos obtedos medate epermetos o ecuestas. ESTADÍSTICA La Estadístca tee dos ramas: La Estadístca descrptva:
TRABAJO 2: Variables Estadísticas Bidimensionales (Tema 2).
TRABAJO : Varables Estadístcas Bdmesoales (Tema ). Téccas Cuattatvas I. Curso 07/08. APELLIDOS: NOMBRE: GRADO: GRUPO: DNI (o NIE): A: B: C: D: E los eucados de los ejerccos que sgue aparece los valores
Una Propuesta de Presentación del Tema de Correlación Simple
Ua Propuesta de Presetacó del Tema de Correlacó Smple Itroduccó Ua Coceptualzacó de la Correlacó Estadístca La Correlacó o Implca Relacó Causa-Efecto Vsualzacó Gráfca de la Correlacó U Idcador de Asocacó:
Aplicación de Boostrapping en Regresión I
Aplcacó de Boostrappg e Regresó I U modelo de regresó leal basado e observacoes (x,y ) es de la forma y =x β+e (=,,..) dode y so los valores observados de la varable de respuesta y, y los x so vectores
1 DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL
Estadístca y probabldad 1 DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL 1.1 DISTRIBUCIONES ESTADÍSTICAS Se usa dagramas de barras, dode la altura de éstas represeta la recueca de cada
Sucesiones numéricas.
SUCESIONES 3º ESO Sucesioes uméricas. Ua sucesió es u cojuto ordeado de úmeros reales: a 1, a 2, a 3, a 4, Cada elemeto de la sucesió se deomia térmio, el subídice es el lugar que ocupa e la sucesió. El
Supongamos que divide también a 3n + 1, entonces divide a (3n + 1) (3n 3)=4 o divide a (3n + 3) (3n + 1) = 2, entonces a = 2.
Hojs de Problems Algebr III 8. ) Demostrr que s es r, los úmeros turles y so rmos etre s. b) Demostrr que s m, etoces l ctdd de úmeros eteros ostvos dsttos de cero que o so myores que m y que o se dvde
MEDIDAS DE FORMA Y CONCENTRACIÓN
MEDIDAS DE FORMA Y CONCENTRACIÓN 4..- Asmetría: coefcetes de asmetría de Fsher y Pearso. Otros Coefcetes de asmetría. 4.2.- La ley ormal. 4..- Curtoss o aplastameto: coefcete de Fsher. 4.4.- Meddas de
Curso de Estadística Unidad de Medidas Descriptivas. Lección 3: Medidas de Tendencia Central para Datos Agrupados por Clases
Curso de Estadístca Udad de Meddas Descrptvas Leccó 3: Meddas de Tedeca Cetral para Datos Agrupados por Clases Creado por: Dra. Noemí L. Ruz Lmardo, EdD 2010 Derechos de Autor Objetvos 1. Der el cocepto
ESPACIOS VECTORIALES SUBESPACIOS FINITAMENTE GENERADOS:
SUBESPACIOS FINITAMENTE GENERADOS: Teorema S G={v, v,, v } es u sstema fto de geeradores de u subespaco S V K-EV, etoces G`= {v, v,, v,w} sedo w combacó leal de vectores de G, també geera a S. Demostracó
Estadística Descriptiva
Estadístca Descrptva Parcalmete facado a través del PIE-04 (UMA). Promedos y meddas de poscó. Meddas de dspersó. Meddas de asmetría. Valores atípcos..4 Meddas de desgualdad..5 Valores atípcos: Dagrama
3 = =. Pero si queremos calcular P (B) 2, ya que si A ocurrió, entonces en la urna
arte robabldad codcoal rof. María. tarell - robabldad codcoal.- Defcó Supogamos el expermeto aleatoro de extraer al azar s reemplazo dos bolllas de ua ura que cotee 7 bolllas rojas y blacas. summos que
Objetivos. El alumno conocerá y aplicará el concepto de arreglos unidimensionales para resolver problemas que requieren algoritmos de tipo numérico.
