CAPÍTULO IV NÚMEROS COMPLEJOS E INDUCCIÓN MATEMÁTICA
|
|
|
- José Ramón Navarro Cordero
- hace 8 años
- Vistas:
Transcripción
1 NÚMEROS COMPLEJOS E INDUCCIÓN MATEMATICA 55 CAPÍTULO IV NÚMEROS COMPLEJOS E INDUCCIÓN MATEMÁTICA 4. INTRODUCCIÓN Los úmeros Complejos costtuye el mímo cojuto C, e el que se puede resolver la ecuacó x a dode a R. U úmero complejo se escrbrá como: ( a, b) a b Dode 4. ADICIÓN Y MULTIPLICACIÓN DE NÚMEROS COMPLEJOS ; ( a, b)( c, d) ( a, b) ( c, d ) ( a b) ( c ( ac bd, ad ( a d) bc) c, b ( a d) b) ( c d) ( a b)( c d) ( ac ad bc bd ) ( ac bd) ( ad bd) 4. SUSTRACCIÓN Y DIVISIÓN DE NÚMEROS COMPLEJOS Sea, w dos úmeros complejos Dode S w w w ( w) w x y etoces w x y x y x y Deomado smétrco multplcatvo 4.4 PROPIEDADES DE LOS NÚMEROS COMPLEJOS Los úmeros reales so u subcojuto propo de los úmeros complejos.
2 56 ÁLGEBRA I Los complejos de la forma (a,b) e los cuales b 0 se deoma úmeros magaros y s a = 0 se trata de u úmero magaro puro. El complejo cojugado de ( a, b) es a, b ( a, b), todo úmero real es su propo cojugado, metras que el cojugado de u magaro puro es su opuesto. La suma y el producto de dos complejos cojugados es u úmero real. El cuadrado de todo úmero magaro puro es u úmero real egatvo. Ejemplo. S ; w 4 v allar: a) w b) w ( ) ( 4) ( 4) ( ( )( )( 4) 4) ( 4 ( 5 4) (( 4) ()) ( ) ( 8 ) c) e) w w d) v e) w v v ( )( ) (4 9) ( 6 6) ( 4 ) ( 4) ()() 4 4 w ( 0 7 w ) 7 7 ( 4 )
3 NÚMEROS COMPLEJOS E INDUCCIÓN MATEMATICA REPRESENTACIÓN TRIGONOMÉTRICA DE LOS NÚMEROS COMPLEJOS S establecemos u sstema de ejes cartesaos e el cual el eje y srve para represetar la parte magara del úmero complejo, teemos: y r x y P(x+y) x rcos y rs r r(cos s ) θ x r x y Coocda como la forma trgoométrca o forma polar de u úmero complejo, dode r se cooce como el módulo de y Ө como el argumeto. 4.6 TEOREMA El valor absoluto del producto de dos úmeros complejos es el producto de sus valores absolutos y el águlo del producto es la suma de sus águlos. Demostracó: Sea r cos s r cos s r cos s r cos s cos cos s s s cos cos s r r r r (cos cos s s ) (s cos cos s ) r r cos( ) s( 4.7 TEOREMA El valor absoluto del cocete de dos úmeros complejos es el cocete
4 58 ÁLGEBRA I de sus valores absolutos y el águlo del cocete es el águlo del umerador meos el águlo del deomador. Demostracó: Sea r r cos s r cos s r cos s cos s r cos s cos s cos cos s s ) (s cos cos s r cos s r r cos( ) s( ) Ejemplo S cos s ; 4 cos s Hallar a) b) cos s 4 cos s 8 cos s 8(cos s ) 8 cos s cos s 4 cos s
5 NÚMEROS COMPLEJOS E INDUCCIÓN MATEMATICA 59 cos s 4.8 FÓRMULA DE EULER La expoecal compleja e cos s Co Ө Є R es la fórmula de Euler. S x y r(cos s ) re La poteca eésma será: ( x y) r (cos s ) r e r (cos s ) Que se cooce como el Teorema De Movre Ejemplo Calcular Solucó r Por el teorema De Movre 6 ; arcta 60º 00º r (cos6 s 6 ) cos800º s800º 6 64 cos0º s 0º
6 RAÍCES Para cualquer etero postvo se tee: ÁLGEBRA I r(cos s ) r (cos s ) La ecuacó A (cos s ) Dode es u etero postvo y A es cualquer úmero complejo, tee exactamete raíces, s r(cos s ) es ua de ellas se tee Dode r (cos s ) (cos s ) r r k k El úmero de raíces dsttas es el de los águlos del cojuto k que o terma e el msmo lado. Para cualquer etero postvo k q m ; 0 m Es evdete que k m y Tee lados termales cocdetes. Por tato ay raíces dsttas dadas por k k cos s ; k 0,,,,..., Estas raíces so coordeadas de putos equdstates sobre u círculo de cetro e el orge y rado A. S etoces A (cos s ) es cualquera de las raíces eésmas de A, las otras raíces se obtedrá sucesvamete aumetado el águlo e y reducedo módulo π cuado quera que el águlo sea mayor a π. AYRES FRANK, Álgebra Modera. Edt McGraw-Hll (Coleccó Scaum) 969.Pag. 77
