A I A subconjunto de S A es un Evento s A s es elemento de A Ocurre el evento A

Tamaño: px
Comenzar la demostración a partir de la página:

Download "A I A subconjunto de S A es un Evento s A s es elemento de A Ocurre el evento A"

Transcripción

1 Uversdad Técca Federco Sata María Departameto de Iformátca ILI-80 Coceptos áscos Capítulo 5: Modelos de Probabldad Estadístca Computacoal º Semestre 00 Profesor :Héctor llede Pága : e-mal : hallede@f.utfsm.cl Dseño de las Dapostvas: H. llede, S. humada y R. Salas Expermeto aleatoro : ξ Espaco Muestral : Ω Espaco Muestral : Dscreto,, Cotuo Eveto o Suceso Sucesos elemetales, seguros e mposbles Probabldad : grado de de certdumbre Probabldad y Juegos de de zar Probabldad y Frecueca relatva Probabldad Subetva (Persoal Coceptos áscos Coutos y Evetos Expermeto Expermeto leatoro: leatoro: Proceso Proceso e e observacó observacó Eveto Eveto Elemetal: Elemetal: Resultado Resultado de de u u expermeto expermetodvsble dvsble Mutualmete MutualmeteExcluyetes : s s ocurre ocurre uo uo o o exste exste posbldad posbldad de de observar observar otro otro Equprobable Equprobable :: Cada Cada eveto eveto smple smple tee tee detca detca probabldad probabldad Espaco Espaco Muestral Muestral El El couto couto de de todas todas las las observacoes observacoes elemetales elemetales Eveto Eveto El El couto couto de de todos todos los los evetos evetos elemetales elemetales observacoes observacoes posbles posblesque que resulta resulta e e la la ocurreca ocurreca del del eveto eveto Ω (S s Ω Ω (S: Espaco Muestral: Todos los posbles resultados elemetales s S, resultado elemetal I :Famla de todos los evetos posbles de S I, luego es u Eveto E s, luego eveto mposble S I, luego S es el Eveto Seguro y I, luego so evetos I; I; c I, so evetos 4 Cocepto de σ-álgebra de sucesos Coutos vs. Evetos Sea Sea I ua ua clase clase o o vacía vacía formada por por certos subcoutos del del espaco muestral S. S. I es esua σ- σ- algebra de de sucesos s s los los sucesos complemetaros de de aquellos que que está e e I també está e e I, I, así así como como sus sus uoes umerables (sea ftas o ftas. Esto Esto se se puede eucar como: c I I es ua σ álgebra I I,..., U 5 Teoría Coutos Teoría Probabldades S Ω Uverso Espaco Muestral I Couto Poteca Famla Clases de Evetos I subcouto de S es u Eveto s s es elemeto de Ocurre el eveto Couto vacío Eveto Imposble S Uverso Eveto Seguro uó Eveto o Eveto terseccó Eveto y Eveto c Complemeto de Eveto o- es subcouto de mplca y so dsutos y mutuamete excluyetes 6

2 Eemplo Dado Se Se realza realza u u expermeto expermeto aleatoro aleatoro de de lazar lazar u u dado dado al al are: are: Sucesos Sucesos elemetales elemetales,,,,,, 4, 4, 5, 5, 6 Espaco Espaco Muestral Muestral S{,,,4,5,6} S{,,,4,5,6} Couto Couto Poteca Poteca I S{Ø,S,{},{},...,{,},...} S{Ø,S,{},{},...,{,},...} σ-álgebra Øsuceso Øsuceso mposble mposble S suceso suceso seguro seguro {, {,,, } } Sucesos Sucesos aleatoros aleatoros {4, {4, 5} 5} {, {, 4, 4, 6}{, 6}{,,, } } C Eemplo S S se se realza realza u u expermeto expermeto aleatoro aleatoro de de esperar esperar el el tempo tempo que que hace hace falta falta para para que que u u átomo átomo de de carboo carboo catorce, catorce, C 4 4,, se se destegre destegre de de modo modo atural, atural, se se tee tee que que + E R s s embargo, embargo, el el σ-álgebra σ-álgebra de de sucesos sucesos que que se se cosdera cosdera o o es es R, R, que que es es ua ua clase clase demasado demasado complea complea para para defr defr sobre sobre sus sus elemetos elemetos ua ua medda medda de de probabldad. probabldad. E E su su lugar lugar se se cosdera cosdera el el σ-álgebra σ-álgebra formada formada por por todos todos los los tervalos, tervalos, abertos abertos o cerrados, cerrados, y sus sus uoes uoes ftas ftas I {Ø, {Ø, R + +,,(,,...,(,],...} (,,...,(,],...} lo lo que que por por supuesto supuesto cluye cluye a los los putos putos de de R Expermeto leatoro I Se toma al azar ua esfera de la ura I Se trasfere a la ura II, se mezcla be. Se elge, aleatoramete, ua esfera de la ura II. cuál es la probabldad a pror que sea verde? II 9 I Espaco Muestral Traspasar Roa # Traspasar Verde # Traspasar Verde # II II II Dsttas formas como puede resultar el expermeto. Ya que las esferas has sdo sacadas al azar, cada uo de ellos tee la msma posbldad de ocurrr 0 ocoes de Probabldad Eemplo Probabldad Probabldad es es ua ua medda medda de de la la certdumbre certdumbre (Estmacó (Estmacó de de la la probabldad probabldad Teórca Teórca -- Pror Pror Pr Pr ( ( / úmero úmero de de posble posble formas formas e e que que puede puede ser ser observado observado úmero úmero total total de de resultados resultados posbles posbles Hstórca Hstórca (empírca-frecueca (empírca-frecueca-- Posteror Posteror Pr Pr ( ( / / úmero úmero de de veces veces que que ocurro ocurro úmero úmero total total de de observacoes observacoes Subetva Subetva La La Opó Opó de de u u Experto Experto E E la la fgura fgura se se preseta preseta la la evolucó evolucó de de la la frecueca frecueca relatva relatva del del úmero úmero de de caras caras obtedo obtedo e e el el lazameto lazameto de de ua ua moeda moeda e e ocasoes ocasoes (smulado (smulado e e u u computador. computador.

3 Modelo Probablístco Sea ua Dstrbucó de de Probabldad P, P, fucó que asga a cada sub-couto razoable de de Ω u u valor etre 0 y.. Ω Sea I coleccó de de evetos razoables de de Ω (σ-álgebra P : I [0;] Modelo de Probabldad ( Ω, I, P Cálculo de Probabldades (Evetos Equprobables ocó tutva (regla de de Laplace: Resultados favorables al eveto Resultados posbles ocó frecuetsta: Sea : total de veces que se realza u expermet o : total de veces que ocurre lm 4 Eemplo Dado Cuál es es la la probabldad de de que al al lazar u u dado se se tega par? El El espaco espaco muestral muestrales es E{, E{,,,,, 4, 4, 5}. 5}. Vamos Vamos a llamar llamar,, al al suceso suceso cosstete cosstete e e que que el el resultado resultado es es mpar, mpar, {,,5}. {,,5}. Como Como o o supoemos supoemos que que gua gua de de las las caras caras ofrece ofrece ua ua probabldad probabldad de de ocurreca ocurreca dferete dferete a las las demás, demás, podemos podemos aplcar aplcar la la regla regla de de Laplace Laplacepara para obteer obteer que que úmero de casos favorables a P[ ] 6 úmero de casos posbles 5 Cálculo de Probabldades (Evetos Equprobables Observacó Observacó E E muchas muchas ocasoes ocasoes os os preocupamos preocupamos de de elegr elegr de de maera maera aleatora aleatora uo uo o más más obetos obetos desde desde ua ua coleccó coleccó de de obetos obetos Sea Sea el el úmero úmero de de obetos. obetos. Elegr Elegr obeto obeto al al azar, azar, sgfca sgfca que que cada cada obeto obeto tee tee la la msma msma probabldad probabldad de de ser ser elegdo. elegdo. elegr elegr a / / Elegr Elegr obetos obetos al al azar azar sgfca sgfca que que cada cada par parde de obetos obetos tee tee la la msma msma probabldad probabldad de de ser ser selecoado. selecoado. Supogamos Supogamos que que exste exste K de de tales tales pares, pares, etoces etoces la la probabldad probabldad de de elegr elegr u u par par cualesqueres cualesqueres es es / / K. K. Elegr Elegr r r obetos obetos aleatoramete, aleatoramete, r r <,, sgfva sgfva que que cada cada r-tupla r-tuplade de obetos obetos tee tee la la msma msma probabldad probabldad de de ser ser seleccoada seleccoada que que cualquer cualquer otra otra r-tupla. r-tupla. 6 xoma : : xoma : : Probabldad xomátca 0 Ω xoma : : Supoedo que que,,,... so so evetos mutuamete excluyetes P ( Propedades.. φ C S S Σ S S