Objetvos El alumo coocerá y aplcará el cocepto de arreglos udmesoales para resolver problemas que requere algortmos de tpo umérco. Al fal de esta práctca el alumo podrá:. Maejar arreglos udmesoales.. Realzar
PROGRESIONES ARITMETICAS
PROGRESIONES ARITMETICAS DEF. Se dice que ua serie de úmeros está e progresió aritmética cuado cada uo de ellos (excepto el primero) es igual al aterior más ua catidad costate llamada diferecia de la progresió.
TEMA 3.- OPERACIONES DE AMORTIZACION : PRESTAMOS A INTERES VARIABLE 3.1.-CLASIFICACIÓN DE LOS PRÉSTAMOS A INTERÉS VARIABLE :
Dpto. Ecoomía Facera y otabldad Pla de Estudos 994 urso 008-09. TEMA 3 Prof. María Jesús Herádez García. TEMA 3.- OPERAIONES DE AMORTIZAION : PRESTAMOS A INTERES VARIABLE 3..-LASIFIAIÓN DE LOS PRÉSTAMOS
Serie de Gradiente (Geométrico y Aritmético) y su Relación con el Presente.
Sere de radete (eométrco y rtmétco) y su Relacó co el resete. Certos proyectos de versó geera fluos de efectvo que crece o dsmuye ua certa catdad costate cada período. or eemplo, los gastos de matemeto
Es aquella Serie Uniforme, cuyo Pago tiene lugar, al Final del Periodo.
ANUALIDADES SERIES UNIFORMES SERIE UNIFORME Se defe como u Cojuto de Pagos Iguales y Peródcos. El Térmo PAGO hace refereca tato a Igresos como a Egresos. També se deoma ANUALIDADES: Se defe como u Cojuto
Tema 2: Distribuciones bidimensionales
Tema : Dstrbucoes bdmesoales Varable Bdmesoal (X,Y) Sobre ua poblacó se observa smultáeamete dos varables X e Y. La dstrbucó de frecuecas bdmesoal de (X,Y) es el cojuto de valores {(x, y j ); j } 1,, p;
REGRESIÓN LINEAL SIMPLE
RGRIÓN LINAL IMPL l aálss de regresó es ua técca estadístca para vestgar la relacó fucoal etre dos o más varables, ajustado algú modelo matemátco. La regresó leal smple utlza ua sola varable de regresó
Soluciones de Ley de los volúmenes parciales de Amagat
Solucoes de ey de los olúmees parcales de Amagat El olume parcal () de u gas e ua mezcla, es el olume que ocuparía s se ecotrase solo a la msma temperatura y presó que la mezcla. També se puede calcular
La inferencia estadística es primordialmente de naturaleza
VI. Ifereca estadístca Ifereca Estadístca La fereca estadístca es prmordalmete de aturaleza ductva y llega a geeralzar respecto de las característcas de ua poblacó valédose de observacoes empírcas de la
Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión
Modelos de Regresó E muchos problemas este ua relacó herete etre dos o más varables, resulta ecesaro eplorar la aturaleza de esta relacó. El aálss de regresó es ua técca estadístca para el modelado la
GENERACION DE NUMEROS ALEATORIOS
GENERACION DE NUMEROS ALEATORIOS U paso clave e smulacó es teer rutas que geere varables aleatoras co dstrbucoes especfcas: epoecal, ormal, etc. Esto es hecho e dos fases. La prmera cosste e geerar ua
Correlación y regresión lineal. Ejemplos
Correlacó y regresó leal. Ejemplos Problema Nro. 0 Las estaturas (mts.) y los pesos (Kg) de 0 jugadores de Balocestos so: Estatura X Pesos Y(Kg) (mts) 86 85 89 85 90 86 9 90 93 87 98 93 0 03 03 00 93 9
Apuntes preparados por el profesor Sr. Rosamel Sáez Espinoza con fines de docencia
Aputes preparados por el profesor Sr. Rosamel Sáez Espoza co fes de doceca La meda Sea u cojuto de observacoes x 1,..., x, o agrupados. Se defe la meda o promedo, medate: x 1 La meda utlza todas las observacoes,
VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN
VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN - INTRODUCCIÓN E este tema se tratará de formalzar umércamete los resultados de u feómeo aleatoro Por tato, ua varable aleatora es u valor umérco que correspode
INTEGRAL DEFINIDA INTRODUCCIÓN
INTRODUCCIÓN U medo potete de l vestgcó e mtemátc, físc, mecác y otrs rms de l cec es l tegrl defd. El cálculo de áres lmtds por curvs, de ls logtudes de rcos, volúmees, trjo, velocdd, espco, mometos de
GUÍA SUCESIONES Y SERIES. a n 1 1. a) La suma de los 5 primeros términos de la sucesión. b) La suma de los 10 primeros términos de la sucesión.