7 NÚMEROS COMPLEJOS E INDUCCIÓN MATEMATICA 6 Las raíces eésmas de la udad so 4 cos s ;,,,,...,, Ejemplo 4 Hallar las raíces cuartas de Observe que el módulo y el argumeto de este ejemplo ya fuero allados e el ejemplo ateror y so: r ; arcta 60º 00º La expresó que os permte allar la raí eésma es 60º 60º r cos k s k Para el ejercco plateado tedremos: 00º k60º 00º k60º cos s k w 0 0 cos 75º s 75º ( ) k w cos 5º s 5º ( ) k w cos 55º s 55º ( ) k w cos 45º s 45º ( ) S los valores de k se tomase a partr del uo la últma raí cocdría co la allada e prmer térmo para k = 0, es decr, w 0 = w 4 k w 4 4 cos 75º s 75º ( ) E el plao complejo se puede represetar gráfcamete:
8 6 ÁLGEBRA I w w 0 =w 4 75º w w Ejemplo 5 Ecuetre las raíces cúbcas de la udad Sea w, w, w las raíces buscadas, etoces: w cos s w cos s 6 6 w cos s cos s 4.0 RAÍCES PRIMITIVAS DE LA UNIDAD Ua raí eésma de se dce prmtva s, y sólo s, co 0 m Es decr, ua raí se cosdera prmtva s, multplcada por s msma u úmero meor de veces que el grado de la raí o reproduce la udad. Ejemplo 6 Determe cuáles de las raíces cúbcas de la udad so prmtvas
9 NÚMEROS COMPLEJOS E INDUCCIÓN MATEMATICA 6 w w w w Podemos observar que la raí w es ua raí prmtva w w w w La raí w es també ua raí prmtva de la udad. 4. SUMATORIA Es el símbolo que se utla para abrevar ua suma que sgue ua ley de formacó, por ejemplo, la suma de los úmeros aturales Se puede abrevar como Que se lee como, sumatora de los que varía desde asta 4.. PROPIEDADES a b a b aa a a dode a cte. Ejemplo
10 64 ÁLGEBRA I Ejemplo 8 ( ) ( ) ( ) ( ) ( )... Ejemplo 9 Hallar la suma de los cuadrados de los prmeros úmeros aturales El cubo de u bomo vee dado por: 4... ( x ) x x x x ( x ) x x Por tato: x ( ) x ( ) ( ) ( ) ( ) x.. x () () () x ( ) ( ) ( ) ( ) (0) () () Sumado todas estas ecuacoes vemos que los segudos térmos de cada ecuacó del prmer membro se cacela, metras que e el segudo membro aparece: las sumatora de los cuadrados meos la sumatora de los aturales mas veces uo, por tato: La sumatora de los úmeros aturales es la suma de ua progresó artmétca coocda, por tato:
11 NÚMEROS COMPLEJOS E INDUCCIÓN MATEMATICA 65 ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) 4. PRODUCTORIO Deota el producto de térmos de ua sucesó Y goa de la sguete propedad a a a a a... a 4 log a log a a 0 4. INDUCCIÓN MATEMÁTICA El prcpo reduccó matemátca proporcoa u método de demostracó por recurreca de varas aplcacoes e matemátca Este prcpo afrma el poder raoar por recurreca. Compeda cas todo el pesameto matemátco, todo lo que acemos cuado costrumos agregados complejos a partr de elemetos smples. Es como lo destacó Pocaré a la ve ecesaro al matemátco e rreductble a la lógca. El eucado del prcpo es: S ua propedad es verdadera para el úmero uo y s demostramos que es verdadera para +, cosderado que lo es
12 66 ÁLGEBRA I també para, etoces será verdadera para todos los úmeros aturales. La duccó matemátca o derva de la expereca, so que mas be costtuye ua propedad de la mete, tutva, erete y cas sttva: lo que emos eco ua ve, lo podremos acer uevamete. Hpótess La proposcó se cumple para = Por tato se cumple para = Tess Debe demostrarse que se cumple para =+ La demostracó cosste e tomar la fórmula que es válda para =, añadr u termo más a esta fórmula y demostrar que es gual a la fórmula co = + Ejemplo 0 Demostrar por duccó Verfcamos la fórmula para = Supoemos que la fórmula es verdadera para =... Debemos demostrar que se cumple para = +... Hay que demostrar que: Kaser Edgard y Newma James, LAS MATEMÁTICAS Y LA IMAGINACIÓN Edt. UNAM 967, 008 Pag. 7