4 Espaco Muestral Fto Probabldad Codcoal Sea S { E { s } s, s,..., s } U E S,.., Espaco Muestral Fto Eveto Elemetal Mutuamete excluyete s de a pares plcado los los axomas se se tee E f > 0 U E Como E I E 0,,,..., f E I E E + E Sea,, dos sucesos tal tal que > La probabldad de de codcoada a la la ocurreca de de,, deotada como : I Propedades: Ω Ω.. Σ co co,,,, :: 9 0 Probabldad Codcoal Probabldad Codcoal Ω Cetra el foco de atecó e el hecho que se sabe que ha ocurrdo el eveto També se ha ecotrado que el 5% de la pezas que o tee fallas superfcales so fucoalmete defectuosas Se ha ecotrado que el 5% de las pezas co fallas superfcales so fucoalmete defectuosas Estamos dcado que el espaco muestral de terés se ha reducdo sólo a aquellos resultados que defe la ocurreca del eveto Por lo tato el 90% o tee fallas vsbles e la superfce. 00% pezas Maufacturadas Se sabe que el 0% de las pezas maufacturadas tee fallas vsbles e la superfce. Etoces, mde la probabldad relatva de co respecto al espaco reducdo Eveto { peza fucoalmete defectuosa} { peza tee ua falla vsble e la superfce} dado? Casos Probabldad Codcoal Probabldad Total S 0 S S S Sea,,,..., evetos mutuamete excluyetes : P ( Etoces U Cosecueca (Regla de deayes: 4

5 Equpo Fallado Sea,,..., Etoces Probabldad Total evetos mutuamete excluyetes Equpo Maufacturado e Plata U Supogamos de de que se se elge aleatoramete u u Equpo y se se ecuetra que está fallado. cuál es es la la probabldad que sea maufacturado e e Plata? Se Se pde pde ; ; pero pero sólo sólo se se cooce,,,,,,,,....,, k Sabemos que que I φ ; Regla de ayes U S 5 6 Probabldad Multplcatva Regla de la Multplcacó Ley Multplcatva: I... I sempre que: I > 0 El El úmero úmero de de maeras maeras dferetes dferetes de de elegr elegr o sacar sacar u u elemeto elemeto de de del del couto couto que que tee tee elemetos, elemetos, luego luego u u elemeto elemeto de de u u couto couto que que tee tee elemetos, elemetos,......,, y falmete falmete u u elemto elemto del del k-ésmo k-ésmo couto couto que que tee tee k elemetos, k elemetos, e e dode dode el el orde orde como como se se seleccoa seleccoa es es mportate mportate * *...*...* k k 7 8 Eemplo Solucó Sea, sucesos de de u u msmo modelo de de probabldad (Ω, R, R, P P tales que: 0,4 0,7 0,75 Determar: C ; - ; C C ; C C / 0,75 * 0,4 0, 0,7-0,4 + 0, 0,6 C 0,4 - C - 0,6-0, 0, C C C + C - C C C C C - C 0,6-0, 0, Luego C C 0,4 + 0,6-0, 0,7 / C C 0, 0,5 C 0,4 9 0

6 Eemplo U U procesador para para computadores puede prover de de cualquera de de tres tres fabrcates co co probabldades: p 0,5; 0,5; p 0,50; 0,50; p 0,5. 0,5. Las Las probabldades de de que que u u procesador fucoe correctamete durate horas es es 0,; 0,; 0, 0, y 0,4 0,4 respectvamete para para los los fabrcates: Calcular la la probabldad de de que que u u procesador elegdo al al azar azar fucoe durate horas. S S el el procesador fucoó correctamete durate el el período de de horas cuál cuál es es la la probabldad de de que que haya haya provedo del del er er fabrcate? C C F 0.* * * Solucó F C F F F C C 0.4* Idepedeca Probablístca Observacoes Sea Sea,, dos dos evetos del del modelo probablístco (Ω, (Ω, I, I, P. P.,, se se dce probablístcamete depedetes ss: ss: I Sea Sea { { : : I {,,,...,k}} ua ua coleccó de de evetos de de (Ω, (Ω, I, I, P. P. Se Se dce dce que que los los elemetos so so coutamete depedetes ss: ss: I φ J I {,,,..., k} J J Idepedeca Idepedeca probablístca probablístca Couta Couta Idepedeca Idepedeca de de a pares pares.. Idepedeca Idepedeca probablístca probablístca de de a pares pares Idepedeca Idepedeca probablístca probablístca Couta Couta.. S S,, so so evetos evetos depedetes depedetesprobablístcamete. probablístcamete. Etoces Etoces se se tee tee,, C C so so depedetes. depedetes. C C,, C C so so depedetes depedetes C C,, so so depedetes depedetes Sea Sea (Ω, (Ω, Ω Ω,, P P modelo modelo de de probabldad. probabldad. Estudar Estudar depedeca depedeca couta couta y y de de a a pares. pares. 4 Idepedeca Probablístca Eemplo : : Sea (Ω, Ω,, P P modelo de de probabldad. Ω { (,0,0 (0,,0 (0,0, (,, } {w } } /4,, 4 Sea,,,, evetos de de (Ω, Ω,, P P : : era era coord. es es : da da coord. es es : era era coord. es es Estudar depedeca couta y de de a pares. Eemplo.4 : Idepedeca Probablístca 4 Probabldad de cerrar los relés,, y 4 es p. S todos los relés fucoa depedetemete, cuál es la probabldad que pase correte de a 4 ( E P[( R I R U ( R I R4]; E P[ R I R ] + P[ R I R4 ] P[ IR ] p p P

7 Varacoes Def: Def: Sea Sea u u couto couto :: Card (,, se se llama llama varacó varacó smple smple o s s repetcó repetcó a todo todo subcouto subcouto de de elemetos elemetos dstguédose dstguédose estos estos etre etre s, s, e e los los elemetos elemetos que que lo lo compoe compoe y e e el el orde orde e e que que estos estos elemetos elemetos va va colocados colocados x, x,..., x }, (, ( (... {, k ( (...( k + Obs: Obs: S S las las varacoes varacoes so so co co repetcó repetcó k V (, k Permutaco oes úmero de maeras dsttas de sacar r elemetos de lote de CUDO EL ORDE IMPORT : ota: Estudar permutacoes co repetcó obetos P r! ( r! r 7 8 Combaco oes Costruccó Modelos de Probabldad Combacoes (s repetcó: úmero de de maeras dsttas de de sacar r elemetos de de lote lote de de CUDO EL EL ORDE O O IMPORT ota : Estudar combacoes co co repetcó C (,r (+r-!/ r!(-!! C(, r r!( r! Sea µ ua medda e e el el Espaco Muestral tal tal que µ (Ω < : Logtud ; Superfce Volume. etc. Etoces exste u u fucó defda e e IR IR P : R R µ ( µ ( Ω es es ua medda de de Probabldad 9 40 Eemplo.5: Varacoes Problema del ecuetro: Dos Dos estudates estudates acuerda acuerda [9; [9; 0] 0] ecotrarse ecotrarse e e la la bbloteca bbloteca de de la la UTFSM UTFSM etre etre las las 9.M..M. y las las 0 0.M..M. u u día día lues. lues. El El prmero prmero que que llega llega a la la bbloteca bbloteca,, espera espera al al otro otro 0 0 mutos mutos (detro (detro del del tervalo tervalo de de tempo tempo pactado. pactado. S S se se supoe supoe que que cada cada uo uo llega llega al al azar azar e e el el tervalo tervalo de de tempo tempo covedo covedo y que que los los tempos tempos de de llegada llegada so so depedetes. depedetes. Cuál Cuál es es la la probabldad probabldad que que estos estos estudates estudates se se ecuetre ecuetre? Solucó: Solucó: X(t X(t :: Llegada Llegada del del estudate estudate Y(t Y(t :: Llegada Llegada del del estudate estudate [X(t;Y(t] [X(t;Y(t] [9; [9; 0]x 0]x [9; [9; 0] 0] [0; [0; 60]X 60]X [0; [0; 60]Ω 60]Ω {[X(t;Y(t] {[X(t;Y(t] :: X(t;Y(t < X(t;Y(t < 0} 0} µ(α/µ(ω µ(α/µ(ω / / Def: Def: Sea Sea u u couto couto :: Card (,, se se llama llama varacó varacó smple smple o s s repetcó repetcó a todo todo subcouto subcouto de de elemetos elemetos dstguédose dstguédose estos estos etre etre s, s, e e los los elemetos elemetos que que lo lo compoe compoe y e e el el orde orde e e que que estos estos elemetos elemetos va va colocados colocados x, x,..., x } {, (, ( (..., k ( (...( k + Obs: Obs: S S las las varacoes varacoes so so co co repetcó repetcó k V (, k 4