ESCUELA DE GOBIERNO Y GESTIÓN PÚBLICA UNIVERSIDAD DE CHILE GUÍA SUCESIONES Y SERIES. Escriba los cico primeros térmios de la sucesió dada a) a = + b) a = ( ) c) b = (+) d) c = - (-). Sea a la sucesió defiida
Tema 5: Equilibrio General Parte III OWC Economía para Matemáticos. Fernando Perera Tallo ttp://bit.ly/8l8ddu
y Tea 5: Equlbro Geeral Parte III OWC Ecooía para Mateátcos Ferado Perera Tallo ttp://bt.ly/8l8ddu Esteca de Equlbro Ferado Perera-Tallo A lo largo de esta presetacó os vaos a cocetrar e espacos Eucldos,
FEM-OF: EDP Elíptica de 2 Orden
9/02/2008 Capítulo 5: FM-OF: D líptca de 2 Orde Idce: 5..- Operador Dferecal líptco 5.2.- roblema Básco 5.3.- Fucoes Óptmas 5.4.- FM-OF Steklov-ocaré 5.5.- FM-OF Trefftz-Herrera 5.6.- FM-OF etrov-galerk
Medidas de Tendencia Central
Meddas de Tedeca Cetral Ua edda de tedeca cetral es u valor que se calcula a partr de u cojuto de datos y que se utlza para descrbr los datos e algua fora. Geeralete quereos que el valor sea represetatvo
GRADO EN PSICOLOGIA INTRODUCCIÓN AL ANÁLISIS DE DATOS Código Asignatura: FEBRERO 2010 EXAMEN MODELO A
Febrero 20 EAMEN MODELO A Pág. 1 GRADO EN PICOLOGIA INTRODUCCIÓN AL ANÁLII DE DATO Códgo Asgatura: 620137 FEBRERO 20 EAMEN MODELO A Tabla 1: Para estudar la relacó etre las putuacoes e u test () y el redmeto
INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA
INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA Lus Fraco Martí {[email protected]} Elea Olmedo Ferádez {[email protected]} Jua Mauel Valderas Jaramllo {[email protected]}
Coeficientes binomiales
Coeficietes biomiales (Ejercicios Objetivos Defiir coeficietes biomiales y estudiar sus propiedades pricipales Coocer su aplicació e la fórmula para las potecias del biomio y su setido combiatorio (si
1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n)
1 Sucesioes De ició. Ua sucesió, a, es ua fució que tiee como domiio el cojuto de los úmeros aturales y como cotradomiio el cojuto de los úmeros reales: a : N! R. Se usa la siguiete otació: a () = a :
Guía ejercicios resueltos Sumatoria y Binomio de Newton
Aulr: Igco Domgo Trujllo Slv Uversdd de Chle Guí ejerccos resueltos Sumtor y Bomo de Newto Solucó: ) Como o depede de j, es costte l sumtor. b) c) d) Aulr: Igco Domgo Trujllo Slv Uversdd de Chle e) f)