13 NÚMEROS COMPLEJOS E INDUCCIÓN MATEMATICA 67 ( ) ( ) 4 lqqd. Ejemplo Demostrar por duccó ( )( ) 6 Verfcamos para = ( )( ) Supoemos verdadera para = ( )( ) 6 Demostramos para = + ( )( )(( ) ) 6 Hay que demostrar que: ( )( ) ( )( )(( ) ) ( ) 6 6 ( )( ) 6( ) ( )( )(( ) ) 6 6 ( ) ( ) 6( ) ( )( )(( ) ) 6 6 ( ) 7 6 ( )( )(( ) ) 6 6
14 68 ( )( )( ) ( )( )( ) 6 6 ÁLGEBRA I Ejemplo Demostrar por duccó ( ) Verfcamos para = ( ) Supoemos que la fórmula se verfca para = ( ) Para = + se tee: ( ) Debe demostrarse que: ( ) ( ) ( ) ( ) Ejemplo ( ) ( ) ( ) Demostrar que: Verfcamos para = Rojo Armado, ÁLGEBRA I, Edt. El Ateeo 975 Pag. 74
15 NÚMEROS COMPLEJOS E INDUCCIÓN MATEMATICA 69 4,7 Supoemos que la fórmula es correcta para = Debemos demostrar que se cumple para + Demostracó ( a) Es evdete que: Sumado a ambos membros se tee: Elevado a la poteca ( b)
16 70 ÁLGEBRA I Igualado las ecuacoes (a) y (b) se tee: Y como Multplcado membro a membro estas dos últmas desgualdades se tee: ( c) Como ( d) Por trastvdad de (c) y (d) se obtee: lqqd
LOS NÚMEROS COMPLEJOS
LOS NÚMEROS COMPLEJOS por Jorge José Osés Reco Departameto de Matemátcas - Uversdad de los Ades Bogotá Colomba - 00 Cuado se estudó la solucó de la ecuacó de segudo grado ax bx c 0 se aaló el sgo del dscrmate
TEMA 2: LOS NÚMEROS COMPLEJOS
Matemátcas º Bachllerato. Profesora: María José Sáche Quevedo TEMA : LOS NÚMEROS COMPLEJOS. LOS NÚMEROS COMPLEJOS Relacó etre los úmeros complejos y los putos del plao. Afjo de u úmero complejo. Cojugado
Matemáticas 1 1 EJERCICIOS RESUELTOS: Números Complejos. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria
Matemátcas EJERCICIOS RESUELTOS: Números Complejos Elea Álvare Sá Dpto. Matemátca Aplcada y C. Computacó Uversdad de Catabra Igeería de Telecomucacó Fudametos Matemátcos I Ejerccos: Números Complejos Iterpretacó
Números complejos. Números complejos. Las tribulaciones del estudiante Törless LITERATURA Y MATEMÁTICAS
Números complejos SOLUCIONARIO Números complejos LITERATURA Y MATEMÁTICAS Las trbulacoes del estudate Törless Dme, etedste be todo esto? Qué? Ese asuto de los úmeros magaros. Sí, o es ta dfícl. Lo úco
LOS NÚMEROS COMPLEJOS
LOS NÚMEROS COMPLEJOS por Jorge José Osés Reco Departameto de Matemátcas - Uversdad de los Ades Bogotá Colomba - 00 Cuado se estudó la solucó de la ecuacó de segudo grado ax + bx + c = 0 se aalzó el sgo
Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi
u_miii.doc EL SISTEMA DE LOS NÚMEROS COMPLEJOS: No eiste u úmero real que satisfaga la ecuació +0 Para resolver este tipo de ecuacioes es ecesario itroducir el cocepto de úmero complejo. U úmero complejo
Práctica 11. Calcula de manera simbólica la integral indefinida de una función. Ejemplo:
PRÁCTICA SUMAS DE RIEMAN Práctcas Matlab Práctca Objetvos Calcular tegrales defdas de forma aproxmada, utlzado sumas de Rema. Profudzar e la compresó del cocepto de tegracó. Comados de Matlab t Calcula
Transformada Z. Definición y Propiedades Transformada Inversa Función de Transferencia Discreta Análisis de Sistemas
5º Curso-Tratameto Dgtal de Señal Trasformada Z Defcó y Propedades Trasformada Iversa Fucó de Trasfereca Dscreta Aálss de Sstemas 7//99 Capítulo 7: Trasformada Z Defcó y Propedades 5º Curso-Tratameto Dgtal
MEDIDAS DE CENTRALIZACIÓN