8 Permutaco oes Combaco oes úmero de maeras dsttas de sacar r elemetos de lote de CUDO EL ORDE IMPORT : ota: Estudar permutacoes co repetcó obetos P r! ( r! r Combacoes (s repetcó: úmero de de maeras dsttas de de sacar r elemetos de de lote lote de de CUDO EL EL ORDE O O IMPORT ota : Estudar combacoes co co repetcó C (,r (+r-!/ r!(-!! C(, r r!( r! 4 44 Costruccó Modelos de Probabldad Sea µ ua medda e e el el Espaco Muestral tal tal que µ (Ω < : Logtud ; Superfce Volume. etc. Etoces exste u u fucó defda e e IR IR P : R R µ ( µ ( Ω es es ua medda de de Probabldad Eemplo.5: Problema Problema del del ecuetro: ecuetro: Dos Dos estudates estudates acuerd acuerd [9; [9; 0] 0] a a ecotrarse ecotrarse e e la la bbloteca bbloteca de de la la UTFSM UTFSM etre etre las las 9.M..M. y las las 0 0.M..M. u u día día lues. lues. El El prmero prmero que que llega llega a la la bbloteca bbloteca,, espera espera al al otro otro 0 0 mutos mutos (detro (detro del del tervalo tervalo de de tempo tempo pactado. pactado. S S se se supoe supoe que que cada cada uo uo llega llega al al azar azar e e el el tervalo tervalo de de tempo tempo covedo covedo y que que los los tempos tempos de de llegada llegada so so depedetes. depedetes. Cuál Cuál es es la la probabldad probabldad que que estos estos estudates estudates se se ecuetre ecuetre? Solucó: Solucó: X(t X(t :: Llegada Llegada del del estudate estudate Y(t Y(t :: Llegada Llegada del del estudate estudate [X(t;Y(t] [X(t;Y(t] [9; [9; 0]x 0]x [9; [9; 0] 0] [0; [0; 60]X 60]X [0; [0; 60]Ω 60]Ω {[X(t;Y(t] {[X(t;Y(t] :: X(t;Y(t < X(t;Y(t < 0} 0} µ(α/µ(ω µ(α/µ(ω / / Eemplo.5: Problema del ecuetro: Dos Dos estudates estudates acuerda acuerda [9; [9; 0] 0] ecotrarse ecotrarse e e la la bbloteca bbloteca de de la la UTFSM UTFSM etre etre las las 9.M..M. y las las 0 0.M..M. u u día día lues. lues. El El prmero prmero que que llega llega a la la bbloteca bbloteca,, espera espera al al otro otro 0 0 mutos mutos (detro (detro del del tervalo tervalo de de tempo tempo pactado. pactado. S S se se supoe supoe que que cada cada uo uo llega llega al al azar azar e e el el tervalo tervalo de de tempo tempo covedo covedo y que que los los tempos tempos de de llegada llegada so so depedetes. depedetes. Cuál Cuál es es la la probabldad probabldad que que estos estos estudates estudates se se ecuetre ecuetre? Solucó: Solucó: X(t X(t :: Llegada Llegada del del estudate estudate Y(t Y(t :: Llegada Llegada del del estudate estudate [X(t;Y(t] [X(t;Y(t] [9; [9; 0]x 0]x [9; [9; 0] 0] [0; [0; 60]X 60]X [0; [0; 60]Ω 60]Ω {[X(t;Y(t] {[X(t;Y(t] :: X(t;Y(t < X(t;Y(t < 0} 0} µ(α/µ(ω µ(α/µ(ω / /

A I A subconjunto de S A es un Evento s A s es elemento de A Ocurre el evento A

A I A subconjunto de S A es un Evento s A s es elemento de A Ocurre el evento A Uversdad Técca Federco Sata María Departameto de Iformátca ILI-80 Capítulo Probabldades Estadístca Computacoal II Semestre 004 Profesores: Héctor llede (hallede@f.utfsm.cl Rodrgo Salas (rsalas@f.utfsm.cl

Más detalles

A I A subconjunto de S A es un Evento s A s es elemento de A Ocurre el evento A

A I A subconjunto de S A es un Evento s A s es elemento de A Ocurre el evento A Uversdad Técca Federco Sata María Departameto de Iformátca ILI-80 Coceptos áscos Capítulo 5 Modelos de Probabldades Estadístca stca Computacoal II Semestre 005 Profesores: Héctor llede (hallede@f.utfsm.cl

Más detalles

Universidad Técnica Federico Santa María

Universidad Técnica Federico Santa María Uversdad Técca Federco Sata María Uversdad Técca Federco Sata María Departameto de Iformátca ILI-80 Coceptos áscos Capítulo 4 Probabldades Estadístca Computacoal II Semestre 006 Profesores: Héctor llede

Más detalles

Capítulo 4 Probabilidades Estadística Computacional II Semestre 2006

Capítulo 4 Probabilidades Estadística Computacional II Semestre 2006 Unversdad Técnca Federco Santa María Departamento de Informátca ILI-80 Capítulo 4 Probabldades Estadístca Computaconal II Semestre 006 Profesores: Héctor llende (hallende@nf.utfsm.cl) Carlos Valle (cvalle@nf.utfsm.cl)

Más detalles

Héctor Allende 1. w Ω, resultado elemental. Ω : Espacio Muestral: Todos los posibles

Héctor Allende 1. w Ω, resultado elemental. Ω : Espacio Muestral: Todos los posibles Coeptos ásos Capítulo Curso ILI-80 I Semestre 00 Profesor: Hétor llede Expermeto aleatoro : ξ Espao Muestral : Ω Eveto o Sueso : ; ;. Evetos elemetales, seguros e mposbles Probabldad : grado de ertdumbre

Más detalles

3 = =. Pero si queremos calcular P (B) 2, ya que si A ocurrió, entonces en la urna

3 = =. Pero si queremos calcular P (B) 2, ya que si A ocurrió, entonces en la urna arte robabldad codcoal rof. María. tarell - robabldad codcoal.- Defcó Supogamos el expermeto aleatoro de extraer al azar s reemplazo dos bolllas de ua ura que cotee 7 bolllas rojas y blacas. summos que

Más detalles

Aproximación a la distribución normal: el Teorema del Límite Central

Aproximación a la distribución normal: el Teorema del Límite Central Aproxmacó a la dstrbucó ormal: el Teorema del Límte Cetral El teorema del límte cetral establece que s se tee varables aleatoras, X, X,..., X, depedetes y co détca dstrbucó de meda µ y varaza σ, a medda

Más detalles

n p(a ) = n p(a ) = n k Nº de casos favorables de A Nº de casos posibles de E p(a) = Capítulo PROBABILIDAD 1. Introducción

n p(a ) = n p(a ) = n k Nº de casos favorables de A Nº de casos posibles de E p(a) = Capítulo PROBABILIDAD 1. Introducción Capítulo VII PROBABILIDAD 1. Itroduccó Se dcaba e el capítulo ateror que cuado u expermeto aleatoro se repte u gra úmero de veces, los posbles resultados tede a presetarse u úmero muy parecdo de veces,

Más detalles

PARTE 1 - PROBABILIDAD

PARTE 1 - PROBABILIDAD arte - robabldad rof. María. tarell RTE - ROILIDD - robabldad. - Espacos muestrales y evetos. La Teoría de robabldades estuda los llamados expermetos aleatoros. Eemplos cláscos de expermetos aleatoros

Más detalles

Probabilidad ( A) Los axiomas de la probabilidad. φ = el conjunto vacío A B = A y no B C

Probabilidad ( A) Los axiomas de la probabilidad. φ = el conjunto vacío A B = A y no B C Los axomas de la probabldad obabldad El prmer paso para descrbr la certdumbre es cosderar el cojuto de posbles resultados obtedos a partr de u expermeto aleatoro. Este cojuto es llamado espaco muestral

Más detalles

INSTITUTO TECNOLÓGICO DE APIZACO PROBABILIDAD AXIOMAS Y TEOREMAS DE LA PROBABILIDAD.