Educagua.com MEDIDAS DE CETRALIZACIÓ Las meddas de cetralzacó so estadístcos que releja algú valor global de la sere estadístca. Las prcpales meddas de cetralzacó so: Meda artmétca smple. Meda artmétca
Tema 2: Distribuciones bidimensionales
Tema : Dstrbucoes bdmesoales Varable Bdmesoal (X,Y) Sobre ua poblacó se observa smultáeamete dos varables X e Y. La dstrbucó de frecuecas bdmesoal de (X,Y) es el cojuto de valores {(x, y j ); j } 1,, p;
TEMA 3. Medidas de variabilidad y asimetría. - X mín. X máx
TEMA 3 Meddas de varabldad y asmetría 1. MEDIDAS DE VARIABILIDAD La varabldad o dspersó hace refereca al grado de varacó que hay e u cojuto de putuacoes. Por ejemplo: etre dos dstrbucoes que preseta la
MEDIDAS DE TENDENCIA CENTRAL
Probabldad y Estadístca Meddas de tedeca Cetral MEDIDAS DE TENDENCIA CENTRAL E la udad ateror se ha agrupado la ormacó y además se ha dado ua descrpcó de la terpretacó de la ormacó, s embargo e ocasoes
V II Muestreo por Conglomerados
V II Muestreo por Coglomerados Dr. Jesús Mellado 31 Por alguas razoes aturales, los elemetos muestrales se ecuetra formado grupos, como por ejemlo, las persoas que vve e coloas de ua cudad, lo elemetos
FEM-OF: EDP Elíptica de 2 Orden
9/02/2008 Capítulo 5: FM-OF: D líptca de 2 Orde Idce: 5..- Operador Dferecal líptco 5.2.- roblema Básco 5.3.- Fucoes Óptmas 5.4.- FM-OF Steklov-ocaré 5.5.- FM-OF Trefftz-Herrera 5.6.- FM-OF etrov-galerk
ÁLGEBRA II (LSI PI) VALORES Y VECTORES PROPIOS UNIDAD Nº 6. Facultad de Ciencias Exactas y Tecnologías UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO
6 ÁLGEBRA II (LSI PI) UNIDAD Nº 6 VALORES Y VECTORES PROPIOS Facultad de Cecas Exactas y Tecologías UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO aa Error! No hay texto co el estlo especfcado e el documeto.
- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura
- Ferado Sáchez - - 5 Números Cálculo I complejos 14 10 2015 E el cuerpo de los úmeros reales ecuacioes como x 2 + 1 = 0 o tiee solució: el poliomio x 2 + 1 o tiee raíces reales. Hace falta exteder el
Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión
Modelos de Regresó E muchos problemas este ua relacó herete etre dos o más varables, resulta ecesaro eplorar la aturaleza de esta relacó. El aálss de regresó es ua técca estadístca para el modelado la
Números Complejos PREGUNTAS MÁS FRECUENTES
Repaso de º de Bachllerato Núeros Coplejos PREGUNTAS MÁS FRECUENTES. Qué es la udad agara? Es u eleeto del que cooceos úcaete su cuadrado:.obvaete, o se trata de u úero real.. Qué es u úero coplejo? Es
Los números complejos
Los úmeros complejos Los úmeros complejos Forma biómica Defiició z = a + bi, o bie, z = (a, b) siedo a la parte real y b la parte imagiaria. a = r cos α b = r se α Opuesto z = a bi Cojugado z = a bi Represetació
MATEMÁTICA MÓDULO 4 Eje temático: Estadística y Probabilidades
MATEMÁTICA MÓDULO 4 Eje temátco: Estadístca y Probabldades Empezaremos este breve estudo de estadístca correspodete al cuarto año de Eseñaza Meda revsado los dferetes tpos de gráfcos.. GRÁFICOS ESTADÍSTICOS
REGRESIÓN LINEAL SIMPLE
RGRIÓN LINAL IMPL l aálss de regresó es ua técca estadístca para vestgar la relacó fucoal etre dos o más varables, ajustado algú modelo matemátco. La regresó leal smple utlza ua sola varable de regresó
VARIABLES ESTADÍSTICAS UNIDIMENSIONALES.
CONTENIDOS. VARIABLES ESTADÍSTICAS UNIDIMENSIONALES. Itroduccó a la Estadístca descrptva. Termología básca: poblacó, muestra, dvduo, carácter. Varable estadístca: dscretas y cotuas. Orgazacó de datos.
Tema 1: Números Complejos
Números Complejos Tema 1: Números Complejos Deició U úmero complejo es u par ordeado (x, y) de úmeros reales Éste puede iterpretarse como u puto del plao cuya abscisa es x y cuya ordeada es y El cojuto
6. ESTIMACIÓN PUNTUAL
Defcoes 6 ESTIMACIÓN PUNTUAL E la práctca, los parámetros de ua dstrbucó de probabldad se estma a partr de la muestra La fereca estadístca cosste e estmar los parámetros de ua dstrbucó; y e evaluar ua
ESTADÍSTICA poblaciones
ESTADÍSTICA Es la parte de las Matemátcas que estuda el comportameto de las poblacoes utlzado datos umércos obtedos medate epermetos o ecuestas. ESTADÍSTICA La Estadístca tee dos ramas: La Estadístca descrptva:
Probabilidad. 1. Experimentos aleatorios Espacio muestral asociado a un experimento aleatorio Sucesos... 3
Probabldad PROBABILIDAD 1. Expermetos aleatoros... 2 2. Espaco muestral asocado a u expermeto aleatoro. 3 3. Sucesos... 3 4. El álgebra de Boole de los sucesos... 4 5. Frecuecas. Propedades... 6 6. Defcó
3 = =. Pero si queremos calcular P (B) 2, ya que si A ocurrió, entonces en la urna
arte robabldad codcoal rof. María. tarell - robabldad codcoal.- Defcó Supogamos el expermeto aleatoro de extraer al azar s reemplazo dos bolllas de ua ura que cotee 7 bolllas rojas y blacas. summos que
1 Ce.R.P. del Norte Rivera Julio de 2010 Departamento de Matemática Notas para el curso de Fundamentos de la Matemática
Ce.R.P. del Norte Rvera Julo de Departameto de Matemátca Notas para el curso de Fudametos de la Matemátca CONGRUENCIAS NUMÉRICAS Y ECUACIONES DE CONGRUENCIA. RECORDANDO CONCEPTOS: La cogrueca es ua relacó
TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS
Tema 1 Ifereca estadístca. Estmacó de la meda Matemátcas CCSSII º Bachllerato 1 TEMA 1 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 1.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS UTILIZACIÓN DE
MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU
MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU APLICACIÓN EN PROBLEMAS DE INGENIERÍA Clauda Maard Facultad de Igeería. Uversdad Nacoal de Lomas de Zamora Uversdad CAECE Bueos Ares. Argeta. [email protected]
VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN
VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN - INTRODUCCIÓN E este tema se tratará de formalzar umércamete los resultados de u feómeo aleatoro Por tato, ua varable aleatora es u valor umérco que correspode
INTEGRAL DE LÍNEA EN EL CAMPO COMPLEJO
INTEGRAL DE LÍNEA EN EL AMPO OMPLEJO ARRERA: Igeería Electromecáca ASIGNATURA: DOENTES: Ig. Norberto laudo MAGGI Ig. Horaco Raúl DUARTE INGENIERÍA ELETROMEÁNIA INTEGRAL DE LÍNEA EN EL AMPO OMPLEJO ONEPTOS
1 DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL
Estadístca y probabldad 1 DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL 1.1 DISTRIBUCIONES ESTADÍSTICAS Se usa dagramas de barras, dode la altura de éstas represeta la recueca de cada
Fórmulas de de Derivación Numérica: Aproximación de de la la derivada primera de de una función
Uversdad Poltécca de Madrd Igeería de Mas Fórmulas de de Dervacó Numérca: Aproxmacó de de la la dervada prmera de de ua fucó Prof. Alfredo López L Beto Prof. Carlos Code LázaroL Prof. Arturo dalgo LópezL
4º MEDIO: MEDIDAS DE POSICIÓN
4º MEDIO: MEDIDAS DE POSICIÓN També llamadas de cetralzacó o de tedeca cetral. Srve para estudar las característcas de los valores cetrales de la dstrbucó atededo a dsttos crteros. Veamos su sgfcado co
Estadística. Tema 2: Medidas de Tendencia Central.. Estadística. UNITEC Tema 2: Medidas de Tendencia Central Prof. L. Lugo
Estadístca Tema : Meddas de Tedeca Cetral. Estadístca. UNITEC Tema : Meddas de Tedeca Cetral 1 Parámetros y Estadístcos Parámetro: Es ua catdad umérca calculada sobre ua poblacó La altura meda de los dvduos
(Feb03-1ª Sem) Problema (4 puntos). Se dispone de un semiconductor tipo P paralepipédico, cuya distribución de impurezas es
(Feb03-ª Sem) Problema (4 putos). Se dspoe de u semcoductor tpo P paraleppédco, cuya dstrbucó de mpurezas es ( x a) l = A 0 dode A y 0 so mpurezas/volume, l es u parámetro de logtud y a la poscó de ua
Topología General Capítulo 0-2 -
Topología Geeral Topología Geeral apítulo - - - - Topología Geeral apítulo - 3 - Breve reseña hstórca Sus orígees está asocados a la obra de Euler, ator y Möbus. La palabra topología había sdo utlzada
Aproximación a la distribución normal: el Teorema del Límite Central
Aproxmacó a la dstrbucó ormal: el Teorema del Límte Cetral El teorema del límte cetral establece que s se tee varables aleatoras, X, X,..., X, depedetes y co détca dstrbucó de meda µ y varaza σ, a medda
MEDIA ARITMÉTICA. Normalmente se suele distinguir entre media aritmética simple y media aritmética ponderada.