INSTITUTO TECNOLÓGICO DE APIZACO PROBABILIDAD AXIOMAS Y TEOREMAS DE LA PROBABILIDAD. NSTTUTO TECNOLÓGCO DE ZCO Estadístca OLDD XOMS Y TEOEMS DE L OLDD. DEFNCONES DE L OLDD. La palabra probabldad se utlza para cuatfcar uestra creeca de que ocurra u acotecmeto determado. Exste tres formas

Más detalles

TEMA 1 PROBABILIDAD 1/10. Ejemplos : E y E

TEMA 1 PROBABILIDAD 1/10. Ejemplos : E y E wwwovauedes/webpages/ilde/web/dexhtm e-mal: mozas@elxuedes TEMA PROAILIDAD SUCESOS Exste feómeos o expermetos que, repetdos e détcas codcoes, sempre proporcoa el msmo resultado, a los que llamaremos determstas,

Más detalles

Experimento determinístico. Aquellos que dan lugar al mismo resultado siempre que se realicen bj bajo las mismas condiciones.

Experimento determinístico. Aquellos que dan lugar al mismo resultado siempre que se realicen bj bajo las mismas condiciones. Tema 3. Espacos de Probabldad. Defcó axomátca y propedades báscas de la Probabldad 3.. Itroduccó. Feómeos y expermetos aleatoros. Álgebra de sucesos E este tema se establece ls ocoes báscas para el desarrollo

Más detalles

Probabilidad. 1. Experimentos aleatorios Espacio muestral asociado a un experimento aleatorio Sucesos... 3

Probabilidad. 1. Experimentos aleatorios Espacio muestral asociado a un experimento aleatorio Sucesos... 3 Probabldad PROBABILIDAD 1. Expermetos aleatoros... 2 2. Espaco muestral asocado a u expermeto aleatoro. 3 3. Sucesos... 3 4. El álgebra de Boole de los sucesos... 4 5. Frecuecas. Propedades... 6 6. Defcó

Más detalles

Inferencia Estadística

Inferencia Estadística Ifereca Estadístca Poblacó y muestra Coceptos y defcoes Muestra Aleatora Smple (MAS) Cosderemos ua poblacó, cuya fucó de dstrbucó esta dada por F(), la cual está costtuda por u úmero fto de posbles valores,

Más detalles

Tema 2 Probabilidad. 1. Conceptos básicos. 2. Probabilidad. 3. Probabilidad condicionada. 4. Independencia de sucesos

Tema 2 Probabilidad. 1. Conceptos básicos. 2. Probabilidad. 3. Probabilidad condicionada. 4. Independencia de sucesos Tema 2 robabldad. oceptos báscos 2. robabldad 3. robabldad codcoada 4. depedeca de sucesos 5. Teorema de la probabldad total 6. Teorema de ayes 7. sgacó de probabldades 8. álss combatoro . oceptos báscos.

Más detalles

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN - INTRODUCCIÓN E este tema se tratará de formalzar umércamete los resultados de u feómeo aleatoro Por tato, ua varable aleatora es u valor umérco que correspode

Más detalles

Probabilidad. 1. Experimentos aleatorios Espacio muestral asociado a un experimento aleatorio Sucesos... 3

Probabilidad. 1. Experimentos aleatorios Espacio muestral asociado a un experimento aleatorio Sucesos... 3 Probabldad PROBBILIDD. Expermetos aleatoros... 2 2. Espaco muestral asocado a u expermeto aleatoro. 3 3. Sucesos... 3 4. El álgebra de Boole de los sucesos... 4 5. Frecuecas. Propedades... 6 6. Defcó axomátca

Más detalles

CONTRASTES NO PARAMÉTRICOS: BONDAD DEL AJUSTE Y TABLAS DE CONTINGENCIA

CONTRASTES NO PARAMÉTRICOS: BONDAD DEL AJUSTE Y TABLAS DE CONTINGENCIA CONTRASTES NO PARAMÉTRICOS: BONDAD DEL AJUSTE Y TABLAS DE CONTINGENCIA Atoo Morllas A. Morllas: C. o paramétrcos (I 1 CONTRASTES NO PARAMÉTRICOS: BONDAD DE AJUSTE Y TABLAS DE CONTINGENCIA Ifereca realzada

Más detalles

PARTE 1 - PROBABILIDAD

PARTE 1 - PROBABILIDAD arte - robabldad rof. María. tarell RTE - ROILIDD - robabldad. - Espacos muestrales y evetos. La Teoría de robabldades estuda los llamados expermetos aleatoros. Ejemplos cláscos de expermetos aleatoros

Más detalles

NOMBRE Apellido Paterno Apellido Materno Nombre(s)

NOMBRE Apellido Paterno Apellido Materno Nombre(s) UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE PROBABILIDAD ESTADÍSTICA SEGUNDO EXAMEN FINAL RESOLUCIÓN SEMESTRE

Más detalles

Curso de Estadística Unidad de Medidas Descriptivas. Lección 2: Medidas de Tendencia Central para Datos Agrupados por Valor Simple

Curso de Estadística Unidad de Medidas Descriptivas. Lección 2: Medidas de Tendencia Central para Datos Agrupados por Valor Simple 1 Curso de Estadístca Udad de Meddas Descrptvas Leccó 2: Meddas de Tedeca Cetral para Datos Agrupados por Valor Smple Creado por: Dra. Noemí L. Ruz Lmardo, EdD 2010 Derechos de Autor 2 Objetvos 1. Calcular

Más detalles

La inferencia estadística es primordialmente de naturaleza

La inferencia estadística es primordialmente de naturaleza VI. Ifereca estadístca Ifereca Estadístca La fereca estadístca es prmordalmete de aturaleza ductva y llega a geeralzar respecto de las característcas de ua poblacó valédose de observacoes empírcas de la

Más detalles

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor árbara Cáovas Coesa Estadístca Descrptva 1 Cálculo de Probabldades Trata de descrbr y aalzar alguos caracteres de los dvduos de u grupo dado, s extraer coclusoes para u grupo mayor Poblacó Idvduo o Udad

Más detalles

UN VIAJE POR EL MUNDO DE LA PROBABILIDAD

UN VIAJE POR EL MUNDO DE LA PROBABILIDAD UN VIAJE POR EL MUNDO DE LA PROBABILIDAD AUTORÍA JUAN JOSÉ LEÓN ROMERA TEMÁTICA PROBABILIDAD ETAPA BACHILLERATO Resume E el presete artículo se trata los cotedos relacoados co Probabldad. Se hace u acercameto,

Más detalles

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA FCULTD DE INGENIERÍ U N M ROILIDD Y ESTDÍSTIC Iree atrca Valdez y lfaro reev@servdor.uam.mx T E M S DEL CURSO. álss Estadístco de datos muestrales. 2. Fudametos de la Teoría de la probabldad. 3. Varables

Más detalles

1.- DISTRIBUCIÓN BIDIMENSIONAL

1.- DISTRIBUCIÓN BIDIMENSIONAL º Bachllerato Matemátcas I Dpto de Matemátcas- I.E.S. Motes Oretales (Izalloz)-Curso 0/0 TEMAS 3, 4 y 5.- DISTRIBUCIONES BIDIMENSIONALES. CÁLCULO DE PROBABILIDADES. DISTRIBUCIONES DE PROBABILIDAD.- DISTRIBUCIÓN

Más detalles

AGRO Examen Parcial 1

AGRO Examen Parcial 1 AGRO 5005 009 Exame Parcal Nombre: Istruccoes: Por favor lea los eucados y las pregutas cudadosamete. Se puede usar el lbro las tablas de dstrbucó ormal la hoja de fórmulas provsta y la calculadora. Para

Más detalles

TEMA 63. Frecuencia y Azar. Leyes de Azar. Espacio probabilístico.