MEDIDAS DE POSICIÓN També llamadas de cetralzacó o de tedeca cetral. Srve para estudar las característcas de los valores cetrales de la dstrbucó atededo a dsttos crteros. Veamos su sgfcado co u ejemplo:
TEMA 4: VALORACIÓN DE RENTAS
TEMA 4: ALORACIÓN DE RENTAS 1. Cocepto y valor facero de ua reta 2. Clasfcacó de las retas. 3. aloracó de Retas dscretas. Temporales. 4. aloracó de Retas dscretas. Perpetuas. 5. Ejerccos tema 4. 1. Cocepto
Estadística Espacial. José Antonio Rivera Colmenero
Estadístca Espacal José Atoo Rvera Colmeero 1 Descrptores del patró putual Tedeca cetral 1. Meda cetral (Meda espacal). Meda cetral poderada 3. Medaa cetral (medaa espacal) o se utlza amplamete por su
9. Hallar un número de cuatro cifras que sea igual al cubo de la suma de las cifras.
Hoja de Problemas º Algebra II 9. Hallar u úmero de cuatro cifras que sea igual al cubo de la suma de las cifras. Solució: Sea el úmero buscado co a que si o, o seria de cuatro cifras. Teemos que ( ) como
NÚMEROS COMPLEJOS. y sabemos que no podemos calcular raíces de números negativos en R. Para resolver este problema introduciremos el valor i = 1
NÚMEROS COMPLEJOS 1. Qué es un número complejo? Defncones. La ecuacón x + 1 = 0 no tene solucón en el campo real puesto que s ntentamos resolverla tendremos que x = ± 1 y sabemos que no podemos calcular
( ) = 0 entonces ˆ i i. xy x Y Y xy Y x ˆ. β = = β =.(1) Propiedades Estadísticas de los estimadores MICO. Linealidad.
Propedades Estadístcas de los estmadores MICO Lealdad ) y Y Y Y Y = = = β Y Dado que la = 0 etoces β =.) S defmos el poderador k =, co las propedades sguetes: a) No estocástco b) k = 0 c) k = k d) = kx
Curso de Estadística Unidad de Medidas Descriptivas. Lección 3: Medidas de Tendencia Central para Datos Agrupados por Clases
Curso de Estadístca Udad de Meddas Descrptvas Leccó 3: Meddas de Tedeca Cetral para Datos Agrupados por Clases Creado por: Dra. Noemí L. Ruz Lmardo, EdD 2010 Derechos de Autor Objetvos 1. Der el cocepto
Una Propuesta de Presentación del Tema de Correlación Simple
Ua Propuesta de Presetacó del Tema de Correlacó Smple Itroduccó Ua Coceptualzacó de la Correlacó Estadístca La Correlacó o Implca Relacó Causa-Efecto Vsualzacó Gráfca de la Correlacó U Idcador de Asocacó:
mecánica estadística Estadísticas Cuánticas Capítulo 5
mecáca estadístca Estadístcas Cuátcas Capítulo 5 Gas Ideal Mooatómco e el Límte Clásco Cosderemos u as deal s teraccó etre moléculas mooatómco e u volume V a temperatura T. Además supoemos que la separacó
INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA
INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA Lus Fraco Martí {[email protected]} Elea Olmedo Ferádez {[email protected]} Jua Mauel Valderas Jaramllo {[email protected]}
Supongamos que divide también a 3n + 1, entonces divide a (3n + 1) (3n 3)=4 o divide a (3n + 3) (3n + 1) = 2, entonces a = 2.
Hojs de Problems Algebr III 8. ) Demostrr que s es r, los úmeros turles y so rmos etre s. b) Demostrr que s m, etoces l ctdd de úmeros eteros ostvos dsttos de cero que o so myores que m y que o se dvde
MS Word Editor de Ecuaciones
MS Word Edtor de Ecuacoes H L. Mata El Edtor de ecuacoes de Mcrosoft Word permte crear ecuacoes complejas seleccoado símbolos de ua barra de herrametas y escrbedo varables y úmeros. medda que se crea ua
Álgebra I Práctica 3 - Números enteros (Parte 1)
FCEyN - UBA - 1er cuatrimestre 015 Divisibilidad y algoritmo de divisió Álgebra I Práctica 3 - Números eteros (Parte 1 1. Decidir cuáles de las siguietes afirmacioes so verdaderas a, b, c Z i a b c a c
Números complejos Susana Puddu
Números complejos Susaa Puddu 1. El plao complejo. E el cojuto C = IR IR defiimos la suma y el producto de dos elemetos de C de la siguiete maera a, b + c, d = a + c, b + d a, b.c, d = ac bd, ad + bc Dejamos
6.1 EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS
TEMA NÚMEROS COMPLEJOS. EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS DEFINICIONES Al resolver ecuacones del tpo : x + = 0 x = ± que no tene solucón en los números reales. Los números complejos nacen del deseo
INSTITUTO TECNOLÓGICO DE APIZACO PROBABILIDAD AXIOMAS Y TEOREMAS DE LA PROBABILIDAD.
NSTTUTO TECNOLÓGCO DE ZCO Estadístca OLDD XOMS Y TEOEMS DE L OLDD. DEFNCONES DE L OLDD. La palabra probabldad se utlza para cuatfcar uestra creeca de que ocurra u acotecmeto determado. Exste tres formas
UNIDAD 7.- Matrices (tema 1 del libro) = MATRICES
UNIDD.- Marces (ema del lbro). MTRICES Ua mar se puede eeder como ua abla de úmeros ordeados e flas columas Defcó.- Se llama mar de dmesó m a u cojuo de úmeros reales dspuesos e m flas columas de la sguee
1 SISTEMA DE NUMEROS COMPLEJOS
UNIVERSIDAD DEL VALLE FACULTAD DE CIENCIAS DEPARTAMENTO DE MATEMATICAS Prof DORIS HINESTROZA SISTEMA DE NUMEROS COMPLEJOS Sea C el cojuto de parejas ordeadas (a, b) deúmeros reales, esto es C = {(a, b)
RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- I FUNTAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1
RENTILIDD Y RIESGO DE CRTERS Y CTIVOS TEM 3- I FUNTMENTOS DE DIRECCIÓN FINNCIER Fudametos de Dreccó Facera Tema 3- arte I RIESGO y RENTILIDD ( decsoes de versó productvas) EXISTENCI DE RIESGO ( los FNC
4. SEGUNDO MÓDULO. 4.1 Resumen de Datos
4. SEGUNDO MÓDULO 4. Resume de Datos E estadístca descrptva, a partr de u cojuto de datos, se busca ecotrar resumes secllos, que permta vsualzar las característcas esecales de éstos. E ua expereca, u dato
Estadística. Tema 6: Análisis de Regresión.. Estadística. UNITEC Tema 6: Análisis de Regresión Prof. L. Lugo
Estadístca Tema 6: Aálss de Regresó. Estadístca. UNITEC Tema 6: Aálss de Regresó Modelos de Regresó E muchos problemas este ua relacó herete etre dos o mas varables, resulta ecesaro eplorar la aturaleza
SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª. 1. Sean a, b y n enteros positivos tales que a b y ab 1 n. Prueba que
SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª Sea a, b y eteros positivos tales que a b y ab Prueba que a b 4 Idica justificadamete cuádo se alcaa la igualdad Supogamos que el resultado a demostrar fuera falso
Objetivos. Introducción n a las medidas de posición n (tendencia central o tipismo): Moda y Mediana Media aritmética
Objetvos Itroduccó a las meddas de poscó (tedeca cetral o tpsmo): Moda y Medaa Meda artmétca tca Cuartles,, decles y percetles Meddas de poscó Defcó: : refereca a u lugar específco de ua dstrbucó, epresado
Objetivos. El alumno conocerá y aplicará el concepto de arreglos unidimensionales para resolver problemas que requieren algoritmos de tipo numérico.
Objetvos El alumo coocerá y aplcará el cocepto de arreglos udmesoales para resolver problemas que requere algortmos de tpo umérco. Al fal de esta práctca el alumo podrá:. Maejar arreglos udmesoales.. Realzar
Serie de Gradiente (Geométrico y Aritmético) y su Relación con el Presente.
Sere de radete (eométrco y rtmétco) y su Relacó co el resete. Certos proyectos de versó geera fluos de efectvo que crece o dsmuye ua certa catdad costate cada período. or eemplo, los gastos de matemeto
q q q q q q n r r r qq k r q q q q
urso: FISIA II B 30 00 I Profesor: JOAQIN SALEDO [email protected] Eergía potecal electrostátca. S traemos ua carga desde ua dstaca fta el trabajo ecesaro es ulo. 0 trate ua fumadta, grats,, te vto S luego
SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos.