TEMA 63. Frecuencia y Azar. Leyes de Azar. Espacio probabilístico. TEM 63.Frecueca y azar. Leyes de azar. Espaco probablístco TEM 63. Frecueca y zar. Leyes de zar. Espaco probablístco.. Itroduccó.. Hstórca. Los coceptos de azar e certdumbre so ta veos como la propa cvlzacó.

Más detalles

X = d representa la métrica (distancia) euclideana en R n, dada por: d T(X,Y) = X Y = 1.3 TOPOLOGÍA BÁSICA EN

X = d representa la métrica (distancia) euclideana en R n, dada por: d T(X,Y) = X Y = 1.3 TOPOLOGÍA BÁSICA EN 0.3. Cojutos abertos y cerrados.3 TOPOLOGÍA BÁSICA EN R El espaco eucldeao dmesoal se defe como: E ( R,,, d ) Dode (asumedo que X, Y R, co X = (x,..., x ), Y = (y,..., y )): El símbolo represeta el producto

Más detalles

Soluciones de los ejercicios de Selectividad sobre Inferencia Estadística de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Inferencia Estadística de Matemáticas Aplicadas a las Ciencias Sociales II Solucoes de los ejerccos de Selectvdad sobre Ifereca Estadístca de Matemátcas Aplcadas a las Cecas Socales II Atoo Fracsco Roldá López de Herro * Covocatora de 006 Las sguetes págas cotee las solucoes

Más detalles

( A) P( B) 4.2 Definición y cálculo de probabilidades Función de probabilidad

( A) P( B) 4.2 Definición y cálculo de probabilidades Función de probabilidad 4. Defcó y cálculo de probabldades 4.. Fucó de probabldad Defcó: Sea la famla de sucesos asocada a u expermeto aleatoro de espaco muestral Ω. Se cosdera ua fucó : R, que verfca las dos propedades 0 y Ω

Más detalles

EJERCICIOS RESUELTOS SUCESOS Y PROBABILIDAD

EJERCICIOS RESUELTOS SUCESOS Y PROBABILIDAD Gestó Aeroáutca: Estadístca Teórca Facultad Cecas Ecoómcas y Empresarales Departameto de Ecoomía Aplcada Profesor: Satago de la Fuete Ferádez EJERCICIOS RESUELTOS SUCESOS Y PROBABILIDAD Gestó Aeroáutca:

Más detalles

4º MEDIO: MEDIDAS DE POSICIÓN

4º MEDIO: MEDIDAS DE POSICIÓN 4º MEDIO: MEDIDAS DE POSICIÓN També llamadas de cetralzacó o de tedeca cetral. Srve para estudar las característcas de los valores cetrales de la dstrbucó atededo a dsttos crteros. Veamos su sgfcado co

Más detalles

MEDIA ARITMÉTICA. Normalmente se suele distinguir entre media aritmética simple y media aritmética ponderada.

MEDIA ARITMÉTICA. Normalmente se suele distinguir entre media aritmética simple y media aritmética ponderada. MEDIDAS DE POSICIÓN També llamadas de cetralzacó o de tedeca cetral. Srve para estudar las característcas de los valores cetrales de la dstrbucó atededo a dsttos crteros. Veamos su sgfcado co u ejemplo:

Más detalles

SEMESTRE DURACIÓN MÁXIMA 2.5 HORAS DICIEMBRE 10 DE 2008 NOMBRE

SEMESTRE DURACIÓN MÁXIMA 2.5 HORAS DICIEMBRE 10 DE 2008 NOMBRE UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS PROBABILIDAD ESTADÍSTICA SEGUNDO EAMEN FINAL RESOLUCIÓN SEMESTRE 009- DURACIÓN

Más detalles

Estimación de Parámetros. Estimación Puntual. Universidad Técnica Federico Santa María. Estimación de Parámetros. Estimación de Parámetros.

Estimación de Parámetros. Estimación Puntual. Universidad Técnica Federico Santa María. Estimación de Parámetros. Estimación de Parámetros. Uversdad Técca Federco ata María Estmacó de Parámetros Capítulo 7 Estmacó de Parámetros Estadístca Computacoal II emestre 007 Prof. Carlos Valle Pága : www.f.utfsm.cl/~cvalle e-mal : cvalle@f.utfsm.cl

Más detalles

Análisis de Regresión y Correlación Lineal

Análisis de Regresión y Correlación Lineal Aálss de Regresó y Correlacó Leal 2do C. 2018 Mg. Stella Fgueroa Clase Nº 14 Tpos de relacoes etre varables Exste u compoete aleatoro por lo que las predccoes tee asocado u error de predccó. Modelo determsta

Más detalles

SUCESOS Y PROBABILIDAD

SUCESOS Y PROBABILIDAD SUCESOS Y PROAILIDAD Notas Idce. OJETIVOS 2. CONCEPTOS ÁSICOS DE LA TEORÍA DE CONJUNTOS. ESPACIO MUESTRAL. ÁLGERA DE SUCESOS 4 4. PROAILIDAD 8 5. INDEPENDENCIA DE SUCESOS 4 ILIOGRAFÍA 4 APÉNDICE. NOTACIÓN

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL Probabldad y Estadístca Meddas de tedeca Cetral MEDIDAS DE TENDENCIA CENTRAL E la udad ateror se ha agrupado la ormacó y además se ha dado ua descrpcó de la terpretacó de la ormacó, s embargo e ocasoes

Más detalles

ANÁLISIS DE REGRESIÓN Y CORRELACIÓN LINEAL

ANÁLISIS DE REGRESIÓN Y CORRELACIÓN LINEAL ANÁLISIS DE REGRESIÓN Y CORRELACIÓN LINEAL TIPOS DE RELACIONES ENTRE VARIABLES Dos varables puede estar relacoadas por: Modelo determsta Modelo estadístco Ejemplo: Relacó de la altura co la edad e ños.

Más detalles

PROBABILIDAD. Dos grupos son distintos si se diferencian en algún elemento ó en el orden de colocación de éstos.

PROBABILIDAD. Dos grupos son distintos si se diferencian en algún elemento ó en el orden de colocación de éstos. PROBABILIDAD CPR. JORGE JUAN Xuva-Naró Para determar la catdad de grupos que se puede formar que cumpla determadas codcoes exste los sguetes métodos de recueto: Dagrama de árbol Varacoes ordaras Dados,

Más detalles

BLOQUE II: CALCULO DE PROBABILIDADES

BLOQUE II: CALCULO DE PROBABILIDADES LOQUE II: CALCULO DE PROAILIDADES TEMA 4. FUNDAMENTOS DE LA PROAILIDAD. Cocepto de probabldad. Defcó aomátca Epermeto aleatoro: u epermeto se dce aleatoro s o se puede predecr el resultado del msmo ates

Más detalles

10 MUESTREO. n 1 9/ / σ σ 1

10 MUESTREO. n 1 9/ / σ σ 1 10 MUESTREO 1 Cómo varará la desvacó típca muestral s se multplca por cuatro el tamaño de la muestra? Y s se aumeta el tamaño de la muestra de 16 a 144? S µ y so la meda y la desvacó típca poblacoales,

Más detalles

TEMA 5.- LA DECISIÓN DE INVERTIR EN UN CONTEXTO DE RIESGO Introducción.