CAPÍTULO IX. SERIES NUMÉRICAS SECCIONES A. Series de térmios o egativos. B. Ejercicios propuestos. 40 A. SERIES DE TÉRMINOS NO NEGATIVOS. Dada ua sucesió {a, a 2,..., a,... }, se llama serie de térmio
Números reales. Operaciones
Números reales. Operacioes Matemáticas I 1 Números reales. Operacioes Números racioales. Caracterizació. Recuerda que u úmero r es racioal si se puede poer e forma de fracció de úmeros eteros de la forma
con operacion inversa la resta (suma de opuestos) y una operacion producto escalar, que no es interna,
Tema 9 El plao complejo 9. Números complejos E IR, las operacioes suma producto de úmeros reales so operacioes iteras (el resultado de operar es otro úmero real) que permite la existecia de operacioes
Guía práctica para la realización de medidas y el cálculo de errores
Laboratoro de Físca Prmer curso de Químca Guía práctca para la realzacó de meddas y el cálculo de errores Medda y Error Aquellas propedades de la matera que so susceptbles de ser meddas se llama magtudes;
FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES.
FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL FUNCIONES DE VARIAS VARIABLES. DEFINICIONES DE FUNCIONES EN VARIAS VARIABLES. Ua fució de variable es u cojuto de pares ordeados de la forma
CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula:
CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS I Meddas de localzacó Auque ua dstrbucó de frecuecas es certamete muy útl para teer ua dea global del comportameto de los datos, es geeralmete ecesaro
Los principales métodos para la selección y valoración de inversiones se agrupan en dos modalidades: métodos estáticos y métodos dinámicos
Dreccó Facera Pág Sergo Alejadro Herado Westerhede, Igeero e Orgazacó Idustral 5. INTRODUCCIÓN Los prcpales métodos para la seleccó y valoracó de versoes se agrupa e dos modaldades: métodos estátcos y
Problemas de Sucesiones
Capítulo Problemas de Sucesioes Problema. Calcular los siguietes ites: l se i e + 3 ii 5 iii l iv + + + Solució: l se i [ escala de iitos se acotada ] 0 acotada 0. e + e ii 5 + [ úmero meor que uo 5 ]
TEMA 11 OPERACIONES DE AMORTIZACION O PRESTAMO (II)
Dapotva Matemátca Facera TEMA OPERACIONES DE AMORTIZACION O PRESTAMO (II). Prétamo dcado 2. Prétamo co teree atcpado. Prétamo Alemá 3. Valor facero del prétamo. Uufructo y uda propedad Dapotva 2 Matemátca
Es aquella Serie Uniforme, cuyo Pago tiene lugar, al Final del Periodo.
ANUALIDADES SERIES UNIFORMES SERIE UNIFORME Se defe como u Cojuto de Pagos Iguales y Peródcos. El Térmo PAGO hace refereca tato a Igresos como a Egresos. També se deoma ANUALIDADES: Se defe como u Cojuto
Fórmulas de de Derivación Numérica: Aproximación de de la la derivada de de orden k de de una función
Uversdad Poltécca de Madrd Igeería de Mas Fórmulas de de Dervacó Numérca: Aproxmacó de de la la dervada de de orde k de de ua ucó Pro. Arturo Hdalgo LópezL Pro. Alredo López L Beto Pro. Carlos Code LázaroL
TEMA 3.- OPERACIONES DE AMORTIZACION : PRESTAMOS A INTERES VARIABLE 3.1.-CLASIFICACIÓN DE LOS PRÉSTAMOS A INTERÉS VARIABLE :
Dpto. Ecoomía Facera y otabldad Pla de Estudos 994 urso 008-09. TEMA 3 Prof. María Jesús Herádez García. TEMA 3.- OPERAIONES DE AMORTIZAION : PRESTAMOS A INTERES VARIABLE 3..-LASIFIAIÓN DE LOS PRÉSTAMOS
AMPLIACIÓN DE MATEMÁTICAS APLICACIONES.
AMPLIACIÓN DE MATEMÁTICAS APLICACIONES. Ejemplo 1. La ecuació poliómica x 2 + 2x + 2 = 0, co coeficietes reales, tiee dos solucioes complejas cojugadas: 1 + i y 1 i. Este o es u hecho aislado. Proposició
Números Complejos. Capítulo Los números complejos. 1.2 El plano complejo. 2 Matemáticas 1 : Preliminares
2 Matemáticas 1 : Prelimiares Capítulo 1 Números Complejos Este tema de úmeros complejos es más iformativo que recordatorio, siedo el uso explícito de los complejos escaso e las asigaturas de Matemáticas