TEMA 5.- LA DECISIÓN DE INVERTIR EN UN CONTEXTO DE RIESGO Introducción. TEMA 5.- LA DECISIÓN DE INVERTIR EN UN CONTEXTO DE RIESGO 5..- Itroduccó. Stuacoes segú el vel de formacó: Certeza. Icertdumbre parcal o resgo: (Iversoes co resgo) Icertdumbre total: (Iversoes co certdumbre)

Más detalles

Estructuras Algebraicas

Estructuras Algebraicas Uversdad de los des Faultad de Ceas Eoómas y Soales Esuela de Estadísta Estruturas lgebraas Prof. Gudberto José Leó Ragel MÉRID, 2015 1 Profesor Gudberto Leó Teoría Estadísta I Uversdad de Los des - Faultad

Más detalles

Regla de Bayes. Pedro J. Rodríguez Esquerdo

Regla de Bayes. Pedro J. Rodríguez Esquerdo Regla de Bayes Pedro J. Rodríguez Esquerdo Isttuto de Estadístca y Sstemas Computadorzados de Iformacó Facultad de Admstracó de Empresas y Departameto de Matemátcas Facultad de Cecas Naturales Recto de

Más detalles

Práctica 11. Calcula de manera simbólica la integral indefinida de una función. Ejemplo:

Práctica 11. Calcula de manera simbólica la integral indefinida de una función. Ejemplo: PRÁCTICA SUMAS DE RIEMAN Práctcas Matlab Práctca Objetvos Calcular tegrales defdas de forma aproxmada, utlzado sumas de Rema. Profudzar e la compresó del cocepto de tegracó. Comados de Matlab t Calcula

Más detalles

NOMBRE. para los nuevos datos, incrementando 5 unidades cada calificación. entonces la media sumando 5 unidades a cada calificación es

NOMBRE. para los nuevos datos, incrementando 5 unidades cada calificación. entonces la media sumando 5 unidades a cada calificación es UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE PROBABILIDAD Y ESTADÍSTICA PRIMER EAMEN FINAL RESOLUCIÓN SEMESTRE

Más detalles

02 ) 2 0 en el resto. Tiempo (meses) Ventilador adicional No No Si No Si Si Si Si No Si Tipo carcasa A C B A B A B C B C

02 ) 2 0 en el resto. Tiempo (meses) Ventilador adicional No No Si No Si Si Si Si No Si Tipo carcasa A C B A B A B C B C Ua empresa motadora de equpos electrócos está realzado u estudo sobre aluos de los compoetes que utlza. E partcular mde el tempo de vda e meses reales de los procesadores que mota, dode a aluos de ellos

Más detalles

Respuesta. Si 100 manzanas es una muestra suficientemente grande podemos ocupar el TCL. Por lo tanto:

Respuesta. Si 100 manzanas es una muestra suficientemente grande podemos ocupar el TCL. Por lo tanto: Curso: Estadístca Iferecal (ICO 8306) Profesores: Esteba Calvo, Pablo Huechapa y Omar Ramos Ayudates: José T. Meda, Fabo Salas y Daela Vlches PROBLEMA Cosdere que Ud. es dueño de u campo que produce mazaas,

Más detalles

UNIDAD DIDÁCTICA 13: Estadística Descriptiva

UNIDAD DIDÁCTICA 13: Estadística Descriptiva Utat d accés accés a la uverstat dels majors de 5 ays Udad de acceso acceso a la uversdad de los mayores de 5 años UNIDAD DIDÁCTICA 13: Estadístca Descrptva ÍNDICE: DESARROLLO DE LOS CONTENIDOS 1 Itroduccó

Más detalles

Cálculo y EstadísTICa. Primer Semestre.

Cálculo y EstadísTICa. Primer Semestre. Cálculo y EstadísTICa. Prmer Semestre. EstadísTICa Curso Prmero Graduado e Geomátca y Topografía Escuela Técca Superor de Igeeros e Topografía, Geodesa y Cartografía. Uversdad Poltécca de Madrd Capítulo

Más detalles

CAPÍTULO 3 METODOLOGÍA. El objetivo del capítulo 3 es conocer la metodología, por lo cual nos apoyaremos en el

CAPÍTULO 3 METODOLOGÍA. El objetivo del capítulo 3 es conocer la metodología, por lo cual nos apoyaremos en el CAPÍTULO 3 METODOLOGÍA El objetvo del capítulo 3 es coocer la metodología, por lo cual os apoyaremos e el lbro de Smulato modelg ad Aalyss (Law, 000), para estudar alguas pruebas de bodad de ajuste. També

Más detalles

Qué es ESTADISTICA? OBJETIVO. Variabilidad de las respuestas. Las mismas condiciones no conducen a resultados exactamente similares PROBLEMA SOLUCIÓN

Qué es ESTADISTICA? OBJETIVO. Variabilidad de las respuestas. Las mismas condiciones no conducen a resultados exactamente similares PROBLEMA SOLUCIÓN Qué es ESADISICA? Es u couto de la rama de las Matemátcas Es algo aburrdo que mplca u motó de cuetas 3 Es u couto de téccas que se puede usar para probar cualquer cosa 4 Es u couto de coocmetos téccas

Más detalles

NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD

NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD 1. CONCEPTO DE ESTADÍSTICA : Es la ceca que estuda la terpretacó de datos umércos. a) Proceso estadístco : Es aquél que a partr de uos datos umércos, obteemos

Más detalles

Intensificación en Estadística

Intensificación en Estadística GRADO EN VETERINARIA DEPARTAMENTO DE ESTADÍSTICA E IO 0-0 IV Curso Cero Itesfcacó e Estadístca Itroduccó a la fucó Sumatoro Itroduccó Cocepto de fucó sumatoro Aplcacoes Itroduccó Cocepto de fucó sumatoro

Más detalles

INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA

INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA Lus Fraco Martí {lfraco@us.es} Elea Olmedo Ferádez {olmedo@us.es} Jua Mauel Valderas Jaramllo {valderas@us.es}

Más detalles

Orden de la tirada. Figura 1: Frecuencia relativa de cara para una sucesión de 400 tiradas.

Orden de la tirada. Figura 1: Frecuencia relativa de cara para una sucesión de 400 tiradas. Estadístca (Q) Dra. Daa M. Kelmasky 99. Teoremas límte Frecueca Relatva 0.5 0.6 0.7 0.8 0.9.0 0 00 00 300 400 Orde de la trada Fgura : Frecueca relatva de cara para ua sucesó de 400 tradas. La fgura muestra

Más detalles

Teoría Simplificada de ERRORES Suscriben este documento los coordinadores de Laboratorio de Química, Física I y Física II.

Teoría Simplificada de ERRORES Suscriben este documento los coordinadores de Laboratorio de Química, Física I y Física II. Teoría Smplfcada de ERRORES Suscrbe este documeto los coordadores de Laboratoro de Químca, Físca I y Físca II. Defcoes Báscas: -Error absoluto (o error): Itervalo xe dode co máxma probabldad se ecuetra

Más detalles

GRADO EN PSICOLOGIA INTRODUCCIÓN AL ANÁLISIS DE DATOS Código Asignatura: FEBRERO 2010 EXAMEN MODELO A

GRADO EN PSICOLOGIA INTRODUCCIÓN AL ANÁLISIS DE DATOS Código Asignatura: FEBRERO 2010 EXAMEN MODELO A Febrero 20 EAMEN MODELO A Pág. 1 GRADO EN PICOLOGIA INTRODUCCIÓN AL ANÁLII DE DATO Códgo Asgatura: 620137 FEBRERO 20 EAMEN MODELO A Tabla 1: Para estudar la relacó etre las putuacoes e u test () y el redmeto

Más detalles

PARTE SEGUNDA: INFERENCIA ESTADÍSTICA

PARTE SEGUNDA: INFERENCIA ESTADÍSTICA ESTADÍSTICA II PARTE SEGUNDA: INFERENCIA ESTADÍSTICA TEMA III: INTRODUCCION A LA INFERENCIA III..- Itroduccó III..- La eleccó de la muestra. Tpos de muestreo III.3.- Muestreo aleatoro smple. Estadístcos

Más detalles

1 DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL

1 DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL Estadístca y probabldad 1 DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL 1.1 DISTRIBUCIONES ESTADÍSTICAS Se usa dagramas de barras, dode la altura de éstas represeta la recueca de cada

Más detalles

GENERALIDADES SOBRE MÓDULOS

GENERALIDADES SOBRE MÓDULOS GENERALIDADES SOBRE MÓDULOS Presetar el Z -módulo Z como cocete de u Z -módulo lbre Hacer lo msmo para el grupo de Kle Calcular los auladores de los sguetes módulos: a) El Z -módulo Z Z 6 b) El Z -módulo

Más detalles

Experimento: TEORÍA DE ERRORES. UNIVERSIDAD DE ATACAMA Facultad de Ciencias Naturales Departamento de Física I. OBJETIVOS

Experimento: TEORÍA DE ERRORES. UNIVERSIDAD DE ATACAMA Facultad de Ciencias Naturales Departamento de Física I. OBJETIVOS Epermeto: I. OJETIVOS UNIVERSIDD DE TM Facultad de ecas Naturales Departameto de Físca TEORÍ DE ERRORES Idetfcar errores sstemátcos y accdetales e u proceso de medcó. ompreder los coceptos de eacttud y

Más detalles

6- SUMA DE VARIABLES ALEATORIAS Y TEOREMA CENTRAL DEL LÍMITE

6- SUMA DE VARIABLES ALEATORIAS Y TEOREMA CENTRAL DEL LÍMITE arte Suma de varables aleatoras y Teorema cetral del límte rof. María B. tarell 3 6- SUMA DE VARIABLES ALEATORIAS TEOREMA CENTRAL DEL LÍMITE 6. Suma de varables aleatoras deedetes Cuado se estudaro las

Más detalles

ERRORES EN LAS MEDIDAS (Conceptos elementales)

ERRORES EN LAS MEDIDAS (Conceptos elementales) ERRORES E LAS MEDIDAS (Coceptos elemetales). Medda y tpos de errores ormalmete, al realzar varas meddas de ua magtud físca, se obtee e ellas valores dferetes. E muchas ocasoes, esta dfereca se debe a causas

Más detalles

División de Estadísticas y Proyecciones Económicas (DEPE) Centro de Proyecciones Económicas (CPE)

División de Estadísticas y Proyecciones Económicas (DEPE) Centro de Proyecciones Económicas (CPE) Comsó Ecoómca para Amérca Lata y el Carbe (CEPAL Dvsó de Estadístcas y Proyeccoes Ecoómcas (DEPE Cetro de Proyeccoes Ecoómcas (CPE Estmacó Putual de Parámetros Chrsta A. Hurtado Navarro Mayo, 006 Estmacó

Más detalles

Fórmulas de de Derivación Numérica: Aproximación de de la la derivada primera de de una función

Fórmulas de de Derivación Numérica: Aproximación de de la la derivada primera de de una función Uversdad Poltécca de Madrd Igeería de Mas Fórmulas de de Dervacó Numérca: Aproxmacó de de la la dervada prmera de de ua fucó Prof. Alfredo López L Beto Prof. Carlos Code LázaroL Prof. Arturo dalgo LópezL

Más detalles

Tema 1. La medida en Física. Estadística de la medida Cifras significativas e incertidumbre

Tema 1. La medida en Física. Estadística de la medida Cifras significativas e incertidumbre Tema. La medda e Físca Estadístca de la medda Cfras sgfcatvas e certdumbre Cotedos Herrameta para represetar los valores de las magtudes físcas: los úmeros Sstemas de udades Notacó cetífca Estadístca de

Más detalles

V II Muestreo por Conglomerados

V II Muestreo por Conglomerados V II Muestreo por Coglomerados Dr. Jesús Mellado 31 Por alguas razoes aturales, los elemetos muestrales se ecuetra formado grupos, como por ejemlo, las persoas que vve e coloas de ua cudad, lo elemetos

Más detalles

ÁLGEBRA II (LSI PI) TRANSFORMACIONES LINEALES UNIDAD Nº 5. Facultad de Ciencias Exactas y Tecnologías UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO

ÁLGEBRA II (LSI PI) TRANSFORMACIONES LINEALES UNIDAD Nº 5. Facultad de Ciencias Exactas y Tecnologías UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO 2017 ÁLGEBRA II (LSI PI) UNIDAD Nº 5 RANSFORMACIONES LINEALES Facultad de Cecas Exactas y ecologías UNIERSIDAD NACIONAL DE SANIAGO DEL ESERO aa Error! No hay texto co el estlo especfcado e el documeto

Más detalles

PROBABILIDAD: TEORÍA Y CÁLCULO DE PROBABILIDADES

PROBABILIDAD: TEORÍA Y CÁLCULO DE PROBABILIDADES PROBABILIDAD: TEORÍA Y CÁLCULO DE PROBABILIDADES INTRODUCCIÓN HISTÓRICA Cas ada e la vda es seguro. E todo lo que hacemos estmamos las posbldades de resultados satsfactoros. Pero durate gra parte de la

Más detalles

Espacios con producto interior

Espacios con producto interior Espacos co producto teror [Versó prelmar] Prof. Isabel Arrata Z. Algebra Leal E esta udad, todos los espacos ectorales será reales Sea V u espaco ectoral sobre. U producto teror (p..) e V es ua fucó

Más detalles

5- SUMA DE VARIABLES ALEATORIAS Y TEOREMA CENTRAL DEL LÍMITE

5- SUMA DE VARIABLES ALEATORIAS Y TEOREMA CENTRAL DEL LÍMITE Suma de varables aleatoras y Teorema cetral del límte rof. María B. tarell 33 5- SUMA DE VARIABLES ALEATORIAS TEOREMA CENTRAL DEL LÍMITE 5. Suma de varables aleatoras depedetes Cuado se estudaro las varables

Más detalles

Supongamos que hemos aplicado el test F y hemos rechazado la H0.

Supongamos que hemos aplicado el test F y hemos rechazado la H0. Comparacó de medas tomadas de a pares CONDICION Meda s --------- ---------- ------ ---------- 0.00 3.0000 0.00 3.73 3 97.00 3.0000 4 93.00.44 TOTAL 98.73.6036 Supogamos que hemos aplcado el test F y hemos

Más detalles

Unidad I Estadística Descriptiva

Unidad I Estadística Descriptiva PRESENTACIÓN DEL CURSO Udad I Estadístca Descrptva La ESTADISTICA es la parte de las matemátcas ecargada de la presetacó y aálss de los datos de u expermeto. Normalmete la estadístca se dvde e: Estadístca

Más detalles

2. Censura y truncamiento

2. Censura y truncamiento 2. Cesura y trucameto Los datos de tempo de fallo se preseta e dferetes formas que crea problemas especales cuado se aalza. E muchas ocasoes o se cooce co exacttud el valor del tempo de fallo y úcamete

Más detalles

GUIA TEORICO-PRACTICA II

GUIA TEORICO-PRACTICA II GUIA TEORICO-PRACTICA II CONTENIDOS.. Sucesoes. Progresoes: artmétcas y geométrcas.. Ejerccos Propuestos... Sumatora: propedades. Prcpo de Iduccó Completa..4 Ejerccos Propuestos..5. Factoral de u úmero

Más detalles

PyE_ EF1_TIPO2_

PyE_ EF1_TIPO2_ SEMESTRE 9- TIPO DURACIÓN MÁIMA.5 HORAS JUNIO DE 9 NOMBRE. "Scram" es el térmo que utlza los geeros ucleares para descrbr u rápdo cerre de emergeca de u reactor uclear. La dustra uclear ha hecho esuerzos

Más detalles

Evento E es cualquier subconjunto de posibles resultados de un experimento (Ω o S también se le conoce como evento seguro).

Evento E es cualquier subconjunto de posibles resultados de un experimento (Ω o S también se le conoce como evento seguro). I. INTRODUION. oceptos báscos xpemeto: Ua stuacó que da luga a u esultado detfcable. muchos estudos cetífcos os efetamos co expemetos que so epettvos po atualeza o que puede se cocebdos como epettvos.

Más detalles

ESTADÍSTICA. UNIDAD 3 Características de variables aleatorias. Ingeniería Informática TEORÍA

ESTADÍSTICA. UNIDAD 3 Características de variables aleatorias. Ingeniería Informática TEORÍA Uversdad Nacoal del Ltoral Facultad de Igeería y Cecas Hídrcas ESTADÍSTICA Igeería Iformátca TEORÍA Mg.Ig. Susaa Valesberg Profesor Ttular UNIDAD Característcas de varables aleatoras Estadístca - Igeería

Más detalles

UNIDAD TEMÁTICA 9 REGRESIÓN LINEAL Y CORRELACIÓN ENUNCIADO 1

UNIDAD TEMÁTICA 9 REGRESIÓN LINEAL Y CORRELACIÓN ENUNCIADO 1 ESCUELA UNIVERSITARIA DE TÉCNICA INDUSTRIAL UNIDAD TEMÁTICA 9 REGRESIÓN LINEAL Y CORRELACIÓN ENUNCIADO La sguete tabla muestra la ota fal e los exámees de estadístca (E) e vestgacó operatva (IO) de ua

Más detalles

LECTURA 02: DISTRIBUCIONES DE FRECUENCIAS (PARTE I) DISTRIBUCIONES DE FRECUENCIAS EN PUNTOS AISLADOS

LECTURA 02: DISTRIBUCIONES DE FRECUENCIAS (PARTE I) DISTRIBUCIONES DE FRECUENCIAS EN PUNTOS AISLADOS Uversdad Católca Los Ágeles de Cmbote LECTURA 0: DISTRIBUCIONES DE FRECUENCIAS (PARTE I) DISTRIBUCIONES DE FRECUENCIAS EN PUNTOS AISLADOS TEMA : DISTRIBUCIONES DE FRECUENCIAS: DEFINICIÓN Y CLASIFICACIÓN

Más detalles

MATEMÁTICA MÓDULO 4 Eje temático: Estadística y Probabilidades

MATEMÁTICA MÓDULO 4 Eje temático: Estadística y Probabilidades MATEMÁTICA MÓDULO 4 Eje temátco: Estadístca y Probabldades Empezaremos este breve estudo de estadístca correspodete al cuarto año de Eseñaza Meda revsado los dferetes tpos de gráfcos.. GRÁFICOS ESTADÍSTICOS

Más detalles

MÉTODOS ESTADÍSTICOS DE LA INGENIERÍA

MÉTODOS ESTADÍSTICOS DE LA INGENIERÍA ema ta zabal zazu EUSKAL HERRIKO UNIBERTSITATEA UNIVERSIDAD DEL AIS VASCO MÉTODOS ESTADÍSTICOS DE LA INGENIERÍA Resolucó del ejercco fal. rmera covocatora. Curso INDUSTRIA INGENIARITZA TEKNIKOKO UNIBERTSITATE

Más detalles

MÓDULO 1 LEYES DE DISTRIBUCIÓN DE PROCESOS HIDROLÓGICOS

MÓDULO 1 LEYES DE DISTRIBUCIÓN DE PROCESOS HIDROLÓGICOS MÓDULO 1 LEYES DE DISTRIBUCIÓN DE PROCESOS HIDROLÓGICOS Autores: Dr. Ig. Roberto Pzarro T. Ig. Jua Pablo Flores V. Ig. Clauda Sagüesa P. Ig. Ezo Martíez A. 1. INTRODUCCIÓN El presete documeto fue extraído

Más detalles

2.5. Área de una superficie.

2.5. Área de una superficie. .5. Área de ua superfce. Sea g ua fucó co prmeras dervadas parcales cotuas, tal que z g( x y), 0 e toda la regó D del plao xy. Sea S la parte de la gráfca de g cuya proyeccó e el plao xy es como se lustra

Más detalles

ESTADÍSTICA poblaciones

ESTADÍSTICA poblaciones ESTADÍSTICA Es la parte de las Matemátcas que estuda el comportameto de las poblacoes utlzado datos umércos obtedos medate epermetos o ecuestas. ESTADÍSTICA La Estadístca tee dos ramas: La Estadístca descrptva:

Más detalles

1.3. Longitud de arco.

1.3. Longitud de arco. .. Logtud de arco. Defcó. Sea C ua curva suave defda paramétrcamete por la fucó vectoral f : R R / f () t = ( f() t, f() t,, f ( t) ) e el espaco R, co t [ a, b], que se recorre exactamete ua vez cuado

Más detalles

VARIABLES ESTADÍSTICAS UNIDIMENSIONALES.

VARIABLES ESTADÍSTICAS UNIDIMENSIONALES. CONTENIDOS. VARIABLES ESTADÍSTICAS UNIDIMENSIONALES. Itroduccó a la Estadístca descrptva. Termología básca: poblacó, muestra, dvduo, carácter. Varable estadístca: dscretas y cotuas. Orgazacó de datos.

Más detalles

PRÁCTICA 13: PRUEBA DE HIPÓTESIS DE BONDAD DE AJUSTE E INDEPENDENCIA

PRÁCTICA 13: PRUEBA DE HIPÓTESIS DE BONDAD DE AJUSTE E INDEPENDENCIA PRÁCTICA 3: PRUEBA DE HIPÓTESIS DE BONDAD DE AJUSTE E INDEPENDENCIA E ocasoes ocurre que el ecargado de hacer u trabajo estadístco o está seguro de la dstrbucó de ua determada varable aleatora. Para solucoar

Más detalles

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU APLICACIÓN EN PROBLEMAS DE INGENIERÍA Clauda Maard Facultad de Igeería. Uversdad Nacoal de Lomas de Zamora Uversdad CAECE Bueos Ares. Argeta. maard@uolsects.com.ar

Más detalles

5.3 Estadísticas de una distribución frecuencial

5.3 Estadísticas de una distribución frecuencial 5.3 Estadístcas de ua dstrbucó frecuecal 5.3. Meddas de tedeca cetral Meddas de tedeca cetral Las meddas de tedeca cetral so descrptores umércos que proporcoa ua dea de los valores de la varable, alrededor

Más detalles

I. ANÁLISIS DESCRIPTIVO DE UN CONJUNTO DE DATOS

I. ANÁLISIS DESCRIPTIVO DE UN CONJUNTO DE DATOS Estadístca Tema. Seres Estadístcas. Dstrbucoes de frecuecas. Pág. I. ANÁLISIS DESCIPTIVO DE UN CONJUNTO DE DATOS Seres Estadístcas. Dstrbucoes de frecuecas.. Defcó de Estadístca... Coceptos geerales...2

Más detalles

4 METODOLOGIA ADAPTADA AL PROBLEMA

4 METODOLOGIA ADAPTADA AL PROBLEMA 4 MEODOLOGA ADAPADA AL PROBLEMA 4.1 troduccó Báscamete el problema que se quere resolver es ecotrar la actuacó óptma sobre las tesoes de los geeradores, la relacó de tomas de los trasformadores y el valor

Más detalles

7. Muestreo con probabilidades desiguales.

7. Muestreo con probabilidades desiguales. 7. Muestreo co probabldades desguales. 7. Itroduccó. 7.. Probabldades de clusó. 7.. Pesos del dseño muestral. 7.. Alguos métodos co probabldades desguales. 7. Estmacó de la meda, proporcó total poblacoales.

Más detalles

No debe entregar los enunciados

No debe entregar los enunciados Curso 01-13 EAMEN MODELO A ág. 1 INTRODUCCIÓN AL ANÁLII DE DATO ETIEMBRE 013 Códgo asgatura: 6011037 EAMEN TIO TET MODELO A DURACION: HORA Materal: Addeda (Formularo y Tablas) y calculadora (cualquer modelo)

Más detalles

Módulo Teórico Estadística Básica Prof. Dr. Juan Ignacio Pastore. Unidad N

Módulo Teórico Estadística Básica Prof. Dr. Juan Ignacio Pastore. Unidad N Udad N Varables aleatoras. Defcó de varable aleatora. Varable aleatora dscreta: fucó de probabldad y de dstrbucó acumulada. Varable aleatora cotua. Fucó de desdad de probabldad. Fucó de dstrbucó acumulada.

Más detalles